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 

Abstract— Deep learning is revolutionizing many aspects of our 

society, addressing a wide variety of decision-making tasks from 

image classification to autonomous vehicle control. Matrix 

multiplication is an essential and computationally intensive step of 

deep learning calculations. The computational complexity of deep 

neural networks requires dedicated hardware accelerators for 

additional processing throughput and improved energy efficiency 

in order to enable scaling to the larger networks in upcoming 

applications. Silicon Photonics is a promising platform for 

hardware acceleration due to recent advances in CMOS 

compatible manufacturing capabilities, which enable efficient 

exploitation of the inherent parallelism of optics. This article 

provides a detailed description of recent implementations in the 

relatively new and promising platform of silicon photonics for 

deep learning. Opportunities for multiwavelength microring 

silicon photonic architectures co-designed with FPGA for pre- and 

post- processing are presented. The detailed analysis of a silicon 

photonic integrated circuit shows that a co-designed 

implementation based on the decomposition of large matrix vector 

multiplication into smaller instances and the use of nonnegative 

weights could significantly simplify the photonic implementation 

of the matrix multiplier and allow increased scalability. We 

conclude the paper by presenting an overview and a detailed 

analysis of design parameters. Insights for ways forward are 

explored. 

 

Index Terms—silicon photonics; deep learning; neural network; 

photonic integrated circuit; microring resonator. 

 

I. INTRODUCTION 

EEP learning is an extraordinarily popular machine 

learning technique that is revolutionizing many aspects of 

our society. Machine learning addresses a wide variety of 

decision-making tasks such as image classification [1], audio 

recognition [2], autonomous vehicle control [3], and cancer 

detection [4]. Matrix multiplication is an essential but time 

consuming operation in deep learning computations. It is the 

most time intensive step in both feedforward and back-

propagation stages of deep neural networks (DNNs) during the 

training and inference, and dominates the computation time and 

energy for many workloads [1-3, 5, 6]. Deep learning uses 

models that are trained using large sets of data and neural 

networks with many layers. Since DNNs have high 

computational complexity, recent years have seen many efforts 

to go beyond general-purpose processors and towards dedicated 
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accelerators that provide superior processing throughput and 

improved energy efficiency. 
It has been known for quite a while that matrix-vector 

multiplication can be performed by optical components taking 

advantage of the natural parallelism of optics to reduce 

computation time from O(N2) to O(1) [7, 8]. Implementing 

these optical matrix-vector multipliers, however, has required 

the use of bulky inefficient optical devices. In the last several 

years the field of silicon photonics has made major progress to 

meet the massive needs of data centers and cloud computing. 

With silicon photonics, optical components and photonic 

integrated circuits are fabricated leveraging CMOS-compatible 

silicon manufacturing techniques to enable small-footprint, 

low-cost, power-efficient data transfers. 

Optical matrix-vector multipliers (OMMs) based on silicon 

photonics represent a promising approach to address the 

challenge of compute-intensive multiplication in DNNs. An 

optimal solution must take into account the advantages and 

drawbacks of the silicon photonic technology along with the 

requirements of the application. Silicon photonics offers 

excellent co-design capabilities with off-chip control 

implemented by FPGAs to achieve accelerated computational 

gains. To analyze these capabilities in detail, we present the co-

design of a DNN in conjunction with the OMM, developing an 

optical-electrical co-design infrastructure using FPGA control. 

The FPGA is used for (1) pre/post processing and (2) photonic 

device control. We identify opportunities for OMM 

architectures based on multiwavelength silicon microring 

resonators. We analyze and generalize the metrics of the 

microrings for linearity and reduced sensitivity to perturbations. 

The OMM can be used for time consuming, computationally 

expensive matrix multiplication. In the case of DNNs that are 

too large to be processed on a single optical chip, we explore 

methods to divide the computation, by using the parallelism at 

the system level to enable scaling to very large neural networks. 

In addition, we show how DNNs based on nonnegative weights 

significantly simplify the photonic implementation of the 

matrix multiplier and allow increased scalability. 

The remainder of this paper is organized as follows. In 

Section II, we present a brief background of advances in deep 

learning and in silicon photonics. In Section III, we give an 

overview of and discuss trade-offs in the state-of-the-art 
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research in the implementation of silicon photonics for deep 

learning. Based on the analysis above, in Section IV, we 

propose a co-designed system for deep learning. We first 

present a detailed analysis of the design parameters and metrics 

for a silicon photonic integrated circuit (PIC) that implements 

an optical matrix multiplier. We generalize the role and 

characteristics of the silicon microrings, analyzing their 

limitations (including thermal sensitivities) in order to explore 

opportunities for optimized OMM structures. We then discuss 

system-level approaches towards electronic/photonic co-design 

for improved performance. At the end of this section, we 

provide insights on future directions and opportunities based on 

our analysis and the current state-of-the-art and application 

requirements. Section V concludes the paper. 

II. BACKGROUND 

A. Deep learning 

The fundamental concept of machine learning is that the core 

computation algorithm is not fully provided by a programmer, 

but automatically generated or improved by a computer system 

through experience [9]. The learning system explores a given 

class of computation models to determine the most suitable 

model among them based on the training data. One of the model 

classes that has gained widespread popularity is the DNN, 

which is the artificial neural network (ANN) with many layers 

in the network [10]. Inspired by the human brain, the concept 

of the ANN was first proposed in the 1940s [11]. More recently, 

with the increased volume of data, computing capability, and 

research interest, numerous ANNs have shown outstanding 

performance in machine learning tasks across various 

application domains [1-4]. Deep learning refers to machine 

learning using deep ANNs, also called DNNs. Two 

fundamental classes of ANNs are multilayer perceptrons 

(MLPs) and convolutional neural networks (CNNs). 

 

Fig. 1 A multilayer perceptron (MLP) for handwritten digit classification. The 

network consists of 4 layers (the input layers, two hidden layers, and the output 

layer) where each layer contains a number of nodes (also called neurons). 

 

  

Fig. 2 The computation for a single node (the first node in the layer h1) in MLP. 

MLPs, also known as fully-connected networks (FCNs), are 

the quintessential DNNs [10]. An MLP represents a function 

defined by a network consisting of multiple layers of nodes, 

which are also called neurons or perceptrons. For example, Fig. 

1 shows an MLP for the task of recognizing a handwritten digit. 

The input image is represented as an array of pixel intensity 

values which are often normalized. The neural network behaves 

as a function that maps the input image to the probability score 

for each of the ten digits (0, 1, 2,⋯ , 9) . Let 𝑖0  denote the 

number of pixels in the input image. Then, for an input array 

𝑥 ∈ ℝ𝑖𝑜, the neural network (shown in the box in Fig. 1) outputs 

𝑦(𝑥) ∈ ℝ10 , as follows. The input layer 𝑥  contains 𝑖0  nodes 

𝑥1, 𝑥2, ⋯ , 𝑥𝑖0. This layer is fully-connected to the first hidden 

layer ℎ1, which contains 𝑖1 nodes; each node ℎ𝑘
1  (1 ≤ 𝑘 ≤ 𝑖1) 

is computed as 

ℎ𝑘
1(𝑥1, 𝑥2⋯ , 𝑥𝑖0) = 𝐴𝑐𝑡(𝑔𝑘

1(𝑥1, 𝑥2, ⋯ , 𝑥𝑖0) + 𝑏𝑘
1)     (1) 

𝑔𝑘
1(𝑥1, 𝑥2, ⋯ , 𝑥𝑖0) = w𝑘,1

1 ⋅ 𝑥1 +w𝑘,2
1 ⋅ 𝑥2 +⋯+w𝑘,𝑖0

1 ⋅ 𝑥𝑖0 

(2) 

where 𝐴𝑐𝑡( )  denotes an element-wise nonlinear activation 

function (e.g., ReLU, sigmoid, softmax, tanh), 𝑏𝑘
1 ∈ ℝ is a bias, 

and w𝑘,𝑗
1  (1 ≤ 𝑗 ≤ 𝑖0) represents the weight of the connection 

between node 𝑥𝑗  and ℎk
1  (Fig. 2). Each hidden layer is fully-

connected to the next layer, and the last layer in the network is 

the output layer containing ten nodes. The softmax function is 

often used for nonlinear activation of the output layer since it 

can be interpreted as a probability distribution. 

The process of computing the output of a neural network as 

described above is called feedforward propagation. The 

information stored in the input layer propagates toward the 

output layer. How it propagates depends on the neural networks 

structure, weights, biases, and activation functions. During the 

training phase of supervised machine learning, given a large 

number of (input, output) instances, the values of weights and 

biases are updated through the gradient descent method, also 

called back-propagation [12]. Then, in the inference phase, a 

trained network is used to predict the output for a new input 

instance. With this approach, MLPs were among the first and 

most successful nonlinear learning algorithms [10]. The 

nonlinear activation plays a key role in ANNs. Without the 

ANN, the function expressed by an MLP is a composition of 

linear functions (which is linear). By inserting the nonlinear 

activation, such as ReLU or tanh, the resulting function 

becomes a composition of nonlinear functions, which can 

express much more complicated concepts. 
In addition, the universal approximation theorem states that 

any continuous function defined on a compact set can be 

approximated by an MLP with a single hidden layer [13, 14]. 

Nevertheless, it does not address how many nodes are required 

in the hidden layer, or how to learn the weights and biases of 

such an MLP. Empirically, the accuracy of the trained networks 

improves as the number of nodes per layer increases, and as the 

number of layers increases. This motivated the advancement of 

DNNs. 

Inner-product between the input vector and a weight vector

Adding a bias and applying non-linear activation 
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CNNs were first proposed by LeCun et al. in 1989 for 

handwritten digit recognition [15], and they have outperformed 

many proposed MLPs, especially for more complex tasks such 

as colored image classification. Fig. 3 illustrates the overview 

of a CNN for image classification. The input image is stored 

across three channels, each representing the Red, Green, or 

Blue intensities. As shown in Fig. 4a, a convolutional layer 

(Layer 𝐿 + 1 ) usually contains multiple channels, and the 

values of nodes in each channel are computed using the 

information from all channels in the previous layer (Layer 𝐿). 

