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Abstract
This paper is concerned with the theory and applications of varifolds to the representa-
tion, approximation and diffeomorphic registration of shapes. One of its purpose is to
synthesize and extend several prior works which, so far, have made use of this frame-
work mainly in the context of submanifold comparison andmatching. In this work, we
instead consider deformation models acting on general varifold spaces, which allow
to formulate and tackle diffeomorphic registration problems for a much wider class of
geometric objects and lead to a more versatile algorithmic pipeline. We study in detail
the construction of kernel metrics on varifold spaces and the resulting topological
properties of those metrics and then propose a mathematical model for diffeomor-
phic registration of varifolds under a specific group action which we formulate in the
framework of optimal control theory. A second important part of the paper focuses on
the discrete aspects. Specifically, we address the problem of optimal finite approxi-
mations (quantization) for those metrics and show a Γ -convergence property for the
corresponding registration functionals. Finally, we develop numerical pipelines for
quantization and registration before showing a few preliminary results for one- and
two-dimensional varifolds.
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1 Introduction

Shape is a bewildering notion: while simultaneously intuitive and ubiquitous to many
scientific areas from pure mathematics to biomedicine, it remains very challenging
to pin down and analyze in a systematic way. The goal of the research field known
as shape/pattern analysis is precisely to provide solid mathematical and algorithmic
frameworks for tasks such as automatic comparison or statistical analysis in ensembles
of shapes, which is key to many applications in computer vision, speech and motion
recognition or computational anatomy, among many others.

What makes shape analysis such a difficult and still largely open problem is, on the
one hand, the numerous modalities and types of objects that can fall under this generic
notion of shape but also the fundamental nonlinearity that is an almost invariable trait
to most of the shape spaces encountered in applications. As a result, the seemingly
simple issue of defining and computing distances or means on shapes is arguably
a research topic of its own, which has generated countless works spanning several
decades and involving concepts from various subdisciplines of mathematics. Among
many important works, the model of shape space laid out by Grenander in [32] is
especially relevant to the present paper. The underlying principle is to build distances
between shapes which are induced by metrics on some deformation groups acting on
those shapes. This approach has the advantage (at a theoretical level at least) of shifting
the problem of metric construction from the many different cases of shape spaces to
the single setting of deformation groups. One of the fundamental requirement is the
right-invariance of the metrics on those groups; finding the induced distance between
two given shapes then reduces to determining a deformation of minimal cost in the
group, in other words to solving a registration problem.

Besides usual finite-dimensional groups like rigid of affine transformations, there
is in fact a lot of practical interest in applying such an approach with groups of “large
deformations,” specifically groups of diffeomorphisms. This has triggered the explo-
ration of right-invariant metrics over diffeomorphism groups. The large deformation
diffeomorphic metric mapping (LDDMM) model pioneered in [10,53] is one of such
framework that defines Riemannian metrics for diffeomorphic mappings obtained as
flows of time-dependent vector fields (c.f. the brief presentation of Sect. 4.2). In this
setting, registering two shapes can be generically formulated as an optimal control
problem, the functionals to optimize being typically a combination of a deformation
regularization term given by the LDDMMmetric on the group and a fidelity term that
enforces (approximate) matching between the two shape objects. Applications of this
model have been widespread in particular within the field of computational anatomy,
due to the ability to adapt it to various data structures including landmarks, 2D and
3D images, tensor fields..., see, e.g., [40,42] for recent reviews.

Interestingly, this line of work has also been drawingmany useful concepts from the
seemingly distant area of mathematics known as geometric measure theory [25]. The
key idea of representing shapes (submanifolds) as measures or distributions has been
instrumental in the theoretical study of Plateau’s problem on minimal surfaces and
more generally in calculus of variations. It can also prove effective for computational
purposes, in problems such as discrete curvature approximations [13,21] or estima-
tion of shape medians [35]. With regard to the aforementioned deformation analysis
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problems, the potential interest of geometric measure theory has been identified early
on in the works of [28,29]. Indeed, LDDMM registration of objects like geometric
curves or surfaces requires fidelity terms independent of the parametrization of either
of the two shapes. On the practical side, this means that one cannot usually rely on
predefined pointwise correspondences between the vertices of two triangulated sur-
faces for instance, which makes the registration problem significantly harder than in
the case of labeled objects such as landmarks or images.

The embedding of unparametrized shapes into measure spaces provides one possi-
ble way to address the issue, by constructing parametrization-invariant fidelity metrics
as restrictions of metrics on those measure spaces themselves. Several competing
approaches have been introduced, each relying on embeddings into different spaces of
generalized measures: [22,27,29] are based on the representation of oriented curves
and surfaces as currents, [18] and [9,37] extended this model to the setting of unori-
ented and oriented varifolds, while [46,47] considers the higher-order representation
of normal cycles, see also the recent survey [17]. One common feature to all those
works, however, is that they are focused primarily on registration of curves or sur-
faces. In other words, the use of current, varifolds or normal cycles confines to the
computation of a fidelity metric to guide registration algorithms, but the deformation
model itself remains tied to the curve/surface setting or equivalently, in the discrete
situation, to objects described by point set meshes.

The guiding theme and main objective of this paper is to investigate an alternative
framework that, in contrast to those prior works, would formulate the deformation
model as well as tackle the registration problem directly in these generalized measure
spaces:we focus specifically on the (oriented) varifold setting of [37]. There are several
arguments for the interest of such an approach, but in our point of view, the primary
motivation lies in the fact that, varifolds being more general than submanifolds, the
proposed framework allows to extend large deformation analysis methods to a range
of new geometric objects while giving more flexibility to deal with some of the flaws
which are commonplace in shapes segmented from rawdata. As a proof of concept, our
recentwork [34] considered the simple case of registration of discrete one-dimensional
varifolds. Building on these preliminary results, the present paper intends to provide
a thorough and general study of the framework.

The specific contributions and organization of this paper are the following. First,
we propose a comprehensive study of the class of kernel metrics on varifold spaces
initiated in [18,37], in particular by examining the required conditions to recover true
distances between all varifolds (as opposed to the subset of rectifiable varifolds) and
comparing the resulting topologies with some standard metrics on measures. This is
presented in Sect. 3 after the brief introduction to the notion of oriented varifold of
Sect. 2. In Sect. 4, we discuss the action of diffeomorphisms and from there derive
a formulation of LDDMM registration of general varifolds, for which we show the
existence of solutions and derive the Hamiltonian equations associated with the cor-
responding optimal control problem. Section 5 addresses the issue of quantization in
varifold space, namely of approximating any varifold as a finite sum of Dirac masses.
We consider a novel approach in this context that consists in computing projections
onto particular cones of discrete varifolds. We then prove the Γ -convergence of the
corresponding approximate registration functionals. In Sect. 6, we derive the discrete
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version of the optimal control problem and optimality equations, from which we
deduce a geodesic shooting algorithm for the diffeomorphic registration of discrete
varifolds. Finally, results on 1- and 2-varifolds are presented in Sect. 7, emphasizing
the potentiality of the approach to tackle data structures which are typically challeng-
ing for previous algorithms that are designed for point sets andmeshes. TheMATLAB
code used in this paper ismade available under theGNUgeneral public license through
the Github repository https://github.com/charoncode/Var_LDDMM.

2 The Space of Oriented Varifolds

The concept of varifold was originally developed in the context of geometric measure
theory by [3,54] and [1] for the study of Plateau’s problem on minimal surfaces. The
interest in registration and shape analysis was evidenced in [18,37]. In those works,
varifolds provide a convenient representation of geometric shapes such as rectifiable
curves and surfaces and an efficient approach to define and compute fidelity terms
for registration, or to perform clustering, classification in those shape spaces. The
main purpose of this section is to introduce varifolds in this latter context. The case
of non-oriented shapes was thoroughly investigated in [18]. Later on, the generalized
framework of oriented varifold was proposed in [37] but only for objects of dimen-
sion or co-dimension one. In the following, we provide a fully general presentation
of oriented varifolds and their properties, that also does not specifically focus on the
case of rectifiable varifolds as these previous works did. Although we assume here
that all the considered shapes are oriented, we emphasize that the non-oriented frame-
work of [18] can be recovered almost straightforwardly through adequate choices of
orientation-invariant kernels as we shall briefly point out later on.

2.1 Definition

The underlying principle of varifolds is to extend measures of R
n by incorporating an

additional tangent space component. In this work, we will consider such spaces to be
oriented. Thus, for a given dimension 0 ≤ d ≤ n, we first need to introduce the set of
all possible d-dimensional oriented tangent spaces in R

n :

Definition 1 The d-dimensional oriented Grassmannian ˜Gn
d is the set of all oriented

d-dimensional linear subspaces of R
n .

The oriented Grassmannian is a compact manifold of dimension d(n − d) which can
be identified to the quotient SO(n)/(SO(d)× SO(n−d)). It is also a double cover of
the (non-oriented) Grassmannian Gn

d of d-dimensional subspaces of R
n . For practical

purposes, a more convenient representation of ˜Gn
d is the one detailed in the following

remark.

Remark 1 Given T ∈ ˜Gn
d , there exists a basis {ui }i=1,...,d ∈ R

n×d of T such that
[u1, · · · , ud ] has consistent orientation with T . Then, the following map, called the
oriented Plücker embedding, is well defined and injective,

iP : ˜Gn
d �→ {ξ ∈ Λd(Rn) : |ξ | = 1}
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T �→ u1 ∧ · · · ∧ ud
|u1 ∧ · · · ∧ ud | .

