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Abstract— Deep learning is revolutionizing many aspects of our
society, addressing a wide variety of decision-making tasks from
image classification to autonomous vehicle control. Matrix
multiplication is an essential and computationally intensive step of
deep learning calculations. The computational complexity of deep
neural networks requires dedicated hardware accelerators for
additional processing throughput and improved energy efficiency
in order to enable scaling to the larger networks in upcoming
applications. Silicon Photonics is a promising platform for
hardware acceleration due to recent advances in CMOS
compatible manufacturing capabilities, which enable efficient
exploitation of the inherent parallelism of optics. This article
provides a detailed description of recent implementations in the
relatively new and promising platform of silicon photonics for
deep learning. Opportunities for multiwavelength microring
silicon photonic architectures co-designed with FPGA for pre- and
post- processing are presented. The detailed analysis of a silicon
photonic integrated circuit shows that a co-designed
implementation based on the decomposition of large matrix vector
multiplication into smaller instances and the use of nonnegative
weights could significantly simplify the photonic implementation
of the matrix multiplier and allow increased scalability. We
conclude the paper by presenting an overview and a detailed
analysis of design parameters. Insights for ways forward are
explored.

Index Terms—silicon photonics; deep learning; neural network;
photonic integrated circuit; microring resonator.

I. INTRODUCTION

EEP learning is an extraordinarily popular machine

learning technique that is revolutionizing many aspects of

our society. Machine learning addresses a wide variety of
decision-making tasks such as image classification [1], audio
recognition [2], autonomous vehicle control [3], and cancer
detection [4]. Matrix multiplication is an essential but time
consuming operation in deep learning computations. It is the
most time intensive step in both feedforward and back-
propagation stages of deep neural networks (DNNs) during the
training and inference, and dominates the computation time and
energy for many workloads [1-3, 5, 6]. Deep learning uses
models that are trained using large sets of data and neural
networks with many layers. Since DNNs have high
computational complexity, recent years have seen many efforts
to go beyond general-purpose processors and towards dedicated
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accelerators that provide superior processing throughput and
improved energy efficiency.

It has been known for quite a while that matrix-vector
multiplication can be performed by optical components taking
advantage of the natural parallelism of optics to reduce
computation time from O(N?) to O(1) [7, 8]. Implementing
these optical matrix-vector multipliers, however, has required
the use of bulky inefficient optical devices. In the last several
years the field of silicon photonics has made major progress to
meet the massive needs of data centers and cloud computing.
With silicon photonics, optical components and photonic
integrated circuits are fabricated leveraging CMOS-compatible
silicon manufacturing techniques to enable small-footprint,
low-cost, power-efficient data transfers.

Optical matrix-vector multipliers (OMMs) based on silicon
photonics represent a promising approach to address the
challenge of compute-intensive multiplication in DNNs. An
optimal solution must take into account the advantages and
drawbacks of the silicon photonic technology along with the
requirements of the application. Silicon photonics offers
excellent co-design capabilities with off-chip control
implemented by FPGAs to achieve accelerated computational
gains. To analyze these capabilities in detail, we present the co-
design of a DNN in conjunction with the OMM, developing an
optical-electrical co-design infrastructure using FPGA control.
The FPGA is used for (1) pre/post processing and (2) photonic
device control. We identify opportunities for OMM
architectures based on multiwavelength silicon microring
resonators. We analyze and generalize the metrics of the
microrings for linearity and reduced sensitivity to perturbations.
The OMM can be used for time consuming, computationally
expensive matrix multiplication. In the case of DNNSs that are
too large to be processed on a single optical chip, we explore
methods to divide the computation, by using the parallelism at
the system level to enable scaling to very large neural networks.
In addition, we show how DNNs based on nonnegative weights
significantly simplify the photonic implementation of the
matrix multiplier and allow increased scalability.

The remainder of this paper is organized as follows. In
Section 11, we present a brief background of advances in deep
learning and in silicon photonics. In Section III, we give an
overview of and discuss trade-offs in the state-of-the-art
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research in the implementation of silicon photonics for deep
learning. Based on the analysis above, in Section IV, we
propose a co-designed system for deep learning. We first
present a detailed analysis of the design parameters and metrics
for a silicon photonic integrated circuit (PIC) that implements
an optical matrix multiplier. We generalize the role and
characteristics of the silicon microrings, analyzing their
limitations (including thermal sensitivities) in order to explore
opportunities for optimized OMM structures. We then discuss
system-level approaches towards electronic/photonic co-design
for improved performance. At the end of this section, we
provide insights on future directions and opportunities based on
our analysis and the current state-of-the-art and application
requirements. Section V concludes the paper.

II. BACKGROUND

A. Deep learning

The fundamental concept of machine learning is that the core
computation algorithm is not fully provided by a programmer,
but automatically generated or improved by a computer system
through experience [9]. The learning system explores a given
class of computation models to determine the most suitable
model among them based on the training data. One of the model
classes that has gained widespread popularity is the DNN,
which is the artificial neural network (ANN) with many layers
in the network [10]. Inspired by the human brain, the concept
of the ANN was first proposed in the 1940s [11]. More recently,
with the increased volume of data, computing capability, and
research interest, numerous ANNs have shown outstanding
performance in machine learning tasks across various
application domains [1-4]. Deep learning refers to machine
learning using deep ANNs, also called DNNs. Two

fundamental classes of ANNs are multilayer perceptrons
(MLPs) and convolutional neural networks (CNNG).

Fig. 1 A multilayer perceptron (MLP) for handwritten digit classification. The
network consists of 4 layers (the input layers, two hidden layers, and the output
layer) where each layer contains a number of nodes (also called neurons).
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Fig. 2 The computation for a single node (the first node in the layer h') in MLP.

MLPs, also known as fully-connected networks (FCNs), are
the quintessential DNNs [10]. An MLP represents a function
defined by a network consisting of multiple layers of nodes,
which are also called neurons or perceptrons. For example, Fig.
1 shows an MLP for the task of recognizing a handwritten digit.
The input image is represented as an array of pixel intensity
values which are often normalized. The neural network behaves
as a function that maps the input image to the probability score
for each of the ten digits (0,1,2,:--,9). Let i, denote the
number of pixels in the input image. Then, for an input array
x € Rio, the neural network (shown in the box in Fig. 1) outputs
y(x) € R, as follows. The input layer x contains i, nodes
X1, X3, X, This layer is fully-connected to the first hidden
layer h', which contains i; nodes; each node hi (1 < k < i)
is computed as

hi(xq, x, ---,xl-o) = Act(git(xy, %2, ---,xl-o) +bt) (1)
gl%(xlvxzv"'vxig) = W/%,1 “Xqp Tt Wli,z "Xyt Wi,io * Xig

2

where Act() denotes an element-wise nonlinear activation
function (e.g., ReLU, sigmoid, softmax, tanh), by € R is a bias,
and w,ﬁ_ 5 (1 £j <i,) represents the weight of the connection
between node x; and hi; (Fig. 2). Each hidden layer is fully-
connected to the next layer, and the last layer in the network is
the output layer containing ten nodes. The sofimax function is
often used for nonlinear activation of the output layer since it
can be interpreted as a probability distribution.

The process of computing the output of a neural network as
described above is called feedforward propagation. The
information stored in the input layer propagates toward the
output layer. How it propagates depends on the neural networks
structure, weights, biases, and activation functions. During the
training phase of supervised machine learning, given a large
number of (input, output) instances, the values of weights and
biases are updated through the gradient descent method, also
called back-propagation [12]. Then, in the inference phase, a
trained network is used to predict the output for a new input
instance. With this approach, MLPs were among the first and
most successful nonlinear learning algorithms [10]. The
nonlinear activation plays a key role in ANNs. Without the
ANN, the function expressed by an MLP is a composition of
linear functions (which is linear). By inserting the nonlinear
activation, such as ReLU or tanh, the resulting function
becomes a composition of nonlinear functions, which can
express much more complicated concepts.

In addition, the universal approximation theorem states that
any continuous function defined on a compact set can be
approximated by an MLP with a single hidden layer [13, 14].
Nevertheless, it does not address how many nodes are required
in the hidden layer, or how to learn the weights and biases of
such an MLP. Empirically, the accuracy of the trained networks
improves as the number of nodes per layer increases, and as the
number of layers increases. This motivated the advancement of
DNNs .
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CNNs were first proposed by LeCun et al. in 1989 for
handwritten digit recognition [15], and they have outperformed
many proposed MLPs, especially for more complex tasks such
as colored image classification. Fig. 3 illustrates the overview
of a CNN for image classification. The input image is stored
across three channels, each representing the Red, Green, or
Blue intensities. As shown in Fig. 4a, a convolutional layer
(Layer L + 1) usually contains multiple channels, and the
values of nodes in each channel are computed using the
information from all channels in the previous layer (Layer L).
Fig. 4b gives a closer look at the connection between an input
channel from the previous layer (Channel A in Layer L) and an
output channel in a convolutional layer (Channel B in Layer
L+ 1). A convolution kernel (of size 3 X 3 in the example)
dedicated to this connection defines how to obtain a value for
each node in the output channel from a small neighbor (of size
3 x 3) in the input channel (Fig. 4c). The kernel slides both
vertically and horizontally on the input channel to cover all
nodes in the channel, and the convolution result is propagated
to the node in the associated position in the output channel. The
amount by which the kernel slides is called the stride and this is
often set to 1. Around the boundary of the input channel,
additional nodes of the value zero can be padded before the
convolution. When the kernel is of size R X R, a padding of size
E] is commonly applied. At each node in the output channel, a
bias and activation function are applied to the summation of the
corresponding convolution results. To summarize, the value of
a node Zé";;l’B at (¢, d)-coordinate on channel B in layer L + 1

is computed as

Zézl.B (Zb1, ZL2 o gLNL; RLULHLB FL2L+LE .. pLNLL+1B)
= Act(Z3t vy P (M4 AR 4 pLE) (3)
pLELB (ghA; KLALTLE)
— M M L,A;L+1,B LA
= Zazlzﬁzl(ka’ﬁ . ZC_[%J‘*’“'d_l%J*'ﬁ) (4)
where Act() is an activation function, b-%"? € R is a bias

associated with this output node, z“4 denotes channel 4 in the
previous layer L, N; represents the number of channels in layer
L, and kM4L+1E refers to the convolution kernel of size M x M
defined for the connection between the channel A in layer L and
the channel B in layer L + 1.
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Fig. 3 A convolutional neural network (CNN) for image classification,
consisting of convolutional layers followed by fully-connected layers.

