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A natural biogeochemical gradient extends across the 
central Pacific Ocean where equatorial upwelling of 
macronutrient-rich seawater fuels phytoplankton growth 

and creates a productive ecosystem compared to adjacent oligo-
trophic gyres. Low iron supplies limit phytoplankton growth at the 
equator1–3, whereas nitrate depletion occurs in nearby tropical gyre 
waters4. The specific molecular mechanisms underlying the physi-
ological response of phytoplankton across this nutrient resource 
gradient and their impact on carbon and nutrient cycling is not well 
understood, particularly for eukaryotic phytoplankton.

Eukaryotic phytoplankton are primarily responsible for the trans-
fer of organic carbon to higher trophic levels in marine systems5 with 
many capable of mixotrophy6. Mixotrophic species fix carbon via 
photosynthesis and consume organic carbon via heterotrophy, with 
one common form being endocytosis-mediated phagotrophy7–9. 
This trophic strategy can shape the biogeochemical landscape of an 
ecosystem by transferring carbon more efficiently up the food chain 
and vertically to the deep ocean10. Mixotrophy may be common in 
the central Pacific Ocean since recent modelling-based studies sug-
gest it is an advantageous nutritional strategy relative to autotrophy 
in low-nutrient oligotrophic environments11, especially in low lati-
tudes experiencing simultaneous carbon and nutrient limitation12,13.

Despite recent progress in mapping microeukaryotic (protis-
tan) distributions and their biogeochemical importance across the 

ocean14–20, the factors driving mixotrophy are unclear21 and protis-
tan ecological roles are not well understood in deep waters22. The 
mesopelagic zone (approximately 200–1,000 m), residing just below 
the euphotic layer, is characterized by minimal light penetration, 
cooler temperatures and high concentrations of inorganic nutri-
ents due to active microbial degradation, recycling and repackag-
ing of organic material23. Field surveys have begun to characterize 
the abundance, diversity and activity of mesopelagic protists using 
meta-omics analyses22,24–26 to understand their functional roles and 
contributions to biogeochemistry.

In this study, we used a combined multi-omics and geochemi-
cal approach to explore how gradients in the chemical environment 
influence protistan distributions, trophic strategies, nutrient physi-
ology and carbon cycling dynamics in the euphotic and mesopelagic 
ocean. Our findings illustrate that dinoflagellates are relatively abun-
dant throughout the central Pacific and utilize numerous growth 
strategies to survive in diverse environments, including phototrophy 
and phagotrophy in euphotic waters, phagotrophy and intracellular 
recycling in the mesopelagic zone and by restructuring iron and 
nitrogen metabolism depending on environmental availability.

Results
Multi-omics and pigment community composition reveal preva-
lence of dinoflagellates. We conducted a combined multi-omics 
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Marine microeukaryotes play a fundamental role in biogeochemical cycling through the transfer of energy to higher trophic 
levels and vertical carbon transport. Despite their global importance, microeukaryote physiology, nutrient metabolism and 
contributions to carbon cycling across offshore ecosystems are poorly characterized. Here, we observed the prevalence of dino-
flagellates along a 4,600-km meridional transect extending across the central Pacific Ocean, where oligotrophic gyres meet 
equatorial upwelling waters rich in macronutrients yet low in dissolved iron. A combined multi-omics and geochemical analysis 
provided a window into dinoflagellate metabolism across the transect, indicating a continuous taxonomic dinoflagellate com-
munity that shifted its functional transcriptome and proteome as it extended from the euphotic to the mesopelagic zone. In 
euphotic waters, multi-omics data suggested that a combination of trophic modes were utilized, while mesopelagic metabo-
lism was marked by cytoskeletal investments and nutrient recycling. Rearrangement in nutrient metabolism was evident in 
response to variable nitrogen and iron regimes across the gradient, with no associated change in community assemblage. Total 
dinoflagellate proteins scaled with particulate carbon export, with both elevated in equatorial waters, suggesting a link between 
dinoflagellate abundance and total carbon flux. Dinoflagellates employ numerous metabolic strategies that enable broad occu-
pation of central Pacific ecosystems and play a dual role in carbon transformation through both photosynthetic fixation in the 
euphotic zone and remineralization in the mesopelagic zone.
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and geochemical analysis of protistan community dynamics and 
functionality across an approximately 4,600-km section (Fig. 1). 
Forty-two biomass samples were collected primarily between 
40 m and 600 m depth in the 3–51-µm size range by filter fraction-
ation from 7 sites (Extended Data Fig. 1), providing even coverage 
across the transect. Of the microeukaryotes, dinoflagellates were in 
high relative abundance in transcript, protein and 18S ribosomal 
RNA pools throughout both the euphotic and mesopelagic zones  
(Fig. 1b). We also detected a considerable number of transcripts 
and proteins from prokaryotic lineages (Fig. 1c). These organisms 
are much smaller than 3 µm; hence, their presence suggests particle 
attachment, aggregation onto filters, consumption by heterotrophic 
organisms and/or endosymbiotic relationships with eukaryotic 

hosts. The dinoflagellates comprised an average 31 ± 13% of tran-
script read counts and 18 ± 6% of protein spectral counts, respec-
tively, relative to the entire microbial community. In the eukaryotic 
subset of the community, dinoflagellates comprised 69 ± 11% of 
transcriptomic read counts and 41 ± 11% of protein spectral counts 
with the majority of these proteins associated with the Kareniaceae 
family and specifically, Karlodinium and Karenia-like genera (Fig. 1b  
and Extended Data Fig. 2). This family contains gymnodinoid  
dinoflagellates known to contain mixotrophic members27–30. While 
there has been concern that sequencing-based approaches may 
overestimate dinoflagellate populations due to their large genome 
size and tendency to post-transcriptionally regulate gene expression 
(Supplementary Information), the metaproteomic dataset provides 
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Fig. 1 | Protistan community composition across the METZyME transect. a, The meridional transect is shown with World Ocean Atlas-interpolated mean 
October surface NO3 concentrations (μmol l−1)147 plotted using Ocean Data View (odv.awi.de). Stations 1–12 are labelled with white squares denoting 
locations where combined multi-omics analyses were performed. b, Eukaryotic phylum-level relative community abundance determined through 18S rRNA 
sequencing, metatranscriptomics and metaproteomics. c, Whole-community phyla and supergroup-level relative community abundance determined 
through 16S rRNA sequencing, metatranscriptomics and metaproteomics on the 3–51-µm size fraction. For the metatranscriptome and metaproteome, only 
reads or spectral counts mapping to ORFs with a taxonomic annotation are shown. d, Vertical sections of chlorophyll a, 19′-hexanoyloxy-fucoxanthin and 
19′-butanoyloxy-fucoxanthin pigments across the meridional transect, plotted using DIVA interpolation in Ocean Data View (Extended Data Fig. 3 for full 
pigment profiles).

NATuRE MICROBIOLOGy | www.nature.com/naturemicrobiology

https://odv.awi.de/
http://www.nature.com/naturemicrobiology


ArticlesNATuRE MIcRObIOlOgy

an independent assessment of composition based on biomass31 and 
is consistent with high dinoflagellate relative abundance. Finally, 
although prymnesiophytes (haptophytes) have been observed to be 
abundant in the equatorial Pacific32, they comprised only 2.7 ± 1% 
of transcripts and 3 ± 2% of protein spectral counts. Their rela-
tively low transcripts and proteins in this study may be due to low 
cell abundance during this expedition, small cells <3 µm passing 
through filters, lysing during in situ filtration or low transcript/pro-
tein production relative to biomass.

We used a V9 18S ribosomal RNA sequencing approach to 
assign finer scale classification to the protistan community than was 
possible using metatranscriptomics. Approximately 31 ± 7% of the 
18S rRNA reads were assigned to dinoflagellates (Fig. 1b). Of the 
3,096 operational taxonomic units (OTUs) generated, a single OTU 
belonging to the dinoflagellate class Dinophyceae recruited the 
highest number of reads across all locations and depths (13 ± 3%) 
(Supplementary Fig. 2); however, subclass-level annotation was not 
possible using this approach (Supplementary Information). These 
observations are consistent with other 18S rRNA-based assessments 
of protistan composition in the South Pacific Ocean17,18.