This allows to identify ˜Gn
d as a subset of the unit sphere of Λd(Rn) which inherits the

topology of the inner product onΛd(Rn). We remind that this inner product is defined
for any ξ = ξ1 ∧ . . . ∧ ξd , η = η1 ∧ . . . ∧ ηd in Λd(Rn) by the determinant of the
Gram matrix:

〈ξ, η〉 = det(ξi · η j )i, j=1,...,d (1)

Through this identification, one can also define the action of linear transformations on
˜Gn
d as follows

M · T := Mu1 ∧ · · · ∧ Mud
|Mu1 ∧ · · · ∧ Mud | (2)

for any T ∈ ˜Gn
d and M : R

n �→ R
n a linear invertible map.

Similar to the definition of classical varifolds in [48], we define oriented varifolds
as measures on R

n × ˜Gn
d .

Definition 2 An oriented d-varifold μ on R
n is a nonnegative finite Radon measure

on the space R
n × ˜Gn

d . Its weight measure |μ| is defined by |μ|(A) := μ(A × ˜Gn
d)

for all Borel subset A of R
n . We denote by Vd the space of all oriented d-varifolds.

In the rest of the paper, with a slight abuse of vocabulary, we will often use the word
varifold instead of oriented varifold for the sake of concision.Recall that from theRiesz
representation theorem, we can alternatively view any varifoldμ as a distribution, i.e.,
an element of the dual space C0(R

d × ˜Gn
d)

∗, where C0(R
d × ˜Gn

d) denotes the set
of continuous functions vanishing at infinity on R

d × ˜Gn
d . It is defined for any test

function ω ∈ C0(R
d × ˜Gn

d) by:

(μ|ω)
.=
∫

Rn×˜Gn
d

ω(x, T )dμ(x, T ). (3)

As an additional note, another useful representation of a general varifold in Vd can be
obtained by the disintegration theorem (see [4] Chap. 2). Namely, if μ ∈ Vd , for |μ|-
almost every x in R

n , there exists a probability measure νx on ˜Gn
d such that x �→ νx

is |μ|-measurable and we can write

(μ|ω) =
∫

Rn

∫

˜Gn
d

ω(x, T )dνx (T )d|μ|(x). (4)

In other words, the varifoldμ can be decomposed as its weight measure onR
n together

with a family of tangent space probability measures on the Grassmannian at the dif-
ferent points in the support of |μ|. This is usually referred to as the Young measure
representation of μ.
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2.2 Diracs and Rectifiable Varifolds

There are a few important families of varifolds which will be relevant for what will
follow. First of those are the Diracs. For x ∈ R

n and T ∈ ˜Gn
d , the associated Dirac

varifold δ(x,T ) acts on functions of C0(R
n × ˜Gn

d) by the relation

(δ(x,T )|ω) = ω(x, T ), ∀ω ∈ C0(R
n × ˜Gn

d).

δ(x,T ) can be viewed as a singular particle at position x that carries the oriented d-plane
T .

A second particular class is the one of rectifiable varifolds, which are in essence
the varifolds representing an oriented shape of dimension d. More precisely, given an
oriented d-dimensional submanifold X of R

n of finite total d-volume, denoting by
TX (x) ∈ ˜Gn

d the oriented tangent space at x ∈ X , one can associate to X the varifold
μX , which is defined for all Borel subset B ⊂ R

n × ˜Gn
d by μX (B) = Hd({x ∈

X |(x, TX (x)) ∈ B}). Here, Hd is the d-dimensional Hausdorff measure on R
n , i.e.,

the measure of d-volume of subsets of R
n (we refer the reader to [48] for the precise

construction and properties of Hausdorff measures). It is then not hard to see that, as
an element of C0(R

n × ˜Gn
d)

∗,

(μX |ω) =
∫

Rd×˜Gn
d

ω(x, T )dμX (x, T )

=
∫

X
ω(x, TX (x))dHd(x). (5)

Such a representation X �→ μX can be extended to slightly more general objects
known as oriented rectifiable sets. A subset X of R

n is said to be a countably Hd -
rectifiable set if Hd(X \ ∪∞

j=1Fj (R
d)) = 0, where Fj : R

d �→ R
n are Lipschitz

function for all j (c.f. [48]). We say that (X , TX ) is an oriented rectifiable set if X
is a countably d-rectifiable set and TX : X �→ ˜Gn

d is a Hd -measurable function such
that for Hd − a.e. x ∈ X , TX (x) is the approximate tangent space of X at x with
specified orientation. Rectifiable subsets include both usual submanifolds but also
piecewise smooth objects like polyhedra. Given any oriented rectifiable set (X , TX ),
we can associate a varifold that we also write μX given again by (5). The set of those
μX will be referred to as the rectifiable oriented varifolds in this paper (note that this
is actually more restrictive than the standard definition of rectifiable varifold in the
literature which also incorporates an additional multiplicity function).

Remark 2 Rectifiable varifolds still make a very “small” subset of Vd : indeed, in the
Youngmeasure representation of (4), we have in this case the very particular constraint
that probability measures νx are Dirac masses, specifically νx = δTX (x).

123



Foundations of Computational Mathematics

3 Metrics on Varifolds

In this section, we address the issue of defining adequatemetrics on the spaceVd . After
reviewing some classical metrics and their limitations for the specific applications of
this work, we turn to metrics defined through positive definite kernels, for which we
extend previous constructions introduced in, e.g., [18,37] and derive the most relevant
properties of this class of distances.

3.1 Standard Topologies andMetrics onVd

As a measure/distribution space, Vd can be equipped with various topologies and
metrics, several of which have been regularly used in various contexts. We discuss a
few of those below.

• Mass norm: with the previous identification of measures in Vd with elements of
the dual C0(R

n × ˜Gn
d)

∗, one can define the following dual metric on Vd :

dop(μ, ν)
.= sup

|ω|∞≤1
(μ − ν|ω), ∀μ ∈ Vd . (6)

where |ω|∞ .= sup
Rn×˜Gn

d
|ω|. This metric is generally too strong for applications

in shape analysis and leads to a discontinuous behavior. Indeed, one can easily
verify that for any two Dirac masses δ(x,T ) and δ(x ′,T ′), dop(δ(x,T ), δ(x ′,T ′)) = 2
whenever (x, T ) �= (x ′, T ′).

• Weak-* topology: a sequence of d-varifolds {μi }i converges to μ ∈ Vd in the

weak-* topology (denoted by μi
∗
⇀μ) if and only if for all ω ∈ Cc(R

d × ˜Gn
d)

(continuous compactly supported function)

lim
i→∞(μi |ω) = (μ|ω). (7)

In fact, the weak-* topology on Vd can be metrized by the following distance:

d∗(μ, ν) =
∑

k∈N
2−k |(μ − ν|ωk)|,

where {ωk}k∈N is a dense sequence in Cc(R
n × ˜Gn

d).• Wasserstein metric: the Wasserstein-1 distance of optimal transport can be
expressed in its Kantorovich dual formulation [52] as

dWass1(μ, ν)
.= sup

Lip(ω)≤1
|(μ − ν|ω)|. (8)

where the sup is taken over all Lipschitz regular functions on R
n × ˜Gn

d with Lips-
chitz constant smaller than one. This metric is, however, well suited for measures
with the same total mass. Several recent works [20,44] have instead proposed
generalized Wasserstein distances derived from unbalanced optimal transport.
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• Bounded Lipschitz metric: similar to the previous, the bounded Lipschitz distance
(sometimes referred to as the flat metric) on Vd is defined by

dBL(μ, ν)
.= sup

‖ω‖∞,Lip(ω)≤1
|(μ − ν|ω)|. (9)

It can be shown (cf. Ch 8 in [11]) that dBL metrizes the narrow topology on Vd ,
namely the topology for which a sequence (μi ) converges to μ if and only if
limi→∞(μi |ω) = (μ|ω) for all bounded continuous functions ω.

Clearly, the narrow topology is stronger than the weak-* topology. Furthermore, it
is also well known that dBL locally metrizes the weak-* topology on Vd , namely:

Proposition 1 Letμ and {μi }i be varifolds such that the sequence {μi }i is tight. Then,
μi

∗
⇀μ if and only if dBL(μi , μ) → 0.

Proof Since dBL metrizes the narrow topology, it suffices to show thatμi converges to
μ in the narrow topology. Letω be a bounded continuous function defined onR

n ×˜Gn
d

and ε > 0. By the tightness property, we may choose a compact set K ⊂ R
n × ˜Gn

d
such that μ(Kc) + supi μi (Kc) < ε/2‖ω‖∞. Let B be an open ball that contains K .
Define

η(x, T )
.=
{

ω(x, T ), if (x, T ) ∈ K
0, if (x, T ) ∈ Bc

From Tietze extension theorem, there exists a continuous extension ω̃ of η onR
n ×˜Gn

d
such that ω̃|K = ω|K and ω̃ ∈ Cc(R

n × ˜Gn
d). This implies that

∣

∣

∣

∣

∣

∫

Rn×˜Gn
d

ωd(μi − μ)

∣

∣

∣

∣

∣

≤
∫

Rn×˜Gn
d

|ω − ω̃|d(μi + μ) +
∣

∣

∣

∣

∣

∫

Rn×˜Gn
d

ω̃d(μi − μ)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∫

Rn×˜Gn
d

ω̃d(μi − μ)

∣

∣

∣

∣

∣

+ ε.