Convolutional layers are elaborated in Fig. 4, and the computation for fully-
connected layers is depicted in Fig. 2.
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Fig. 4 Overview of convolutional layers. A convolutional layer consists of one
or more channels where each channel contains a number of nodes. (a) Every
channel in the previous layer is connected to each channel in the next layer. (b)
The connection between one input channel (in Layer L) and one output channel
(in Layer L + 1). The convolution between a set (in the black square) of nodes
in the input channel and the convolution kernel (k,, - kg) contributes to one
node in the output channel. (c) The computation for a single node in the output
channel. 2, denotes the summation over all input channels A.
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Optionally, a convolutional layer may be followed by a
pooling layer that reduces the size of the representation by
pooling neighbors of R X R nodes, where R often takes a small
value such as 2,3,4 or 5. Most commonly used pooling
functions are maximum (i.e., taking the maximum value from
the R X R neighborhood), average, median, and stochastic.

The network size and computational complexity of state-of-
the-art DNNs have generally increased over the decades.
Meanwhile, much research has been also conducted on the
accelerated and efficient computation of DNNs [16]. For both
MLPs and CNNs, the core computation requirements during
feedforward propagation are inner products of two vectors, or
matrix-vector multiplications [5, 6, 17]. Both the weight
product function g () for fully-connected layers (in Equation 2)
and the convolution function v( ) for convolutional layers (in
Equation 4) can be naturally translated into vector-vector or
matrix-vector multiplications. GPUs have been extensively
exploited to accelerate this type of computation, mainly
leveraging their inherent feature of single-instruction multiple-
data parallelism [18, 19]. In addition, there has been growing
interest in designing custom hardware accelerators and
reconfiguring the DNNSs for higher efficiency [20]. Haensch et
al. have proposed in-memory analog computation for DNNs
and have analyzed nonvolatile memory material candidates [5].
Amiri et al. have proposed a multi-precision CNN framework
on an FPGA-CPU heterogeneous device [21].

B. Silicon photonics

While graphical processing units (GPUs), field-
programmable gate arrays (FPGAs), and application-specific
integrated circuits (ASICs) have received extensive interest for
developing dedicated hardware accelerators in deep learning
calculations [22-24], photonics has been long recognized as a
promising alternative to address the fan-in and fan-out
problems for linear algebra processors [25, 26]. A few
unparalleled features motivate the exploration of a photonic
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implementation. (1) The power consumption for data transfer
that accounts for a large portion in electronic application-
specific integrated circuits (ASICs) [16] can be greatly reduced
by leveraging state-of-the-art optical transceivers. In addition,
once a neural network is trained, the matrix configuration can
be passive and optical signals can be processed with no
additional power consumption [27]. (2) The operation
bandwidth of such an OMM could potentially match that of the
photodetection rate (typically in 100 GHz), which can be at
least over an order of magnitude faster than the electronic
system (typically restricted to the clock rate of a few GHz). (3)
The OMM could have significantly lower latency, since the
electronic hardware accelerators still rely on electronic
transport that is bounded by the speed and power limits due to
RC parasitic effects. Early demonstrations of photonic solutions
were implemented with bulky free-space optics [25, 26], which
required rigorous calibration for phase matching and have
extreme scaling difficulties. Current photonic integration
platforms provide opportunities for highly scalable solutions
that improve energy efficiency and significantly reduce
overhead of assembly, calibration, synchronization, and
management [28].

Over the last two decades, silicon has been shown to be an
excellent material platform for fabricating photonic devices,
and processes have been developed to permit the reuse of
CMOS manufacturing infrastructure to build complex PICs. It
is, therefore, not surprising that silicon photonics is now widely
accepted as a key technology in next-generation
communications systems and data interconnects [29]. On the
one hand, following the example of the electronic fabless
semiconductor industry, process design kit (PDK) libraries are
being developed and standardization is being encouraged by the
silicon photonics industry and users for broader accessibility
[30, 31]. On the other hand, component customization is driven
by a number of research groups and companies that design a
large variety of specialized photonic components [32-34]. The
ability to include increasing numbers of a wide range of optical
components at the wafer scale has led to a powerful class of
silicon-based PICs [35]. Such integration technology
fundamentally improves circuit-level performance by reducing
the complexity in assembly, calibration, and synchronization.
As it matures, sustained increases in the functionality,
performance, and reliability of circuits are enabled. This, in
turn, stimulates new research directions leveraging the large-
scale photonic integration capabilities [27, 36-40]. Lightwave
signals have been manipulated in their intensity and phase at the
space, wavelength, polarization, and mode dimensions, for data
transmission [33, 41], switching [42-44], and processing [27,
37, 40], in both digital [33, 41] and analog formats [27, 39, 40].

In addition, in recent years the ecosystem of silicon photonics
has been extended to enable further functionality. The ability to
add CMOS-compatible materials, such as Germanium (Ge),
Ge-rich GeSi, and Silicon Nitride (SiN), to the Silicon-on-
Insulator (SOI) platform has significantly enriched the
component library and enhanced circuit-level performance.
Notable examples include the Ge-on-Si photodiodes [45], high-

speed GeSi modulators [46], and the ultralow loss Si/SiN multi-
layer structure [47]. The development of heterogeneous
integration [48, 49] as well as breakthroughs on direct growth
of III-V quantum dot materials on silicon substrates [50] further
complete the ecosystem, enabling a System-on-Chip.

The Mach-Zehnder interferometer (MZI) and the micro-ring
resonator (MRR) are two of the most common functional
building blocks in many photonic systems, such as modulators
[32, 51, 52], filters [34, 53], multiplexers [54, 55], switches [56-
58], and computing systems [27, 59, 60]. The MZI was first
proposed over a century ago to determine the relative phase
shift variations between two collimated beams derived by
splitting light from a single source. Later work extended this
concept to manipulate the probability of light arriving at either
port, by precisely controlling the phase difference between the
two arms [61]. Integrated MZIs generally consist of two 3 dB
couplers with phase shifters embedded in each of the two arms.
Detailed design considerations can be found in [52, 53, 62]. An
MRR consists of an optical waveguide which is looped back on
itself and coupled waveguides. Resonance occurs when the
optical path length of the resonator is exactly a whole number
of wavelengths and thus multiple resonances are supported. The
spacing between these resonances is called the free spectral
range (FSR). Similarly, a phase shifter can be embedded in the
resonator to tune the optical path length in order to shift the
resonance spectrum. The properties of MRRs are extensively
described in the literature [63, 64], as well as their design
considerations, performance metrics, and potential challenges
[29, 32, 34, 54, 63, 64]. We discuss applications of the MRR in
more detail below.

III. SILICON PHOTONICS FOR DEEP LEARNING

This emerging area of research has been stimulated by recent
results in which silicon photonics has been utilized to
implement optical neural networks based on a spatial
multiplexing technique with coherent interference [27], and a
spectral multiplexing technique with wavelength filters [60]. In
this section, we give a detailed overview of this recent progress
in programmable silicon photonics for deep learning hardware
accelerators.

A. Linear MZI-based meshing optics with orthogonal spatial
modes

Pioneered by the work of Reck et al. [65] showing that a mesh
of 2x2 beam splitters and phase shifters in the form of a Mach-
Zehnder interferometer (MZI) can be programmed to enable
independent control of amplitude and phase of light for a set of
optical channels, various novel architectures and design
principles based on a cascade of MZIs have been proposed and
demonstrated for both classical and quantum applications [27,
37, 39, 66-68]. These works are also referred to as
“programmable linear optic processors” [69]. Phase shifters
that are embedded in the arms of MZI units are used to control
the interference of beams at the combining stage, while a pair
of external phase shifters is employed in order to set a
differential output phase. This allows the control of relative
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amplitude and phase of the beams at each stage and thus the
programing of the mesh. With specific interconnection patterns,
universal linear optical components can be obtained [66-68, 70,
71].

Whereas most of the mesh networks are explored as universal
linear optics for unitary operations [37, 65-67, 70, 71], Miller
proposed a design method that implements arbitrary, non-
unitary matrices, as shown in Fig. 5a [68]. This approach
describes a self-configuring universal linear mesh that employs
a set of orthogonal beams. The mathematics behind this design
demonstrates that any linear optical device can be factorized
using the singular value decomposition (SVD), as D = VEUT,
where V and UT are unitary matrices and X is the diagonal
matrix [68]. Theoretically, the universal unitary matrices of V
and U' can be implemented following the designs proposed by
Reck et al. [65] (Fig. 5b) and Clements et al. [66] (Fig. 5c), and
the diagonal matrix ¥ can be represented by an array of
modulators that can set amplitude and phase [68], as illustrated
by Fig. 5a. The unitary matrices of V and U can be further
decomposed to analytically define the values of beam splitters,
i.e. phase settings of MZIs [65, 66].