Pigments collected from the euphotic zone provided addi-
tional information about phytoplankton composition (Fig. 1d 
and Extended Data Fig. 3, using 0.7-µm GF/F filters). Divinyl 
chlorophyll a, zeaxanthin, 19′-hexanoyloxy-fucoxanthin and 
19′-butanoyloxy-fucoxanthin were major pigments. The first 
is unique to Prochlorococcus33, zeaxanthin is used by cyanobac-
teria and chlorophytes and the last two are indicative of dinofla-
gellates, pelagophytes and haptophytes34. Divinyl chlorophyll a 
reached similar concentrations as chlorophyll a and supports the 
well-characterized abundance of Prochloroccocus in the tropi-
cal Pacific4,35. Notably, pigments representative of certain dino-
flagellates (peridinin) and diatoms (fucoxanthin) were an order 
of magnitude lower in concentration. Diatoms rapidly bloom 
after iron addition to equatorial upwelling waters3,36, yet they 
comprised only a small fraction of the natural assemblage based 
on pigments and multi-omics along this transect (Fig. 1b). 
The high concentrations of 19′-hexanoyloxy-fucoxanthin and 
19′-butanoyloxy-fucoxanthin, yet low levels of peridinin in this 
study support metatranscriptomic assignment of Kareniaceae 
dinoflagellates (Fig. 1b and Extended Data Fig. 3). Genera within 
this family have undergone tertiary endosymbiosis where their 
peridinin-containing plastid was replaced with that of a hapto-
phyte resulting in possession of 19′-hexanoyloxy-fucoxanthin and 
19′-butanoyloxy-fucoxanthin37–40. These interpretations are consis-
tent with previous epifluorescence microscopy observations in the 
equatorial Pacific where small dinoflagellates accounted for up to 
30% of the community biomass and reached 50,000–400,000 cells l−1 
in surface waters32,41, and gymnodinoid dinoflagellates 4 × 7 µm in 
size contributed to approximately 50% of the autotrophic dino-
flagellate community32. Thus, dinoflagellates were the eukaryotic 
group in highest relative abundance across the transect, extending 
from the euphotic zone into the mesopelagic zone, based on four 
independent measurements and consistent with previous micro-
scopic identifications32,41.

Dinoflagellate growth strategies in the euphotic zone. Metabolic 
profiles suggested that the euphotic dinoflagellate commu-
nity engaged in both phototrophy and phagotrophy, supporting 
the notion that both trophic strategies commonly co-occur26,42. 
Metaproteomes were compared using hierarchical clustering with 
Euclidean distance and resulted in separation primarily based on 
depth rather than latitude (Extended Data Fig. 4 and Supplementary 
Fig. 3). The individual proteins driving depth patterns were iden-
tified using a general independence permutation test followed by 
multiple test correction (P < 0.1). Using this conservative approach, 
six Pfam-annotated proteins were differentially abundant in 

euphotic waters compared to the mesopelagic zone (Fig. 2 and 
Supplementary Table 4), including proteins involved in light-driven 
processes, such as proteorhodopsin (P = 0.03) (Supplementary 
Fig. 4) and the carbon fixation protein ribulose-1,5-bisphosphate 
carboxylase/oxygenase (RuBisCO), which was undetected deeper 
than 120 m. Energy-associated processes were differentially abun-
dant with inorganic pyrophosphatase (P = 2 × 10−3), an ATPase 
(P = 0.01), and the oxidative phosphorylation protein mitochon-
drial cytochrome c oxidase (P = 0.01) more abundant in the eupho-
tic zone and indicative of enhanced growth and cellular respiration, 
by autotrophic and/or heterotrophic cells.

Dinoflagellate transcriptomes also shifted with depth, reflecting 
changes in the trophic strategies utilized (Fig. 3a and Supplementary 
Figs. 5 and 6). A weighted correlation network analysis (WGCNA) 
clustered 1,663 dinoflagellate Kyoto Encyclopaedia of Genes and 
Genomes (KEGG)-annotated genes into module eigengenes, which 
were further examined for association with physiochemical param-
eters43. One module contained genes highly expressed in the eupho-
tic zone and positively correlated with surface conditions; another 
contained genes more highly expressed in the mesopelagic zone and 
correlated with deeper ocean physiochemical parameters (Extended 
Data Fig. 5). Similar to protein signatures, euphotic zone dinoflagel-
lates expressed transcripts encoding photosynthetic carbon fixation 
components (carbonic anhydrases, RuBisCO, photosystem II) and 
light-driven proteorhodopsin, and also imported nitrogen and trace 
metals to fulfil cellular nutrient demands (ammonium, urea, metal 
transporters) (Supplementary Table 7). In addition to photosynthe-
sizing, dinoflagellates were likely phagotrophic given the detection of 
lysosomal components including nine V-type proton-transporting 
ATPase subunits, phosphatidylinositol 3-kinase, lysophospholi-
pase III and cathepsin C and H26,44,45. Such proteins may also play a 
role in internal nutrient cycling, similar to autotrophic processes46. 
These genes were detected in the same genera that were photosyn-
thesizing, as indicated through chlorophyll a-binding proteins and 
RuBisCO (Extended Data Fig. 6 and Supplementary Fig. 7), and 
could represent mixotrophic organisms or distinct trophic strate-
gies being used among species. Accordingly, a KEGG pathway 
enrichment analysis conducted on transcripts classified genes into 
photosynthetic carbon fixation, carbon metabolism, secondary 
metabolite synthesis and oxidative phosphorylation pathways that 
were significantly enriched in the surface module (hypergeomet-
ric test, Benjamin–Hochberg adjusted P values < 0.05; Extended 
Data Fig. 5). These transcriptional and protein patterns suggest 
an actively growing phototrophic and phagotrophic dinoflagellate 
community in the euphotic zone and are consistent with the meta-
bolic profiles of mixotrophic protistan cultures grown in the light47, 
natural dinoflagellate communities along the California coast26 and 
coastal dinoflagellate blooms48,49.

Altered metabolic functionality in the mesopelagic zone. 
Mesopelagic waters showed a distinct dinoflagellate metabolic 
profile dominated by cytoskeletal components with indications 
of nutrient recycling and phagotrophy (Fig. 2). Three dinoflagel-
late proteins were significantly more abundant in the mesopelagic 
zone, including the cytoskeletal components tubulin (P = 6 × 10−3) 
and actin (P = 4 × 10−2), which were among the most abundant 
proteins at depth in the metaproteomic dataset (Supplementary 
Table 3), and EF hand domains (P = 0.06). Actin family proteins are 
key components of phagocytosis and cytoskeleton remodelling in 
addition to flagellar motility, adhesion, cell division and the feed-
ing apparatus50–54. Accordingly, heightened expression may reflect 
phagotrophy, prevalence of resting stages and/or altered swim-
ming behaviour. The elevated actin and tubulin proteins in the 
mesopelagic zone could be driven by higher phagotrophic activity 
since cytoskeletal components are upregulated in mixotrophic and 
heterotrophic protists under grazing conditions44,55–58. However, 
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the cytoskeletal machinery is not upregulated in all grazing mixo-
trophs47,59 and the trait may therefore be taxon-specific and depend 
on feeding mechanism. A reprolysin-like zinc-binding metallopep-
tidase was the only peptidase detected to be elevated in mesope-
lagic waters (Fig. 2) and may be an important contributor to protein 
degradation. In addition, calcium-signalling proteins including 

calmodulin-binding proteins and EF hand domains were abundant 
and may facilitate cell signalling efforts in mesopelagic waters60,61.

A collection of genes were more highly expressed in mesope-
lagic waters and positively correlated with nutrient concentrations 
elevated at depth, including nitrate, phosphate, iron and cobalt 
(Extended Data Fig. 5). These genes encode proteins involved in 
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intracellular recycling of polysaccharides and fatty acids (endo-
glucanase, long-chain acyl-CoA synthase), lysosomal degrada-
tion (acid phosphatase, lysosomal acid lipase, vesicle-associated 

clathrin, dynamin GTPase and seven cathepsin proteases) and 
cytoskeletal and motility components (actin, tubulin) (Fig. 3a and 
Supplementary Table 7).
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Fig. 3 | Distinct dinoflagellate functional metabolism between the euphotic and mesopelagic zones of the central Pacific. a, Heatmap displaying 
TPM-normalized gene expression of the top 50 KEGG-annotated genes with the highest transcript deviations from the mean (variances) across samples, 
shown as the z-score (log2 TPM − mean)/s.d.). The depth annotation bar highlights samples from the surface (<200 m, white), deep (>200 m, black) 
and exactly 200 m (grey). The dendrograms show similarity in transcript abundances as determined with Euclidean distance and hierarchical clustering. 
Each row represents a unique KEGG-annotated gene, with ISIPs and a KOG-annotated urea transporter manually added. The colour gradient represents 
low (yellow) to high (blue) gene expression. b, PCA of dinoflagellate metatranscriptomes, metaproteomes and 18S rRNA OTU data, with overlaid vectors 
indicating the relationship between environmental parameters and ordination axes as determined by a two-tailed permutation test (asterisks denote  
P < 0.05). Axes percentages represent the proportion of variance explained by each principal component.
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Congruency between transcripts and proteins was evaluated by 
comparing the average fold change in expression between euphotic 
and mesopelagic zones (Extended Data Fig. 7). Most transcript and 
protein signatures were not tightly correlated, which was expected 
given these are mixed dinoflagellate communities and protein and 
transcript inventories are under different regulatory controls62. 
However, key processes were differentially abundant and correlated 
between fractions, including carbon fixation through RuBisCO and 
light-driven ATP production via proteorhodopsin in surface waters 
and cytoskeletal tubulin and cathepsin protease in the mesopelagic 
zone (Supplementary Table 6), indicating concerted cellular efforts 
to maintain both molecular pools.