Fig. 4b gives a closer look at the connection between an input 

channel from the previous layer (Channel 𝐴 in Layer 𝐿) and an 

output channel in a convolutional layer (Channel 𝐵 in Layer 

𝐿 + 1). A convolution kernel (of size 3 × 3 in the example) 

dedicated to this connection defines how to obtain a value for 

each node in the output channel from a small neighbor (of size 

3 × 3) in the input channel (Fig. 4c). The kernel slides both 

vertically and horizontally on the input channel to cover all 

nodes in the channel, and the convolution result is propagated 

to the node in the associated position in the output channel. The 

amount by which the kernel slides is called the stride and this is 

often set to 1. Around the boundary of the input channel, 

additional nodes of the value zero can be padded before the 

convolution. When the kernel is of size 𝑅 × 𝑅, a padding of size 

⌈
𝑅

2
⌉ is commonly applied. At each node in the output channel, a 

bias and activation function are applied to the summation of the 

corresponding convolution results. To summarize, the value of 

a node 𝑧𝑐,𝑑
𝐿+1,𝐵

 at (𝑐, 𝑑)-coordinate on channel 𝐵 in layer 𝐿 + 1 

is computed as 

𝑧𝑐,𝑑
𝐿+1,𝐵(𝑧𝐿,1, 𝑧𝐿,2, ⋯ 𝑧𝐿,𝑁𝐿; 𝑘𝐿,1;𝐿+1,𝐵, 𝑘𝐿,2;𝐿+1,𝐵, ⋯ , 𝑘𝐿,𝑁𝐿;𝐿+1,𝐵) 

= 𝐴𝑐𝑡(𝛴𝐴=1
𝑁𝐿 𝑣𝑐,𝑑

𝐿+1,𝐵(𝑧𝐿,𝐴; 𝑘𝐿,𝐴;𝐿+1,𝐵) + 𝑏𝑐,𝑑
 𝐿+1,𝐵)         (3) 

𝑣𝑐,𝑑
𝐿+1,𝐵(𝑧𝐿,𝐴; 𝑘𝐿,𝐴;𝐿+1,𝐵) 

= 𝛴𝛼=1
𝑀 𝛴𝛽=1

𝑀 (𝑘𝛼,𝛽
𝐿,𝐴;𝐿+1,𝐵 ⋅ 𝑧

𝑐−⌊
𝑀

2
⌋+𝛼,𝑑−⌊

𝑀

2
⌋+𝛽

𝐿,𝐴 )            (4) 

where 𝐴𝑐𝑡( )  is an activation function, 𝑏𝑐,𝑑
𝐿+1,𝐵 ∈ ℝ  is a bias 

associated with this output node, 𝑧𝐿,𝐴 denotes channel 𝐴 in the 

previous layer 𝐿, 𝑁𝐿 represents the number of channels in layer 

𝐿, and 𝑘𝐿,𝐴;𝐿+1,𝐵 refers to the convolution kernel of size 𝑀 ×𝑀 

defined for the connection between the channel 𝐴 in layer 𝐿 and 

the channel 𝐵 in layer 𝐿 + 1. 

 
Fig. 3 A convolutional neural network (CNN) for image classification, 

consisting of convolutional layers followed by fully-connected layers. 

Convolutional layers are elaborated in Fig. 4, and the computation for fully-

connected layers is depicted in Fig. 2. 

 
Fig. 4 Overview of convolutional layers. A convolutional layer consists of one 

or more channels where each channel contains a number of nodes. (a) Every 

channel in the previous layer is connected to each channel in the next layer.  (b) 

The connection between one input channel (in Layer 𝐿) and one output channel 

(in Layer 𝐿 + 1). The convolution between a set (in the black square) of nodes 

in the input channel and the convolution kernel (𝑘1, ⋯ 𝑘9) contributes to one 

node in the output channel.  (c) The computation for a single node in the output 

channel. 𝛴𝐴 denotes the summation over all input channels 𝐴. 

Optionally, a convolutional layer may be followed by a 

pooling layer that reduces the size of the representation by 

pooling neighbors of 𝑅 × 𝑅 nodes, where 𝑅 often takes a small 

value such as 2,3,4 or 5. Most commonly used pooling 

functions are maximum (i.e., taking the maximum value from 

the 𝑅 × 𝑅 neighborhood), average, median, and stochastic. 

The network size and computational complexity of state-of-

the-art DNNs have generally increased over the decades. 

Meanwhile, much research has been also conducted on the 

accelerated and efficient computation of DNNs [16]. For both 

MLPs and CNNs, the core computation requirements during 

feedforward propagation are inner products of two vectors, or 

matrix-vector multiplications [5, 6, 17]. Both the weight 

product function 𝑔( ) for fully-connected layers (in Equation 2) 

and the convolution function 𝑣( ) for convolutional layers (in 

Equation 4) can be naturally translated into vector-vector or 

matrix-vector multiplications. GPUs have been extensively 

exploited to accelerate this type of computation, mainly 

leveraging their inherent feature of single-instruction multiple-

data parallelism [18, 19]. In addition, there has been growing 

interest in designing custom hardware accelerators and 

reconfiguring the DNNs for higher efficiency [20]. Haensch et 

al. have proposed in-memory analog computation for DNNs 

and have analyzed nonvolatile memory material candidates [5]. 

Amiri et al. have proposed a multi-precision CNN framework 

on an FPGA-CPU heterogeneous device [21]. 

B. Silicon photonics 

While graphical processing units (GPUs), field-

programmable gate arrays (FPGAs), and application-specific 

integrated circuits (ASICs) have received extensive interest for 

developing dedicated hardware accelerators in deep learning 

calculations [22-24], photonics has been long recognized as a 

promising alternative to address the fan-in and fan-out 

problems for linear algebra processors [25, 26]. A few 

unparalleled features motivate the exploration of a photonic 
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implementation. (1) The power consumption for data transfer 

that accounts for a large portion in electronic application-

specific integrated circuits (ASICs) [16] can be greatly reduced 

by leveraging state-of-the-art optical transceivers. In addition, 

once a neural network is trained, the matrix configuration can 

be passive and optical signals can be processed with no 

additional power consumption [27]. (2) The operation 

bandwidth of such an OMM could potentially match that of the 

photodetection rate (typically in 100 GHz), which can be at 

least over an order of magnitude faster than the electronic 

system (typically restricted to the clock rate of a few GHz). (3) 

The OMM could have significantly lower latency, since the 

electronic hardware accelerators still rely on electronic 

transport that is bounded by the speed and power limits due to 

RC parasitic effects. Early demonstrations of photonic solutions 

were implemented with bulky free-space optics [25, 26], which 

required rigorous calibration for phase matching and have 

extreme scaling difficulties. Current photonic integration 

platforms provide opportunities for highly scalable solutions 

that improve energy efficiency and significantly reduce 

overhead of assembly, calibration, synchronization, and 

management [28]. 

Over the last two decades, silicon has been shown to be an 

excellent material platform for fabricating photonic devices, 

and processes have been developed to permit the reuse of 

CMOS manufacturing infrastructure to build complex PICs. It 

is, therefore, not surprising that silicon photonics is now widely 

accepted as a key technology in next-generation 

communications systems and data interconnects [29]. On the 

one hand, following the example of the electronic fabless 

semiconductor industry, process design kit (PDK) libraries are 

being developed and standardization is being encouraged by the 

silicon photonics industry and users for broader accessibility 

[30, 31]. On the other hand, component customization is driven 

by a number of research groups and companies that design a 

large variety of specialized photonic components [32-34]. The 

ability to include increasing numbers of a wide range of optical 

components at the wafer scale has led to a powerful class of 

silicon-based PICs [35]. Such integration technology 

fundamentally improves circuit-level performance by reducing 

the complexity in assembly, calibration, and synchronization. 

As it matures, sustained increases in the functionality, 

performance, and reliability of circuits are enabled. This, in 

turn, stimulates new research directions leveraging the large-

scale photonic integration capabilities [27, 36-40]. Lightwave 

signals have been manipulated in their intensity and phase at the 

space, wavelength, polarization, and mode dimensions, for data 

transmission [33, 41], switching [42-44], and processing [27, 

37, 40], in both digital [33, 41] and analog formats [27, 39, 40]. 

In addition, in recent years the ecosystem of silicon photonics 

has been extended to enable further functionality. The ability to 

add CMOS-compatible materials, such as Germanium (Ge), 

Ge-rich GeSi, and Silicon Nitride (SiN), to the Silicon-on-

Insulator (SOI) platform has significantly enriched the 

component library and enhanced circuit-level performance. 

Notable examples include the Ge-on-Si photodiodes [45], high-

speed GeSi modulators [46], and the ultralow loss Si/SiN multi-

layer structure [47]. The development of heterogeneous 

integration [48, 49] as well as breakthroughs on direct growth 

of III-V quantum dot materials on silicon substrates [50] further 

complete the ecosystem, enabling a System-on-Chip. 

The Mach-Zehnder interferometer (MZI) and the micro-ring 

resonator (MRR) are two of the most common functional 

building blocks in many photonic systems, such as modulators 

[32, 51, 52], filters [34, 53], multiplexers [54, 55], switches [56-

58], and computing systems [27, 59, 60]. The MZI was first 

proposed over a century ago to determine the relative phase 

shift variations between two collimated beams derived by 

splitting light from a single source. Later work extended this 

concept to manipulate the probability of light arriving at either 

port, by precisely controlling the phase difference between the 

two arms [61]. Integrated MZIs generally consist of two 3 dB 

couplers with phase shifters embedded in each of the two arms. 

Detailed design considerations can be found in [52, 53, 62]. An 

MRR consists of an optical waveguide which is looped back on 

itself and coupled waveguides. Resonance occurs when the 

optical path length of the resonator is exactly a whole number 

of wavelengths and thus multiple resonances are supported. The 

spacing between these resonances is called the free spectral 

range (FSR). Similarly, a phase shifter can be embedded in the 

resonator to tune the optical path length in order to shift the 

resonance spectrum. The properties of MRRs are extensively 

described in the literature [63, 64], as well as their design 

considerations, performance metrics, and potential challenges 

[29, 32, 34, 54, 63, 64]. We discuss applications of the MRR in 

more detail below. 

III. SILICON PHOTONICS FOR DEEP LEARNING 

This emerging area of research has been stimulated by recent 

results in which silicon photonics has been utilized to 

implement optical neural networks based on a spatial 

multiplexing technique with coherent interference [27], and a 

spectral multiplexing technique with wavelength filters [60]. In 

this section, we give a detailed overview of this recent progress 

in programmable silicon photonics for deep learning hardware 

accelerators. 

A. Linear MZI-based meshing optics with orthogonal spatial 

modes 

Pioneered by the work of Reck et al. [65] showing that a mesh 

of 2×2 beam splitters and phase shifters in the form of a Mach-

Zehnder interferometer (MZI) can be programmed to enable 

independent control of amplitude and phase of light for a set of 

optical channels, various novel architectures and design 

principles based on a cascade of MZIs have been proposed and 

demonstrated for both classical and quantum applications [27, 

37, 39, 66-68]. These works are also referred to as 

“programmable linear optic processors” [69]. Phase shifters 

that are embedded in the arms of MZI units are used to control 

the interference of beams at the combining stage, while a pair 

of external phase shifters is employed in order to set a 

differential output phase. This allows the control of relative 
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amplitude and phase of the beams at each stage and thus the 

programing of the mesh. With specific interconnection patterns, 

universal linear optical components can be obtained [66-68, 70, 

71]. 

Whereas most of the mesh networks are explored as universal 

linear optics for unitary operations [37, 65-67, 70, 71], Miller 

proposed a design method that implements arbitrary, non-

unitary matrices, as shown in Fig. 5a [68]. This approach 

describes a self-configuring universal linear mesh that employs 

a set of orthogonal beams. The mathematics behind this design 

demonstrates that any linear optical device can be factorized 

using the singular value decomposition (SVD), as 𝐷 = 𝑉Σ𝑈†, 

where 𝑉  and 𝑈†  are unitary matrices and Σ  is the diagonal 

matrix [68]. Theoretically, the universal unitary matrices of 𝑉 

and 𝑈† can be implemented following the designs proposed by 

Reck et al. [65] (Fig. 5b) and Clements et al. [66] (Fig. 5c), and 

the diagonal matrix Σ  can be represented by an array of 

modulators that can set amplitude and phase [68], as illustrated 

by Fig. 5a. The unitary matrices of 𝑉  and 𝑈†  can be further 

decomposed to analytically define the values of beam splitters, 

i.e. phase settings of MZIs [65, 66]. 

 
Fig. 5 (a) Universal linear mesh network comprising two unitary matrices and 

a diagonal matrix to set amplitude and phase, as proposed in [68]. Universal 

unitary matrix proposed by [65] in (b) and by [66] in (c). 

The recent work by Shen and Harris et al. proposed a novel 

architecture (Fig. 6) for an optical neural network that offers 

hardware acceleration for deep learning applications [27]. 