(b) (©
Fig. 5 (a) Universal linear mesh network comprising two unitary matrices and
a diagonal matrix to set amplitude and phase, as proposed in [68]. Universal
unitary matrix proposed by [65] in (b) and by [66] in (c).

The recent work by Shen and Harris et al. proposed a novel
architecture (Fig. 6) for an optical neural network that offers
hardware acceleration for deep learning applications [27].
Vectors were encoded in the intensity and phase of light and
then fed into each layer of the network, which was comprised
of an optical interference unit (OIU) and an optical nonlinearity
unit (ONU). While the ONU function was emulated on a
computer to act as a saturable absorber, the OIU was
implemented using a silicon PIC to perform the optical matrix
multiplications following Miller’s design, which leverages the
SVD decomposition [68]. This optical device consists of 56
programmable MZI units, each of which has two 50:50 power
splitters and two pairs of phase shifters parameterized by (8, @).
The power splitters/combiners are realized by directional
couplers and the n/2 phase difference between the two outputs
ensures the unitary property of its transformation. As a non-
application-specific PIC, one matrix transformation requires
two passes through the chip for: (1) VZ and (2) UT. The
required orthogonal beams are implemented by a set of coherent
spatial modes. This device does not use on-chip detectors for

self-alignment. However, other generic approaches for setting
up meshes can be leveraged to enable the calibration of phase
disorders due to fabrication variations, such as the one
described in [72]. In addition, the broadband nature of MZIs
does not have a strong requirement for local phase stabilization,
although on-chip thermal crosstalk could be a significant cause
of phase errors.

Neural network training algorithms [73] can be leveraged to
train the matrix parameters for different layers. Each layer
contains a set of weights, which can be decomposed into phase
settings and then programmed into the OIU. By implementing
a two-layer optical neural network with 4 neurons per layer, a
primitive task for vowel recognition was executed and achieved
an accuracy of 76.7% [27]. Compared to the accuracy of 91.7%
by execution with a conventional 64-bit digital computer, the
key limiting factor for the accuracy of the optical neural
network can be attributed to the computational resolution. The
phase-encoding noise and the photo-detection noise are
believed to be the primary factors causing reduced resolution
[27]. This is also reflected in the fidelity analysis showing that
the percentage error for each output of the SU(4) unitary matrix
core is approximately 2.24% [27], which bounds the system’s
effective resolution. Suppressing on-chip thermal crosstalk, and
lowering photo-detection noise would thus lead to a superior
computational resolution of the network.
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Fig. 6 All-optical architecture for integrated neural network [27].

The work described above shows an impressive example of
applying silicon photonics to deep learning applications; yet,
three factors in particular might bound the practicability of this
approach. (1) Limited scalability of neurons. Let N denote the
number of neurons. The optical depth (the number of MZI units
traversed through the longest path) for the unitary matrix is
given as 2N — 3 and as N in the scheme by Reck et al. [65] and
by Clement et al. [66], respectively. This, therefore, leads to a
total optical depth of 2N — 1 (with output reflected for a more
compact layout [68]) and of 2N + 1, respectively, for the
optical device that implements the arbitrary linear
transformation using SVD encoding where the diagonal matrix
¥ is implemented by an array of MZIs. Note that although the
device using Reck et al. design has a slightly smaller optical
depth, the Clement et al. layout is shown to be more tolerant to
component loss in realistic interferometers, maintaining high
fidelity [66]. The optical depth increases linearly with the
number of neurons (N) by a factor of 2 which directly translates
into additional loss in silicon photonics integrations. This
additional loss could quickly outpace the optical power link
budget and significantly deteriorate the system signal-to-noise
ratio, thus limiting the computational resolution. (2) Error
accumulation. Whereas the on-chip thermal crosstalk can be
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suppressed, the finite encoding precision on phase settings will
remain as the fundamental limitation for the optical neural
networks with high computational complexity. The phase
errors, in particular, accumulate when the lightwave signal
traverses the MZI mesh with an optical depth of 2N + 1. In
addition, such errors propagate through each layer of the
network, which ultimately restricts the depth of the neural
network. (3) Complex encoding scheme of matrix. The SVD
method provides a perfect solution to decompose an arbitrary
linear transformation. However, mapping the trained matrix
parameters to the phase settings of the MZI mesh consumes
additional computational power.

B. Microring weight banks for spiking networks

Inspired by neuroscience in which biological neurons
communicate by short pulses, spike processing, with this
integrate-and-fire neuron model, has been proposed to exploit
its massive parallelism potential in computation [74]. The
cornerstone of the communication protocol is the spike coding
scheme, which is digital in amplitude, and analog in pulse
timing [75]. Input spikes from multiple sources are multiplied
by a set of weight factors and temporally integrated to trigger a
neuron firing a single output spike if the threshold is satisfied
[76]. It has been recently recognized that photonics can be a
powerful alternative to the microelectronic platform to
implement such a spike processing system, given the significant
advancement in both excitable lasers for the nonlinear
processing, and analog PICs for the linear processing [77].
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Fig.7 (a) Broadcast-and-weight spiking network proposed by [60]. (b)
Classification of semiconductor excitable lasers [77].

An on-chip optical architecture, named broadcast-and-
weight, was proposed by Tuit et al. to implement scalable
photonic spike processing networks to connect parallel neurons
[60]. As illustrated in Fig. 7a, each spiking laser represents a
neuron, and the optical neural network connects the output of

each neuron to multiple other neurons making use of
wavelength division multiplexing (WDM). In contrast to the
spatial multiplexing approach, channelization of the spectrum
can somewhat simplify the interconnect network of neurons, as
WDM channels can coexist in a single bus waveguide channel
without interfering. The group of neurons that each utilizes a
distinct wavelength share a common bus waveguide, as shown
in Fig. 7a. The broadcast can be simply realized by passively
splitting the bus waveguide to connect each of the neurons,
enabling the all-to-all connection [60]. Each neuron is attached
to a weight processing unit which is used to execute the linear
transformation function for the N incident WDM signals that
represent N neural nodes including itself. In this case, being
capable of independently manipulating each weight is critical
for creating differentiation among WDM channels. The silicon
add-drop MRR is a natural choice due to its wavelength
selective nature, as well as its cascadability, and continuous
power-ratio-tunable feature [54]. The bank of cascaded MRRs,
as an array of reconfigurable add-drop filters, imprint the
weight coefficient to each corresponding channel. In a network
of N neurons with N wavelength channels, each neuron
incorporates a bank of N MRR filters, leading to a total number
of N> MRRs. The through port and drop port of the cascaded
MRRs are respectively connected to create two subsets of
weighted power, each connected to one of the balanced
photodiode pair that performs the summation by incoherently
aggregating the total incident optical power. The layout of the
balanced photodiode subsequently enables subtraction between
the two subsets of weighted powers for inhibitory weighting.
The weighted sum is then used to excite a spiking laser neuron
and three classifications of semiconductor excitable lasers are
shown in Fig. 7b [77]. When the temporal integration of
weighted pulses can push the gain above the lasing threshold,
the neuron releases a spike. Otherwise, the system stays at rest.

As akey constituent element, the MRR weight bank has been
carefully studied [78-81], since its scalability and tunability are
closely tied to the performance limits of the optical neural
network. Quantitative analysis was provided to measure the
scaling of channel count, N, for an MRR filtering bank,
illustrating the limiting factors of inter-channel crosstalk,
insertion loss and more importantly, the bus length that causes
coherent interactions between adjacent MRRs [78]. Similar to
the MRR devices in data communication links, the inter-
channel crosstalk and cascading loss are the two fundamental
constraints for system scale-up [54]. However, in contrast to the
(de-)multiplexing-oriented designs that have only one common
bus, the bus length becomes a key factor in the weight bank
design that brings about multi-MRR coherent interactions due
to the two bus configuration. This inevitably introduces another
dimension of design complexity. Such inter-channel
interference also deteriorates the independent control of the
WDM channels, as the weights cannot be linearly separated. A
more rigorous calibration process can be undertaken to improve
these impairments in the WDM channels. Any power leakage
or loss can be counter-balanced by adjusting the corresponded
MRR coupling ratio. However, the degradation of the MRR
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weight tuning range eventually becomes irreparable [78]. For a
given system error o, the tuning range is a critical factor that
determines the network’s computational resolution, as shown
below.

A few efforts have been made to optimize the device design
and control plane for microring weight banks in silicon
photonic integration platforms [79-81]. A continuous range of
complementary (+/-) weighting has been demonstrated and
recent work shows an effective weight setting accuracy of 5.1
bits [81], which is defined by log:[(#max-timin)/c] Where (max-
Umin) 1S the tuning range, and o is the measured system error.
The chip performance in this experiment is facilitated by
photoconductive heaters which provide online feedback of
photo-induced resistance to estimate the filter transmission.
Considering that MRRs are particularly sensitive to thermal
drift [82], the real-time feedback control loop, which tracks
thermal fluctuations, including ambient temperature change,
self-heating effects, and thermal crosstalk, plays a major role in
such a multi-resonator system. It, therefore, provides superior
performance compared to the feedforward control scheme [79,
80], which relies on fixed pre-built references.

Whereas a set of MRRs sandwiched by two buses that drop
power into a balanced photodetector offer complementary (+/-)
weight factors, the closed WDM link makes it difficult to
monitor the isolated transmission state for each wavelength
channel. Altering the weight factor via shifting the resonance
spectrum of individual MRR unit arranged in a cascading
scheme would significantly constrain its tuning range, given
that all channelized MRR filters coexisting on the same bus
have to tightly fit within one FSR. The embedded
photoconductive heaters within MRRs, provide a limited but
adequate solution for neuromorphic applications, [77, 81].
However, the adoption of photoconductive effects in the analog
computing system may not sufficiently deliver the requirements
for optical matrix multiplication with higher resolutions.