Shifting functional and ecological roles within a continuous tax-
onomic community. The combined multi-omics survey revealed 
that euphotic zone dinoflagellates utilize light energy to generate 
ATP through photosynthesis and proteorhodopsin, while acquir-
ing inorganic and organic nutrients and likely also performing 
phagotrophy. In particular, proteorhodopsin enabled a form of 
phototrophy complementary to photosynthesis63,64 and is widely 
utilized among prokaryotes of the oligotrophic North Pacific65. 
Transcripts and proteins for proteorhodopsin were attributed to 
the phototrophic genera Karenia, Prorocentrum and Alexandrium, 
and the primarily heterotrophic genus Oxyrrhis66,67. The prote-
orhodopsin proton pump can be driven by V-type ATPases; hence, 
these proteins may have a dual role in acidifying food vacuoles 
as well as producing ATP via proteorhodopsin63. Little evidence 
of photoautotrophic metabolism remained deeper than 120 m, 
with RuBisCO proteins no longer detected. The equatorial Pacific 
euphotic depth ranges between 100 and 150 m based on historical 
measurements68–70, which is consistent with our observed transi-
tions in protein metabolism. Mesopelagic dinoflagellates increased 
expression of cytoskeletal components and nutrient recycling, 
and maintained cellular degradation and phagotrophic processes 
observed in surface waters. One potential explanation for this dis-
tinct metabolic profile is cyst formation. Dinoflagellates can form 
temporary cysts during unfavourable conditions, resulting in a 
reduced metabolic state with major cytoskeletal rearrangements71,72. 
Lingulodinium polyedrum cysts show enhanced cytoskeleton, ubiq-
uitinylation, enzymatic degradation, calcium-signalling and RNA 
splicing phosphoproteins72, similar to our observations in the meso-
pelagic zone. Cysts are not known to regulate buoyancy and would 
be expected to sink to the seafloor as observed among coastal spe-
cies73, with this evolved strategy beneficial in coastal regions where 
seawater resuspension occurs. Alternatively, elevated expression of 
phagocytosis-related genes, including cathepsin digestive proteases, 
calreticulin and clathrin have also been detected in actively feeding 
protists44,55,74, and changes in trophic activity may also be driving the 
observed pattern. Despite the apparent disadvantages of cyst forma-
tion in offshore environments where encysted cells are lost to the 
deep ocean, we cannot rule out the simultaneous presence of cysts 
and phagotrophy in the present study; the possibility of maladap-
tive oceanic cyst formation in dinoflagellates could be the subject 
of future studies.

Taken together, these differences in functional profiles between 
depths reflects metabolic shifts within the same taxonomic groups 
rather than changes in dinoflagellate community composition. First, 
taxonomic and functional relationships across latitudes and depths 

were assessed using principal component analysis (PCA) with dino-
flagellate transcripts, proteins and 18S rRNA OTUs. Transcripts and 
proteins separated by depth along the first component axis (PC1) 
while 18S rRNA OTUs did not (Fig. 3b). Physiochemical param-
eters characteristically changing with depth, including temperature, 
nitrate + nitrite, cobalt and iron, explained a portion of the vari-
ability in transcript and protein ordinations, yet did not in the 18S 
rRNA ordination since no separation by depth was observed. This 
indicates that the dinoflagellate community, at a coarse taxonomic 
level, did not undergo pronounced changes with depth. Second, 
since the V9 18S rRNA analysis did not resolve the fine taxonomy 
of the dinoflagellate community, we constructed a phylogenetic 
tree to determine whether separate taxonomic populations in the 
water column, or ecotypes, may explain the contrasting phenotypes 
between depth zones (Extended Data Fig. 8). The phylogenetic tree 
and subsequent cladogram was built using dinoflagellate-annotated 
tubulin contigs and reference dinoflagellate proteins derived from 
the Marine Microbial Eukaryotic Transcriptome Sequencing 
Project (MMETSP)75. Diverse dinoflagellates contributed to tubulin 
gene expression in the mesopelagic zone, with no lineages distinctly 
responding in the mesopelagic zone in a manner consistent with 
deep-adapted ecotypes. Third, genera-based assessments can be 
made using metatranscriptomic and metaproteomic data (Extended 
Data Fig. 2), which show that dinoflagellate relative abundance was 
generally uniform with depth and latitude. Therefore, the dino-
flagellate communities across the central Pacific Ocean appear to 
belong to a continuous taxonomic community demonstrating phys-
iological plasticity between depth zones.

Nitrogen and iron stress across the biogeochemical gradient. 
Strong spatial biogeochemical gradients were observed along the 
transect. Consistent with historical measurements76, equatorial 
surface waters between 0 and 6° S (stations 5–7) were elevated in 
nitrate + nitrite with an average of 5.6 µmol l−1 in surface waters 
above 100 m, while higher latitude regions were comparatively 
lower with an average of 0.95 µmol l−1 in northern (17–8° N; sta-
tions 1–3) and 0.24 µmol l−1 in southern tropical gyre surface waters 
(12–15° S; stations 9–12) (Fig. 4a). Total dissolved iron concentra-
tions reflected a different latitudinal pattern with low concentra-
tions (<0.25 nmol l−1) south of the equator extending 300–400 m 
into the mesopelagic zone (Fig. 4b). Biomass inferred from total 
protein concentrations also indicated the highest levels south of the 
equatorial upwelling region, suggesting iron was depleted by growth 
(Supplementary Fig. 8).

Established molecular biomarkers of nitrogen77,78 and iron 
stress79–82 indicated physiological responses to shifts in nutrient 
regimes. Iron stress biomarkers characterized in other algal taxa 
were also utilized by dinoflagellates, including phytotransferrin 
(iron starvation-induced protein 2A (ISIP2A))82–84, ISIP3 (refs. 81,83,84) 
and the iron-independent photosynthetic electron acceptors flavo-
doxin81,85,86 and plastocyanin87. Biomarkers demonstrated on average 
greater than twofold higher gene expression in equatorial upwelling 
and south Pacific surface waters (0–12° S, ≤200 m) containing low 
dissolved iron concentrations (<0.25 nM) compared to higher lati-
tude waters (15° S, 8–17° N) (Mann–Whitney U-test = 1–20, n1 = 12, 
n2 = 13, P ≤ 0.002) (Fig. 4b and Supplementary Table 8). Although 
a few previous studies discussed the presence of dinoflagellate  
ISIP2A15,82,83, its relationship with iron scarcity has been weak15. In 

Fig. 4 | Dinoflagellates restructure iron and nitrogen metabolism depending on external concentrations. a,b, Mid-depth vertical sections of dissolved 
nitrate + nitrite (a) and iron (b) plotted using Ocean Data View with DIVA interpolation (top). Characterized iron and nitrate stress biomarkers are 
depicted as TPM-normalized dinoflagellate gene expression across the transect (bottom). c, Depth-integrated nitrate + nitrite (mmol m−2) and iron 
(µmol m−2) between 20 and 100 m (top) and 20 and 400 m (bottom) across latitudes. Depth integrations were performed by computing the area below 
the curve following the trapezoidal rule in SigmaPlot v.14. For stations 3–5, 20-m samples were not collected and 40-m values were instead used as 
surface estimates. If 100-m measurements were not available, a linear extrapolation was performed using adjacent depths.
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this study, dinoflagellate origins for low iron-induced ISIP2A tran-
scripts were supported by a phylogenetic analysis (Supplementary 
Figs. 9 and 10) and their distribution was consistent with  

physiological acclimation to low iron. These patterns indicate that 
equatorial dinoflagellates possess mechanisms to cope with iron 
stress, similar to cyanobacteria in this ecosystem4.
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In addition to these iron stress signals, differences in nitrogen 
metabolism were also observed across the transect. Selected nitro-
gen stress biomarkers in dinoflagellates included transporters for 
nitrate (nitrate transporter)88,89 and urea (urea transporter)89 and 
the enzyme urease, which converts urea to ammonium89,90. The 
urea transporter displayed twofold higher gene expression in equa-
torial upwelling and southern tropical waters compared to adjacent 
oligotrophic regions, matching the distributions of the iron stress 
biomarkers (Fig. 4). This urea transporter could aid in nitrogen 
assimilation via reduced nitrogen compounds rather than rely-
ing on iron-intensive nitrate and nitrite reductases. Higher gene 
expression in equatorial waters may also be due to higher flux of 
organic nitrogen yet lower urea concentrations, which could stimu-
late transporter production89. In contrast, the nitrate transporter 
showed 1.5-fold higher gene expression in oligotrophic surface 
waters between 8 and 17° N and at 15° S compared to equatorial 
upwelling-influenced waters, demonstrating an inverse relationship 
with nitrate + nitrite concentrations (Fig. 4a). Urease also reached 
peak levels in oligotrophic waters at 10° N and is consistent with 
a low-nitrogen cellular response89. This suggests that the dinofla-
gellate community was using distinct nitrogen acquisition systems 
across the transect: nitrate in low-nitrogen northern tropical waters 
and external urea in iron-stressed southern tropical waters. These 
patterns are in contrast to Prochlorococcus, which primarily uses 
urea transport proteins in low-nitrogen northern tropical waters4 
and generally prefers urea and ammonia over nitrate91,92; there-
fore, it has minimal iron requirements for nitrogen assimilation. 
These results suggest that the iron costs associated with nitrogen 
assimilation could alter the physiology of dinoflagellates, yet not 
Prochlorococcus, with the two lineages preferentially relying on urea 
in different regions.