Taking lim sup on both sides, we see that

lim sup
i→∞

∣

∣

∣

∣

∣

∫

Rn×˜Gn
d

ωd(μi − μ)

∣

∣

∣

∣

∣

< ε.

Since ε is arbitrary, we obtain that μi converges to μ in the narrow topology. ��
As a direct consequence of Proposition 1, we have in particular that weak-* con-
vergence and convergence in dBL are equivalent if one restricts to varifolds that are
supported in a fixed compact subset of R

n × ˜Gn
d . Note also that a very similar result

to Proposition 1 holds when replacing the bounded Lipschitz distance by generalized
Wasserstein metrics, as proved in [44].
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The abovemetrics on varifolds all originate from classical ones in standardmeasure
theory. Unlike the mass norm, Wasserstein and bounded Lipschitz metrics have nice
theoretical properties in terms of shape comparison. However, for the purpose of
diffeomorphic registration that we shall tackle below, one needsmetrics that are easy to
evaluate numerically. This is typically not the case of dWass1 and dBL expressed above
as there is no straightforward way to compute the corresponding suprema over the
respective sets of test functions. One line ofwork has been considering approximations
of optimal transport distances with, e.g., entropic regularizers for which Sinkhorn-
based algorithms can be derived, see, for instance, the recent work [26]. In this paper,
we focus on the alternative approach previously developed for currents in [27] and
unoriented varifolds in [18] which instead relies on particular Hilbert spaces of test
functions, as we detail in the next section.

3.2 Kernel Metrics

In this section, we start by defining a general class of pseudo-metrics on Vd based
on positive definite kernels and their corresponding reproducing kernel Hilbert space
(RKHS). We will then study sufficient conditions on such kernels to recover true
metrics before examining the relationship between those kernel metrics and the ones
of Sect. 3.1.

3.2.1 Kernels for Varifolds

We refer the reader to [8,33,39] for a presentation of the construction andmain proper-
ties of positive kernels and Reproducing Kernel Hilbert Spaces which we do not recall
in detail here for the sake of concision. In the context of varifolds, we are interested in
defining positive definite kernels on the product Rn × ˜Gn

d . Along the lines of previous
works like [18,37], we restrict to separable kernels for which we have:

Proposition 2 Let k pos and kG be continuous positive definite kernels on R
n and ˜Gn

d,
respectively. Assume in addition that for any x ∈ R

n, k pos(x, ·) ∈ C0(R
n). Then,

k := k pos ⊗ kG is a positive definite kernel on R
n × ˜Gn

d and the RKHS W associated
with k is continuously embedded in C0(R

n × ˜Gn
d), i.e., there exists cW > 0 such that

for any ω ∈ W, we have ‖ω‖∞ ≤ cW‖ω‖W .

We recall that the tensor product kernel has the exact expression k((x, T ), (x ′, T ′)) =
k pos(x, x ′)kG(T , T ′). The proof of Proposition 2 is a straightforward adaptation of
the same result for unoriented varifolds (cf. [18] Proposition 4.1).

Remark 3 To simplify the rest of the presentation and in the perspective of later numeri-
cal considerations,wewill also assume specific forms for k pos and kG , namely that k pos

is a translation/rotation invariant radial kernel k pos(x, y) = ρ(|x − y|2), ∀x, y ∈ R
n ,

with ρ(0) > 0, and kG(S, T ) = γ (〈S, T 〉), ∀S, T ∈ ˜Gn
d where 〈·, ·〉 is the inner

product on ˜Gn
d inherited from Λd(Rn) introduced in Remark 1. These assumptions

are quite natural as they will eventually induce metrics on varifolds invariant to the
action of rigid motion, as we shall explain later. Note that the unoriented framework of
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[18] can be also recovered in this setting by simply restricting to orientation-invariant
kernels kG , i.e., such that γ (−t) = γ (t) for all t .

Now, if we let ιW : W ↪→ C0(R
d × ˜Gn

d) be the continuous embedding given by
Proposition 2 and ι∗W its adjoint, for any μ ∈ C0(R

n × ˜Gn
d)

∗, we have

(ι∗Wμ|ω) =
∫

Rd×˜Gn
d

ω(x, T )dμ(x, T ), ∀ω ∈ W . (10)

With (10), we may identify μ as an element of the dual RKHS W ∗. Note that ι∗W is
not injective in general, in other words one can have μ = μ′ in W ∗ but μ �= μ′ in
C0(R

n × ˜Gn
d)

∗.
In any case, one can compare any two varifolds μ,μ′ ∈ Vd through the Hilbert

norm of W ∗ by defining:

dW ∗(μ,μ′)2 = ‖μ − μ′‖2W ∗ = ‖μ‖2W ∗ − 2〈μ,μ′〉W ∗ + ‖μ′‖2W ∗ (11)

where we use the small abuse of notation of writingμ andμ′ instead of ι∗Wμ and ι∗Wμ′
on the two right hand sides. Due to the potential non-injectivity of ι∗W , in general dW ∗
only induces a pseudo-metric on Vd .

Themain advantage of this construction is that dW ∗ can be expressedmore explicitly
based on the reproducing kernel property of W . Indeed, given any μ and ν in Vd , the
inner product between them is given by

〈μ,μ′〉W ∗ =
∫

(Rd×˜Gn
d )2

k pos(x, x ′)kG(T , T ′)dμ(x, T )dμ′(x ′, T ′)

=
∫

(Rd×˜Gn
d )2

ρ(|x − x ′|2)γ (〈T , T ′〉)dμ(x, T )dμ′(x ′, T ′) (12)

for kernels selected as in Remark 3.

3.2.2 Characterization of Distances

Asmentioned above, dW ∗ is a priori a pseudo-distance between varifolds. It is a natural
question to ask under which conditions it leads to an actual distance.

Most past works have addressed this question focusing on the case of varifolds
representing submanifolds and reunion of submanifolds [18,37]. We can first provide
an extension of these results to the general case of oriented rectifiable varifolds. A key
notion for the rest of this section is the one of C0-universality of kernels:

Definition 3 A positive definite kernel k on a metric space M is called C0-universal
when its RKHS is dense in C0(M) for the uniform convergence topology.

C0-universality has been studied in great length in such works as [14,50]. In particular,
one can provide characterizations of C0-universality for certain classes of kernels and
spaces M. In the case of translation-invariant kernels on M = R

n for instance, it
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has been established that C0-universal kernels are the ones which can be expressed
through the Fourier transform of finite Borel measures with full support on R

n , which
includes: compactly-supported kernels, Gaussian kernels, Laplacian kernels.... With
the previous definition, we have the following sufficient condition:

Theorem 3 Suppose k pos is a C0-universal kernel on R
n, γ (1) > 0 and γ (t) �=

γ (−t), ∀t ∈ [−1, 1]. Let (X , T (·)) and (Y , S(·)) be two oriented Hd-rectifiable
sets with Hd(X), Hd(Y ) < ∞. If ‖μX − μY ‖W ′ = 0, then Hd(X � Y ) = 0 and
T = S Hd-a.e.

The full proof can be found in Appendix. Note that the first part of the proof directly
gives an equivalent statement for unoriented rectifiable varifolds (if one instead
assumes γ (t) = γ (−t) for all t), generalizing the result of [18].

However, the previous proposition does not necessarily lead to a distance on the
full space Vd . Counter-examples in the case d = 1 are discussed, for example, in [34].
To recover a true distance on Vd , one needs the previous map ι∗W or equivalently the
map

μ �→
∫

Rd×˜Gn
d

k(·, (y, T ))dμ(y, T ), μ ∈ C0(R
d × ˜Gn

d)
∗ (13)

to be injective. As follows from Theorem 6 in [50], this is in fact guaranteed when the
kernel k on the product space R

n × ˜Gn
d is C0-universal, specifically

Theorem 4 The pseudo-distance dW ∗ induces a distance between signed measures
of R

n × ˜Gn
d if and only if k is C0-universal on R

n × ˜Gn
d. In particular, a sufficient

condition for dW ∗ to be a distance on Vd is that k pos and kG are C0-universal kernels
on R

n and ˜Gn
d, respectively.

Note that these conditions are more restrictive than in Theorem 3. To our knowl-
edge, there is no simple characterization for general C0-universal kernels on the
Grassmannian. However, within the setting of Remark 3, one easily constructs C0-
universal kernels by restriction (based on the Plücker embedding) of C0-universal
kernels defined on the vector space Λd(Rn).

3.2.3 Comparison with Classical Metrics

We now study more precisely the topology induced by the (pseudo) distance dW ∗ on
Vd in comparison with the ones defined in Sect. 3.1. First of all, we observe that, for
any ω ∈ W with ‖ω‖W ≤ 1, one must have ‖ω‖∞ ≤ cW , where cW is the embedding
constant of Proposition 2. Thus, for any μ and μ′ in Vd , we have

‖μ − μ′‖W ∗ = sup
ω∈W , ‖ω‖W≤1

∫

Rd×˜Gn
d

ω d(μ − μ′) ≤ cWdop(μ,μ′). (14)

From the above inequalities, we see that convergence in dop implies convergence in
dW ∗ .
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Remark 4 With more assumptions on the regularity of the kernel k, namely if W is
continuously embedded in C1

0(R
d × ˜Gn

d), following a similar reasoning as above, one
obtains the bound ‖μ − μ′‖W ∗ ≤ cWdBL(μ,μ′).