C. Discussion

Both of the aforementioned approaches aim at processing an
entirce  ANN application or an entire matrix-vector
multiplication on a single optical device. Whereas those
approaches may have advantages in the processing speed, the
capability of the optical device strictly limits the size of the
ANN to be processed. For instance, the optical neural network
architecture proposed by Shen et al. consists of two layers, each
with four neurons, for a primitive machine learning task of
classifying four vowels in speech [27]. However, many
machine learning tasks in practice involve learning more
complex functions that take in a large number of inputs. For a
handwritten digit recognition task, the number of input neurons
are 28 X 28 = 784, one for each pixel of the input image, and
the number of output neurons are 10, which equals the number
of candidate digits [15]. For breast cancer detection, an MLP
with 30 input neurons, 500 neurons in each of the three hidden
layers, and 2 output neurons was used to achieve the detection
accuracy of 99% [83]. The computation for this MLP includes
the multiplication between a matrix of size 500 X 500 and a
vector of dimension 500. It is not feasible or practical to fully

optically implement such large neural networks or matrix-
vector multiplications using the above approaches due to their
limited scalability.

IV. SILICON PHOTONICS CO-DESIGN FOR DEEP LEARNING

Co-design of silicon photonic and electronic circuits
provides new opportunities for efficient computation of deep
learning. Silicon photonics has the potential for high-speed
analog matrix multiplication. However, the computational
requirement for ultra-large DNNs with high accuracy demand
may exceed the capability of a single PIC, for high-complexity
computing tasks. Our co-design approach, described in this
section, explores practical and scalable solutions to process
such large neural networks while employing feasible optical
devices.

Figure 8 illustrates an overview of the proposed co-designed
system with the electronic circuitry that processes DNNs at the
system level, and a PIC that performs optical matrix-vector
multiplication of fixed-size inputs. The PIC takes in a matrix K
of size M X N and a vector x of size N, and outputs a vector y
of size M such thaty = K - x.

Input Data Electronic
Circuitry

(FPGA)

= Optical
Matrix-vector

= Pre-processing
= Post-processing

Multiplication = Control

Control Signals

Fig. 8 Overview of the proposed co-designed system for deep learning.

A. Silicon photonic OMM

Channelization in the wavelength domain avoids the phase-
sensitive designs that require the control of relative phases from
different nodes for coherent interference effects. Therefore, the
wavelength multiplexing technique provides an elegant
solution to address the many-to-one coupling (fan-in), which is
a typical problem in neuron networks. Combined with tunable
add-drop MRR technology, the direct mapping from the weight
matrix to the power coupling ratio of wavelength filters can also
eliminate the complex encoding phase. Such simplicity would
further boost the validity of optical neural networks as hardware
accelerators for deep learning applications.

The high thermo-optic coefficient of silicon (1.8x10* K1)
creates a double-edged sword for silicon MRR elements. While
it allows effective manipulation of light by the thermo-optic
effect, due to its narrow-band nature, this thermal susceptibility
can be detrimental to device performance. Therefore, accurate
monitoring and control mechanisms are normally required. A
number of energy-efficient yet precise locking schemes have
been demonstrated [84-88], for data communications. The work
by Tait et al. sheds some light on the feedback control of an
analog MRR system, which relies on an estimate of filter
transmission [81]. The plasma dispersion effect via either
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carrier depletion or injection can be leveraged to provide
nanosecond-scale  tuning mechanism [29]. However,
fabrication variations [89], in addition to the self-heating effect
and ambient temperature change [82], most often require an
additional thermo-optic phase shifter. The electro-optic tuning
mechanism also requires attention to the induced electro-
absorption loss that compromises the extinction ratio of
resonance, thus the resolution of computation. This additional
loss disturbs the balance between the coupling power and the
round trip loss in the ring cavity from the critical coupling point.
The operation condition for critical coupling is discussed in the
following subsection.

In general, the on-chip thermal crosstalk is a primary culprit
of the system instability for MRR-based silicon photonic
circuits. Hereby, we start with an analytical model of add-drop
MRRs to provide an insight into constraints on weight
resolution due to thermal crosstalk. We focus on the thermo-
optic phase shifting effect since it is a lossless tuning
mechanism but imposes the most thermal impairments. We
define the MRR weight sensitivity and discuss an approach to
increase system stability. The ability to utilize only nonnegative
values for training weight factors opens new opportunities to
refine the ring locking scheme in the analog domain. A new
class of highly-accurate, yet scalable OMMs that are based on
add-drop MRRs for deep learning can thus be obtained.

1) Thermal-crosstalk restricted weight resolution

1.1) Weight definition and sensitivity of add-drop MRR

An add-drop ring resonator refers to a circular ring structure
that couples to two straight waveguides, as schematically
shown by the inset in Fig. 9a. The optical transfer function of
the drop and through port can be expressed as [64]:

|1z LO25 exp(—j¢/2) z
b(¢) = 1—t1t,VL exp(—jp) )
and
_ | ti—taVLexp(—j¢) z
T(¢) = 1-t1t,VL exp(—jo) ©)

where #; and x;, t; and k, are the self-coupling and cross-
coupling coefficient for the input and drop coupling region,
respectively. L is the round-trip optical power attenuation of the
ring. We assume £ + x> = 1 which allows the loss introduced by
the couplers to be included in L. ¢ is the relative optical phase
shift inside the ring:
(A=Ares)

¢ = “rsR X 2T )
where A is the ring resonance wavelength, and FSR is the free
spectral range of the resonance spectrum. We define the
weighting function, u, using the through port of the add-drop
MRR, considering the negligible through loss and its flexibility

in cascading. Equation 6 can be rewritten as:
2

To +(E sin(%))
T(¢p) = —E—20 ®)
1+(%sin(3))
where
g = e, ©

T (1-t1t2VD)°

and F is the finesse of the ring, given by

Fe o titzVl  psr

n 1-tytVL z AAzgp (10)
where 44345 is the optical bandwidth of microring. Note that the
approximation in Equation 10 holds only when F >>1. Under
critical coupling, the coupled power is equal to the power loss
in the ring cavity, i.e. satisfying the relation t; = t,+/L, hence
the transmission drops to zero, T, = 0. Therefore, the design to
operate at critical coupling mode enables the maximum
extinction ratio (i.e. dynamic range) for the power transfer at
the through port. The weighting function, i, can thus be given
as:

2
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Fig. 9 (a) Weight definition of the through port of an add-drop MRR for critical
coupling condition with various finesse. (b) Sensitivity of the weights for
different finesse. (c¢) Optical phase shift at maximum sensitivity point. (d)
Maximum sensitivity of weights as function of finesse. A linear trend is
observed.

We define F as a variable of u since finesse stands out as a
key parameter of both the ring sensitivity and the scalability of
number of neurons [77]. The finesse is a measure of the
sharpness of resonances relative to their spacing (FSR) and
represents, within a factor of 2w, the number of round-trips
made by light in the ring before its energy is reduced to 1/e of
its initial value [63]. Therefore, from this point of view, the
round trip loss, L, as well as the coupling coefficients in the
coupling regions of the ring, #; and #,, are loss factors that can
be manipulated to alter 7, which is also reflected in Equation
10. For datacom applications, MRRs are generally designed
with radii in the region of 5-10 um to avoid undesired high
bending losses (i.e., radiation and scattering) while maintaining
reasonably large FSR, therefore limiting the finesse to the order
of tens [64]. Special designs, however, can lead to finesse with
values of a few hundreds [90, 91]. Further details are discussed
in Section IV.C.1. In Fig. 9a we plot the weight factor as a
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function of ¢ for F values in the range of 10 to 100 (10, 20, 50,
and 100), assuming the critical coupling operation (T, = 0).

It is not a surprise to see that a sharper resonance, i.e. larger
F, gives rise to a more abrupt change in the weight as a function
of ¢. It has been shown that the thermo-optic response (i.e.
optical phase shift, A@) of the microring is a linear function of
heating power (AP) [82]. However, for a thermal perturbation
(AP), Au varies depending on the weight u, due to the nonlinear
behavior of the optical transfer function. We thus define the
sensitivity of the weights as the slope of the weight:

Ap  du _ (1+aH)(1-To)
Ap o¢ To+a? z 12)

0.5a%sin ¢
<1+(a sin%)2>
where a = 2F /. Combining with Equation 11, we can plot the
sensitivity as a function of weight for various values of F as in
Fig. 9b for critical coupling (T, = 0). One can see that a lower
sensitivity exists in the weighting function with a smaller F,
where the change in weight is milder over A¢. This can be
understood by realizing that a lower F results in a wider
resonance linewidth, hence the weight has a smaller gradient as
seen in Fig. 9a. The optical phase settings at the maximum

sensitivity (i.e. d2u/d¢? = 0) as a function of F is further
given by:

oy )
and illustrated in Fig. 9c¢, indicating the weight variations are
most sensitive close to the resonance, which agrees with the
trend illustrated by Fig. 9a due to the nonlinear power transfer
in MRRs. Figure 9d indicates that the maximum sensitivity of
the weight has a linear dependence on the finesse of the MRR,
again showing that larger finesse leads to worse sensitivity. To
facilitate the quantitative analysis on the bounded effective
resolution, we use a first order Taylor expansion of du/d¢
assuming that a? » 1 (see Appendix II) to show this. The
result is:

2 [9a4 2
_ —1 [3a%+2-V9a*+4a“+4
¢max = 2tan \]—

ou

au 9 _ 3V3
a¢ max

~ i @ —F—02067F (14)