Contrasting metabolic profiles between oligotrophic and equato-
rial upwelling regimes. Beyond nitrogen and iron stress biomark-
ers, other metabolic processes responding to transitions in nitrogen 
or iron availability across the gradient were investigated (<100 m; 
Extended Data Fig. 9). Gene expression profiles generally separated 
into two divisions: equatorial upwelling and oligotrophic sites. In 
addition to the iron stress biomarkers, an α-carbonic anhydrase, a 
metalloenzyme responsible for concentrating CO2 for carbon fixa-
tion93, was more highly expressed in the low-iron equatorial upwell-
ing waters. α-Carbonic anhydrase has been observed to scale with 
growth rate in marine diatoms to assist in carbon aquisition94 and 
may therefore be more abundant in macronutrient-rich upwelling 
waters supporting elevated growth rates. Conversely, genes differ-
entially expressed during protistan grazing conditions, including 
lysosomal cathepsin proteases, calreticulin involved in the phago-
some and tubulin cytoskeletal proteins44,55,74, as well as ubiquitin 
degradation, were elevated in expression in nitrogen-deficient 
oligotrophic regions (Extended Data Fig. 9). Cathepsin proteases, 
cytoskeletal and ubiquitin degradation proteins were likewise more 
highly expressed in dinoflagellates residing in the mesopelagic zone 
compared to the euphotic zone.

These metabolic profiles derived from meta-omics data reflect 
a composite of the dinoflagellate community likely consisting 
of autotrophs, heterotrophs and mixotrophs. It is therefore dif-
ficult to determine whether the transitions in metabolism from 
nitrogen-deficient oligotrophic to nitrate-rich upwelling region 
are due to changes in dinoflagellate species with differing trophic 
strategies, or the extent of phagotrophy performed within a uniform 
mixotrophic community. Laboratory evidence supports mixotrophy 
as a strategy for fulfilling nitrogen demands, with nitrogen-starved 
cultures of the mixotrophic Karenia brevis increasing growth by 
grazing on the cyanobacterium Synechococcus30. The metabolic and 
geographical patterns presented in this study suggest dinoflagellates 
may respond to changes in macronutrient and metal supplies across 

the gradient by altering trophic modes, variably expressing nutrient 
acquisition genes, and by substituting iron- or nitrate-dependent 
processes with alternative mechanisms (for example, flavodoxin 
and urea), akin to the strategies utilized by marine diatom popula-
tions acclimating to low iron86,95,96 or nitrate77,97.

Dinoflagellate co-occurrence with enhanced export flux and 
biogeochemical importance. Microbial biomass collected from 
the water column was compared with particulate carbon flux 
derived from sediment traps at three depths along the transect 
(Fig. 5). Non-normalized dinoflagellate spectral counts linearly 
scaled with particulate fluxes and increased equatorward by 
approximately twofold (R2 = 0.99, n = 3; Extended Data Fig. 10 
and Supplementary Table 9). The carbon fluxes were fitted to a 
power law function to calculate the coefficient of flux attenuation98 
(b value), which increased along the transition from oligotrophic 
(1.15) to equatorial (1.73) waters and was consistent with shal-
lower remineralization99 of the increased flux. Equatorial dino-
flagellate spectral counts remained elevated into the mesopelagic 
zone (600 m). These protein distributions contrasted from that of 
Prochlorococcus, which decreased equatorward and towards the 
mesopelagic zone (Fig. 5). These patterns were most striking in 
the upper mesopelagic (200–400 m), where depth-integrated spec-
tral counts decreased by 67-fold for Prochlorococcus and increased 
by sevenfold for dinoflagellates from oligotrophic to equatorial 
waters (Extended Data Fig. 10). These results suggest that dino-
flagellates benefit from and/or contribute to the enhanced nutrient 
fluxes associated with equatorial upwelling compared to oligo-
trophic conditions. Supporting this, a recent global multi-omics 
study identified a positive correlation between dinoflagellate lin-
eages and carbon export at 150 m, inferred from particle size and 
abundance19. The capability for phototrophic and heterotrophic 
nutritional modes likely allows dinoflagellates to contribute to 
export flux through their euphotic zone photosynthetic activities 
and remineralization processes within the mesopelagic zone in the 
same regional environment.

Conclusions and implications
This sectional analysis elucidated connections between biogeo-
chemical cycles, resource availability and microbial physiology 
across gradients of the central Pacific Ocean. Dinoflagellates were 
relatively abundant and prevalent throughout the transect, appear-
ing as a continuous community at the genus level from the euphotic 
to the mesopelagic zone. Distinct vertical shifts in metabolism were 
observed through a combination of photosynthetic carbon fixa-
tion and phagotrophy in euphotic waters and a heavy investment in 
cytoskeletal proteins and internal nutrient recycling by heterotro-
phic communities at depth. Vertical migration via flagellar motility 
is known to occur in dinoflagellates and could explain euphotic–
mesopelagic transitioning100,101, allowing for photosynthesis in the 
euphotic zone and access to inorganic resources and prey in the 
nutrient-rich mesopelagic zone100. However, swimming speeds of 
dinoflagellates span approximately 9–60 m day−1 (ref. 100) and could 
not explain dinoflagellate presence down to 800 m. Instead, we 
hypothesize that mesopelagic communities are seeded from large 
surface mixotrophic populations. These organisms may settle in the 
water column and continue to survive by relying solely on hetero-
trophic metabolism. Alternatively, Kareniaceae dinoflagellates may 
be particularly well adapted to the tropical Pacific, with distinct 
autotrophic/mixotrophic species in euphotic environments and 
heterotrophic species separately thriving in the mesopelagic zone. 
Future research efforts will be required to confirm mixotrophy, 
examine taxonomic relationships between euphotic and mesope-
lagic populations and determine whether these dinoflagellates pos-
sess the functional capabilities to perform euphotic to mesopelagic 
transitioning.
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Adaptive responses were also observed across the horizontal sec-
tional gradient and illustrated key differences between dinoflagellates 
and the abundant cyanobacterium Prochlorococcus. Dinoflagellate 
metabolic profiles reflected the geochemical transition from oligo-
trophic gyres to an equatorial upwelling regime sustaining higher 
dinoflagellate biomass. Transcript profiles were consistent with 
mixotrophic populations relying on phagotrophy to a greater extent 
in oligotrophic waters as a means to confront increased nitrogen 
scarcity. In the equatorial upwelling zone, dinoflagellate popula-
tions experienced iron stress and utilized urea potentially to mini-
mize the iron costs associated with nitrate assimilation, whereas 
Prochlorococcus primarily relied on urea in northern oligotrophic 
waters where it achieves higher abundance4. Dinoflagellates were 
positively correlated with carbon flux, either directly contributing to 
export or benefiting from elevated organic and inorganic resources. 
These observations may be consistent with a global plankton model 
linking mixotrophy to enhanced vertical carbon flux10.

The ecological success of dinoflagellates across these diverse 
habitats is likely related to their large genome size, hypothesized 

to be the result of selective pressure to maintain genetic capabili-
ties and exploit broad resources across variable environments102–104. 
This is in contrast to the reverse strategy of genome streamlining 
typical of Prochlorococcus and its limited abilities to utilize diverse 
resources104,105. Interestingly, both genome expansion and reduc-
tion strategies co-exist in these respective populations to facilitate 
resource partitioning, allowing dinoflagellates to thrive as an abun-
dant microeukaryote possessing multiple functional modes across 
vertical and latitudinal gradients in the central Pacific ecosystem.

Methods
Microbial biomass collection. Oceanographic sampling during the METZYME 
expedition (KM1128) occurred between 1 and 25 October 2011 onboard the R/V 
Kilo Moana as also described in Saito et al.4. The meridional transect (17° N–15° S) 
began off the Hawaiian Islands (154.4° W) and terminated in the Tonga-Fiji 
region (173.1° W) (Fig. 1a). Forty-two samples were collected for biomass at 7 
sites and between 3 and 13 depths per site, with the majority between 40 and 
600 m (Extended Data Fig. 1). Biomass collection along the vertical profiles for 
metaproteomic, metatranscriptomic and 18S rRNA metabarcoding analyses were 
performed using battery-operated underwater McLane pumps (McLane Research 
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mesopelagic zones are illustrated with chlorophyll a-binding protein (Pfam ID: PF00504), abundant in the euphotic zone, and tubulin (Pfam IDs: PF00091 
and PF03953) primarily associated with mesopelagic water. The dinoflagellate- and Prochlorococcus spectral counts depicted in this figure were not 
normalized as performed in the functional analysis to allow for geographical comparisons.
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Laboratories) outfitted with custom filter head units secured onto a trace metal 
clean winch line. Sampling depths were predetermined based on oceanographic 
features (for example, surface, deep chlorophyll maximum, oxygen minimum zone) 
(Supplementary Fig. 1). Each McLane pump head was fitted with three 142-mm 
Supor filters (Pall Corporation) for targeting specific size classes of the microbial 
community: 0.2–3 µm (prokaryotes and picoeukaryotes4); 3–51 µm (filamentous 
prokaryotes, protists and zooplankton); and ≥51 µm (mesozooplankton and 
sinking particles). For this analysis focused on the eukaryotic phytoplankton 
community, the 3–51-um fraction was mainly considered. Prochloroccocus proteins 
used as a pelagic prokaryotic comparison belong to the 0.2–3-μm fraction4,106. 
Pumps filtered between 165 and 1,384 l of seawater with an initial filtering rate 
of 4 or 8 l per minute. After pump retrieval, filters were promptly sectioned for 
multi-omics analyses (rRNA, transcripts, proteins) and frozen at −80 °C until 
onshore processing. High resolution multi-omics sampling was achieved across 
the meridional transect using the McLane pumps, resulting in three mid-depth 
profiles (20–50 to 600–800 m) at stations 1, 3 and 5, and 4 upper-water column 
profiles (40 to 200–400 m) at stations 6, 8, 9 and 12 (Extended Data Fig. 1). 
Physiochemical data collection consisted of conductivity, temperature and depth 
casts, measurements of dissolved trace metals, macronutrients, pigments and 
estimates of particulate flux from sediment traps, resulting in mid- and full-depth 
vertical profiles.