Vectors were encoded in the intensity and phase of light and 

then fed into each layer of the network, which was comprised 

of an optical interference unit (OIU) and an optical nonlinearity 

unit (ONU). While the ONU function was emulated on a 

computer to act as a saturable absorber, the OIU was 

implemented using a silicon PIC to perform the optical matrix 

multiplications following Miller’s design, which leverages the 

SVD decomposition [68]. This optical device consists of 56 

programmable MZI units, each of which has two 50:50 power 

splitters and two pairs of phase shifters parameterized by (θ, φ). 

The power splitters/combiners are realized by directional 

couplers and the π/2 phase difference between the two outputs 

ensures the unitary property of its transformation. As a non-

application-specific PIC, one matrix transformation requires 

two passes through the chip for: (1) 𝑉Σ  and (2) 𝑈† . The 

required orthogonal beams are implemented by a set of coherent 

spatial modes. This device does not use on-chip detectors for 

self-alignment. However, other generic approaches for setting 

up meshes can be leveraged to enable the calibration of phase 
disorders due to fabrication variations, such as the one 
described in [72]. In addition, the broadband nature of MZIs 

does not have a strong requirement for local phase stabilization, 

although on-chip thermal crosstalk could be a significant cause 

of phase errors. 

Neural network training algorithms [73] can be leveraged to 

train the matrix parameters for different layers. Each layer 

contains a set of weights, which can be decomposed into phase 

settings and then programmed into the OIU. By implementing 

a two-layer optical neural network with 4 neurons per layer, a 

primitive task for vowel recognition was executed and achieved 

an accuracy of 76.7% [27]. Compared to the accuracy of 91.7% 

by execution with a conventional 64-bit digital computer, the 

key limiting factor for the accuracy of the optical neural 

network can be attributed to the computational resolution. The 

phase-encoding noise and the photo-detection noise are 

believed to be the primary factors causing reduced resolution 

[27]. This is also reflected in the fidelity analysis showing that 

the percentage error for each output of the SU(4) unitary matrix 

core is approximately 2.24% [27], which bounds the system’s 

effective resolution. Suppressing on-chip thermal crosstalk, and 

lowering photo-detection noise would thus lead to a superior 

computational resolution of the network. 

 
Fig. 6 All-optical architecture for integrated neural network [27]. 

The work described above shows an impressive example of 

applying silicon photonics to deep learning applications; yet, 

three factors in particular might bound the practicability of this 

approach. (1) Limited scalability of neurons. Let 𝑁 denote the 

number of neurons. The optical depth  (the number of MZI units 

traversed through the longest path) for the unitary matrix is 

given as 2𝑁 − 3 and as 𝑁 in the scheme by Reck et al. [65] and 

by Clement et al. [66], respectively. This, therefore, leads to a 

total optical depth of 2𝑁 − 1 (with output reflected for a more 

compact layout [68]) and of 2𝑁 + 1 , respectively, for the 

optical device that implements the arbitrary linear 

transformation using SVD encoding where the diagonal matrix 

Σ is implemented by an array of MZIs. Note that although the 

device using Reck et al. design has a slightly smaller optical 

depth, the Clement et al. layout is shown to be more tolerant to 

component loss in realistic interferometers, maintaining high 

fidelity [66]. The optical depth increases linearly with the 

number of neurons (N) by a factor of 2 which directly translates 

into additional loss in silicon photonics integrations. This 

additional loss could quickly outpace the optical power link 

budget and significantly deteriorate the system signal-to-noise 

ratio, thus limiting the computational resolution. (2) Error 

accumulation. Whereas the on-chip thermal crosstalk can be 

(a)

:
θ φ
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suppressed, the finite encoding precision on phase settings will 

remain as the fundamental limitation for the optical neural 

networks with high computational complexity. The phase 

errors, in particular, accumulate when the lightwave signal 

traverses the MZI mesh with an optical depth of 2𝑁 + 1. In 

addition, such errors propagate through each layer of the 

network, which ultimately restricts the depth of the neural 

network. (3) Complex encoding scheme of matrix. The SVD 

method provides a perfect solution to decompose an arbitrary 

linear transformation. However, mapping the trained matrix 

parameters to the phase settings of the MZI mesh consumes 

additional computational power. 

B. Microring weight banks for spiking networks 

Inspired by neuroscience in which biological neurons 

communicate by short pulses, spike processing, with this 

integrate-and-fire neuron model, has been proposed to exploit 

its massive parallelism potential in computation [74]. The 

cornerstone of the communication protocol is the spike coding 

scheme, which is digital in amplitude, and analog in pulse 

timing [75]. Input spikes from multiple sources are multiplied 

by a set of weight factors and temporally integrated to trigger a 

neuron firing a single output spike if the threshold is satisfied 

[76]. It has been recently recognized that photonics can be a 

powerful alternative to the microelectronic platform to 

implement such a spike processing system, given the significant 

advancement in both excitable lasers for the nonlinear 

processing, and analog PICs for the linear processing [77]. 

 
Fig.7 (a) Broadcast-and-weight spiking network proposed by [60]. (b) 

Classification of semiconductor excitable lasers [77]. 

An on-chip optical architecture, named broadcast-and-

weight, was proposed by Tait et al. to implement scalable 

photonic spike processing networks to connect parallel neurons 

[60]. As illustrated in Fig. 7a, each spiking laser represents a 

neuron, and the optical neural network connects the output of 

each neuron to multiple other neurons making use of 

wavelength division multiplexing (WDM). In contrast to the 

spatial multiplexing approach, channelization of the spectrum 

can somewhat simplify the interconnect network of neurons, as 

WDM channels can coexist in a single bus waveguide channel 

without interfering. The group of neurons that each utilizes a 

distinct wavelength share a common bus waveguide, as shown 

in Fig. 7a. The broadcast  can be simply realized by passively 

splitting the bus waveguide to connect each of the neurons, 

enabling the all-to-all connection [60]. Each neuron is attached 

to a weight processing unit which is used to execute the linear 

transformation function for the N incident WDM signals that 

represent N neural nodes including itself. In this case, being 

capable of independently manipulating each weight is critical 

for creating differentiation among WDM channels. The silicon 

add-drop MRR is a natural choice due to its wavelength 

selective nature, as well as its cascadability, and continuous 

power-ratio-tunable feature [54]. The bank of cascaded MRRs, 

as an array of reconfigurable add-drop filters, imprint the 

weight coefficient to each corresponding channel. In a network 

of N neurons with N wavelength channels, each neuron 

incorporates a bank of N MRR filters, leading to a total number 

of N2 MRRs. The through port and drop port of the cascaded 

MRRs are respectively connected to create two subsets of 

weighted power, each connected to one of the balanced 

photodiode pair that performs the summation by incoherently 

aggregating the total incident optical power. The layout of the 

balanced photodiode subsequently enables subtraction between 

the two subsets of weighted powers for inhibitory weighting. 

The weighted sum is then used to excite a spiking laser neuron 

and three classifications of semiconductor excitable lasers are 

shown in Fig. 7b [77]. When the temporal integration of 

weighted pulses can push the gain above the lasing threshold, 

the neuron releases a spike. Otherwise, the system stays at rest. 

As a key constituent element, the MRR weight bank has been 

carefully studied [78-81], since its scalability and tunability are 

closely tied to the performance limits of the optical neural 

network. Quantitative analysis was provided to measure the 

scaling of channel count, N, for an MRR filtering bank, 

illustrating the limiting factors of inter-channel crosstalk, 

insertion loss and more importantly, the bus length that causes 

coherent interactions between adjacent MRRs [78]. Similar to 

the MRR devices in data communication links, the inter-

channel crosstalk and cascading loss are the two fundamental 

constraints for system scale-up [54]. However, in contrast to the 

(de-)multiplexing-oriented designs that have only one common 

bus, the bus length becomes a key factor in the weight bank 

design that brings about multi-MRR coherent interactions due 

to the two bus configuration. This inevitably introduces another 

dimension of design complexity. Such inter-channel 

interference also deteriorates the independent control of the 

WDM channels, as the weights cannot be linearly separated. A 

more rigorous calibration process can be undertaken to improve 

these impairments in the WDM channels. Any power leakage 

or loss can be counter-balanced by adjusting the corresponded 

MRR coupling ratio. However, the degradation of the MRR 

(a)

(b)
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weight tuning range eventually becomes irreparable [78]. For a 

given system error σ, the tuning range is a critical factor that 

determines the network’s computational resolution, as shown 

below. 

A few efforts have been made to optimize the device design 

and control plane for microring weight banks in silicon 

photonic integration platforms [79-81]. A continuous range of 

complementary (+/-) weighting has been demonstrated and 

recent work shows an effective weight setting accuracy of 5.1 

bits [81], which is defined by log2[(µmax-µmin)/σ] where (µmax-

µmin) is the tuning range, and σ is the measured system error. 

The chip performance in this experiment is facilitated by 

photoconductive heaters which provide online feedback of 

photo-induced resistance to estimate the filter transmission. 

Considering that MRRs are particularly sensitive to thermal 

drift [82], the real-time feedback control loop, which tracks 

thermal fluctuations, including ambient temperature change, 

self-heating effects, and thermal crosstalk, plays a major role in 

such a multi-resonator system. It, therefore, provides superior 

performance compared to the feedforward control scheme [79, 

80], which relies on fixed pre-built references. 

Whereas a set of MRRs sandwiched by two buses that drop 

power into a balanced photodetector offer complementary (+/-) 

weight factors, the closed WDM link makes it difficult to 

monitor the isolated transmission state for each wavelength 

channel. Altering the weight factor via shifting the resonance 

spectrum of individual MRR unit arranged in a cascading 

scheme would significantly constrain its tuning range, given 

that all channelized MRR filters coexisting on the same bus 

have to tightly fit within one FSR. The embedded 

photoconductive heaters within MRRs, provide a limited but 

adequate solution for neuromorphic applications, [77, 81]. 

However, the adoption of photoconductive effects in the analog 

computing system may not sufficiently deliver the requirements 

for optical matrix multiplication with higher resolutions. 

C. Discussion 

Both of the aforementioned approaches aim at processing an 

entire ANN application or an entire matrix-vector 

multiplication on a single optical device. Whereas those 

approaches may have advantages in the processing speed, the 

capability of the optical device strictly limits the size of the 

ANN to be processed. For instance, the optical neural network 

architecture proposed by Shen et al. consists of two layers, each 

with four neurons, for a primitive machine learning task of 

classifying four vowels in speech [27]. However, many 

machine learning tasks in practice involve learning more 

complex functions that take in a large number of inputs. For a 

handwritten digit recognition task, the number of input neurons 

are 28 × 28 = 784, one for each pixel of the input image, and 

the number of output neurons are 10, which equals the number 

of candidate digits [15]. For breast cancer detection, an MLP 

with 30 input neurons, 500 neurons in each of the three hidden 

layers, and 2 output neurons was used to achieve the detection 

accuracy of 99% [83]. The computation for this MLP includes 

the multiplication between a matrix of size 500 × 500 and a 

vector of dimension 500. It is not feasible or practical to fully 

optically implement such large neural networks or matrix-

vector multiplications using the above approaches due to their 

limited scalability. 

IV. SILICON PHOTONICS CO-DESIGN FOR DEEP LEARNING 

Co-design of silicon photonic and electronic circuits 

provides new opportunities for efficient computation of deep 

learning. Silicon photonics has the potential for high-speed 

analog matrix multiplication. However, the computational 

requirement for ultra-large DNNs with high accuracy demand 

may exceed the capability of a single PIC, for high-complexity 

computing tasks. Our co-design approach, described in this 

section, explores practical and scalable solutions to process 

such large neural networks while employing feasible optical 

devices. 