1.2) Thermal crosstalk induced weight error

Thermal crosstalk occurs due to the proximity of rings to
each other. The linear dependence of the temperature changes
on the heater power results in a linear perturbation relation of
the ring’s temperature:

ATxtalk ] 1]¢LX] PH,j ()uj) (15)

where Py is the heating power of other rings for setting their
corresponding weights. This change of temperature translates
into a change in the optical phase inside the ring:
xtalk 2_
|Ap| = IA)\resl == & 0.07 x |AT | % o (16)

We use 0.07 nm/K as the typical resonance thermal sensitivity
of silicon microrings [82]. Thermal crosstalk can be considered
as a biased (deterministic) perturbation; hence, it affects the
average value of the error, |Au|. Since the optical phase shift
due to thermal crosstalk is a direct consequence of the weight

T

of other rings whereas the weight sensitivity is dependent on the
weight of interest, these two factors are uncorrelated and both
can simultaneously occur at their worst cases. Therefore, the
maximum weight error due to thermal crosstalk can be written
as:

| xtalk|

AT max 1 7)
AVEYD:] -

max|Au| = |g—;‘) X |Ad|mayx = 0.091 X

Considering adjacent MRR elements as thermal crosstalk
sources and that the maximum phase shift inside each adjacent
ring is , the maximum temperature change due to thermal
crosstalk from an adjacent ring can be given as:

ATtk ~ 7143 FSR X ag (18)

where ar is the fraction of the thermal energy from adjacent
rings. The weight error then aggregates as:

max|Au| = 0.65F X Y; ar;. (19)
The solution of heat diffusion in 2D space of the chip has a form
of [82]:
()

q(r) = ln(Rﬁ)

where ¢ is thermal energy density (proportional to the change
in temperature at each location), r is the distance to the crosstalk
source, R is the radius of the ring, and R,, can be viewed as the
boundary of the chip, as shown in Fig. 10a. Figure 10b shows
the wvalidation of this analytic equation with COMSOL
simulation [82, 92] for R =10um and R, =1mm. As
expected, the heat density decreases at farther distances from
the MRR’s heater, but the 2D heat diffusion shows a rather
strong thermal crosstalk impact (e.g. 50% at 100 um
proximity). Note that in an actual photonic chip the heaters are
most commonly located on top of the MRR so that the heat can
also diffuse vertically. Since the thickness of the heater, #g, is
typically much smaller than the footprint of the heater (=100
nm [93]), most of the heat generated by the heater diffuses
vertically (out of plane) instead of horizontally (in-plane).
Therefore, the fractional in-plane heat crosstalk from one ring
to another can be estimated by:

Aring (20)

ar = - X 1n(%°) (21)
and thus:
Reo
max|Au| = 0.65 F >< >< i “Eﬁ; (22)
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Fig. 10 (a) Schematic of thermal crosstalk between adjacent MRRs. R,, denotes
the boundary of the chip. Thermal crosstalk arises from in-plane diffusion of
heat and gets worse at closer proximity. (b) Comparison of analytic 2D equation
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for heat diffusion with finite element results in COMSOL. The logarithmic
behavior for the heat diffusion is confirmed. Note that the heat density, q, is
proportional to the temperature change, AT, and can be considered a measure
of thermal crosstalk.

1.3) Weight resolution

The resolution determines the minimum possible steps for
setting weights with the highest certainty. If u is the calibrated
weight in the ideal case and fI is the weight in the presence of
perturbations, we can write:

f=p+Au(t) = p+Ap+6u(t) (23)
where Au(t) is the error of the weight. This error can be
decomposed into a stationary (deterministic) average denoted
by Au and a random noise like term denoted by Su(t). We
consider the resolution is set by the maximum root mean square
error given by max|Au(t)| = max|Au| + 0,/2 where g; =

Su?(t) is the standard deviation of the noise-like error. The
resolution is then written as:

_ 1
max|Au(t)]  max|ap|+ 2

Resolution = (24)
In such a system, it is reasonable to assume the thermal
crosstalk induced error (i.e. Au) is dominant over the photo-
diode noise, g,. For an MRR element in an array, its two
adjacent rings are considered as the dominant sources of
thermal crosstalk. Therefore, referring to Equation 22, we can
plot the contours of effective bit resolution for an MRR unit as
a function of both the unit pitch and its finesse for R = 10 um,
and R, = 1 mm, as shown in Fig. 11.
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Fig. 11 Contours of effective bit resolution for the weight of MRR due to
thermal crosstalk as function of finesse and proximity.

Note that this model is more accurate for small thermal
perturbations; however, the combination of Equations 22 and
24 still serves as a qualitative analysis on how the pitch size of
MRR weighting elements and their finesse bound the effective
resolution, even when the thermal crosstalk is strong.
Feedforward calibration can somewhat alleviate the thermal
crosstalk restrictions, yet the calibrated system accuracy
heavily depends on the weight settings of adjacent MRR units.
A scalable OMM with the capability of high resolution thus
calls for a new design approach and the capabilities of
computing using only nonnegative weight factors open up a
new design philosophy, as discussed in the following
subsection.

2) Hitless weight-and-aggregation architecture

We propose a co-designed architecture for optical matrix
multipliers which are specially customized for highly-accurate,

scalable and nonnegative weight matrices. The hitless weight-
and-aggregation design essentially describes an interconnect
architecture that allows computational nodes (neurons) to carry
arbitrary input vectors and to be independently weighted and
summed. Such a many-to-one network is formed on the basis of
channelization of the spectrum, creating physical and logical
connections between input and output vectors. We put forward
a hitless weighting structure by employing the colored channels
in parallel rather than cascading them. This design isolates each
weight on each connection and makes the tuning of MRR filters
truly independent, i.e. not interfering with other channels. Such
a hitless design also decouples the weighting and summation
functions by allocating dedicated functional blocks, both of
which employ MRR units, thus allowing independent
optimization to decouple the constraint between the scalability
of neurons and the weight sensitivity. The nonnegative weights
are defined using the optical transfer function of the MRR
through port, while the drop port is used as a monitoring outlet
to provide real-time feedback for the weight control loop.

An MxN OMM consisting of M Nx1 vector multipliers is
illustrated in Fig. 12. Distinct continuous-wave (CW)
wavelengths (representing N neurons) can be implemented by
either M sets of N wavelength-multiplexed laser arrays [94] or
optical frequency comb lasers [33, 95], or one set of lasers
passively split into M copies. The nonnegative weight factors
obtained from the trained matrix parameters are mapped to the
coupling ratios and imprinted to the CW signals using multi-
ring weighting blocks. The colored signals that carry the same
set of weights are routed to all outputs. The N input vectors are
then formed by a set of intensity modulators to the fanned-in
WDM signals, before combining to form the M output vectors.
The aggregation will be performed by another dedicated set of
N high-finesse MRRs that are critically coupled to the WDM
bus waveguide. The wavelength-multiplexed data streamed
into the bus are optically summed by a photodiode, in which the
photocurrent represents the total optical power. The M output
vectors are then sent for nonlinear processing. Design
considerations for each functional block are detailed in the
following subsections.
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Fig. 12 (a) Hitless weight-and-aggregation architecture for MXN vector-matrix
multiplier. (b) One unit out of M for Nx1 vector to be multiplies by 1xN matrix.
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2.1) Hitless architecture for nonnegative weight factors

The design philosophy for the MRR-based weighting block
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is different from the conventional approach, in which tuning a
filter in a link where WDM signals coexist controls the power
coupling of the desired wavelength. The drop spectrum of such
a MRR filter also sees other channels on the bus and thus the
tuning inevitably interferes adjacent channels. Such
interference not only limits the weight tuning range but also acts
as an unbiased perturbation to the weight that bounds the
resolution for the nonnegative OMM system. Thus, a large
channel spacing is required which trades off the system
scalability.

Instead of utilizing the cascading layout of MRRs, the hitless
design exploits a parallel arrangement of the weighting filters,
shown in Fig. 12. This strategy stabilizes the weighting block
within each wavelength branch before multiplexing onto the
WDM bus, ensuring full tuning independence. Therefore, the
design considerations for the MRR weighting filters can be
narrowed down to a sole factor, i.e. sensitivity. As defined by
Equation 8 and Fig. 9b, a small finesse is favored. Note that a
trade-off exists since higher optical phase change is required to
set the MRR to a specific weight for smaller finesse, which
translates into higher heating power and, in turn, makes the
thermal crosstalk worse. However, Equation 9 still provides the
worst possible scenario for the thermal crosstalk effects.
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Fig. 13 (a) Single MRR weighting element with monitor PD. (b) The
normalized monitor power as well as corresponded weight factor as a function
of ¢. (c) Multi-MRR weighting element.

While the filter-through port is used to define the weighting
function, the drop port connects to a monitor photodiode (PD),
shown in Fig. 13a, providing a highly accurate feedback control
loop for precise ring power locking. Figure 13b plots the
normalized monitor power for this structure as a function of ¢,
together with the corresponded weight factors. The locking
accuracy could be compromised at power levels approaching
zero (weight factors approaching one), given the existence of
photodiode shot noise. To obtain a more linear transmission
response, the ring spectrum tail can be omitted at the sacrifice
of a slightly reduced weighting range.

The precise locking scheme would require a calibrated
process, which sets up a look-up table (LUT) that maps the
weight factor to the monitored optical power for each filter. By
periodically polling the power monitor and comparing to the
LUT, the locking scheme can effectively offset thermal
perturbations, including on-chip thermal crosstalk, and ambient
temperature fluctuations. The locking accuracy, which could
translate into weight resolution, can be limited by the PD shot
noise, the finite precision that offers by the DAC/ADC, as well
as the polling and locking rate.