Suppose μi converges to μ in narrow topology. Since the map (ν1, ν2) �→ ν1 ⊗ ν2
is continuous with respect to the narrow topology, we have

‖μi‖2W ∗ =
∫

(Rd×˜Gn
d )2

k((x, S), (y, T ))dμi (x, S)dμi (y, T )

→
∫

(Rd×˜Gn
d )2

k((x, S), (y, T ))dμ(x, S)dμ(y, T )

= ‖μ‖2W ∗ ,

as i → ∞. Also, it’s clear that limi→∞〈μi , μ〉W ∗ → ‖μ‖2W ∗ and hence μi → μ with
respect to dW ∗ . To summarize the discussion above:

Proposition 5 Let {μi }i andμ be varifolds inVd and assume thatμi → μwith respect
to the operator norm or the narrow topology, then μi → μ in W ∗.

Remark 5 We emphasize that the result of Proposition 5 only requires the assumptions
of Proposition 2 and thus holds whether ι is injective or not.

As for the weak-* topology, with the C0-universality assumption of Theorem 4 and
restricting to varifolds with bounded total mass, we show that dW ∗ induces a topology
stronger than weak-* convergence:

Proposition 6 If k is C0-universal, then the topology induced by dW ∗ is finer than the
weak-* topology on Vd,M

.= {μ ∈ Vd s.t |μ|(Rn) ≤ M} for any fixed M > 0.

Proof Let {μi }i and μ be varifolds in Vd,M and assume that limi→∞ dW ∗(μi , μ) = 0.
For any f ∈ C0(R

d×˜Gn
d) and ε > 0, there exists a g ∈ W such that ‖g− f ‖ < ε/2M .

Then, we obtain that μi
∗
⇀μ from the following inequalities:

|(μi − μ| f )| ≤ |(μi | f − g)| + |(μ|g − f )| + |(μi − μ|g)| ≤ ε + ‖μi − μ‖W ∗‖g‖W .

��
Note that the topology induced by dW ∗ may be strictly finer on Vd,M . Indeed,

if ρ(0), γ (1) > 0, consider μi = δ(xi ,S), where limi→∞ |xi | = ∞ and S ∈ ˜Gn
d

fixed. Then μi
∗
⇀0 while ‖μi‖2W ∗ = ρ(0)γ (1) > 0 for all i . Yet, by combining

Propositions 1, 5 and 6, we have the following

Corollary 1 Let M > 0 and K ⊂ R
n × ˜Gn

d be a compact subset. If k is C0-
universal, then dW ∗ metrizes the weak-* convergence of varifolds on Vd,M,K

.= {μ ∈
Vd s.t |μ|(Rn) ≤ M, supp(μ) ⊂ K }.
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In summary, C0-universality provides a sufficient condition to obtain actual
distances between varifolds that can be expressed based on the kernel function. Fur-
thermore, the resulting topology is locally equivalent to the weak-* topology as well
as the topology induced by the bounded Lipschitz distance. This equivalence will be
of importance in Sect. 5.

4 Deformation and Registration of Varifolds

Having defined a way of comparing general varifolds through the above kernel metrics
dW ∗ , our goal is now to focus on deformation models for those objects in order to
formulate and study the diffeomorphic registration problem on Vd .

4.1 DeformationModels

In this section, we discuss different models of how varifolds can be transported by a
diffeomorphism of R

n , in other words what are possible group actions of the diffeo-
morphism group Diff(Rn) on Vd .

Let us start by considering the case of an oriented rectifiable subset (X , TX ). A
diffeomorphism φ ∈ Diff(Rn) transports (X , TX ) as

φ · (X , TX )
.= (φ(X), Tφ(X)),

where the transported orientation map writes

Tφ(X)(y)
.= dφ−1(y)φ · TX (φ−1(y))

the above term being well defined from (2). This suggests introducing the following
pushforward action on Vd , which is defined for all μ ∈ Vd and φ ∈ Diff(Rn) by:

(φ#μ|ω)
.=
∫

Rd×˜Gn
d

ω(φ(x), dxφ · T )JTφ(x)dμ(x, T ) (15)

in which JTφ(x) denotes the determinant of the Jacobian of φ along T (i.e., the change
of d-volume induced by φ along T at x) which is given by

JTφ(x) = det
(

(dxφ(ei ) · dxφ(e j ))i, j=1,...,d
)

for (e1, . . . , ed) an orthonormal basis of T . One easily verifies that (φ, μ) �→ φ#μ

defines a group action which commutes with the action on oriented rectifiable sets,
namely

Proposition 7 For any oriented rectifiable set (X , TX ) and diffeomorphism φ ∈
Diff(Rn), φ#μX = μφ(X).

This follows from the area formula for integrals over rectifiable sets, c.f. [48] Chapter
2.
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Remark 6 This pushforward action also extends the diffeomorphic transport of mea-
sures with densities on R

n . Indeed, if μ = θ(x).Ln with θ a measurable density
function on R

n and Ln the Lebesgue measure, we can extend μ to a 0-varifold in
V0 by taking a constant global orientation in ˜G0

n = {±1}. Then, for any orientation-
preserving diffeomorphism φ, one shows by a change of variable that (15) becomes in
this case:φ#μ = |Jφ−1(x)|θ◦φ−1(x)·Ln with Jφ−1(x) the full Jacobian determinant
of φ−1, leading to the usual action on densities φ · θ(x) = |Jφ−1(x)|θ ◦ φ−1(x).

However, in contrast to past works on submanifold registration, this is not the only
possible group action that could be considered on the space Vd . For instance, one can
define another action by removing the above volume change term, taking instead

(φ∗μ|ω) :=
∫

Rd×˜Gn
d

ω(φ(x), dxφ · T )dμ(x, T ).

This normalized action has the property of preserving the total mass of the varifold,
i.e.,

|φ∗μ|(Rn) = |μ|(Rn), ∀μ ∈ Vd and φ ∈ Diff(Rn).

Although this action is not consistent with the action on rectifiable sets as in Propo-
sition 7, this model may be more adequate in applications to certain types of data in
which mass preservation is natural.

We refer the interested reader to [34] for amore in depth discussion on the properties
(orbits, isotropy subgroups...) of these group actions in the simpler case of 1-varifolds.
In the rest of the paper, we will restrict ourselves to the pushforward action model of
(15), although we expect the following derivations to adapt to other cases as well,
which precise study is for now left as future work.

4.2 The Diffeomorphic Registration Problem

With the group action defined above, we are now ready to introduce the mathematical
formulation of the diffeomorphic registration problem for general varifolds in Vd .
As deformation model, we will rely on the large deformation diffeomorphic metric
mapping (LDDMM) setting mentioned in Introduction.

Let us briefly sum up the basic construction of LDDMM,which details can be found
in [10,53]. In this framework, deformations consist of diffeomorphisms generated by
flowing time-dependent vector fields. Let V be a fixed RKHS of vector fields on
R
n and L2([0, 1], V ) be space of time dependent velocity fields v such that for all

t ∈ [0, 1], vt belongs to V . The flow map t �→ ϕv
t is defined for all t ∈ [0, 1] by

ϕv
0 = id and the ODE ϕ̇v

t = vt ◦ ϕv
t . If V is continuously embedded in C1

0(R
n, R

n),
one can show that for all t , ϕv

t is a C1-diffeomorphism of R
n . Moreover, on the

subgroup DiffV = {ϕv
1 | v ∈ L2([0, 1], V )} of Diff(Rn), one can define the following

right-invariant Riemannian metric:

dGV (id, φ) = inf

{∫ 1

0
‖vt‖2V dt | ϕv

1 = φ

}
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Let us now consider a source (or template) varifold μ0 ∈ Vd as well as a target
μtar ∈ Vd . With the above deformation model and metric, registering μ0 to μtar

consists in finding a deformation φ that minimizes dGV (id, φ) with the constraint that
φ#μ0 is close to μ1 in the sense of a kernel metric ‖ · ‖W ∗ defined in Section 3.2. This
can be reformulated as the following optimal control problem:

argmin
v∈L2([0,1],V )

{

E(v) = 1

2

∫ 1

0
‖vt‖2V dt + λ‖μ(1) − μtar‖2W ∗

}

(16)

with v being the control, E the total cost and the state equation is given by μ(t)
.=

(φv
t )#μ0 for the pushforward model. The first term in (16) is the regularization term

that constrains the regularity of the estimated deformation paths. The second term
measures the similarity between the deformed varifold μ(1) and the target varifold
μtar . λ is a weight parameter between the regularization and fidelity terms. Note that
this is consistentwith the generic inexact registration problem formulation in LDDMM
that was proposed for objects like images, landmarks, submanifolds....

The well-posedness of the optimal control problem (16) holds under the following
assumptions:

Theorem 8 If V is continuously embedded in C2
0 (R

n, R
n), W is continuously embed-

ded in C1
0(R

n × ˜Gn
d) and supp(¯0) ⊂ K, for some compact subset K of Rn × ˜Gn

d, then
there exists a global minimizer to the problem (16).

The proof is similar to previous results of the same type on rectifiable currents and
varifolds. We give it in Appendix for the sake of completeness.

Remark 7 One can derive necessary and sufficient conditions on the kernels of W
and V for the two embedding assumptions of Theorem 8 to hold (see, for instance,
Theorem 2.11 in [39]). In our context, in order to getW ↪→ C1

0(R
n×˜Gn

d) for instance,
it is enough to assume that ρ and γ are C2 functions such that all derivatives of ρ up
to order 2 vanish as x → +∞.