Figure 8 illustrates an overview of the proposed co-designed 

system with the electronic circuitry that processes DNNs at the 

system level, and a PIC that performs optical matrix-vector 

multiplication of fixed-size inputs. The PIC takes in a matrix 𝐾 

of size 𝑀 ×𝑁 and a vector 𝑥 of size 𝑁, and outputs a vector 𝑦 

of size 𝑀 such that 𝑦 = 𝐾 ⋅ 𝑥.  

 

 
Fig. 8 Overview of the proposed co-designed system for deep learning. 

A. Silicon photonic OMM  

Channelization in the wavelength domain avoids the phase-

sensitive designs that require the control of relative phases from 

different nodes for coherent interference effects. Therefore, the 

wavelength multiplexing technique provides an elegant 

solution to address the many-to-one coupling (fan-in), which is 

a typical problem in neuron networks. Combined with tunable 

add-drop MRR technology, the direct mapping from the weight 

matrix to the power coupling ratio of wavelength filters can also 

eliminate the complex encoding phase. Such simplicity would 

further boost the validity of optical neural networks as hardware 

accelerators for deep learning applications. 

The high thermo-optic coefficient of silicon (1.8×10-4 K-1) 

creates a double-edged sword for silicon MRR elements. While 

it allows effective manipulation of light by the thermo-optic 

effect, due to its narrow-band nature, this thermal susceptibility 

can be detrimental to device performance. Therefore, accurate 

monitoring and control mechanisms are normally required. A 

number of energy-efficient yet precise locking schemes have 

been demonstrated [84-88], for data communications. The work 

by Tait et al. sheds some light on the feedback control of an 

analog MRR system, which relies on an estimate of filter 

transmission [81]. The plasma dispersion effect via either 
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carrier depletion or injection can be leveraged to provide 

nanosecond-scale tuning mechanism [29]. However, 

fabrication variations [89], in addition to the self-heating effect 

and ambient temperature change [82], most often require an 

additional thermo-optic phase shifter. The electro-optic tuning 

mechanism also requires attention to the induced electro-

absorption loss that compromises the extinction ratio of 

resonance, thus the resolution of computation. This additional 

loss disturbs the balance between the coupling power and the 

round trip loss in the ring cavity from the critical coupling point. 

The operation condition for critical coupling is discussed in the 

following subsection. 

In general, the on-chip thermal crosstalk is a primary culprit 

of the system instability for MRR-based silicon photonic 

circuits. Hereby, we start with an analytical model of add-drop 

MRRs to provide an insight into constraints on weight 

resolution due to thermal crosstalk. We focus on the thermo-

optic phase shifting effect since it is a lossless tuning 

mechanism but imposes the most thermal impairments. We 

define the MRR weight sensitivity and discuss an approach to 

increase system stability. The ability to utilize only nonnegative 

values for training weight factors opens new opportunities to 

refine the ring locking scheme in the analog domain. A new 

class of highly-accurate, yet scalable OMMs that are based on 

add-drop MRRs for deep learning can thus be obtained. 

1) Thermal-crosstalk restricted weight resolution 

1.1) Weight definition and sensitivity of add-drop MRR 

An add-drop ring resonator refers to a circular ring structure 

that couples to two straight waveguides, as schematically 

shown by the inset in Fig. 9a. The optical transfer function of 

the drop and through port can be expressed as [64]: 

𝐷(𝜙) = |
−𝜅1𝜅2𝐿

0.25 exp(−𝑗𝜙/2)

1−𝑡1𝑡2√𝐿 exp(−𝑗𝜙)
|
2

                   (5) 

and 

𝑇(𝜙) = |
𝑡1−𝑡2 √𝐿exp(−𝑗𝜙)

1−𝑡1𝑡2√𝐿 exp(−𝑗𝜙)
|
2

                      (6) 

where t1 and κ1, t2 and κ2 are the self-coupling and cross-

coupling coefficient for the input and drop coupling region, 

respectively. L is the round-trip optical power attenuation of the 

ring. We assume t2 + κ2 = 1 which allows the loss introduced by 

the couplers to be included in L. 𝜙 is the relative optical phase 

shift inside the ring: 

𝜙 =
(𝜆−𝜆𝑟𝑒𝑠)

𝐹𝑆𝑅
× 2π                                 (7) 

where λres is the ring resonance wavelength, and FSR is the free 

spectral range of the resonance spectrum. We define the 

weighting function, 𝜇, using the through port of the add-drop 

MRR, considering the negligible through loss and its flexibility 

in cascading. Equation 6 can be rewritten as: 

𝑇(𝜙) =
𝑇0+(

2𝐹

𝜋
sin(

𝜙

2
))
2

1+(
2𝐹

𝜋
sin(

𝜙

2
))
2                           (8) 

where 

𝑇0 =
(𝑡1−𝑡2√𝐿)

2

(1−𝑡1𝑡2√𝐿)
2                                (9) 

and F is the finesse of the ring, given by 

𝐹 = 𝜋
√𝑡1𝑡2√𝐿

1−𝑡1𝑡2√𝐿
≈

𝐹𝑆𝑅

Δ𝜆3𝑑𝐵
                        (10) 

where Δλ3dB is the optical bandwidth of microring. Note that the 

approximation in Equation 10 holds only when F >>1. Under 

critical coupling, the coupled power is equal to the power loss 

in the ring cavity, i.e. satisfying the relation 𝑡1 = 𝑡2√𝐿, hence 

the transmission drops to zero, 𝑇0 = 0. Therefore, the design to 

operate at critical coupling mode enables the maximum 

extinction ratio (i.e. dynamic range) for the power transfer at 

the through port. The weighting function, 𝜇, can thus be given 

as: 

𝜇(𝜙, 𝐹) =
𝑇(𝜙)

𝑇(𝜋)
=

𝑇0+(
2𝐹

𝜋
sin(

𝜙

2
))
2

𝑇0+(
2𝐹

𝜋
)
2 ×

1+(
2𝐹

𝜋
)
2

1+(
2𝐹

𝜋
sin(

𝜙

2
))
2.    (11) 

 
Fig. 9 (a) Weight definition of the through port of an add-drop MRR for critical 

coupling condition with various finesse. (b) Sensitivity of the weights for 

different finesse. (c) Optical phase shift at maximum sensitivity point. (d) 

Maximum sensitivity of weights as function of finesse. A linear trend is 

observed. 

We define F as a variable of 𝜇 since finesse stands out as a 

key parameter of both the ring sensitivity and the scalability of 

number of neurons [77]. The finesse is a measure of the 

sharpness of resonances relative to their spacing (FSR) and 

represents, within a factor of 2π, the number of round-trips 

made by light in the ring before its energy is reduced to 1/e of 

its initial value [63]. Therefore, from this point of view, the 

round trip loss, L, as well as the coupling coefficients in the 

coupling regions of the ring, t1 and t2, are loss factors that can 

be manipulated to alter F, which is also reflected in Equation 

10. For datacom applications, MRRs are generally designed 

with radii in the region of 5-10 µm to avoid undesired high 

bending losses (i.e., radiation and scattering) while maintaining 

reasonably large FSR, therefore limiting the finesse to the order 

of tens [64]. Special designs, however, can lead to finesse with 

values of a few hundreds [90, 91]. Further details are discussed 

in Section IV.C.1. In Fig. 9a we plot the weight factor as a 

Tin Tthru
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function of 𝜙 for F values in the range of 10 to 100 (10, 20, 50, 

and 100), assuming the critical coupling operation (𝑇0 = 0). 

It is not a surprise to see that a sharper resonance, i.e. larger 

F, gives rise to a more abrupt change in the weight as a function 

of 𝜙. It has been shown that the thermo-optic response (i.e. 

optical phase shift, ∆𝜙) of the microring is a linear function of 

heating power (∆P) [82]. However, for a thermal perturbation 

(∆P), ∆𝜇 varies depending on the weight 𝜇, due to the nonlinear 

behavior of the optical transfer function. We thus define the 

sensitivity of the weights as the slope of the weight: 

Δ𝜇

Δ𝜙
≈

𝜕𝜇

𝜕𝜙
=

(1+𝑎2)(1−𝑇0)

𝑇0+𝑎
2

0.5𝑎2 sin𝜙

(1+(𝑎 sin
𝜙

2
)
2
)

2             (12) 

where 𝑎 = 2𝐹/𝜋. Combining with Equation 11, we can plot the 

sensitivity as a function of weight for various values of F as in 

Fig. 9b for critical coupling (𝑇0 = 0). One can see that a lower 

sensitivity exists in the weighting function with a smaller F, 

where the change in weight is milder over ∆𝜙. This can be 

understood by realizing that a lower F results in a wider 

resonance linewidth, hence the weight has a smaller gradient as 

seen in Fig. 9a. The optical phase settings at the maximum 

sensitivity (i.e. 𝜕2𝜇/𝜕𝜙2 = 0) as a function of F is further 

given by: 

𝜙max  = 2 tan−1√
3𝑎2+2−√9𝑎4+4𝑎2+4

𝑎2−2+√9𝑎4+4𝑎2+4
             (13) 

and illustrated in Fig. 9c, indicating the weight variations are 

most sensitive close to the resonance, which agrees with the 

trend illustrated by Fig. 9a due to the nonlinear power transfer 

in MRRs. Figure 9d indicates that the maximum sensitivity of 

the weight has a linear dependence on the finesse of the MRR, 

again showing that larger finesse leads to worse sensitivity. To 

facilitate the quantitative analysis on the bounded effective 

resolution, we use a first order Taylor expansion of 𝜕𝜇/𝜕𝜙 

assuming that 𝑎2 ≫ 1  (see Appendix II) to show this. The 

result is: 

|
𝜕𝜇

𝜕𝜙
|
max  

≈
9

16√3
 𝑎 =  

3√3

8𝜋
 𝐹 = 0.2067 𝐹.        (14) 

1.2)  Thermal crosstalk induced weight error 

Thermal crosstalk occurs due to the proximity of rings to 

each other. The linear dependence of the temperature changes 

on the heater power results in a linear perturbation relation of 

the ring’s temperature: 

Δ𝑇𝑖
𝑥𝑡𝑎𝑙𝑘 = ∑ χj 𝑃𝐻,𝑗

𝑁
𝑗=1,𝑗≠𝑖 (𝜇𝑗)                    (15) 

where 𝑃𝐻 is the heating power of other rings for setting their 

corresponding weights. This change of temperature translates 

into a change in the optical phase inside the ring: 

|Δ𝜙| = |Δλres|
2𝜋

𝐹𝑆𝑅
≈ 0.07 × |Δ𝑇𝑥𝑡𝑎𝑙𝑘| ×

2𝜋

𝐹𝑆𝑅
.    (16) 

We use 0.07 nm/K as the typical resonance thermal sensitivity 

of silicon microrings [82]. Thermal crosstalk can be considered 

as a biased (deterministic) perturbation; hence, it affects the 

average value of the error, |Δ𝜇̅̅̅̅ |. Since the optical phase shift 

due to thermal crosstalk is a direct consequence of the weight 

of other rings whereas the weight sensitivity is dependent on the 

weight of interest, these two factors are uncorrelated and both 

can simultaneously occur at their worst cases. Therefore, the 

maximum weight error due to thermal crosstalk can be written 

as: 

max|Δ𝜇̅̅̅̅ | = |
𝜕𝜇

𝜕𝜙
|
max  

× |Δ𝜙|max  = 0.091 ×
|Δ𝑇𝑥𝑡𝑎𝑙𝑘|

max  

Δ𝜆3𝑑𝐵
. (17) 