Dissolved trace metals. Seawater samples intended for dissolved trace metal 
quantification were collected using a trace metal clean rosette consisting of 
12 approximately 8-l X-Niskins (General Oceanics) on a non-conducting 
line outfitted with temperature, salinity, oxygen, chlorophyll fluorescence, 
transmissivity, conductivity and pressure sensors4. After seawater collection, the 
X-Niskins were brought into a fabricated class-100 clean room where they were 
pressurized with high purity nitrogen gas and seawater was filtered through 
0.2-µm Supor membranes to remove particulate material. HEPA filters were 
used to minimize particle contamination on the ship and polyethylene gloves 
were used when handling samples. Trace metal clean guidelines were followed 
throughout the collection, filtering and sample handling processes as outlined 
by the GEOTRACES international community107,108. Polyethylene collection 
bottles were rigorously cleaned by soaking for 3 d in citranox detergent followed 
by ultrapure Milli-Q (Merck Millipore) water rinses, soaking for 2 weeks in 10% 
HCl (Baker instra-analysed grade) and finally by rinsing with HCl (pH 2). Bottles 
were stored empty and double-bagged. Dissolved Co was measured via cathodic 
stripping voltammetry following a 1-h ultraviolet oxidation4. Total dissolved 
Fe was preconcentrated using the magnesium hydroxide precipitation method 
and analysed on an Element-2 inductively coupled plasma mass spectrometer 
(Thermo Fisher Scientific)109. Concentrations were determined using isotope 
dilution calculations with indium (115In) as an internal standard to account for 
matrix effects and recovery efficiency. GEOTRACES intercalibration consensus 
standards were used to verify accuracy, with North Atlantic GS and GD dissolved 
Fe (dFe) measurements of 0.58 ± 0.10 and 1.06 ± 0.16 nmol l−1, respectively, 
falling within the GEOTRACES dFe consensus ranges of 0.56 ± 0.05 and 
1.03 ± 0.10 nmol l−1 for GS and GD standards. Of the 110 upper water column 
seawater samples measured, three dFe points were excluded from the section 
plot visualizations because they were anomalously high, inconsistent with nearby 
profile measurements and may have been the result of contamination. A table of 
the dFe measurements spanning surface to 500 m along the METZYME transect 
can be found in Supplementary Table 8.

Dissolved nutrients and pigments. Dissolved nitrate + nitrite (NO3 + NO2), nitrite 
(NO2) and silicate (SiO4) were measured on an Alpkem Rapid Flow Analyzer 
while ammonium (NH4) and phosphate (PO4) were measured on a Technicon 
AutoAnalyzer II using 2× the s.d. to estimate the limit of detection. For pigment 
determination, 4 l of seawater was filtered through GF/F filters and frozen in liquid 
nitrogen until analysis on an Agilent 1000 HPLC4.

Sediment traps. Sinking particles were collected in acid-cleaned 250-ml 
low-density polyethylene bottles attached to polycarbonate particle collection 
tubes. Replicate tubes were placed in metal-free racks attached to a non-metallic 
line at depths of 60, 150 and 500 m at stations 1 (17° N), 3 (8° N) and 5 (0° N) using 
a surface-tethered system110. The bottles were deployed full of borate-buffered 
(pH 8.2) seawater brine prepared from freezing filtered seawater. Above the brine, 
each tube contained filtered seawater. Three capped tubes were deployed in the 
trap array as process blanks. On recovery, the tubes were allowed to sit for 1 h to 
allow for particles to settle. The collection bottles were then removed from the trap 
tubes and the contents filtered on either pre-weighed polycarbonate membranes 
(1 μm; Nucleopore) or combusted quartz fibre filters (QMA). The membranes 
were used to determine mass fluxes. The QMA filters were used for C and N flux 
determinations. Particulate carbon and nitrogen determinations were made on 
both sinking and suspended matter through high-temperature combustion analysis 
of quartz fibre filter subsamples on a Flash EA1112 (Thermo Fisher Scientific). For 
these samples, no attempt was made to distinguish between organic and inorganic 
particulate carbon. The b value was determined via nonlinear flux curve fitting to 
the Martin power law.

Global metaproteomics. Frozen filters were thawed and extracted according to 
an approach similar to the protocol described for 0.2-µm filters by Saito et al.4. In 
this study, 3.0-µm filters were extracted using an SDS detergent to solubilize both 
membrane and soluble proteins and subjected to a 10-min heating incubation at 
95 °C. Protein material was subsequently purified, alkylated, reduced and digested 
with trypsin (mass spectrometry grade; Promega Corporation) while embedded 
in a polyacrylamide gel electrophoresis tube gel111. Proteins were quantified using 
a colorimetric BSA assay (DC Protein Assay; Bio-Rad Laboratories). Digestion 
was performed using the protease trypsin at a trypsin:protein ratio of 1:20 and 
peptides were purified using C18 tips (Pierce C18 Tips, 100-µl bed; Thermo 
Fisher Scientific). Purified peptides were diluted to 0.1 µg µl−1 and 20 µl (2 µg) 
was injected onto a Dionex UltiMate 3000 RSLCnano LC system (Thermo Fisher 
Scientific) with an additional RSLCnano pump run in online two-dimensional 
active modulation mode coupled to a Thermo Fusion Orbitrap mass spectrometer. 
The first separation used a nonlinear 8-h pH 10 gradient (10 mmol l−1 ammonium 
formate and 10 mmol l−1 ammonium formate in 90% acetonitrile) on a PLRP-S 
column (200 µm × 150 mm, 3 µm bead size, 300 Å pore size; nanoLCMS 
Solutions), diluted inline (10 µl min−1, 0.1% formic acid) and eluted every 30 min 
on alternating dual traps (300 µm × 5 mm, 5 µm bead size, 100 Å pore size, C18 
PepMap100; Thermo Fisher Scientific) (Supplementary Table 10). Alternating traps 
were eluted at a rate of 500 nl min−1 onto a C18 column (100 µm × 150 mm, 3 µm 
particle size, 120 Å pore size, C18 ReproSil Gold (Dr. Maisch) packed in a New 
Objective PicoFrit column) with a 30-min nonlinear gradient (0.1% formic acid 
and 0.1% formic acid in 99.9% acetonitrile) on a Thermo Flex ion source. The mass 
spectrometer acquired MS1 scans from 380 to 1,580 m/z at 240,000 resolution with 
MS2 acquisition of charge states 2 to 10 and exclusion of undetermined charged 
states. MS2 scans had a 1.6 m/z isolation window, 50 ms maximum injection time 
and 5 s dynamic exclusion time at 5,000 resolution. The top speed data-dependent 
mode was used with a cycle time of 2-s, where as many dependent scans as possible 
were performed within the cycle time.