As an important note, the formulation of (16) extends registration of submanifolds
or rectifiable subsets in the sense that if μ0 = μX0 and μtar = μXtar for two oriented
d-rectifiable subsets of R

n then (16) becomes equivalent, thanks to Proposition 7, to
registering rectifiable subsets, i.e., to the problem

argmin
v∈L2([0,1],V )

{

1

2

∫ 1

0
‖vt‖2V dt + λ‖μX(1) − μXtar ‖2W ∗

}

with X(t) = ϕv
t · X0, which is the setting of many past works as, for instance, [18,27,

37].

4.3 General Optimality Conditions

A last important question we address in this section is the derivation of necessary
optimality conditions for the solutions of (16). In standard finite-dimensional optimal
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control problems, these are provided by the Pontryagin maximum principle (PMP)
introduced originally in [45]. The approach generalizes, with a certain number of
technicalities, to a broad class of infinite-dimensional shape matching problems, as
developed in [7].

We follow the same setting as well as related works such as [49] by first rewriting
the above problem as an optimal control problem on diffeomorphisms, i.e.,

argmin
v∈L2([0,1],V )

{

1

2

∫ 1

0
‖vt‖2V dt + g(ϕv

1 ) | s.t. ϕ̇v
t = vt ◦ ϕv

t

}

with g(ϕv
1 )

.= λ‖(ϕv
1 )#μ0 − μtar‖2W ∗ . The state variables are now given by the defor-

mations ϕv
t which we view as elements of the Banach space B .= id + C1

0(R
n, R

n).
Let us denote, for φ ∈ Diff(Rn), ξφ : V → C1

0(R
n, R

n) the mapping v �→ v ◦ φ. We
then introduce the Hamiltonian functional H : C1

0(R
n, R

n)∗ × B × V → R defined
by:

H(p, φ, v) = (p|v ◦ φ) − 1

2
‖v‖2V (17)

where p is the costate variable which is a vector distribution of C1
0(R

n, R
n)∗ and

(p|v ◦ φ) denotes the duality bracket in C1
0(R

n, R
n)∗. With the assumptions of

Theorem 8, it follows from the maximum principle shown in [7] that if (vt , ϕ
v
t ) is

a global minimum of the optimal control problem, there exists a path of costates
p ∈ H1([0, 1],C1

0(R
n, R

n)∗) such that the following equations hold:

⎧

⎨

⎩

ϕ̇v
t = ∂pH(pt , ϕv

t , vt )

ṗt = −∂φH(pt , ϕv
t , vt )

∂vH(pt , φv
t , vt ) = 0

(18)

with the end time boundary conditions p1 = −∂φg(ϕv
1 ). From the last equation in (18),

we can attempt to deduce the form of the optimal v. Introducing the Riesz isometry
operator KV : V ∗ → V and its inverse LV = K−1

V : V → V ∗, we get:

ξ∗
ϕv
t
pt − LV vt = 0 ⇒ vt = KV ξ∗

ϕv
t
pt . (19)

One additional consequence of (18) is the following conservation of momentum
again proved in [7]: for all u ∈ C1

0(R
n, R

n) and t ∈ [0, 1],

(pt |dϕv
t u) = (p0|u). (20)

Note that (18), (19) and (20) are generic to the LDDMMmodel and so far independent
of the nature of the deformed objects and of the term g(ϕv

1 ) in the cost. This dependency
is entirely encompassed by the boundary condition p1 = −∂φg(ϕv

1 ) which we may
describe a little more precisely based on the following:
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Proposition 9 The end-time momentum p1 is a vector distribution in C1
0(R

n, R
n)∗ of

the form

(p1|u) =
∫

Rn
α(x) · u(x) d|μ0|(x)

+
∫

Rn×˜Gn
d

β(x, T )du|T (x) dμ0(x, T )

+
∫

Rn×˜Gn
d

γ (x, T )divT u(x) dμ0(x, T )

where α : R
n → R

n, β : R
n ×˜Gn

d → (Rn×d)∗ and γ : R
n ×˜Gn

d → R are continuous
fields and for all T ∈ ˜Gn

d , divT u and du|T denote the divergence and differential of u
restricted to T .

A condensed proof of this proposition can be found in Appendix, although we have
left aside the technical derivations related to differential calculus on the Grassmannian
(this will be discussed further in Sect. 6 in the discrete setting). This result extends in a
wayfirst variation formulas for varifolds proved in [15,18]which considered variations
of rectifiable varifolds resulting from variations of the underlying rectifiable sets. This
corresponds to the special case in which μ0 = μX0 . In that case, one can show, after
some derivations, that the above expression of p1 can be rewritten in the form of
a vector distribution u �→ ∫

ϕv
1 (X0)

u(x) · h(x)dHd in C0
0 (R

n, R
n)∗ with vectors h(x)

normal toϕv
1 (X0) at each x . In ourmore general situation, this is, however, not possible

and p1 is a priori a distribution that involves first-order derivatives of the test function
u.

Now, the conservation law of (20) gives that for all t ∈ [0, 1],

(pt |dϕv
t u) = (p1|dϕv

1u) = (p0|u).

Using the expression of p1 in Proposition 9, and grouping all zeroth- and first-order
terms in the resulting expressions, we may write pt in the general form:

(pt |u) =
∫

Rn×˜Gn
d

αt (x, T ) · u(x) dμ0(x, T ) +
∫

Rn×˜Gn
d

Bt (x, T )dxu|T dμ0(x, T )

where αt : R
n × ˜Gn

d → R
n and Bt : R

n × ˜Gn
d → (Rn×d)∗ are continuous fields,

with α1(x, T ) = α(x) and B1(x, T )du|T (x) = β(x, T )du|T (x) + γ (x, T )divT u(x).
Furthermore, optimal vector fields satisfy vt = KV ξ∗

ϕv
t
pt and we have

(ξ∗
ϕv
t
pt |u) =(pt |u ◦ ϕv

t )

=
∫

Rn×˜Gn
d

αt (x, T ) · u(ϕv
t (x)) dμ0(x, T )

+
∫

Rn×˜Gn
d

Bt (x, T )dϕv
t (x)u|dxϕv

t ·T dμ0(x, T ).
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Denoting KV : R
n × R

n → R
n×n the reproducing kernel of V , the reproducing

kernel property implies that for all u ∈ V and x, h ∈ R
n , u(x) · h = 〈KV (x, ·)h, u〉V .

Moreover, the similar property on the kernel first-order derivatives [39] gives that for
any h, h′ ∈ R

n ,

dxu(h) · h′ = 〈∂1KV (x, ·)(h) · h′, u〉V .

Then, we rewrite the linear maps Bt as Bt (x, T )H = ∑d
i=1 bt,i (x, T ) · Hi for any

H = (H1, . . . , Hd) ∈ R
n×d and where bi (x, T ) ∈ R

n are the component vector
fields of Bt . By the above and the linearity of KV , we obtain the following general
expression for optimal vector fields

vt =
∫

Rn×˜Gn
d

KV (ϕv
t (x), ·)αt (x, T ) dμ0(x, T )

+
∫

Rn×˜Gn
d

(

d
∑

i=1

∂1KV (ϕv
t (x), ·)(dxϕv

t (ti )) · bt,i (x, T )

)

dμ0(x, T ). (21)

In contrast to LDDMM registration of submanifolds or point clouds, the expression
of optimal deformation fields involves in general both the kernel function and its first-
order derivatives. We do not explicit the vector fields α and bi at this point; it will be
specified later in the discrete setting, see Sect. 6.2.

5 Approximations by Discrete Varifolds

The previous derivations were so far conducted for completely general measures in
the space Vd which include objects of widely different natures. In the perspective of
implementing numerically the above approach, which is the subject of Sect. 6, we
first need to build an adequate discretization framework in Vd with approximation
guarantees, and even more importantly investigate the consistency of the discretized
registration problems (Theorem 13), which is the main result of this section.

5.1 Discrete Approximations

In what follows, we will consider the specific class of varifolds which can be written
as finite combinations of Dirac masses:

μ =
N
∑

i=1

riδ(xi ,Ti ), ri ∈ R+, xi ∈ R
n, Ti ∈ G̃n

d . (22)

for some N ≥ 1. Throughout this paper, varifolds of this form will be called discrete
varifolds. It is quite natural to consider this type of varifolds for the purpose of rep-
resenting discrete shapes, which has been exploited in previous works on piecewise
linear curves and surfaces. For example, if X = ⋃N

i=1 Xi is a triangulated surface, with
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Xi being themesh triangleswith specified orientations, one canwriteμX = ∑N
i=1 μXi

and for each i ∈ {1, · · · , N } approximateμXi by riδ(xi ,Ti ), where xi is the center of Xi ,
Ti the oriented plane containing Xi and ri = Hd(Xi ). This leads to the approximation
μ̃X := ∑N

i=1 riδ(xi ,di ). As proved in [37], this approximation provides an acceptable
error bound for dW ∗ :

dW ∗(μX , μ̃X ) ≤ Cte Hd(X)max
i

diam(Xi ).