Considering adjacent MRR elements as thermal crosstalk 

sources and that the maximum phase shift inside each adjacent 

ring is 𝜋 , the maximum temperature change due to thermal 

crosstalk from an adjacent ring can be given as: 

Δ𝑇𝑚𝑎𝑥
𝑥𝑡𝑎𝑙𝑘 ≈ 7.143 𝐹𝑆𝑅 × 𝛼𝑇                     (18) 

where 𝛼𝑇 is the fraction of the thermal energy from adjacent 

rings. The weight error then aggregates as: 

max|Δ𝜇̅̅̅̅ | = 0.65 𝐹 × ∑ 𝛼𝑇,𝑖𝑖 .                    (19) 

The solution of heat diffusion in 2D space of the chip has a form 

of [82]: 

𝑞(𝑟) = 𝑞𝑟𝑖𝑛𝑔 ×
ln(

𝑅∞
𝑟
)

ln(
𝑅∞
𝑅
)
                           (20) 

where q is thermal energy density (proportional to the change 

in temperature at each location), r is the distance to the crosstalk 

source, R is the radius of the ring, and 𝑅∞ can be viewed as the 

boundary of the chip, as shown in Fig. 10a. Figure 10b shows 

the validation of this analytic equation with COMSOL 

simulation [82, 92] for 𝑅 = 10 𝜇𝑚  and 𝑅∞ = 1 𝑚𝑚 . As 

expected, the heat density decreases at farther distances from 

the MRR’s heater, but the 2D heat diffusion shows a rather 

strong thermal crosstalk impact (e.g. 50% at 100 µm 

proximity). Note that in an actual photonic chip the heaters are 

most commonly located on top of the MRR so that the heat can 

also diffuse vertically. Since the thickness of the heater, tH, is 

typically much smaller than the footprint of the heater (≈100 

nm [93]), most of the heat generated by the heater diffuses 

vertically (out of plane) instead of horizontally (in-plane). 

Therefore, the fractional in-plane heat crosstalk from one ring 

to another can be estimated by: 

𝛼𝑇 ≈
𝑡𝐻

2𝑅
×

ln(
𝑅∞
𝑟
)

ln(
𝑅∞
𝑅
)
                               (21) 

and thus: 

max|Δ𝜇̅̅̅̅ | = 0.65 𝐹 ×
𝑡𝐻

2𝑅
× ∑

ln(
𝑅∞
𝑟𝑖
)

ln(
𝑅∞
𝑅
)

𝑖 .             (22) 

 
Fig. 10 (a) Schematic of thermal crosstalk between adjacent MRRs. 𝑅∞ denotes 

the boundary of the chip. Thermal crosstalk arises from in-plane diffusion of 

heat and gets worse at closer proximity. (b) Comparison of analytic 2D equation 

100 200 300 400 500 600 700 800 900 10000
0

0.2

0.4

0.6

0.8

1

Distance from ring [µm]

q
/

q
ri

n
g

(b)(a)

Tin Tthru

Tdrop

R R

r



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

 

10 

for heat diffusion with finite element results in COMSOL. The logarithmic 

behavior for the heat diffusion is confirmed. Note that the heat density, q, is 

proportional to the temperature change, ΔT, and can be considered a measure 

of thermal crosstalk. 

1.3)  Weight resolution 

The resolution determines the minimum possible steps for 

setting weights with the highest certainty. If 𝜇 is the calibrated 

weight in the ideal case and 𝜇̂ is the weight in the presence of 

perturbations, we can write: 

𝜇̂ = 𝜇 + Δ𝜇(𝑡) = 𝜇 + Δ𝜇̅̅̅̅ + 𝛿𝜇(𝑡)              (23) 

where Δ𝜇(𝑡)  is the error of the weight. This error can be 

decomposed into a stationary (deterministic) average denoted 

by Δ𝜇̅̅̅̅  and a random noise like term denoted by 𝛿𝜇(𝑡) . We 

consider the resolution is set by the maximum root mean square 

error given by max|Δ𝜇(𝑡)| = max|Δ𝜇̅̅̅̅ | + σμ/2  where 𝜎𝜇
2 =

𝛿𝜇2(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅ is the standard deviation of the noise-like error. The 

resolution is then written as: 

𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =
1

max|Δ𝜇(𝑡)|
=

1

max|Δ𝜇̅̅ ̅̅ |+
𝜎𝜇
2

.          (24) 

In such a system, it is reasonable to assume the thermal 

crosstalk induced error (i.e. Δ𝜇̅̅̅̅ ) is dominant over the photo-

diode noise, 𝜎𝜇 . For an MRR element in an array, its two 

adjacent rings are considered as the dominant sources of 

thermal crosstalk. Therefore, referring to Equation 22, we can 

plot the contours of effective bit resolution for an MRR unit as 

a function of both the unit pitch and its finesse for 𝑅 = 10 𝑢𝑚, 

and 𝑅∞ = 1 𝑚𝑚, as shown in Fig. 11. 

 
Fig. 11 Contours of effective bit resolution for the weight of MRR due to 

thermal crosstalk as function of finesse and proximity. 

Note that this model is more accurate for small thermal 

perturbations; however, the combination of Equations 22 and 

24 still serves as a qualitative analysis on how the pitch size of 

MRR weighting elements and their finesse bound the effective 

resolution, even when the thermal crosstalk is strong. 

Feedforward calibration can somewhat alleviate the thermal 

crosstalk restrictions, yet the calibrated system accuracy 

heavily depends on the weight settings of adjacent MRR units. 

A scalable OMM with the capability of high resolution thus 

calls for a new design approach and the capabilities of 

computing using only nonnegative weight factors open up a 

new design philosophy, as discussed in the following 

subsection. 

2) Hitless weight-and-aggregation architecture 

We propose a co-designed architecture for optical matrix 

multipliers which are specially customized for highly-accurate, 

scalable and nonnegative weight matrices. The hitless weight-

and-aggregation design essentially describes an interconnect 

architecture that allows computational nodes (neurons) to carry 

arbitrary input vectors and to be independently weighted and 

summed. Such a many-to-one network is formed on the basis of 

channelization of the spectrum, creating physical and logical 

connections between input and output vectors. We put forward 

a hitless weighting structure by employing the colored channels 

in parallel rather than cascading them. This design isolates each 

weight on each connection and makes the tuning of MRR filters 

truly independent, i.e. not interfering with other channels. Such 

a hitless design also decouples the weighting and summation 

functions by allocating dedicated functional blocks, both of 

which employ MRR units, thus allowing independent 

optimization to decouple the constraint between the scalability 

of neurons and the weight sensitivity. The nonnegative weights 

are defined using the optical transfer function of the MRR 

through port, while the drop port is used as a monitoring outlet 

to provide real-time feedback for the weight control loop. 

An M×N OMM consisting of M N×1 vector multipliers is 

illustrated in Fig. 12. Distinct continuous-wave (CW) 

wavelengths (representing N neurons) can be implemented by 

either M sets of N wavelength-multiplexed laser arrays [94] or 

optical frequency comb lasers [33, 95], or one set of lasers 

passively split into M copies. The nonnegative weight factors 

obtained from the trained matrix parameters are mapped to the 

coupling ratios and imprinted to the CW signals using multi-

ring weighting blocks. The colored signals that carry the same 

set of weights are routed to all outputs. The N input vectors are 

then formed by a set of intensity modulators to the fanned-in 

WDM signals, before combining to form the M output vectors. 

The aggregation will be performed by another dedicated set of 

N high-finesse MRRs that are critically coupled to the WDM 

bus waveguide. The wavelength-multiplexed data streamed 

into the bus are optically summed by a photodiode, in which the 

photocurrent represents the total optical power. The M output 

vectors are then sent for nonlinear processing. Design 

considerations for each functional block are detailed in the 

following subsections. 

 
Fig. 12 (a) Hitless weight-and-aggregation architecture for M×N vector-matrix 

multiplier. (b) One unit out of M for N×1 vector to be multiplies by 1×N matrix. 

2.1)  Hitless architecture for nonnegative weight factors 

The design philosophy for the MRR-based weighting block 
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is different from the conventional approach, in which tuning a 

filter in a link where WDM signals coexist controls the power 

coupling of the desired wavelength. The drop spectrum of such 

a MRR filter also sees other channels on the bus and thus the 

tuning inevitably interferes adjacent channels. Such 

interference not only limits the weight tuning range but also acts 

as an unbiased perturbation to the weight that bounds the 

resolution for the nonnegative OMM system. Thus, a large 

channel spacing is required which trades off the system 

scalability. 

Instead of utilizing the cascading layout of MRRs, the hitless 

design exploits a parallel arrangement of the weighting filters, 

shown in Fig. 12. This strategy stabilizes the weighting block 

within each wavelength branch before multiplexing onto the 

WDM bus, ensuring full tuning independence. Therefore, the 

design considerations for the MRR weighting filters can be 

narrowed down to a sole factor, i.e. sensitivity. As defined by 

Equation 8 and Fig. 9b, a small finesse is favored. Note that a 

trade-off exists since higher optical phase change is required to 

set the MRR to a specific weight for smaller finesse, which 

translates into higher heating power and, in turn, makes the 

thermal crosstalk worse. However, Equation 9 still provides the 

worst possible scenario for the thermal crosstalk effects. 

 
Fig. 13 (a) Single MRR weighting element with monitor PD. (b) The 

normalized monitor power as well as corresponded weight factor as a function 

of ϕ. (c) Multi-MRR weighting element. 

While the filter-through port is used to define the weighting 

function, the drop port connects to a monitor photodiode (PD), 

shown in Fig. 13a, providing a highly accurate feedback control 

loop for precise ring power locking. Figure 13b plots the 

normalized monitor power for this structure as a function of 𝜙, 

together with the corresponded weight factors. The locking 

accuracy could be compromised at power levels approaching 

zero (weight factors approaching one), given the existence of 

photodiode shot noise. To obtain a more linear transmission 

response, the ring spectrum tail can be omitted at the sacrifice 

of a slightly reduced weighting range. 

The precise locking scheme would require a calibrated 

process, which sets up a look-up table (LUT) that maps the 

weight factor to the monitored optical power for each filter. By 

periodically polling the power monitor and comparing to the 

LUT, the locking scheme can effectively offset thermal 

perturbations, including on-chip thermal crosstalk, and ambient 

temperature fluctuations. The locking accuracy, which could 

translate into weight resolution, can be limited by the PD shot 

noise, the finite precision that offers by the DAC/ADC, as well 

as the polling and locking rate. 

2.2)  Multi-ring weighting block for reduced sensitivity 

By utilizing multiple MRR filters as illustrated in Fig. 13c, 

the weight sensitivity can be further relaxed. The overall 

weighting function, 𝜇𝑜, for n cascaded ring filters can be given 

as: 

𝜇𝑜 = 𝜇1 ∙ 𝜇2 ∙ … ∙ 𝜇𝑛.                             (25) 

For simplicity, we assume 𝜇1 = 𝜇2 = ⋯ = 𝜇𝑛 = 𝜇, in which 

case 𝜇 is given by Equation 11 and the phase settings are the 

same for all MRR filters. Figure 14a plots 𝜇𝑜 as a function of 

𝜙, for n=1, 2, 3, 4, 5, with 𝐹 = 10. It can be seen that the 

weighting function gets increasingly linear as n increases. 