The 3–51-µm size fraction translated metatranscriptome (see below) was 
used as a reference protein database and peptide spectra matches were performed 
using the SEQUEST algorithm within Proteome Discoverer v.2.1 (Thermo Fisher 
Scientific) with a fragment tolerance of 0.6 Da and parent tolerance of 10 parts 
per million. Identification criteria consisted of a peptide threshold of 95% (false 
discovery rate (FDR) = 0.08%) and protein threshold of 99% (1 peptide minimum, 
FDR = 0.9%) in Scaffold v.4.8.7 (Proteome Software) resulting in 9,796 and 
99,143 peptides identified. The mass spectrometry raw files, metatranscriptomic 
database and Proteome Discoverer search result files have been deposited with the 
ProteomeXchange Consortium through the Proteomics Identification Database 
(PRIDE)112 repository under accession no. PXD014230. Approximately 75% of 
the proteins were associated with a taxonomic and/or functional annotation 
(Supplementary Table 3). To avoid double-counting mass spectra, exclusive 
spectral counts were used for the downstream proteomic analysis. Using this 
approach, only spectral counts assigned to a single protein were considered. 
Exclusive dinoflagellate spectral counts were normalized using the normalized 
spectral abundance factor (NSAF) calculation113 to allow for a comparison of 
dinoflagellate protein abundance across samples and remain consistent with the 
metatranscriptomic procedure:

NSAF ¼ xi
li
´

1P
x
l

´ 103

where x represents the spectral counts of protein i and l represents the length of 
the open reading frame (ORF) in the amino acid residues. These normalizations 
were performed separately for each taxonomic group of interest (for example, 
dinoflagellates). Counts associated with redundant ORFs (sharing identical 
taxonomic and functional assignments) were summed together. We present data 
using both NSAF (Fig. 2, Extended Data Fig. 4 and Supplementary Fig. 3) and 
non-normalized (exclusive) spectral counts (Fig. 5 and Extended Data Fig. 10).  
The NSAF approach enabled a relative comparison between euphotic and 
mesopelagic samples and non-normalized counts provide information on protein 
inventory. Although the same amount of peptides (2 µg, as measured using 
predigested protein concentrations) were injected into the mass spectrometer 
across all samples, total spectral counts (peptide spectrum matches (PSMs)) 
decreased by 1.8-fold in the mesopelagic zone (Mann–Whitney U-test = 74, 
n1 = 19, n2 = 21, P < 0.001; Supplementary Fig. 11 and Supplementary Table 11). 
The MS2 counts and resulting PSM/MS2 ratios also decreased in mesopelagic 
samples by 1.4-fold (Mann–Whitney U-test = 42, n1 = 19, n2 = 21, P < 0.001; Mann–
Whitney U-test = 99, n1 = 19, n2 = 21, P = 0.007, respectively). We hypothesized 
that the decrease in PSMs in the mesopelagic zone was due to a combination of 
factors, including poorer database coverage at a depth where diverse mesopelagic 
microorganisms are less represented and lower spectra quality due to organics 
interference and enhanced protein degradation/modification. Therefore, the 
relative analysis was used to observe differences in contribution to functional 
processes across latitudes and depths. To complement this, non-normalized 
(exclusive) spectral counts were also used to present an alternate visualization 
to further illustrate geographical and vertical differences in proteins. Absolute 
quantification using targeted proteomics could be employed in future analyses to 
determine concentrations of protein per volume of seawater4,106.
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MS2 were obtained from raw mass spectrometry (RAW) files and converted 
with ProteoWizard v.3 MSConvertGUI. The ProteoWizard msaccess function was 
used to filter mass spectra between 380 and 1,580 m/z. Means of PSM/MS2 ratios, 
MS2 PSMs (total spectral counts) between euphotic and mesopelagic depths were 
statistically compared in Sigmaplot v.14 using the Mann–Whitney U-test.

Metatranscriptomics. Frozen and sectioned 3–51-µm size fraction filters 
were thawed on ice and subjected to an RNA extraction and messenger RNA 
purification protocol closely following Bertrand et al.96. Briefly, RNA was extracted 
using the TRIzol reagent according to the manufacture’s guidelines (Thermo Fisher 
Scientific). An RNeasy MinElute Cleanup Kit (QIAGEN) was used to purify RNA 
and ribosomal RNA was removed using the Ribo-Zero Magnetic Kit (Illumina). 
The mRNA fraction was amplified and converted to complementary DNA using 
the Ovation RNA-seq System V2 (NuGEN) and subsequently fragmented to 
200 base pairs (bp). Libraries were prepared using Truseq RNA Sample Prep Kit 
V2 and paired-end sequences were generated on the Illumina HiSeq platform 
resulting in an average of 13 ± 2.5 million paired-end raw reads per sample. 
Metatranscriptomic reads are publicly available through the National Center for 
Biotechnology (NCBI) under Bioproject number PRJNA555787.

Raw reads were quality-trimmed and adaptors and rRNA sequences were 
removed using riboPicker v.0.4.3 (ref. 114). CLC Assembly Cell (QIAGEN) was used 
for the de novo assembly with ORFs predicted using FragGeneScan v.1.16 (ref. 115). 
Reads were mapped to ORFs using the Burrows–Wheeler Aligner-MEM116. ORFs 
were assigned taxonomy and function via BLASTp117 with an E-value cut-off of 10−3 
using the custom-built database PhyloDB, which consists of marine prokaryotic 
and eukaryotic genomes and transcriptomics (https://github.com/allenlab/
PhyloDB), including protistan isolates from the MMETSP75. A lineage probability 
index was additionally used with the eukaryotic community to assign taxonomy 
more conservatively to closely related organisms96,118. Dinoflagellate ORFs with a 
conservative lineage probability index >80% were used for the functional analysis. 
To maximize functional assignments, sequences were searched against the KEGG119 
and EuKaryotic Orthologous Groups (KOG)120 tools and conserved protein 
domain families were identified using HMMER v.3.1b2 (ref. 121) with Pfam122. Of 
the assembled contigs, 62% were associated with a taxonomic annotation and 
approximately 54% were assigned a functional annotation (Supplementary Table 
1). Dinoflagellate reads were normalized following the transcripts per million 
(TPM) approach123,124 (Supplementary Table 2), similar to the proteomic NSAF 
normalization, allowing for a relative analysis across samples:

TPM ¼ xi
li
´

1P
x
l

´ 106

where x represents the read counts of ORF i and l represents the length of the ORF 
I in the nucleotide base pairs. TPM normalizations were performed separately for 
each taxonomic group of interest (for example, dinoflagellates). Counts associated 
with ORFs sharing identical taxonomic and functional assignments were summed 
together at the supergroup level.

18S and 16S ribosomal RNA metabarcoding. Eukaryotic and prokaryotic 
taxa were characterized using V9 18S and V3–V5 16S ribosomal RNA 
metabarcoding, respectively, from the 3–51-µm filter size fraction. A 
500-bp region of V3–V5 16S rRNA was amplified with the eubacterial 
primers 341F (5′-CCTACGGGNGGCWGCAG-3′)125 and 926R 
(5′-CCGTCAATTCMTTTRAGT-3′)126. A 130-bp region of V9 18S rRNA 
was amplified with 1389F (5′-TTGTACACACCGCCC-3′) and 1510R 
(5′-CCTTCYGCAGGTTCACCTAC-3′)17,127,128. FLX Titanium adaptors 
were added to primers for Roche 454 sequencing (A adaptor sequence: 
5′-CCATCTCATCCCTGCGTGTCTCCGACTCAG -3′; B adaptor sequence: 
5′-CCTATCCCCTGTGTGCCTTGGCAGTCTCAG-3′). The 18S rRNA raw reads 
are available on the NCBI under Biosample accession nos. SAMN12331629–
SAMN12331670 and the 16S rRNA raw reads under Biosample accession nos. 
SAMN12332710–SAMN12332751.

The detailed cDNA prep and sequencing protocol is described in Bertrand 
et al.96. The 16S rRNA fraction was taxonomically classified using FASTA36 
and the SILVA rRNA database release 111 (ref. 129), while the 18S rRNA OTUs 
were searched against the eukaryotic 18S ribosomal taxonomic database Protist 
Ribosomal Reference v.4.11.1 (ref. 130), containing curated dinoflagellate 18S 
ribosomal sequences from the dinoREF database131. Eukaryotic 16S rRNA plastid 
sequences were separated from the prokaryotic 16S rRNA fraction by searching 
against phytoREF release 1, a database containing aquatic and terrestrial plastid 
representatives from major eukaryotic lineages132. A modest number of sequences 
was generated to capture the dominant microbial community members since deep 
sequencing of the rare biosphere was not the intended goal. An average of 2,500 
post-processed sequences per sample were generated for 18S rRNA, 6,000 for 
16S rRNA (non-plastid) and 144 for 16S rRNA plastid fractions corresponding 
to approximately 3,100 18S rRNA, 4,800 16S rRNA (non-plastid) and 200 16S 
rRNA plastid OTUs (Supplementary Table 5). 18S rRNA OTU data were visualized 
using the R package phyloseq v.1.25.2. Nucleotide MUSCLE alignments133 were 
constructed in Geneious v.11.1.4.

Metagenomic analysis. Fractions from the 0.2–3-µm filter were extracted for DNA 
and submitted to the Integrated Microbial Genomes and Microbiomes division of 
the Joint Genome Institute134 for metagenomic sequencing. Quality-trimmed reads 
were assembled with SPAdes (using the -meta flag) and annotated as described 
in Dupont et al.135. The reference assembly was used as a protein database to 
identify prokaryotic proteins of interest. Prochloroccocus ORFs were identified 
using Prochlorococcocus NCBI taxon IDs. The 0.2–3-µm metagenomic assembly is 
publicly available through the NCBI under accession no. GCA_900411625.