The main interest of such discrete varifold approximations is that the expression of
the metric (12) becomes particularly simple to compute numerically. Indeed, given
two discrete varifolds μ = ∑N

i=1 riδ(xi ,Si ) and μ′ = ∑M
j=1 r

′
jδ(x ′

j ,T
′
j )
, we have as a

particular case of (12):

〈μ,μ′〉W ∗ =
N
∑

i=1

M
∑

j=1

rir
′
jρ(|xi − x ′

j |2)γ (〈Ti , T ′
j 〉). (23)

The above approximation scheme only applies to the case of piecewise linear shapes
given bymeshes such as polygonal curves or triangulated surfaces. In themore general
context of this work, a key issue is to construct similar discrete varifold approximations
for more general and less structured objects. Specifically, given a varifoldμwith finite
total weight, can it be approximated by discrete varifolds and will approximations
converge as N → +∞? This is the problem known as quantization, which has been
studied intensively in the case of probability measures over Euclidean spaces [31]
or manifolds [38], under specific regularity assumptions on those measures. In the
situation of varifolds, an interesting recent work on this question is [13]. The authors
prove that any rectifiable varifold with finite mass can be approximated by a sequence
of discrete varifolds for the bounded Lipschitz distance and propose a numerical
approach to approximate mean curvature measures based on discrete varifolds.

In this section, we first wish to extend approximation results to general oriented
varifolds of finite mass for both dBL and dW ∗ metrics.

Theorem 10 Let

VN
d :=

{

N
∑

i=1

riδ(xi ,Ti )|ri ∈ R+, xi ∈ R
n, Ti ∈ ˜Gn

d

}

be the (non-convex) cone of discrete varifolds with at most N Diracs. For any oriented
varifold μ ∈ Vd with |μ|(Rn) < ∞, there exists a sequence μN ∈ VN

d such that
limN→∞ dBL(μN , μ) = 0. Moreover, if μ has compact support, then we can assume
that for all N , supp(¯N) ⊂ K for some compact set K ⊂ R

n × ˜Gn
d and

dBL(μN , μ) <
C

N 1/(n+d(n−d))
,

where C is a constant that only depends on n, d and supp(¯).
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Proof Wefirst tackle the case of compactly supportedμ.Without loss of generality, we
may also assume that μ is a probability measure. Let D = n + d(n − d) and B ⊂ R

n

be a closed ball that contains supp|¯|. For brevity, we write M
.= B × ˜Gn

d . Since we
can view M as a compact D-dimensional submanifold ofR

n ×Λd(Rn) (using Plücker
embedding), M is also regular of dimension D (cf. [31]), i.e., 0 < HD(M) < ∞ and
there exist c, r0 > 0, such that

1

c
r D ≤ HD M(Br (a)) ≤ cr D, ∀a ∈ M, r ∈ (0, r0).

Given ε ∈ (0, 5r0), by the 5-times covering lemma (cf. [48]), these exists a subset
I ⊂ M , such that M ⊂ ∪x∈IBε(x) and Bε/5(x) ∩ Bε/5(y) = ∅ for all x �= y ∈ I.
Therefore,

HD(M) ≥
∑

x∈I
HD(M ∩ Bε/5(x)) ≥ |I|εD

c5D
.

We can thus obtain a partition {Ai }i=1,··· ,|I| of M from the collection {Bε(x)∩M}x∈I
which satisfies supi diam(Ai ) < ε and

|I| ≤ c5DHD(M)

εD
.

Let ri = μ(Ai ) and (xi , Ti ) ∈ Ai and define ν = ∑|I|
i=1 riδ(xi ,Ti ). For any ϕ ∈

Lip1(R
n × ˜Gn

d), with ‖ϕ‖∞ ≤ 1, we have

∣

∣

∣

∣

∣

∫

Rn×˜Gn
d

ϕ(x, T )dν −
∫

Rn×˜Gn
d

ϕ(x, T )dμ

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

∣

∣

|I|
∑

i=1

(

μ(Ai )ϕ(xi , Ti ) −
∫

Ai

ϕ(x, T )dμ

)

∣

∣

∣

∣

∣

∣

≤
|I|
∑

i=1

∫

Ai

|ϕ(xi , Ti ) − ϕ(x, T )|dμ

<

|I|
∑

i=1

εμ(Ai ) = ε.

Taking the supremum over all ω ∈ Lip1(R
n × ˜Gn

d) with ‖ϕ‖∞ ≤ 1, we obtain
dBL(μ, ν) < ε. Then, for each N ∈ N, we can choose εN = 5(CHD(M)/N )1/D and
we obtain μN ∈ VN

d such that

dBL(μ,μN ) <
5C1/D(HD(M))1/D

N 1/D

and in particular limN→+∞ dBL(μ,μN ) = 0.
Suppose now that supp(¯) is not compact: we show that for any ε > 0, there exists

a discrete varifold ν such that dBL(μ, ν) < ε. Choose a compact set K ⊂ R
n × ˜Gn

d
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such that μ(Rn × ˜Gn
d \ K ) < ε/2. From the previous case, we can find a discrete

varifold ν such that dBL(μ K , ν) < ε/2, and hence dBL(μ, ν) < ε. ��

Note that the proposition clearly holds for non-oriented varifolds as well. Another
direct consequence, thanks to Proposition 5 and Remark 4, is the following corre-
sponding statement for dW ∗ :

Corollary 2 With the assumptions from Proposition 2, one also has limN→∞ dW ∗
(μN , μ) = 0. If in addition W ↪→ C1

0(R
n × G̃n

d), an equivalent upper bound as
in Theorem 10 holds for dW ∗(μ,μN ).

We should point out that the asymptotic convergence rate given by the previous upper
bound is rather slow, especially as the dimensions d and n grow. This is, however,
under very mild assumptions on the varifold μ. We expect much better convergence
properties for certain specific classes of varifolds, for instance, assuming Ahlfors
regularity as in [38], although we leave such questions for future investigation.

5.2 Optimal Approximating Sequence

In addition to the asymptotic approximation results of the previous section, we now
want to construct such sequences of discrete approximating varifolds. Given any μ ∈
Vd and N ∈ N, a natural idea is to look for the optimal discrete varifold in VN

d
that approximates μ in terms of the metric dW ∗ . Due to the intricate structure of
the set VN

d (infinite-dimensional non-convex cone), this is far from a straightforward
problem. Several different approaches in some simpler contexts have been proposed
to circumvent this issue, which we briefly recap. One possibility is to restrict to finite-
dimensional vector spaces ofVd (e.g., generated by finite sets ofDiracs).Works such as
[23,30] for instance, which are focused on the model of currents, consider dictionaries
of Diracs defined on a predefined grid of point positions in R

n . Then, the problem
can be recast as the one of finding sparse approximations of μ in such a dictionary.
It remains a NP hard problem, but solutions can be approached either through greedy
algorithms like orthogonal matching pursuit as proposed in [23] or by considering the
L1 relaxation formulation leading to a standard convex LASSO program. Such ideas
applywell to the specific situation of currentsmainly as a result of the inherent linearity
of this model: indeed, at any iteration of a matching pursuit procedure, once the
optimal position of a Dirac is found, the corresponding direction vector and weight are
explicitly determined. This allows to limit the search over grid of points in the spatial
domain only. Unfortunately, for the general oriented varifold metrics we consider in
this paper, such a property no longer holds and, as a result, these methods would
involve very large dictionaries defined on grids on the product Rn × ˜Gd(R

n). Such an
increase in dimension makes the approach numerically impractical as soon as n ≥ 3
and d ≥ 2.Another downside is that the use of finite dictionaries and greedy algorithms
like matching pursuit is not guaranteed to give an optimal approximation of varifolds
for a given number N of Diracs. The approach we develop in this section consists
instead in directly tackling the non-convex problem of computing the projection onto
VN
d for the class of kernel metrics dW ∗ . It shares some connection with the recent work
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of [19] that considers a related problem for standard measures defined on the torus
R
n/Z

n .
Fix a varifold μ∗ ∈ Vd . For any N ∈ N, N ≥ 1, we seek μN ∈ VN

d that is closest
to μ∗ for dW ∗ , namely

μN = argmin
μ∈VN

d

‖μ − μ∗‖W ∗ (24)

By construction, if |μ|(Rn) < ∞, then Corollary 2 will imply that (μN ) converges
to μ in the metric dW ∗ . We only need to ensure that such a projection is well defined,
which is the object of the following proposition:

Proposition 11 Suppose all assumptions in Proposition 2 and Remark 3 hold. We
further assume that the functions ρ and γ defining the kernels are nonnegative. Then,
for anyμ ∈ Vd and N ∈ N, there existsμN ∈ VN

d such thatμN = argmin
ν∈VN

d

‖μ−μ∗‖W ∗

Proof Let μm = ∑N
i=1 r

m
i δ(xmi ,Tm

i ) be a minimizing sequence, KW : W ∗ �→ W be the
dual operator and f := KW (μ). Without loss of generality, we may assume that there
is a N1 ≤ N such that sup1≤i≤N1

|xmi | remains bounded and infM+1≤i≤N |xmi | tends
to ∞ as m → ∞.