 
Fig. 14 (a) Weight as a function of ϕ, for n=1, 2, 3, 4, 5, with F=10. (b) 

Illustration for one perturbed ring and all perturbed rings in a multi-ring 

weighting block. Weight sensitivity as a function of ϕ with thermal perturbation 

in (c) one ring and (d) all ring simultaneously. 

We can analyze two cases for the weight sensitivity of the 

multi-ring system: 1) One ring is perturbed thermally, and 2) all 

rings are perturbed thermally at the same time, shown by Fig. 

14b. When the OMM setting leads to one or multiple heat 

sources on a chip, the dominant thermal effect is considered to 

be from adjacent rings. It is thus reasonable to take the one 

perturbed ring as the lower boundary for weight sensitivity. We 

have: 
𝜕𝜇𝑜

𝜕𝜙
=

𝜕𝜇1

𝜕𝜙
∙ 𝜇2 ∙ … ∙ 𝜇𝑛.                            (26) 

This can be readily solved by referring to Equation 12. The 

weight sensitivity with thermal perturbation in one ring can thus 

be plotted and is shown in Fig. 14c, in which the single ring 

case is included for direct comparison. It can be seen that the 

two-ring system suppresses the weight sensitivity significantly, 

but the trend continues with a decreasing decrement when the 

number of rings increase. For the case that thermal perturbation 

occurs in all rings, we can have: 
𝜕𝜇𝑜

𝜕𝜙
= ∑

𝜇𝑜

𝜇𝑖
 
𝜕𝜇𝑖

𝜕𝜙

𝑛
𝑖=1 =

𝜕(𝜇𝑛)

𝜕𝜙
.                       (27) 

Figure 14d plots this case representing the upper boundary for 
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weight sensitivity. It can be seen that the system still gains 

tolerance to thermal perturbation compared to the single ring 

case. Considering the additional cost, footprint, and complexity 

introduced by the multi-ring system, the lower number two is 

preferred. Therefore, for the implementation of an M×N vector-

matrix multiplier, the total number of MRRs is 3M⋅N including 

both weighting MRRs and aggregation MRRs. The total 

number of PDs is M. 

Although the multi-ring system exhibits lower weight 

sensitivity, overcoming the limitation of the finite precision for 

the DAC with which an optical phase can be set is still a 

challenge. In an n-ring weighting block, the minimum step in 

the weight, 𝛿𝜇, bounded by the DAC resolution for setting the 

optical phase of each ring yields a weight 𝜇̂ = 𝜇 ± 𝛿𝜇; hence 

the overall weight is 𝜇̂𝑜 = (𝜇 ± 𝛿𝜇)𝑛 ≈ 𝜇𝑛(1 ± 𝑛 𝛿𝜇/𝜇) . 

Therefore, the error given by 𝑛 𝜇𝑛−1𝛿𝜇 can be at its worst (i.e. 

𝑛 𝛿𝜇) when 𝜇 is close to 1. A smaller error than 𝛿𝜇 is achieved 

only for weights for which 𝑛 𝜇𝑛−1 < 1. For a two-ring weight 

block, the worst error is 2𝛿𝜇 which can occur for any weight. 

2.3)  Aggregation and summation 

In contrast to the MZI-based OIU for matrix multiplication 

where the input vectors are imprinted before feeding into the 

OIU [27], we process the vector imprint after the weighting 

stage. This is because the weight factor, i.e. coupling ratio, is 

locked by the dropped power as illustrated in Fig. 13, and the 

streamed input vectors with power fluctuations would 

deteriorate the locking accuracy. Therefore, the proposed 

processing flow as shown in Fig. 12 resolves this issue. The 

input vectors are imprinted via high-speed intensity modulators 

[96]. A linear intensity modulator, such as the Mach-Zehnder 

modulator, is favored [52]. As we analyzed in the following 

subsection, high computation accuracy can be obtained when 

the input vectors have the same resolution as the weights. 

The weighted input vectors can subsequently be aggregated 

into the WDM bus through dedicated ring filters. As shown by 

Fig. 15a, the locking scheme for the aggregation MRRs 

operates differently, where the through power is always locked 

at the minimum state for a total power drop. This non-tunable 

feature ensures the maximal spectral efficiency regarding the 

number of wavelengths that can reside in the WDM bus. 

 
Fig. 15 (a) Operating principle of the aggregation MRRs. (b) Through power 

ratio as a function of both finesse and number of channels. 

Since the aggregation ring filters act only as wavelength 

multiplexers, a large finesse is favored in order to achieve high 

scalability in the number of wavelength channels, i.e. number 

of neurons. For a given finesse, the number of channels that can 

be carried within one FSR is determined by the channel spacing. 

A trade-off exists for the channel spacing as it also determines 

the inter-channel crosstalk when the dropped signals pass 

through neighboring rings towards the summation PD on the 

bus. This leads to a through loss as illustrated by Fig. 15a. We 

can rewrite Equation 7 as: 

𝜙 =
(𝜆−𝜆𝑟𝑒𝑠)

𝐹𝑆𝑅
× 2π =

2π

𝑁𝜆
                     (28) 

where (λ-λres) and Nλ are the channel spacing and number of 

channels, respectively. A large portion of the power loss gets 

dropped to the locking PD. This however does not compromise 

the weighting resolution. If we limit the through power ratio to 

η, we have: 

 𝑁𝜆 = 2π/cos−1 (1 −
2

4𝐹2

𝜋2

𝑇0(1+
4𝐹2

𝜋2
)−(𝑇0+

4𝐹2

𝜋2
)𝜂

(𝑇0+
4𝐹2

𝜋2
)𝜂−(1+

4𝐹2

𝜋2
)
).    (29) 

We can then plot a 2D contour for η as a function of both finesse 

and number of channels, as shown in Fig. 15b. Here, we assume 

the induced loss is dominated by the adjacent channel. It can be 

seen that for η=0.8, which translates into ~1 dB through loss, 

𝑁𝜆 ≈ 𝐹 . It should be noted that the insertion loss for all 

wavelength channels should be equalized by adjusting the 

individual input power, in order to allow each neuron to have 

the same maximum weight at summation. In addition, due to 

the multi-ring weighting block, the system can achieve higher 

order crosstalk suppression for the “0” weight. 

B. System-level co-design 

In order to take full advantage of both the optical speed-up 

and electronic manipulation of the parallelism and memory, 

interactions between the two technologies require careful 

attention, especially when one processes digital signals and the 

other analog signals. We identify the system-level challenges 

for the co-design as following: (1) Computation breakdown to 

match the interface. Processing a DNN may require matrix-

vector multiplications for ultra-large matrices and vectors. The 

electronic circuitry should preprocess the DNN, breakdown the 

computation to smaller matrix-vector multiplication instances, 

send the request to a silicon photonic circuit, and post-process 

the results. (2) Minimization of the number of updates for the 

input matrix to the OMM. For each instance of matrix-vector 

multiplication requests, changing the values represented by the 

OMM microrings introduces a nonnegligible delay. Thus, to 

make the most of the high capacity of optical interconnects, it 

is desirable to have the elements of the input matrix to the OMM 

constant over a sequence of matrix-vector multiplication 

requests sent from the electronic device. (3) Analyzing the 

computation precision and nonnegative networks. As discussed 

in the previous subsections, photonics is most suitable with 

nonnegative weights which can be directly mapped to the power 

ratios. The capability of defining weights using only 

nonnegative values would significantly simplify the design, 

fabrication, and control for the optical programmable 

processers. However, conventional training algorithms are 

developed using complementary (+/-) weight factors. Thus, it is 

important to investigate how the resolution level, nonnegative 

mode, and network size affect the accuracy of a neural network 
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for a target task. (4) System-level scheduling and orchestration. 

To maximally utilize both types of devices, the latency of each 

device should be taken into account during the system-level 

scheduling and orchestration. 

1)  Fully-connected layers: computation breakdown  

For a fully-connected layer ℎ𝑗+1  of size 𝑖𝑗+1  from the 

previous layer ℎ𝑗  of size 𝑖𝑗 , let 𝑊𝑗+1 ∈ ℝ𝑖𝑗+1×𝑖𝑗  denote the 

weight matrix. Note that 𝑖𝑗 and 𝑖𝑗+1 can be much larger than 𝑁. 

Given an activation function 𝐴𝑐𝑡( ) and bias 𝑏𝑗+1 , the layer 

ℎ𝑗+1 can be computed as follows: 

ℎ𝑗+1 = 𝐴𝑐𝑡(𝑔𝑗+1 + 𝑏𝑗+1)                          (30) 

𝑔𝑗+1 = 𝑊𝑗+1 ⋅ ℎ𝑗                                (31) 

To compute 𝑔𝑗+1  using the aforementioned PIC, we can 

partition the input into matrices of size 𝑁 × 𝑁 and vectors of 

size 𝑁 as follows for 0 ≤ 𝑘 ≤
𝑖𝑗+1

𝑁
: 

𝑔𝑘+1
𝑗+1

𝑔𝑘+2
𝑗+1

⋮

𝑔𝑘+𝑁
𝑗+1

= ∑

(

 
 
 
 

𝑊
𝑘+1,ℓ+1

𝑗+1
𝑊
𝑘+1,ℓ+2

𝑗+1
⋯ 𝑊

𝑘+1,ℓ+𝑁

𝑗+1

𝑊
𝑘+2,ℓ+1

𝑗+1
𝑊
𝑘+2,ℓ+2

𝑗+1
𝑊
𝑘+1,ℓ+𝑁

𝑗+1

⋮ ⋱ ⋮

𝑊
𝑘+𝑁,ℓ+1

𝑗+1
𝑊
𝑘+𝑁,ℓ+2

𝑗+1
⋯ 𝑊

𝑘+𝑁,ℓ+𝑁

𝑗+1

)

 
 
 
 

⋅

(

 
 
 
 

ℎ
ℓ+1

𝑗

ℎ
ℓ+2

𝑗

⋮

ℎ
ℓ+𝑁

𝑗

)

 
 
 
 𝑖𝑗

𝑁

ℓ=0
  (32) 

The overview of this approach is also depicted in Fig. 16. 

The total number of multiplications required to compute 

layer ℎ𝑗+1 from ℎ𝑗 is 𝑖𝑗+1 ⋅ 𝑖𝑗. With the above approach using 

OMMs of width 𝑁, the total number of OMM requests is ⌈
𝑖𝑗+1

𝑁
⌉ ⋅

⌈
𝑖𝑗

𝑁
⌉. This reduction by the factor of 

1

N2
 is achievable because 

there is no waste of operations associated with the partitioning. 

 
Fig. 16 Computation for fully-connected layers using optical matrix-vector 

multipliers (OMMs).  (a) Fully-connected layers ℎ𝑗  (green) and ℎ𝑗+1  (blue). 

𝑔𝑗+1 is obtained as a result of the inner products between ℎ𝑗 and the weight 

vectors. ℎ𝑗+1  is obtained by applying the bias and activation to 𝑔𝑗+1 .  (b) 

Matrix-vector multiplication between the weight matrix (orange and gray) and 

ℎ𝑗 to obtain 𝑔𝑗+1. The superscripts are omitted for simplicity.  (c) Computation 

equivalent to that of (b) but using OMMs with the input matrix size of 3 × 3. 