Statistical analyses and data visualization. Beyond selecting individual genes or 
proteins of interest, a goal of the study was to determine whether broad metabolic 
differences exist between latitudes or depth regions. A WGCNA43 approach was 
used to identify clusters of highly expressed genes across locations and depths and 
quantify relationships with physiochemical metadata. Eigengene modules were 
created using log2 TPM-normalized, KEGG-annotated dinoflagellate transcripts. 
At least 75 genes were required per module and modules displaying similar 
eigengene values across samples were merged (MEDissThres = 0.3). Eigengene 
values representing module expression were correlated with physiochemical 
data (Pearson’s correlation test; P < 0.05). The default ‘turquoise’ and ‘blue’ 
colour modules were changed to ‘white’ and ‘black’, respectively, for clarity. 
Functional characterization of modules was performed using a KEGG enrichment 
analysis with the enrich function in clusterProfiler v.3.12.0, which performs a 
hypergeometric test to calculate overrepresentation of KEGG pathways compared 
to the total genes identified in the dataset (Benjamin–Hochberg adjusted 
P < 0.05)136.

More Pfam annotations were available than KEGG annotations for the 
metaproteomic analysis; therefore, Pfam was selected to maximize the amount of 
information used to evaluate differences in proteins between depths. Differential 
abundance was determined using normalized Pfam-annotated dinoflagellate 
spectral counts between the surface (<200 m, n = 19) and deep (≥200 m, n = 20) 
layers with a two-sided asymptotic general independence (permutation) test using 
the R package coin v.0.6.6137 with a maximum test statistic, default parameters 
and P values adjusted for multiple testing according to the max-T method 
(method = ‘step-down’).

To compare 18S rRNA community composition, relative transcript abundance 
and protein functional profiles across samples, a PCA was performed. 18S rRNA 
OTU data were log-transformed, subset to include only dinoflagellates and 
components calculated using phyloseq (ordinate function, method = ‘RDA’)138. 
TPM-normalized dinoflagellate transcript counts and NSAF-normalized, exclusive 
protein spectral counts were log-transformed. PCA was performed using the rda 
function in vegan v.2.3-0 (ref. 139) and environmental vector fitting was performed 
using the envfit function. Environmental variables including temperature, 
ammonium, nitrate + nitrite, dissolved iron and cobalt were measured at the 
same depths and locations as multi-omics material. The PC1 axis of the protein 
ordination was flipped for visual consistency with the transcripts.

A phylogenetic analysis was performed using the protein tubulin to address 
whether distinct dinoflagellate taxonomic groups could be responsible for the 
contrasting metabolic features observed between the euphotic and mesopelagic 
zones and to investigate dinoflagellate ISIP2A phylogeny. Dinoflagellate reference 
sequences were obtained by searching contig ‘contig_2077622_1_918’, annotated 
as K. brevis CCMP2229 and tubulin C-terminal domain (Pfam PF03953), 
against dinoflagellates from the recently reassembled MMETSP database75,140 
using BLASTp v.2.7.1 (ref. 117). The top five-hundred BLASTp output entries 
with the highest bit score (E ≤ 10−40) were manually curated to retain long and 
unique representative contigs from each isolate, with most isolates possessing 
multiple gene copies. Sequences were aligned using MUSCLE v.3.8 (ref. 141) and 
trimmed in Jalview v.2.10.5 (ref. 142) to allow for a maximum number of contigs 
(49) to be retained of the same the length, which resulted in 478 amino acid 
residues. Using the same approach, ISIP2A sequences were obtained by searching 
contig ‘contig_1526186_1_756’, annotated as K. brevis CCMP2229 and ISIP2A 
(pti:PHATRDRAFT_54465) against the full MMETSP database. The top 515 
blast hits (E ≤ 10−40) were used to create a reference alignment of 110 contigs 
with 335 amino acids in length. These reference sequences were used to a build a 
phylogenetic tree onto which the metatranscriptomic dinoflagellate contigs were 
aligned. The maximum-likelihood tree was created using RAxML v.8.2.11 using 
the PROTGAMMALG model and 100 bootstrap replicates143. Contigs were placed 
on the reference tree using pplacer v.1.1alpha19 (ref. 144). The cladogram was 
visualized with the R package ggtree v.1.16.0 (ref. 145).

Section plots were created in Ocean Data View 4 using Data-Interpolating 
Variational Analysis (DIVA) interpolation146. Gene expression and protein 
abundance heatmaps were created with ggplot2 v.3.2.1. Bar plots and scatter plots 
were created in Sigmaplot v.14.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The mass spectrometry global proteomics data and metatranscriptome-derived 
FASTA file has been deposited with the ProteomeXchange Consortium through 
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the PRIDE112 repository under accession number PXD014230. Metaproteomic 
annotations and total spectral counts from this analysis are also available on the 
Ocean Protein Portal (proteinportal.whoi.edu/). Nutrients, dissolved cobalt, 
pigments and conductivity, temperature and depth physiochemical information 
is available through the NSF’s Biological and Chemical Oceanography Data 
Management Office (BCO-DMO) repository under project number 2236. 
Metatranscriptomic reads have been deposited with the NCBI under Bioproject 
no. PRJNA555787. The 16S rRNA raw reads are available on the NCBI under 
Biosample accession nos. SAMN12331629–SAMN12331670 and the 18S rRNA 
raw reads under Biosample accession nos. SAMN12332710–SAMN12332751. 
The 0.2–3-µm metagenomic assembly has been deposited with the NCBI under 
accession no. GCA_900411625.