Observe that sup1≤i≤N {rmi } must be bounded. If it is not bounded, then from the
assumptions that ρ, γ ≥ 0, we obtain

‖μm − μ∗‖W ∗ ≥ ‖μm‖W ∗ − ‖μ∗‖W ∗

=
√

√

√

√

N
∑

i, j=1

rmi r
m
j ρ(|xmi − xmj |2)γ (〈Tm

i , Tm
j 〉) − ‖μ∗‖W ∗

≥
√

√

√

√

N
∑

i=1

(rmi )2ρ(0)γ (1) − ‖μ∗‖W ∗ → ∞

as m → ∞, which is absurd.
Since rmi , Tm

i , f (xmi , Tm
i ) and

Am := (ρ(|xmi − xmj |2)γ (〈Tm
i , Tm

j 〉))1≤i, j≤N

are all bounded sequences of m, we may replace them by convergent subsequences;
thus, we could assume that

lim
m→∞ rmi = ri , lim

m→∞ Tm
i = Ti , lim

m→∞ f (xmi , Tm
i ) = fi , lim

m→∞ Am = A.

Since ρ ∈ C0(R), the matrix A must has the following form:

A =
(

B1 0
0 B2

)

,
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where B1 and B2 are N1-by-N1 and N−N1-by-N−N1 semi-positive definitematrices.
Combining this with the assumption f ∈ C0(R

n × ˜Gn
d), we obtain

lim
m→∞ ‖μm − μ∗‖2W ∗ = r ′T B1r ′ + r ′′T B2r ′′ − 2 f ′T r ′ + ‖μ∗‖2W ∗ ,

where r ′ = (r1, · · · , rN1), r
′′ = (rN1+1, · · · , rN ), and f ′ = ( f1, · · · , fN1). Since

sup1≤i≤N1
|xmi | is bounded, we can assume that limm→∞ xmi = xi , 1 ≤ i ≤ N1. Let

μ := ∑N1
i=1 riδ(xi ,ui ), then

‖μ − μ∗‖2W ∗ = r ′T B1r ′ − 2 f ′T r ′ + ‖μ∗‖2W ∗ ≤ lim
m→∞ ‖μm − μ∗‖2W ∗ .

Hence, μ is a minimizer. ��
However, in general this projection is not unique. We also point out that the existence
is a priori not guaranteed if kernels ρ and γ take negative values. It is so far an open
question to determine to what extent one could generalize the result of Proposition 11,
one particular but important case being the one of currentmetrics obtained for γ (t) = t
which is not covered by our result.

As written in the proof of Proposition 11, (24) is equivalent to the optimization
problem:

(ri , xi , Ti ) = argmin
(wi ,yi ,Si )

‖
N
∑

i=1

wiδ(yi ,Si ) − μ∗‖2W ∗ (25)

Any solution must satisfy first-order optimality conditions obtained by differentiating
‖μN − μ‖W ∗ with respect to the (rk, xk, Tk). In particular, we have

0 = ∂‖μN − μ∗‖2W ∗
∂rk

= 2

( N
∑

i=1

riρ(|xi − xk |2)γ (〈Ti , Tk〉) −
∫

Rn×˜Gn
d

ρ(|xk − x |2)γ (〈Tk , T 〉)dμ∗(x, T )

)

.

which gives 〈μN −μ∗, μN 〉W ∗ = 0. It shows that for any N ∈ N, ‖μN‖W ∗ ≤ ‖μ∗‖W ∗ .

5.3 0-Convergence of Registration Functionals

Ultimately, our purpose is to use the previous approximating discrete varifolds μN to
approximate the diffeomorphic registration problem (16). The natural question that
arises is whether replacing the source varifold μ0 by its projections μN in (16) still
leads to reasonable approximations (at least asymptotically) of optimal deformation
fields for the original problem. In this section, we address this by showing a Γ -
convergence property for these variational problems. We point out that our setting and
the following proof differ quite a bit from previous results of the same type that were
dealing with the specific case of surface triangulations such as [6].
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Toobtain such convergence results for solutions of variational problems, one usually
requires the approximating sequence to possess certain nice properties. Specifically,
assuming μ ∈ Vd with compact support and finite mass and {μN } ⊂ VN

d such that
limN→∞ ‖μN − μ‖W ∗ = 0, we will need that

⋃

N supp(μN ) ⊂ K for some compact
set K ⊂ R

n or that supN |μN |(Rn) < ∞. Unfortunately, this does not hold in general
since convergence in dW ∗ does not allow to control the support nor the total mass of
the sequence μN .

Yet, provided that
⋃

N supp(μN ) ⊂ K , we can actually retrieve the boundedness
of the total mass. We assume in what follows that the kernels are such that ρ(0) > 0
and γ (1) > 0.

Lemma 1 Let {μN } be a sequence of discrete varifolds with finite mass such that there
exists a compact K ⊂ R

n with supp(|¯N|) ⊂ K for all N . We assume that {‖μN‖W ∗}
is bounded. Then, {|μN |(Rn)} is bounded.
Proof We prove it by contradiction. Assume that (|μN |(Rn))N≥1 is unbounded. Then,
up to extracting a subsequence, we can assume that |μN |(Rn) → +∞. Let’s write
μN = ∑pN

i=1 ri,N δ(xi,N ,Ti,N ). Thus |μN |(Rn) = ∑pN
i=1 ri,N → +∞. Since ρ and γ are

continuous andρ(0), γ (1) > 0,we can find compact subsets A ⊂ K and B ⊂ G̃n
d with

diameters small enough, so that: infx,y∈A ρ(|x − y|2) > m > 0, infu,v∈B γ (〈u, v〉) >

m′ > 0 and limN→∞
∑

i∈IN
ri,N = ∞, where IN := {i : (xi,N , ui,N ) ∈ A × B}. It

follows that, as N → ∞,

‖μN‖2W ∗ =
pN
∑

i=1

pN
∑

j=1

ri,Nr j,Nρ(|xi,N − x j,N |2)γ (〈Ti,N , Tj,N 〉)

≥ mm′ ∑

i, j∈IN

ri,Nr j,N

= mm′
⎛

⎝

∑

i∈IN

ri,N

⎞

⎠

2

→ ∞,

which is a contradiction. ��
Lemma 1 suggests that one should enforce the uniform compactness of the supports

of the μN . To do so in the context of the projection approach of the previous sections,
we consider solving the optimization problem (24) with the additional constraint that
the support of μN stays in a compact set containing supp(|¯|). We still have to verify
the convergence of the resulting sequence:

Proposition 12 Let μ0 be a varifold with finite mass and K be a compact set in R
n

which contains supp(|¯0|). Construct the approximating sequence ofμ0 by solving the
following constrained optimization problem:

μK ,N = argmin
ν∈VN

d

‖ν − μ‖W ∗
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subject to supp(|˚|) ⊂ K.

Then, μK ,N converges to μ0 in dW ∗ and, if the kernel k is C0-universal, it also con-
verges in dBL .

Proof Thanks to Theorem 10 and Lemma 1, we immediately get that ‖μK ,N −
μ0‖W ∗ → 0 as N → ∞ and supN (|μK ,N |(Rn)) < ∞. Moreover, if k isC0-universal,

then by Proposition 6 it implies that μK ,N
∗
⇀μ0. Since

⋃

N supp(|¯K,N|) ⊂ K and
supN (|μK ,N |(Rn)) < ∞, weak-* convergence implies that μK ,N converges to μ0 in
dBL by Proposition 1. ��

We are now able to state the main result of this section. We assume that the
source/template varifold μ0 is compactly supported and we fix K is a compact
subset of R

n that contains supp(|¯0|). Then, for any N ∈ N, N ≥ 1, μK ,N is
defined as in Proposition 12 and we introduce the following energy functionals
EN : L2([0, 1], V ) → R+:

EN (v)
.= 1

2

∫ 1

0
‖vt‖2V dt + λ‖μK ,N (1) − μtar‖2W ∗

subj to

{

∂tϕ
v
t = vt ◦ ϕv

t , ϕv
0 = id

μK ,N (t) = (ϕv
t )#μK ,N

(26)

which are the equivalent to the energy E of the original problem (16) but replacing
the template varifold μ0 by its approximations μK ,N .

Theorem 13 With the above notations, we assume that the reproducing kernel k of
W is C0-universal and satisfies all the conditions of Proposition 11. We also assume
the continuous embedding V ↪→ C2

0 (R
n, R

n). Then, the sequence of functionals EN

Γ -converges to E for the weak topology on L2([0, 1], V ). Consequently, if vN is a
global minimizer of EN for each N ≥ 1, then (vN ) is bounded in L2([0, 1], V ) and
every cluster point for the weak topology of L2([0, 1], V ) is a global minimum of E.

Proof We first show that whenever vN converges to v̄ weakly in L2([0, 1], V ), we
have

E(v̄) ≤ lim inf
N→∞ EN (vN ).

Since v �→ ∫ 1
0 ‖v‖2V dt is lower semicontinuous with respect to the weak topology, we

only need to prove the following,

lim
N→∞ ‖(ϕvN

1 )#μK ,N − ϕv̄
1 · μ0‖W ∗ = 0. (27)

For all ω ∈ W with ‖ω‖W ≤ 1, we have
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∣

∣

∣

(

(ϕvN

1 )#μK ,N − (ϕvN

1 )#μ0|ω
)∣

∣

∣

=
∣

∣

∣

∣

∫

K×G̃n
d

JSϕ
vN

1 (x)ω(ϕvN

1 (x), dxϕ
vN

1 · S)d(μK ,N − μ0)

∣

∣

∣

∣

≤ C1

∫

K×G̃n
d

sup
N≥1

JSϕ
vN

1 d(μK ,N − μ0)

≤ C1

∫

Rn×G̃n
d

g(x, T )d(μK ,N − μ0),

where g ∈ Cc(R
n × G̃n

d) and supN≥1 JSϕ
vN

1 ≤ g(x, S), for all (x, S) ∈ K × G̃n
d .