2.2) Multi-ring weighting block for reduced sensitivity

By utilizing multiple MRR filters as illustrated in Fig. 13c,
the weight sensitivity can be further relaxed. The overall
weighting function, y,, for n cascaded ring filters can be given
as:

Ho =M1 Uz * o P (25)
For simplicity, we assume y; = y, = -=- = U, = u, in which
case u is given by Equation 11 and the phase settings are the
same for all MRR filters. Figure 14a plots u, as a function of
¢, for n=1, 2, 3, 4, 5, with F = 10. It can be seen that the
weighting function gets increasingly linear as »n increases.
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Fig. 14 (a) Weight as a function of ¢, for n=1, 2, 3, 4, 5, with F=10. (b)
Illustration for one perturbed ring and all perturbed rings in a multi-ring
weighting block. Weight sensitivity as a function of ¢ with thermal perturbation
in (c) one ring and (d) all ring simultaneously.

We can analyze two cases for the weight sensitivity of the
multi-ring system: 1) One ring is perturbed thermally, and 2) all
rings are perturbed thermally at the same time, shown by Fig.
14b. When the OMM setting leads to one or multiple heat
sources on a chip, the dominant thermal effect is considered to
be from adjacent rings. It is thus reasonable to take the one
perturbed ring as the lower boundary for weight sensitivity. We

have:

%:%'MZ'"-'MW (26)
This can be readily solved by referring to Equation 12. The
weight sensitivity with thermal perturbation in one ring can thus
be plotted and is shown in Fig. 14c, in which the single ring
case is included for direct comparison. It can be seen that the
two-ring system suppresses the weight sensitivity significantly,
but the trend continues with a decreasing decrement when the
number of rings increase. For the case that thermal perturbation
occurs in all rings, we can have:

duo Ho OUi awu™

99 = 2i1y 09 = ag @n
Figure 14d plots this case representing the upper boundary for
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weight sensitivity. It can be seen that the system still gains
tolerance to thermal perturbation compared to the single ring
case. Considering the additional cost, footprint, and complexity
introduced by the multi-ring system, the lower number two is
preferred. Therefore, for the implementation of an MxN vector-
matrix multiplier, the total number of MRRs is 3M-N including
both weighting MRRs and aggregation MRRs. The total
number of PDs is M.

Although the multi-ring system exhibits lower weight
sensitivity, overcoming the limitation of the finite precision for
the DAC with which an optical phase can be set is still a
challenge. In an n-ring weighting block, the minimum step in
the weight, du, bounded by the DAC resolution for setting the
optical phase of each ring yields a weight /i = u £ 6u; hence
the overall weight is fi, = (u+ )™ = u™(1 £ ndu/u) .
Therefore, the error given by n u™~18u can be at its worst (i.e.
n 6u) when p is close to 1. A smaller error than du is achieved
only for weights for which n ™~ < 1. For a two-ring weight
block, the worst error is 26u which can occur for any weight.

2.3) Aggregation and summation

In contrast to the MZI-based OIU for matrix multiplication
where the input vectors are imprinted before feeding into the
OIU [27], we process the vector imprint after the weighting
stage. This is because the weight factor, i.e. coupling ratio, is
locked by the dropped power as illustrated in Fig. 13, and the
streamed input vectors with power fluctuations would
deteriorate the locking accuracy. Therefore, the proposed
processing flow as shown in Fig. 12 resolves this issue. The
input vectors are imprinted via high-speed intensity modulators
[96]. A linear intensity modulator, such as the Mach-Zehnder
modulator, is favored [52]. As we analyzed in the following
subsection, high computation accuracy can be obtained when
the input vectors have the same resolution as the weights.

The weighted input vectors can subsequently be aggregated
into the WDM bus through dedicated ring filters. As shown by
Fig. 15a, the locking scheme for the aggregation MRRs
operates differently, where the through power is always locked
at the minimum state for a total power drop. This non-tunable
feature ensures the maximal spectral efficiency regarding the
number of wavelengths that can reside in the WDM bus.

Weighting block
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Fig. 15 (a) Operating principle of the aggregation MRRs. (b) Through power
ratio as a function of both finesse and number of channels.

Since the aggregation ring filters act only as wavelength
multiplexers, a large finesse is favored in order to achieve high
scalability in the number of wavelength channels, i.e. number

of neurons. For a given finesse, the number of channels that can
be carried within one FSR is determined by the channel spacing.
A trade-off exists for the channel spacing as it also determines
the inter-channel crosstalk when the dropped signals pass
through neighboring rings towards the summation PD on the
bus. This leads to a through loss as illustrated by Fig. 15a. We
can rewrite Equation 7 as:

— (}'_ATQS) 2 — 2_1-[

FSR Ny (28)

where (A-4.s) and N, are the channel spacing and number of
channels, respectively. A large portion of the power loss gets
dropped to the locking PD. This however does not compromise
the weighting resolution. If we limit the through power ratio to
7, we have:

4F? 4F?
N, = 2m/cos™ <1 - ;—2T°(1+4’;22> (e fﬁ)n). (29)
o (ror i n-(1+47)

We can then plot a 2D contour for 7 as a function of both finesse
and number of channels, as shown in Fig. 15b. Here, we assume
the induced loss is dominated by the adjacent channel. It can be
seen that for #=0.8, which translates into ~1 dB through loss,
N, = F. It should be noted that the insertion loss for all
wavelength channels should be equalized by adjusting the
individual input power, in order to allow each neuron to have
the same maximum weight at summation. In addition, due to
the multi-ring weighting block, the system can achieve higher
order crosstalk suppression for the “0” weight.

B. System-level co-design

In order to take full advantage of both the optical speed-up
and electronic manipulation of the parallelism and memory,
interactions between the two technologies require careful
attention, especially when one processes digital signals and the
other analog signals. We identify the system-level challenges
for the co-design as following: (1) Computation breakdown to
match the interface. Processing a DNN may require matrix-
vector multiplications for ultra-large matrices and vectors. The
electronic circuitry should preprocess the DNN, breakdown the
computation to smaller matrix-vector multiplication instances,
send the request to a silicon photonic circuit, and post-process
the results. (2) Minimization of the number of updates for the
input matrix to the OMM. For each instance of matrix-vector
multiplication requests, changing the values represented by the
OMM microrings introduces a nonnegligible delay. Thus, to
make the most of the high capacity of optical interconnects, it
is desirable to have the elements of the input matrix to the OMM
constant over a sequence of matrix-vector multiplication
requests sent from the electronic device. (3) Analyzing the
computation precision and nonnegative networks. As discussed
in the previous subsections, photonics is most suitable with
nonnegative weights which can be directly mapped to the power
ratios. The capability of defining weights using only
nonnegative values would significantly simplify the design,
fabrication, and control for the optical programmable
processers. However, conventional training algorithms are
developed using complementary (+/-) weight factors. Thus, it is
important to investigate how the resolution level, nonnegative
mode, and network size affect the accuracy of a neural network
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for a target task. (4) System-level scheduling and orchestration.
To maximally utilize both types of devices, the latency of each
device should be taken into account during the system-level
scheduling and orchestration.

1) Fully-connected layers: computation breakdown

For a fully-connected layer h/*! of size [j41 from the
previous layer h/ of size i;, let Wi+t € RU+1¥ denote the
weight matrix. Note that i; and i;,, can be much larger than N.

Given an activation function Act() and bias b/*1, the layer
h/*1 can be computed as follows:

hitl = ACt(gj+1 _|_bj+1)
gj+1 =Witl. pi

(30)
(€2))

To compute g/*! using the aforementioned PIC, we can
partition the input into matrices of size N X N and vectors of

. lj1
size N as follows for 0 < k < L2%:
j+1 witt BV 7724 J
j+1 k+1,41 k+1,42 k+1,46N #1
Jk+1 ) ) ) : )
j+1 i Jj+1 Jj+1 Jj+1 h]
Gie+2 = 3V k+2,601 k2,842 k+1,4N #2 | (32)
: 0 : -, : :
j+1 . . ' . N
g}]H_N W}+1 W}+1 W1+1 / h]
k+N, 41 k+N,f42 k+N,#4+N 4N

The overview of this approach is also depicted in Fig. 16.
The total number of multiplications required to compute
layer h/** from h/ is i;,4 - i;. With the above approach using

OMMs of width N, the total number of OMM requests is r’fl .

rﬁ]] This reduction by the factor of % is achievable because

there is no waste of operations associated with the partitioning.
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Fig. 16 Computation for fully-connected layers using optical matrix-vector
multipliers (OMMs). (a) Fully-connected layers h/ (green) and h/** (blue).
g’*' is obtained as a result of the inner products between h/ and the weight
vectors. h/*1 is obtained by applying the bias and activation to g/*'. (b)
Matrix-vector multiplication between the weight matrix (orange and gray) and
h/ to obtain g/**. The superscripts are omitted for simplicity. (c) Computation
equivalent to that of (b) but using OMMs with the input matrix size of 3 X 3.

2) Convolutional layers: minimization of the reconfiguration
of OMM input matrices

Fig. 17 shows the convolution part of convolutional layers

computed using OMMs. The total number of multiplications
required in computing one output channel is:

iin_ch : (W - 2) : (H - 2) N2 (33)

where i;,, -, denotes the number of input channels, W and H
denote the width and height of an input channel, and N2
represents the size of the convolution kernel. With the above
approach, the total number of OMM requests for computing one
output channel is i, o, - (W — 2) - (H — 2).
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Fig. 17 Computation for convolutional layers using OMMs. The first column
of the output channel (nodes y;4, -+ ) and the first three columns of the input
channel (nodes x;4,---) are shown in the above illustration. (a) Convolutions
on a single channel of the input layer. The convolution results over all channels
in the input layer will be summed up and mapped to the output channel after
the bias and activation are applied. (b) Conversion of the convolutions to a
matrix-vector multiplication. The computation for one column in the output
channel can be performed by a single matrix-vector multiplication for each
input channel. (c) Computation equivalent to that of (b) but using OMMs with
the input matrix size of 3 x 3, which equals the size of the convolution kernel.
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Fig. 18 Proposed computation of convolutional layers using an OMM without
updating its input matrix values.