Code availability
The R code used to create the heatmaps, ordinations and the 18S rRNA and 
WGCNA analyses are available on github (github.com/cnatalie/METZYME).
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Extended Data Fig. 1 | Nitrate + nitrite, phosphate and silicate concentrations along the transect. White dots represent CTD sampling depths 
where physiochemical data, pigments, macronutrients and trace metals were collected. Black dots indicate locations where filters were processed for 
metaproteomic, metatranscriptomic and 18s rRNA analyses. Two black triangles represent depths at which only metatranscriptomic and 18S rRNA 
information is available (St. 1, 600 m; St. 3, 80 m).
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Extended Data Fig. 2 | Dinoflagellate taxonomic annotations across the transect. a, Dinoflagellate family-level and (b) genus-level relative community 
composition determined through 18S rRNA, metatranscriptomic and metaproteomic analyses from 3-51 µm filter fractions, highlighting the abundance of 
the Kareniaceae-like family and Karlodinium and Karenia-like genera in transcripts and proteins. Taxonomic annotations were assigned based on assembled 
metatranscriptome matches to the PhyloDB database, containing marine protistan21 and bacterial transcriptomes and genomes. 18S rRNA annotations 
were assigned using the PR2,22 database. ‘NA’ represents dinoflagellate OTUs without family or genera-level taxonomy available in the PR2 database. In the 
transcript pool, Karenia and Karlodinium genera together comprised an average 42 ± 0.02% of the total dinoflagellate reads in the euphotic zone (< 200m) 
and 42 ± 0.04% in the mesopelagic (≥ 200m). In the protein pool, these two genera comprised an average 45 ± 10% of the spectral counts in the euphotic 
zone and 71 ± 12% in the mesopelagic.
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Extended Data Fig. 3 | Pigment profiles along the METZyME transect determined by high performance liquid chromatography (HPLC). White dots 
represent sampling depths. Graphed in Ocean Data View (ODV) using DIVA interpolation.
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Extended Data Fig. 4 | Log2 NSAF-normalized dinoflagellates spectral count heatmap displaying relative protein abundance at the PFam annotation 
level. The top 50 PFam-annotated genes with highest deviations from the mean (variances) across samples are shown. The depth annotation bar 
highlights samples from the surface (<200 m, white), deep (>200 m, black) and 200 m (gray). Dendrogram shows similarity in spectral abundance 
among samples based on Euclidean distance and hierarchical clustering. Each row represents a PFam annotation, with spectral counts associated with 
identical PFams summed together. Multiple PFam annotations of the same contig are separated by an underscore.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Weighted correlation network analysis (WGCNA) eigengene modules using log2 TPM-normalized KEGG-annotated 
dinoflagellate transcripts. The ‘module eigengene’ represents the first principal coordinate of the module and summarizes the module gene expression 
profile. Signed network analysis was performed using the WCGNA package in R23 with at least 75 genes per eigengene module, and modules merged 
displaying similar eigengene values across samples (MEDissThres= 0.3). a, Color scale bar represents Pearson correlation coefficients between 
environmental metadata and eigengene modules; correlation coefficients and two-tailed Student test unadjusted (default) p values are shown in each box. 
b, Eigenene expression values plotted alongside log2 TPM gene expression in the white (surface; top) and black (deep; bottom) modules. c, KEGG pathway 
identity of white and black WCGNA modules. A KEGG enrichment analysis was performed using clusterProfiler’s enrich function, which calculates 
overrepresentation of KEGG pathways compared to the total genes identified in the data set using a two-tailed hypergeometric test (Benjamin-Hochberg 
adjusted p-value < 0.05)24. Significantly enriched pathways are denoted with an asterisk (*).
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Stacked pie charts depicting dinoflagellate genus-level relative community composition for genes of interest shown to be 
responsive to shallow (< 200m), deep (≥ 200m), oligotrophic (St. 1, 3, 9, 12) and equatorial upwelling (St. 5, 6, 8) environments. The inner rings show 
genera composition based on normalized transcript read counts, and the outer rings show normalized protein spectral counts. Transcript and protein 
were averaged across samples within each of the four environments. Only shallow depths (< 200m) were included for the oligotrophic and equatorial 
pie charts. Abbreviations used are shown for each gene of interest, along with their IDs from KEGG, KOG or PFam databases. ‘Other’ represents other 
dinoflagellate genera in minor relative abundance and not included here (see Extended Data Fig. 2 for dinoflagellate genus-level relative abundance across 
samples).
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Extended Data Fig. 7 | Relative transcript and protein abundance for dinoflagellate genes of interest between depths and across latitudes. a, Relative 
gene expression is shown as log2 transcripts per million (TPM; top), relative protein abundance as log2 normalized spectral abundance factor (NSAF; 
bottom). Undetected transcripts and proteins are indicated in gray. The depth annotation bar indicates samples from the surface (<200 m, white), 
deep (>200 m, black) and 200 m (gray), and the site annotation bar shows whether samples were collected from the oligotrophic gyres (St. 1, 3, 9, 
12) or the equatorial upwelling zone (St. 5, 6, 8). b, Comparison of average transcript and average protein abundance fold changes between euphotic 
and mesopelagic zones. Only shared KEGG genes (KOs) are shown that were detected in at least one metatranscriptome and one metaproteome, with 
proteorhodopin (PFam PF01036) and ISIP2a (KEGG gene pti:PHATDRAFT_54465) manually added. Values of zero were changed to a small value (0.1) 
to allow for fold changes estimates. The black line illustrates the linear relationship between protein and transcript fold changes. Genes in the top right 
(quadrant 1) represent transcripts/proteins abundant in euphotic waters, genes in the bottom left (quadrant 3) represent transcripts/proteins abundant in 
the mesopelagic (FBA = fructose biphosphate aldolase; GAP2 = glyceraldehyde-3-phosphate dehydrogenase (NAD(P)); ISIP2A = iron starvation induced 
protein 2 [phytotransferrin]; GAPDH = glyceraldehyde 3-phosphate dehydrogenase).
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Cladogram of translated dinoflagellate tubulin contigs with reference MMETSP dinoflagellate proteins (left) shown 
alongside tubulin gene expression in the mesopelagic compared to euphotic zone (log2 average fold change) (middle) and average expression levels 
(TPM-normalized transcript abundance) in the mesopelagic (right). Alpha-tubulin is shown in blue, Gamma-tubulin in green, and beta-tubulin in orange. 
Reference sequences were aligned using MUSCLE v3.8 and the maximum-likelihood tree was created using RAxML v8.2.11 with the PROTGAMMALG 
model and 100 bootstrap replicates. Contigs were placed on the reference tree using pplacer v1.1alpha19. The cladogram is visualized with the R package 
ggtree v1.16.0.
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Extended Data Fig. 9 | Heatmap displaying relative dinoflagellate TPM-normalized gene expression from each station < 100m, displayed as row 
Z-score [(log2 TPM – mean)/standard deviation]. The top 45 KEGG annotated genes with highest transcript deviations from the mean (variances) 
are displayed. Along with the KEGG entries, five annotations not included in KEGG were manually added. Dendrogram shows similarity in transcript 
abundances based on Euclidean distance and hierarchical clustering, created with pheatmap v1.0.12. Each row represents a unique KEGG-annotated gene. 
The site annotation bar indicates whether samples were collected from the oligotrophic gyres (St. 1, 3, 9, 12) or the equatorial upwelling zone (St. 5, 6, 8). 
Color gradients represents low (yellow) to high (blue) gene expression.
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Extended Data Fig. 10 | Positive relationship between dinoflagellate protein abundance and carbon flux. Particulate export estimates through average 
mass flux (a) and particulate carbon flux (b) from the oligotrophic (St. 1, red) to equatorial upwelling region (St. 5, blue), as visualized by latitude in Fig. 5 
(n = 3 tubes per depth from the same sediment trap array; error bars represent standard deviation.). c, Vertical profiles of absolute dinoflagellate exclusive 
protein spectral counts derived from the 3-51 µm size fraction and (d) absolute Prochlorococcus exclusive spectral counts from the 0.2-3 µm fraction along 
the surface gradient. Absolute spectral counts were not NSAF-normalized as performed in the functional analysis. Depth-integrated spectral counts from 
(e) 50-200m and (f) 200-400m highlight changes to protein inventory across the biogeochemical gradient and between the euphotic and mesopelagic 
zones, with the coefficient of carbon flux attenuation (b value) shown in brown (three depths per station were used to calculate the slope (b) via 
non-linear flux curve fitting to the Martin power law). Depth-integrated values were obtained by calculating the area under the profile for spectral counts 
versus depth. Depth-integrated dinoflagellate spectral counts show a positive relationship with carbon flux to 150 m (g) in contrast to Prochlorococcus 
which demonstrates a negative relationship.
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be accessed from github.com/allenlab/PhyloDB. There are no restrictions on the data.
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Study description Multi-’omics and geochemical analyses were performed across a ~4,600 km section in the central Pacific Ocean to capture microbial 
community metabolism along a surface gradient and across ocean depths. Biomass was collected onto forty-two 3-51 um filters using 
underwater McLane pumps.

Research sample The research samples comprised of natural plankton communities residing in the surface and mesopelagic zones of the tropical and 
equatorial Pacific Ocean. The exact makeup of these plankton communities was unknown at the time of sampling. The 
microeukaryote fraction (in the 3-51 um size range) was the focus of this analysis given their under-explored biogeographical 
distributions across this region of the ocean.

Sampling strategy Pumps filtered between 165-1,384 L of seawater, and concentrated microbial biomass consisting of prokaryotes, eukaryotes, and 
viruses. Pumps were deployed for 4-6 hours to allow for biomass to accumulate, with the upper limit determined by the time allotted 
to hold on station. The amount of volume filtered depended on biomass present and its influence on filtration flow rates.

Data collection McLane pump logs document the depth targeted and duration. At each station where McLane pumps were deployed, a trace metal 
rosette CTD collected accompanying physiochemical parameters. A cruise log was used to record each operation under of the 
supervision of the Chief Scientists.

Timing and spatial scale Sampling occurred between October 1st and 25th 2011 onboard the R/V Kilo Moana. Stations were chosen before the research 
cruise to evenly capture biological and chemical transitions along the surface gradient, including the oligotrophic tropical northern 
and southern gyres and equatorial upwelling regime. Depths were selected to characterize differences in metabolic strategies 
between surface and mesopelagic communities. Seven sites were chosen for sample collection between 7N to 15S (154W-173W). 
Three to thirteen depths were sampled per station, with the majority between 40-600m. Sampling commenced when the ship 
arrived on station, with the gap between sampling depending on transit time and length spent on station. Exact sampling times for 
each station can be accessed from the cruise BCO-DMO data repository: https://www.bco-dmo.org/project/2236

Data exclusions The meta-'omic analysis focused on the 3-51 um fraction collected from the McLane pumps to isolate eukaryotic contributions. The 
prokaryotic 0.2-3um and filamentous/higher trophic level (51-150um) size fractions were not the focus of this analysis. A single 
sample was additionally collected at 1,900 m to target hydrothermal vent activity. This was the only sample collected at a 
bathypelagic depth, with all others collected in euphotic and mesopelagic waters. It was pre-established that this sample would be 
the focus of a separate analysis linking hydrothermal geochemistry to microbial ecology.

Reproducibility Oceanographic samples were collected once to generate a spatial section in a highly heterogeneous and dynamic environmental 
system

Randomization Randomization does not apply to field collection as sample depths and sites were predetermined based on oceanographic features.

Blinding Blinding was not possible as all samples analyzed were associated with a specific site and depth. Clustering approaches allowed for 
structural patterns in the data to be computationally identified regardless of assigned category.

Did the study involve field work? Yes No

Field work, collection and transport
Field conditions Sampling occurred during October of 2011. Supplementary Fig. 1 and Extended Data Fig. 1 and 3 present environmental data at time 

of sample collection including, water temperature, chlorophyll, pigments, salinity, oxygen concentration, density, and macronutrients 
nitrate+nitrite, phosphate, and silicic acid. These datasets and other co-occurring additional expedition datasets are available on the 
expedition project page at BCO-DMO (https://www.bco-dmo.org/project/2236)

Location The meridional transect (17°N-15°S) began off the Hawaiian Islands (154.4°W) and terminated in the Tonga-Fiji region (173.1°W). 
Most sampling depths ranged between 40-600m.

Access & import/export Samples were collected during the cruise onboard the R/V Kilo Moana with conduct permitted by the National Science 
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Access & import/export Foundation research vessel crew. Three permits were issued. Cook Islands High Commission Note No 304/11  granted access to 
waters near the Cook Islands from Oct. 9-22 2011; The Ministry of Foreign Affairs and Immigration of the Republic of Kiribati 
FA:48/12/395A provided clearance for sampling from Oct 1-30 2011; The Ministry of Foreign Affairs of the Kingdom of Tonga F.7/2/3 
allowed access to waters under the jurisdiction of the Kingdom of Tonga from Oct 1-30 2011.

Disturbance No disturbance was caused by oceanographic sample collection

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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