2)  Convolutional layers: minimization of the reconfiguration 

of OMM input matrices  

Fig. 17 shows the convolution part of convolutional layers 

computed using OMMs. The total number of multiplications 

required in computing one output channel is: 

𝑖𝑖𝑛_𝑐ℎ ⋅ (𝑊 − 2) ⋅ (𝐻 − 2) ⋅ 𝑁2                   (33) 

where 𝑖𝑖𝑛_𝑐ℎ  denotes the number of input channels, 𝑊  and 𝐻 

denote the width and height of an input channel, and 𝑁2 

represents the size of the convolution kernel. With the above 

approach, the total number of OMM requests for computing one 

output channel is 𝑖𝑖𝑛_𝑐ℎ ⋅ (𝑊 − 2) ⋅ (𝐻 − 2). 

 
Fig. 17 Computation for convolutional layers using OMMs. The first column 

of the output channel (nodes 𝑦11, ⋯ ) and the first three columns of the input 

channel (nodes 𝑥11, ⋯ ) are shown in the above illustration.  (a) Convolutions 

on a single channel of the input layer. The convolution results over all channels 

in the input layer will be summed up and mapped to the output channel after 

the bias and activation are applied. (b) Conversion of the convolutions to a 

matrix-vector multiplication. The computation for one column in the output 

channel can be performed by a single matrix-vector multiplication for each 

input channel.  (c) Computation equivalent to that of (b) but using OMMs with 

the input matrix size of 3 × 3, which equals the size of the convolution kernel. 

 

Fig. 18 Proposed computation of convolutional layers using an OMM without 

updating its input matrix values. 

The above approach updates the matrix elements for each 

OMM request. On the other hand, we propose another approach 

illustrated in Fig. 18, which minimizes the number of updates 

of the input matrix for the OMM. This approach follows a 

similar direction to the weight stationary optimization 

technique of ANN accelerators, where the weight values stay in 

the local register file of processing elements of the hardware 

accelerators [97]. The fundamental goal of this optimization is 

to minimize the time for processing elements to be reading the 

weights. In our co-designed system, the weights must be 

(a) (b)

(c)

(a) (b)

(c)
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converted to analog signals and passed to the OMM to be set up 

for the computation. Thus, we aim at reducing the latency of the 

overall process by minimizing the number of the OMM’s input 

matrix updates. This can be achieved by mapping the 

convolution kernel itself to the OMM’s input matrix, when the 

size of the OMM’s input matrix is larger than or equal to that of 

the convolution kernel, which often ranges between 2 × 2 and 

5 × 5. The convolution kernel weights form the input matrix 

and the network nodes form the input vectors. Then, the results 

of the first 𝑁 = 3 matrix-vector multiplication instances in Fig. 

10 contain the convolution result for 𝑦11. The second, third, and 

forth matrix-vector multiplication results contain the 

convolution result for 𝑦21. Consecutive 𝑁 = 3 results contain 

the convolution result for the corresponding output element. 

While processing the entire input channel, the input matrix for 

the OMM does not change. With this approach, the total 

number of OMM requests for one output channel is 𝑖𝑖𝑛_𝑐ℎ ⋅
(𝑊 − 2) ⋅ 𝐻. 

3)  Analysis on the nonnegative property and resolutions 

Most neural networks used in practice have both positive and 

negative input values, weights, and node values. Thus, 

feedforward propagation of these networks, either during the 

training or inference, requires matrix-vector multiplications 

with both positive and negative values. Then, it is of interest to 

consider a mapping between the values in the range of [-1, 1] 

and the range of [0, 1] such that matrix-vector multiplication is 

preserved by this mapping. However, the theorem in Appendix 

I verifies that such mapping does not exist. There have been 

approaches to use only nonnegative input and weights to obtain 

a more understandable network with slight decrease in the 

accuracy [98]. Another approach performs nonnegative matrix 

factorization of the weights in order to reduce the input 

complexity, but the input values in this case can be both positive 

and negative [99]. 

To avoid matrix-vector multiplication with negative values, 

we train the neural networks using nonnegative input, weights, 

and nodes. In our experiment, we restrict not only the sign of 

the input and weights to be nonnegative but also the resolution 

used during inference. Figure 19 shows the estimated inference 

accuracy of 2-layer MLPs over a range of the resolution levels 

(the number of bits used to represent the input values and 

weights in a fixed-point format), and the network sizes (the 

number of nodes in the hidden layer of the MLP) trained in two 

different modes for the task of handwritten digit recognition: (a) 

conventional mode that supports negative input, weights, and 

nodes, and (b) nonnegative mode that normalizes the input to 

[0, 1], and constrains the weights and nodes to be nonnegative. 

One network for each mode and each level of the network size 

was trained using the MNIST train dataset [100], with 32-bit 

floating point representation [101]. The input image contains 

28 × 28  pixel values in the range of [0, 255], which were 

normalized to [-1, 1] or [0, 1] depending on the training mode. 

For activation functions, tanh was used in the hidden layer, and 

softmax was used in the output layer. After activation in the 

nonnegative mode, all negative values were rounded up to 0. 

All weights and biases were randomly initialized, and the 

weights for the nonnegative mode were initialized to [0, 1]. 

These weights and biases were updated using ADAM, which is 

a state-of-the-art stochastic back-propagation method [68]. 

Each of the trained networks was tested on the MNIST test 

dataset, with both the input values and weights converted to the 

fixed-point representation for each resolution level. We note 

that one instance of a trained network with a given network 

structure does not represent the most optimized network of that 

structure. Nevertheless, all networks in this test case were 

trained using the same approach with similar optimization 

efforts, aside from the training time which increases for larger 

networks. Thus, we refer to these networks in order to 

practically and roughly estimate the performance trend over 

various network sizes, resolution levels, and the training mode. 

As shown in Fig. 19, the test accuracy has generally improved 

as the network width increased and as the resolution level was 

enhanced. It turns out that the accuracy of networks trained in 

the conventional mode were more affected by the restricted 

resolution, whereas the accuracy of those trained in the 

nonnegative mode were more affected by the network width. 

The test accuracy achieved by nonnegative networks are 

lower than that by the conventionally trained counterpart, but a 

larger nonnegative network can sometimes outperform a 

smaller conventional network. During the training in the 

nonnegative mode, the biases and activation functions were 

allowed to take negative values because in this co-design 

approach only the matrix-vector multiplications will be 

offloaded from the electronic device to the optical device. This 

seems to have enabled the network to cut out less relevant, or 

negatively related connections and to focus on positively 

related ones, resulting in comparable accuracy for large 

nonnegative networks. 

The issue of positive and negative inputs is an interesting 

example of the approach to optimization required for co-design. 

As mentioned in section IV.A, photonics is implemented more 

readily with nonnegative values. This initial investigation 

indicates that, although in current practice both positive and 

negative values are used, using only nonnegative values for the 

matrix-vector multiplications can actually be advantageous in 

some circumstances. 

 
Fig. 19 Test accuracy of MLPs for handwritten digit recognition with varying 

resolutions and network sizes. (a) Networks trained in the conventional mode 

using negative values, 0, and positive values in the computation. (b) Networks 

trained in the nonnegative mode, where only 0 and nonnegative values are used 

during matrix-vector multiplications. 

4)  System-level scheduling to maximize the throughput 

To accelerate the inference process of a trained neural 

network with OMMs, an FPGA-based co-designed system 
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breaks down the computation, sends matrix-vector 

multiplication requests to OMMs, and performs the remaining 

part of the computation including the nonlinear activation 

(which could also be done optically or via well-designed analog 

electronics as discussed in section IV.C.4). Figure 20 illustrates 

the overview of the proposed co-designed system that contains 

three specialized processors: the ANN processor, the input 

processor, and the output processor. For each OMM request, the 

ANN processor sends the input 𝑀 ×𝑁 matrix 𝐾 to the MRRs 

via DACs, and the input processor sends the input 𝑁 -

dimensional vector 𝑥 to the modulators via DACs. The output 

processor collects the resulting 𝑀-dimensional vector 𝑦 from 

the PDs via ADCs, and it also applies the bias and nonlinear 

activation function. The very recent demonstration on a 1-to-56 

Gb/s ADC/DAC-based transceiver [102] paves the way for 

high-speed, low-energy ADC/DACs as the interface between 

the OMM and FPGA, without harming the throughput. 

 

 
Fig. 20 System-level overview for the proposed co-design approach. The 

FPGA-based electronic system (on the top) invokes and controls the optical 

system (in the bottom). The MRRs that receive electrical signals from DACs 

act as electrical-to-optical converters, whereas the summation PDs perform the 

optical-to-electrical conversions. The summed signals are connected to the 

FPGA via ADCs. Details regarding the memory systems, which depend on the 

specific application, are abstracted in this figure. 

Although the computation complexity of an OMM is in O(1), 

the DAC, MRR configuration, ADC, and the computation on 

the FPGA consume non-negligible latency. The goal of the 

system-level scheduling is to overlap these latencies to 

maximize the throughput. Figure 21 shows abstract timing 

diagrams with pipelined executions by the ANN, input, and 

output processors. Figure 21a illustrates the case of invoking a 

single OMM instance. As shown in Fig. 21b, the latency 𝑇𝐿 of 

a period between consecutive OMM invocations can be 

expressed as: 

𝑇𝐿 = 𝑇𝑀 + 𝑇𝐷𝐴 + 𝑇𝐴𝐷                         (34) 

where 𝑇𝑀  denotes the latency of the DACs and MRR 

configuration, 𝑇𝐷𝐴 the latency of DACs, and 𝑇𝐴𝐷 the latency of 

ADCs. This holds as long as the ANN processor’s latency 𝑇𝐴 

does not exceed 𝑇𝐷𝐴 + 𝑇𝐴𝐷, and similarly, the input and output 

processors’ latencies 𝑇𝐼 and 𝑇𝑂 are less than or equal to 𝑇𝑀 +
𝑇𝐴𝐷 and 𝑇𝑀 + 𝑇𝐷𝐴, respectively. 

When consecutive OMM instances contain the same input 

matrix elements so that it is not needed to reconfigure the MRRs, 

the latency 𝑇𝐿 of the period can be expressed as: 

𝑇𝐿 = 𝑇𝐷𝐴 + 𝑇𝐴𝐷                            (35) 

as shown in Fig. 21c. In both cases of Fig. 21b and 21c, the 

asymptotic throughput is proportional to 
1

𝑇𝐿
 and the number of 

OMM devices that can be processed in parallel, and is inversely 

proportional to the total numbers of OMM invocations for fully-

connected or convolutional layers which have been discussed 

in the previous subsections. 

 
Fig. 21 (a) Timing diagram of invoking one OMM instance containing an input 

matrix and vector.  (b) Timing diagram of invoking 2 OMM instances, each 

with an input matrix and vector. More invocations can be added on the right in 

a similar pattern. The latency of a period between consecutive invocations is 

denoted as 𝑇𝐿.  (c) Timing diagram of invoking multiple OMM instances, where 

the first instance contains a new input matrix and vector and subsequent 

instances contain only new input vectors. The latency 𝑇𝐿 has been reduced with 

respect to (b). 

C. Discussion 

1) Silicon Ring Resonators: Finesse vs. Bandwidth 

Silicon ring resonators with high finesse (up to a few 

hundreds) have been extensively demonstrated [90, 91]. 

However, these demonstrations aim for high quality factors and 

tend to have a relatively small 3 dB bandwidth. For the 

aggregation ring filters in this OMM system, a large 3 dB 

bandwidth is an equally important factor that allows high data 

rate vectors to be fanned in, for high computational speeds. It 

would be preferable for the operation bandwidth of such an 

OMM to match that of the photo-detection rate (typically at 100 

GHz). 