The above approach updates the matrix elements for each
OMM request. On the other hand, we propose another approach
illustrated in Fig. 18, which minimizes the number of updates
of the input matrix for the OMM. This approach follows a
similar direction to the weight stationary optimization
technique of ANN accelerators, where the weight values stay in
the local register file of processing elements of the hardware
accelerators [97]. The fundamental goal of this optimization is
to minimize the time for processing elements to be reading the
weights. In our co-designed system, the weights must be
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converted to analog signals and passed to the OMM to be set up
for the computation. Thus, we aim at reducing the latency of the
overall process by minimizing the number of the OMM’s input
matrix updates. This can be achieved by mapping the
convolution kernel itself to the OMM’s input matrix, when the
size of the OMM’s input matrix is larger than or equal to that of
the convolution kernel, which often ranges between 2 X 2 and
5 X 5. The convolution kernel weights form the input matrix
and the network nodes form the input vectors. Then, the results
of the first N = 3 matrix-vector multiplication instances in Fig.
10 contain the convolution result for y; . The second, third, and
forth matrix-vector multiplication results contain the
convolution result for y,;. Consecutive N = 3 results contain
the convolution result for the corresponding output element.
While processing the entire input channel, the input matrix for
the OMM does not change. With this approach, the total
number of OMM requests for one output channel is iz, o
(W —-2)-H.

3) Analysis on the nonnegative property and resolutions

Most neural networks used in practice have both positive and
negative input values, weights, and node values. Thus,
feedforward propagation of these networks, either during the
training or inference, requires matrix-vector multiplications
with both positive and negative values. Then, it is of interest to
consider a mapping between the values in the range of [-1, 1]
and the range of [0, 1] such that matrix-vector multiplication is
preserved by this mapping. However, the theorem in Appendix
I verifies that such mapping does not exist. There have been
approaches to use only nonnegative input and weights to obtain
a more understandable network with slight decrease in the
accuracy [98]. Another approach performs nonnegative matrix
factorization of the weights in order to reduce the input
complexity, but the input values in this case can be both positive
and negative [99].

To avoid matrix-vector multiplication with negative values,
we train the neural networks using nonnegative input, weights,
and nodes. In our experiment, we restrict not only the sign of
the input and weights to be nonnegative but also the resolution
used during inference. Figure 19 shows the estimated inference
accuracy of 2-layer MLPs over a range of the resolution levels
(the number of bits used to represent the input values and
weights in a fixed-point format), and the network sizes (the
number of nodes in the hidden layer of the MLP) trained in two
different modes for the task of handwritten digit recognition: (a)
conventional mode that supports negative input, weights, and
nodes, and (b) nonnegative mode that normalizes the input to
[0, 1], and constrains the weights and nodes to be nonnegative.
One network for each mode and each level of the network size
was trained using the MNIST train dataset [100], with 32-bit
floating point representation [101]. The input image contains
28 x 28 pixel values in the range of [0, 255], which were
normalized to [-1, 1] or [0, 1] depending on the training mode.
For activation functions, tanh was used in the hidden layer, and
softmax was used in the output layer. After activation in the
nonnegative mode, all negative values were rounded up to 0.
All weights and biases were randomly initialized, and the
weights for the nonnegative mode were initialized to [0, 1].

These weights and biases were updated using ADAM, which is
a state-of-the-art stochastic back-propagation method [68].

Each of the trained networks was tested on the MNIST test
dataset, with both the input values and weights converted to the
fixed-point representation for each resolution level. We note
that one instance of a trained network with a given network
structure does not represent the most optimized network of that
structure. Nevertheless, all networks in this test case were
trained using the same approach with similar optimization
efforts, aside from the training time which increases for larger
networks. Thus, we refer to these networks in order to
practically and roughly estimate the performance trend over
various network sizes, resolution levels, and the training mode.
As shown in Fig. 19, the test accuracy has generally improved
as the network width increased and as the resolution level was
enhanced. It turns out that the accuracy of networks trained in
the conventional mode were more affected by the restricted
resolution, whereas the accuracy of those trained in the
nonnegative mode were more affected by the network width.

The test accuracy achieved by nonnegative networks are
lower than that by the conventionally trained counterpart, but a
larger nonnegative network can sometimes outperform a
smaller conventional network. During the training in the
nonnegative mode, the biases and activation functions were
allowed to take negative values because in this co-design
approach only the matrix-vector multiplications will be
offloaded from the electronic device to the optical device. This
seems to have enabled the network to cut out less relevant, or
negatively related connections and to focus on positively
related ones, resulting in comparable accuracy for large
nonnegative networks.

The issue of positive and negative inputs is an interesting
example of the approach to optimization required for co-design.
As mentioned in section IV.A, photonics is implemented more
readily with nonnegative values. This initial investigation
indicates that, although in current practice both positive and
negative values are used, using only nonnegative values for the
matrix-vector multiplications can actually be advantageous in
some circumstances.

Test accuracy (%)
Test accuracy (%)

Fig. 19 Test accuracy of MLPs for handwritten digit recognition with varying
resolutions and network sizes. (a) Networks trained in the conventional mode
using negative values, 0, and positive values in the computation. (b) Networks
trained in the nonnegative mode, where only 0 and nonnegative values are used
during matrix-vector multiplications.

4) System-level scheduling to maximize the throughput

To accelerate the inference process of a trained neural
network with OMMs, an FPGA-based co-designed system
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breaks down the computation, sends matrix-vector
multiplication requests to OMMs, and performs the remaining
part of the computation including the nonlinear activation
(which could also be done optically or via well-designed analog
electronics as discussed in section IV.C.4). Figure 20 illustrates
the overview of the proposed co-designed system that contains
three specialized processors: the ANN processor, the input
processor, and the output processor. For each OMM request, the
ANN processor sends the input M X N matrix K to the MRRs
via DACs, and the input processor sends the input N -
dimensional vector x to the modulators via DACs. The output
processor collects the resulting M-dimensional vector y from
the PDs via ADCs, and it also applies the bias and nonlinear
activation function. The very recent demonstration on a 1-to-56
Gb/s ADC/DAC-based transceiver [102] paves the way for
high-speed, low-energy ADC/DACs as the interface between
the OMM and FPGA, without harming the throughput.
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Fig. 20 System-level overview for the proposed co-design approach. The
FPGA-based electronic system (on the top) invokes and controls the optical
system (in the bottom). The MRRs that receive electrical signals from DACs
act as electrical-to-optical converters, whereas the summation PDs perform the
optical-to-electrical conversions. The summed signals are connected to the
FPGA via ADCs. Details regarding the memory systems, which depend on the
specific application, are abstracted in this figure.

Although the computation complexity of an OMM is in O(1),
the DAC, MRR configuration, ADC, and the computation on
the FPGA consume non-negligible latency. The goal of the
system-level scheduling is to overlap these latencies to
maximize the throughput. Figure 21 shows abstract timing
diagrams with pipelined executions by the ANN, input, and
output processors. Figure 21a illustrates the case of invoking a
single OMM instance. As shown in Fig. 21b, the latency T}, of
a period between consecutive OMM invocations can be
expressed as:

T, =Ty +Tps+ Tap (34)
where T, denotes the latency of the DACs and MRR
configuration, Tp, the latency of DACs, and T, the latency of
ADCs. This holds as long as the ANN processor’s latency T,
does not exceed T, + Typ, and similarly, the input and output

processors’ latencies T; and T, are less than or equal to Ty, +
T,p and Ty, + Tpy, respectively.

When consecutive OMM instances contain the same input
matrix elements so that it is not needed to reconfigure the MRRs,
the latency T}, of the period can be expressed as:

T, =Tpa+Tap (35)
as shown in Fig. 21c. In both cases of Fig. 21b and 21c, the
asymptotic throughput is proportional to TLL and the number of

OMM devices that can be processed in parallel, and is inversely
proportional to the total numbers of OMM invocations for fully-
connected or convolutional layers which have been discussed
in the previous subsections.
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Fig. 21 (a) Timing diagram of invoking one OMM instance containing an input
matrix and vector. (b) Timing diagram of invoking 2 OMM instances, each
with an input matrix and vector. More invocations can be added on the right in
a similar pattern. The latency of a period between consecutive invocations is
denoted as T;. (c) Timing diagram of invoking multiple OMM instances, where
the first instance contains a new input matrix and vector and subsequent
instances contain only new input vectors. The latency T, has been reduced with
respect to (b).

C. Discussion

1) Silicon Ring Resonators: Finesse vs. Bandwidth

Silicon ring resonators with high finesse (up to a few
hundreds) have been extensively demonstrated [90, 91].
However, these demonstrations aim for high quality factors and
tend to have a relatively small 3 dB bandwidth. For the
aggregation ring filters in this OMM system, a large 3 dB
bandwidth is an equally important factor that allows high data
rate vectors to be fanned in, for high computational speeds. It
would be preferable for the operation bandwidth of such an
OMM to match that of the photo-detection rate (typically at 100
GHz).

The recent demonstration of a submicron-scale MRR shows
great potential for the aggregation ring filters with high finesse
and large bandwidth [103]. It features a 3 dB bandwidth of
100 GHz and a finesse of 116, supporting up to 116 wavelength
channels given a 1 dB through loss budget as discussed in
section IV.A.2.3. This ultra-small ring resonator has the
additional benefit of reducing the thermal tuning power, which
is proportional to its size [103]. Another notable demonstration
that combines an MRR based filter with grating-assisted contra-
directional couplers frees the constraint of FSR [104]. The
addition of grating-assisted couplers provides an extra degree
of freedom for longitudinal mode selectivity. This design,
therefore, paves the way for independent optimization of the



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 16

3 dB bandwidth, and potentially enables a full utilization of the
transmission window in the silicon platform, yielding an
extremely scalable OMM.

2) Optical Phase shifting technology

Phase shifter technology is key in the OMM. Thermo-optic
phase shifting is preferred since it is the most commonly
applied lossless mechanism in the silicon platform. The induced
on-chip thermal crosstalk can be reduced by adding isolation
trenches [105]. In addition, a selective silicon etch can be
applied to the silicon substrate to undercut the waveguides. The
selective etch localizes the heat and improves the heating
efficiency [106]. The reduced heating power could in turn
ameliorate on-chip thermal perturbations. The limited thermal
frequency response (up to a few hundred KHz [82]) is, however,
a limiting factor in latency, when dynamic reconfiguration for
the OMM is required. For fast phase tuning, as aforementioned,
electro-optic phase shifting leveraging the plasma dispersion
effect is the most popular all-silicon technology [96]. It offers
nanosecond-scale reconfiguration time, albeit with some
performance penalty due to the electro-absorption loss. The E-
O phase shifters would be straight-forwardly included in the
weighting blocks with additional considerations for the excess
electro-absorption loss.

With the advances in heterogeneous integration technology,
other materials can be introduced on the silicon platform.
Notable examples include III-V materials [49], graphene [107],
and nonvolatile phase-change materials (PCMs) [108]. III-V
materials exhibit high electro-optic phase modulation
efficiency, which can be effectively combined with silicon
waveguides using wafer-bonding techniques [49]. Thin layers
of graphene can be deposited on top of the Si waveguide [107],
forming a capacitor that overlaps with the tail of the
waveguide’s optical mode. The application of voltage will then
shift the Fermi level of graphene and enable inter-band
transitions of charge carriers, and thus modulate the intensity of
light travelling through the waveguide. The PCMs can
introduce gigantic optical phase changes and most importantly,
such phase changes are nonvolatile. This nonvolatility adds the
capability of self-holding, maintaining optical states even in the
absence of power input [109].

3) Power consumption and footprint of the OMM

The power consumption of the OMM is dominated by the
tuning and locking of MRR elements. Current technology
features a thermo-optic tuning efficiency of 1 nm/mW with
doped-silicon micro-heaters [82], leading to a small power
consumption of a few mW per weighting MRR. Femtojoule-
level depletion-mode modulators in vertically doped micro-disk
structures [32], featuring low operating voltage (0.5 Vpp), offer
the possibility for ultralow power electro-optic OMMs. The
power consumption would then derive from the undesired
leakage current, approximately ~6 uW per element [32]. In
future implementations, the phases could be set using the
nonvolatile PCMs [109]. In that case, power would only be
drawn during state transitions. A recent demonstration on a
nonvolatile PCM-based photonic memory cell shows

programming energy and time of only 680 pJ and 250 ns,
respectively [110].

A number of wavelength locking schemes have been
proposed, including the use of the photoconductive effect [87],
small dithering signals [84], radio frequency (RF) detection
[86], additional partial drop rings [88], and monolithically
integrated locking controllers in the 45nm CMOS-SOI
platform [85]. The locking power consumption has been
demonstrated to be in the range of a few hundred uW [84, 85].
Furthermore, there has also been noteworthy research progress
on athermal MRRs that could significantly overcome the
temperature sensitivity [111-113]. Here, the key idea is to
introduce an upper cladding that has a negative thermo-optic
coefficient to counteract the T-O effect of silicon. Titanium
dioxide (TiO>) holds the most promise as it exhibits a relatively
strong negative thermo-optic coefficient and has been included
in the CMOS-compatible fabrication process [112, 113]. This
technique offers a path to extremely power-efficient OMM
units.

Current implementation of MRR-based PICs for on-off
switching (two-state) applications normally features a pitch size
of 100 um [29]. Hundreds of MRR elements have been
monolithically integrated on a single chip, within an area of a
few tens of millimeter squares [29]. The temperature-
insensitive MRRs could potentially reduce the footprint of the
OMM significantly, even for high-resolution operations, as the
pitch limitation due to thermal restrictions is offset. The size
will then be merely limited by the pitch size of electrical
bonding pads, which can be as small as 25 pm to 40 um [114],
thus enabling the footprint shrink of the OMM by over an order
of magnitude.

4) Nonlinear activation function

To implement a full neural network, as aforementioned, a
nonlinear activation function is required in addition to the linear
OMM units. For a nonlinear activation function implemented
in optics, there are generally two types, implemented using: (1)
electro-optic nonlinearity and (2) all-optical nonlinearity. The
former type requires first converting an optically weighted
signal into the electrical domain and then triggering the
nonlinear activation function to have an optical outcome.
Examples include semiconductor excitable lasers (type C in
Fig. 6c) [77], and electro-absorption modulators [115]. This
type of solution might impair the processing speed and
cascadability of neural networks due to the movement of charge
carriers and the optical-to-electrical conversion noise. The
latter, all-optical solution holds greater promise. The most
commonly used optical nonlinearities are saturable absorption,
such as in the use of monolayer graphene absorbers [116] and
two-photon absorption [117], and bistability in nonlinear
photonic crystals [118] and optical superlattices [119]. The
nonlinearity of ring resonators can also be exploited [120].
Currently, the optical nonlinear activation function is an
important research topic which could be used in order to
enhance the throughput of an optical neural network, thus
lowering the system latency and power consumption. However,
the monolithic integration of these nonlinear units with OMMs,
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the efficiency of the nonlinear modulation, and the operational
speed and accuracy are open challenges [121].

While the development of an all-optical on-chip neural
network represents a longer-term goal, implementing the
nonlinear activation function electrically is a promising
alternative in the short term. The very recent work of building
optical neural networks based on photoelectric multiplication
also proposes to implement the nonlinear activation function in
the electrical domain [122]. Very low power (femtojoule-scale)
consumption is feasible with well-designed analog electronics.

V. CONCLUSION

Larger DNNs in general have higher expressiveness as a
classification function. Theoretical analysis has also verified
that both the depth and the width of neural networks contribute
to their expressive power. It has been shown that complex
functions expressed by deep neural networks cannot be
approximated by any shallow neural network whose size is no
more than an exponential bound [123], and also that certain
classes of wide neural networks cannot be realized by any
narrow network whose depth is no more than polynomial bound
[124]. These observations lead to the demand for the capability
to efficiently process very deep or wide neural networks. The
co-design approach addresses scalability (in terms of the size of
neural networks) in two aspects: (1) The capability to
decompose a large matrix-vector multiplication into smaller
instances which significantly relaxes the requirement of
photonic integrations. (2) A path to construct ultra-large scale
OMMs using MRRs in the wavelength domain. This reduces
the system decomposition complexity and, in turn, enables the
handling of sophisticated concepts for future applications. In
addition, the approach to manage the computation precision
with nonnegative values can be utilized in any photonic
systems, in order to reduce the implementation complexity and
thus cost. This also facilitates the operation of different facets
of validity in practical terms for OMMs as hardware
accelerators in deep learning applications.

In summary, efficient scaling of deep learning will require
dedicated hardware accelerators. We have presented an
overview of silicon photonics applications for deep learning
and have analyzed opportunities for scalable co-designed multi-
wavelength microring silicon photonic architectures.

APPENDIX I

Theorem 1. Let @, c R such that {—1,0,1} € ® and 2 c
[0, +00]. Then there exists no function f: @ — (2 satisfying the
followings:

Forany p;,p;, € @, f(p1) + f(p2) = f(p1 + p2)

Forany py,p, € ®,f(p1) - f(p2) = f(p1 - D2)
This also holds if 2 € (—o0,0).

(A1)
(A2)

Proof. 1f such function f exists, it must satisfy the followings:
f)+f(0)=f(1) (A3)
fQO- =D =f(-D) (A4)

f+ (=1 =£(0) (AS5)

Equation A3 implies that f(0) = 0, and Equation A4 implies
that f(1) = 1. Then, Equation A5 can be re-written as

1+f(-1D)=0 (A6)

Thus, f(—1) = —1 but this value is not in the range 0 of
function f. Therefore, such f does not exist.

APPENDIX II

As discussed in section IV.A.1.1, the maximum sensitivity of
the weight in Equation 11 occurs when

r(a)

$max

tan 2 = 5@ (A7)
where
r(a) = 3a%+ 2 —+V9a* + 4a% + 4 (AS)
and
s(a) =a*—2++V9a*+ 4a% + 4. (A9)
Therefore,
. 2 /r(a)s(a) 1
SiN Prax = m =2 Y, r(a)s(a) (A10)
_s(@-r@ _ , 1@
C0S Pmax = S — L 2a (Al1)

Plugging these back into the sensitivity function of Equation 12
and assuming Ty = 0 immediately yields:

ou _ 1+a? 4r(@)s(a)
0l a2 (r(@+4)? (Al2)
Assuming that a? > 1 we see that
1+a?
PR 1 (A13)
2 4
r(a) ~ 3a? + 2 — 3a? (1 + ﬁ) =2 (A14)
2
s(a) ~ a? -2+ 3a? (1 + ﬁ) ~ 4q? (A15)
Therefore,
ou 9
— ~——a. Al6
99l nax 16V3 ( )
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