The recent demonstration of a submicron-scale MRR shows 

great potential for the aggregation ring filters with high finesse 

and large bandwidth [103]. It features a 3 dB bandwidth of 

100 GHz and a finesse of 116, supporting up to 116 wavelength 

channels given a 1 dB through loss budget as discussed in 

section IV.A.2.3. This ultra-small ring resonator has the 

additional benefit of reducing the thermal tuning power, which 

is proportional to its size [103]. Another notable demonstration 

that combines an MRR based filter with grating-assisted contra-

directional couplers frees the constraint of FSR [104]. The 

addition of grating-assisted couplers provides an extra degree 

of freedom for longitudinal mode selectivity. This design, 

therefore, paves the way for independent optimization of the 
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3 dB bandwidth, and potentially enables a full utilization of the 

transmission window in the silicon platform, yielding an 

extremely scalable OMM. 

2) Optical Phase shifting technology 

Phase shifter technology is key in the OMM. Thermo-optic 

phase shifting is preferred since it is the most commonly 

applied lossless mechanism in the silicon platform. The induced 

on-chip thermal crosstalk can be reduced by adding isolation 

trenches [105]. In addition, a selective silicon etch can be 

applied to the silicon substrate to undercut the waveguides. The 

selective etch localizes the heat and improves the heating 

efficiency [106]. The reduced heating power could in turn 

ameliorate on-chip thermal perturbations. The limited thermal 

frequency response (up to a few hundred KHz [82]) is, however, 

a limiting factor in latency, when dynamic reconfiguration for 

the OMM is required. For fast phase tuning, as aforementioned, 

electro-optic phase shifting leveraging the plasma dispersion 

effect is the most popular all-silicon technology [96]. It offers 

nanosecond-scale reconfiguration time, albeit with some 

performance penalty due to the electro-absorption loss. The E-

O phase shifters would be straight-forwardly included in the 

weighting blocks with additional considerations for the excess 

electro-absorption loss. 

With the advances in heterogeneous integration technology, 

other materials can be introduced on the silicon platform. 

Notable examples include III-V materials [49], graphene [107], 

and nonvolatile phase-change materials (PCMs) [108]. III-V 

materials exhibit high electro-optic phase modulation 

efficiency, which can be effectively combined with silicon 

waveguides using wafer-bonding techniques [49]. Thin layers 

of graphene can be deposited on top of the Si waveguide [107], 

forming a capacitor that overlaps with the tail of the 

waveguide’s optical mode. The application of voltage will then 

shift the Fermi level of graphene and enable inter-band 

transitions of charge carriers, and thus modulate the intensity of 

light travelling through the waveguide. The PCMs can 

introduce gigantic optical phase changes and most importantly, 

such phase changes are nonvolatile. This nonvolatility adds the 

capability of self-holding, maintaining optical states even in the 

absence of power input [109]. 

3) Power consumption and footprint of the OMM 

The power consumption of the OMM is dominated by the 

tuning and locking of MRR elements. Current technology 

features a thermo-optic tuning efficiency of 1 nm/mW with 

doped-silicon micro-heaters [82], leading to a small power 

consumption of a few mW per weighting MRR. Femtojoule-

level depletion-mode modulators in vertically doped micro-disk 

structures [32], featuring low operating voltage (0.5 VPP), offer 

the possibility for ultralow power electro-optic OMMs. The 

power consumption would then derive from the undesired 

leakage current, approximately ~6 µW per element [32]. In 

future implementations, the phases could be set using the 

nonvolatile PCMs [109]. In that case, power would only be 

drawn during state transitions. A recent demonstration on a 

nonvolatile PCM-based photonic memory cell shows 

programming energy and time of only 680 pJ and 250 ns, 

respectively [110]. 

A number of wavelength locking schemes have been 

proposed, including the use of the photoconductive effect [87], 

small dithering signals [84], radio frequency (RF) detection 

[86], additional partial drop rings [88], and monolithically 

integrated locking controllers in the 45 nm CMOS-SOI 

platform [85]. The locking power consumption has been 

demonstrated to be in the range of a few hundred µW [84, 85]. 

Furthermore, there has also been noteworthy research progress 

on athermal MRRs that could significantly overcome the 

temperature sensitivity [111-113]. Here, the key idea is to 

introduce an upper cladding that has a negative thermo-optic 

coefficient to counteract the T-O effect of silicon. Titanium 

dioxide (TiO2) holds the most promise as it exhibits a relatively 

strong negative thermo-optic coefficient and has been included 

in the CMOS-compatible fabrication process [112, 113]. This 

technique offers a path to extremely power-efficient OMM 

units. 

Current implementation of MRR-based PICs for on-off 

switching (two-state) applications normally features a pitch size 

of 100 µm [29]. Hundreds of MRR elements have been 

monolithically integrated on a single chip, within an area of a 

few tens of millimeter squares [29]. The temperature-

insensitive MRRs could potentially reduce the footprint of the 

OMM significantly, even for high-resolution operations, as the 

pitch limitation due to thermal restrictions is offset. The size 

will then be merely limited by the pitch size of electrical 

bonding pads, which can be as small as 25 µm to 40 µm [114], 

thus enabling the footprint shrink of the OMM by over an order 

of magnitude. 

4) Nonlinear activation function 

To implement a full neural network, as aforementioned, a 

nonlinear activation function is required in addition to the linear 

OMM units. For a nonlinear activation function implemented 

in optics, there are generally two types, implemented using: (1) 

electro-optic nonlinearity and (2) all-optical nonlinearity. The 

former type requires first converting an optically weighted 

signal into the electrical domain and then triggering the 

nonlinear activation function to have an optical outcome. 

Examples include semiconductor excitable lasers (type C in 

Fig. 6c) [77], and electro-absorption modulators [115]. This 

type of solution might impair the processing speed and 

cascadability of neural networks due to the movement of charge 

carriers and the optical-to-electrical conversion noise. The 

latter, all-optical solution holds greater promise. The most 

commonly used optical nonlinearities are saturable absorption, 

such as in the use of monolayer graphene absorbers [116] and 

two-photon absorption [117], and bistability in nonlinear 

photonic crystals [118] and optical superlattices [119]. The 

nonlinearity of ring resonators can also be exploited [120]. 

Currently, the optical nonlinear activation function is an 

important research topic which could be used in order to 

enhance the throughput of an optical neural network, thus 

lowering the system latency and power consumption. However, 

the monolithic integration of these nonlinear units with OMMs, 
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the efficiency of the nonlinear modulation, and the operational 

speed and accuracy are open challenges [121]. 

While the development of an all-optical on-chip neural 

network represents a longer-term goal, implementing the 

nonlinear activation function electrically is a promising 

alternative in the short term. The very recent work of building 

optical neural networks based on photoelectric multiplication 

also proposes to implement the nonlinear activation function in 

the electrical domain [122]. Very low power (femtojoule-scale) 

consumption is feasible with well-designed analog electronics. 

V. CONCLUSION 

Larger DNNs in general have higher expressiveness as a 

classification function. Theoretical analysis has also verified 

that both the depth and the width of neural networks contribute 

to their expressive power. It has been shown that complex 

functions expressed by deep neural networks cannot be 

approximated by any shallow neural network whose size is no 

more than an exponential bound [123], and also that certain 

classes of wide neural networks cannot be realized by any 

narrow network whose depth is no more than polynomial bound 

[124]. These observations lead to the demand for the capability 

to efficiently process very deep or wide neural networks. The 

co-design approach addresses scalability (in terms of the size of 

neural networks) in two aspects: (1) The capability to 

decompose a large matrix-vector multiplication into smaller 

instances which significantly relaxes the requirement of 

photonic integrations. (2) A path to construct ultra-large scale 

OMMs using MRRs in the wavelength domain. This reduces 

the system decomposition complexity and, in turn, enables the 

handling of sophisticated concepts for future applications. In 

addition, the approach to manage the computation precision 

with nonnegative values can be utilized in any photonic 

systems, in order to reduce the implementation complexity and 

thus cost. This also facilitates the operation of different facets 

of validity in practical terms for OMMs as hardware 

accelerators in deep learning applications. 

In summary, efficient scaling of deep learning will require 

dedicated hardware accelerators. We have presented an 

overview of silicon photonics applications for deep learning 

and have analyzed opportunities for scalable co-designed multi-

wavelength microring silicon photonic architectures. 

APPENDIX I 

Theorem 1. Let 𝛷,𝛺 ⊂ ℝ  such that {−1, 0, 1} ∈ 𝛷  and 𝛺 ⊂
[0,+ ]. Then there exists no function 𝑓:𝛷 → 𝛺 satisfying the 

followings: 

For any 𝑝1, 𝑝2 ∈ 𝛷, 𝑓(𝑝1) + 𝑓(𝑝2) = 𝑓(𝑝1 + 𝑝2)     (A1) 

For any 𝑝1, 𝑝2 ∈ 𝛷, 𝑓(𝑝1) ⋅ 𝑓(𝑝2) = 𝑓(𝑝1 ⋅ 𝑝2)         (A2) 

This also holds if 𝛺 ⊂ (− , 0). 

Proof. If such function 𝑓 exists, it must satisfy the followings: 

𝑓(1) + 𝑓(0) = 𝑓(1)                        (A3) 

𝑓(1) ⋅ 𝑓(−1) = 𝑓(−1)                      (A4) 

𝑓(1) + 𝑓(−1) = 𝑓(0)                      (A5) 

Equation A3 implies that 𝑓(0) = 0, and Equation A4 implies 

that 𝑓(1) = 1. Then, Equation A5 can be re-written as 

1 + 𝑓(−1) = 0                           (A6) 

Thus, 𝑓(−1) = −1  but this value is not in the range 𝛺  of 

function 𝑓. Therefore, such 𝑓 does not exist. 

APPENDIX II 

As discussed in section IV.A.1.1, the maximum sensitivity of 

the weight in Equation 11 occurs when 

tan
𝜙max  

2
= √

𝑟(𝑎)

𝑠(𝑎)
                         (A7) 

where 

𝑟(𝑎) = 3𝑎2 + 2 − √9𝑎4 + 4𝑎2 + 4           (A8) 

and 

𝑠(𝑎) = 𝑎2 − 2 + √9𝑎4 + 4𝑎2 + 4 .          (A9) 

Therefore, 

sin𝜙max  =
2√𝑟(𝑎)𝑠(𝑎)

𝑟(𝑎)+𝑠(𝑎)
=

1

2𝑎2
 √𝑟(𝑎)𝑠(𝑎)     (A10) 

cos𝜙max  =
𝑠(𝑎)−𝑟(𝑎)

𝑠(𝑎)+𝑟(𝑎)
= 1 −

𝑟(𝑎)

2𝑎2
              (A11) 

Plugging these back into the sensitivity function of Equation 12 

and assuming 𝑇0 ≈ 0 immediately yields: 

|
𝜕𝜇

𝜕𝜙
|
max  

=
1+𝑎2

𝑎2
 
4√𝑟(𝑎)𝑠(𝑎)

(𝑟(𝑎)+4)2
                (A12) 

Assuming that 𝑎2 ≫ 1 we see that 
1+𝑎2

𝑎2
≈ 1                                   (A13) 

𝑟(𝑎) ≈ 3𝑎2 + 2 − 3𝑎2 (1 +
2

9𝑎2
) =

4

3
            (A14) 

𝑠(𝑎) ≈ 𝑎2 − 2 + 3𝑎2 (1 +
2

9𝑎2
) ≈ 4𝑎2         (A15) 

Therefore, 

|
𝜕𝜇

𝜕𝜙
|
max  

≈
9

16√3
 𝑎 .                      (A16) 
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