Similar to the computation done in the proof of Theorem 8, we see that

∣

∣

∣

(

(ϕvN

1 )#μ0 − (ϕv̄
1 )#μ0|ω

)∣

∣

∣ ≤ C2‖(ϕvN

1 − ϕv̄
1 )|K ‖1,∞.

Taking supremum over allω ∈ W with ‖ω‖W ≤ 1, we obtain the following inequality,

‖(ϕvN

1 )#μK ,N − (ϕv̄
1 )#μ0‖W ∗ ≤ C1(μK ,N − μ0|g) + C2‖(ϕvN

1 − ϕv̄
1 )|K ‖1,∞.

From Proposition 12, μK ,N converges to μ0 in the narrow topology. Hence, the right
hand side in the equation above converges to 0 as N → ∞. This proves (27).

Second, we need to show that for each v̄ ∈ L2([0, 1], V ), there exists a sequence
vN converging to v̄ weakly such that

E(v̄) ≥ lim sup
N→∞

EN (vN ).

In fact, it suffices here to take vN to be the constant sequence vN = v̄ since, by a
similar argument to the proof of (27), it leads to

lim
N→∞ ‖(ϕv̄

1 )#μ
N − (ϕv̄

1 )# · μ‖W ∗ = 0 (28)

and thus implies that

lim sup
N→∞

EN (vN ) = lim
N→∞ EN (v̄) = E(v̄).

��

Note that we stated the result of Theorem 13 in the situation where only the source
varifoldμ0 is approximated by the projection approach that we presented in the previ-
ous sections, but one can easily extend it to the scenario inwhich both source and target
are replaced by discrete approximating sequences, the conclusion being the same in
that case.
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6 Numerical Considerations

Having introduced a variational formulation for the varifold registration problem
together with an approach for projecting onto the space of discrete varifolds with fixed
number of Diracs, we now turn more specifically to the numerical implementation of
methods for solving those problems. The first hurdle, which we start by addressing
in Sect. 6.1, is to define an adequate framework for representing and computing with
elements of the oriented Grassmannian.

6.1 Frame Representation for Metric Computation and Quantization

In order to come up with a computationally effective representation of ˜Gd(R
n) and

by extension of discrete oriented varifolds, we consider a slightly different setting
than the Plücker embedding idea of Remark 1, primarily because the dimension
of the embedding vector space Λd(Rn) may become prohibitively large in practice.
We may instead choose to represent an element T ∈ ˜Gd(R

n) by an oriented frame
(u(1), . . . , u(d)) ∈ R

n×d of independent vectors for which T = Span(u(1), . . . , u(d)).
Such a representation is of course not unique since elements of ˜Gd(R

n) are equiva-
lence classes of oriented frames, but we leave to the next section the more thorough
analysis of the additional invariances that this representation will imply.

Wewill in fact go one step further by also incorporating theweight ofDirac varifolds
in this frame representation itself, which is done as follows. Letμ be a discrete varifold
of the formμ = ∑N

i=1 riδ(xi ,Ti ). For each i , we consider a frame {u(1)
i , · · · , u(d)

i } such
that

Ti = u(1)
i ∧ · · · ∧ u(d)

i

|u(1)
i ∧ · · · ∧ u(d)

i |
and ri = |u(1)

i ∧ · · · ∧ u(d)
i |. (29)

In other words, the oriented space spanned by the frame {u(1)
i , · · · , u(d)

i } corre-
sponds to Ti , while its d-volume matches the weight ri . Given such a choice of
frame for each i , we can then identify μ with the (non-unique) state variable
q = (xi , u

(1)
i , · · · , u(d)

i )i=1,··· ,N in the vector space R
Nn(d+1). Conversely, such a

frame q with (u(1)
i , · · · , u(d)

i ) a matrix of rank k for all i , corresponds to the (unique)
discrete oriented varifold defined by the relations of (29); we will denote it by μq in
what follows.

In this representation, the kernel metrics for discrete varifolds expressed in (23)
can be explicitly written as

〈μ,μ′〉2W ∗ =
N
∑

i=1

M
∑

j=1

rir
′
jρ(|xi − x ′

j |2)γ
(

1

rir ′
j
det(u(k)

i · u′(l)
j )k,l

)

(30)

where ri = |u(1)
i ∧ · · · ∧ u(d)

i | =
√

det(u(k)
i · u(l)

i )k,l . Note that this expression does
not depend on the choice of frames that satisfy the conditions of (29) for μ (and
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similarly for μ′). In the case where μ′ is a more general non-discrete varifold in Vd ,
the computation of 〈μ,μ′〉2W ∗ involves integrals over R

n × ˜Gd(R
n) of the kernel

functions, which requires introducing specific quadrature schemes for approximating
them. We do not address those issues in more details in this work as it needs particular
discussion depending on the nature, regularity and dimension of the varifolds under
consideration. Provided such adequate quadrature schemes have been defined, theW ∗
metric then formally reduces to an expression equivalent to (30) in which the x ′

j , u
′
j

and r ′
j are now the quadrature nodes and associated weights of the scheme.

In this setting, the solution to the projection problem (24) can be computed by an
iterative descent strategy on the vector q = (xi , u

(1)
i , · · · , u(d)

i )i=1,··· ,N . The gradient
of q �→ ‖μq − μ∗‖2W ∗ can be computed by direct differentiation of expressions like

(30) with respect to the xi and u(l)
i . In practice, computations of varifold kernel met-

rics for different classes of kernels and gradients of the metrics can be conveniently
implemented with automatic differentiation pipelines. In our MATLAB implementa-
tion, we make use of the recent KeOps library [16] which allows to generate CUDA
functions for the low-level kernel sum evaluations and their automatic differentiation.
The optimization itself is done using a limited memory BFGS algorithm from the
HANSO library [43] which we typically initialize by taking a random subset of N
Diracs composing the varifold μ∗. Note that one of the main downside of this projec-
tion algorithm, in contrast to the previously mentioned approach of fixing a dictionary
and solving a convex sparse decomposition problem, is that we can provide no general
guarantees of convergence to a global minimum of (24). Results of this algorithm are
discussed in Sect. 7.2.

6.2 Discrete RegistrationModel

This frame representation also provides a convenient setting to express the diffeo-
morphism action and registration problem on discrete varifolds. Indeed, let ϕ be a
diffeomorphism of R

n and μ ∈ VN
d , the pushforward action ϕ#μ in (15) is equivalent

to the following action in the frame model:

ϕ#q := (ϕ(xi ), dxϕ(u(1)
i ), · · · , dxϕ(u(d)

i ))i=1,··· ,N .

Now, this allows us to rewrite the former infinite-dimensional optimal control problem
by considering instead the finite-dimensional state variable q ∈ R

Nn(d+1). In the next
paragraphs, we give a direct derivation of the optimality conditions in this discrete set-
ting, in order to arrive at simpler and more explicit equations than the general abstract
derivations presented in Sect. 4.3. Note that the resulting Hamiltonian equations we
obtain are eventually very similar to the ones appearing in the first-order jets model
studied in [36,49], although there are a few notable differences due to the specific extra
invariances attached to the varifold framework (c.f. [34] for a more detailed discussion
in the d = 1 case).

Following once again the Pontryagin maximum principle approach, the Hamilto-
nian for this discrete representation is given by:
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H(q, p, v)
.=

N
∑

i=1

[

pxi · v(xi ) +
d
∑

k=1

puki · dxi v(u(k)
i )

]

− 1

2
‖v‖2V (31)

with px , puk ∈ R
n denoting, respectively, the costates for the position x and frame

vector u(k) variables. The PMP then shows that optimal trajectories of the registration
problem are governed by the dynamical system:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ẋi = vt (xi )

u̇(k)
i = dxi v(u(k)

i )

ṗxi = −dxi v
T pxi −∑d

k=1 d
(2)
xi v(·, u(k)

i )T puki
ṗuki = −dxi v

T puki

(32)

while optimal vector fields v satisfy

vt (·) =
N
∑

i=1

(

K (xi (t), ·)pxi (t) +
d
∑

k=1

∂1K (xi (t), ·)(u(k)
i (t)) · puki

)

. (33)

Plugging the above expression of v with respect to (p, q) in the Hamiltonian (31)
gives the reduced Hamiltonian Hr (p, q)

.= H(p, q, v) which writes:

Hr (p, q) =1

2

N
∑

i, j=1

[

pxi · K (xi , x j )p
x
j + pxi ·

d
∑

k=1

∂1K (x j , xi )(u
(k)
j ) · pukj

+
d
∑

k=1

puki · ∂2K (x j , xi )(u
(k)
j )pxj

+
d
∑

k,l=1

puki · ∂21,2K (x j , xi )(u
(l)
j , u(k)

i )pulj

]

(34)

and (32) becomes a coupled system in the variables q and p called the reduced
Hamiltonian equations. Consequently, the set of optimal paths is entirely deter-
mined by the initial values (q(0), p(0)) and the value of the reduced Hamiltonian
Hr (p(t), q(t)) = 1

2‖vt‖2V is conserved along an optimal trajectory.
There are in addition several other conserved quantities in such a system as evi-

denced by the following lemma:

Lemma 2 For any i = 1, . . . , N, the matrix

Di (t)
.=
(

〈u(k)
i (t), pu�

i (t)〉
)

1≤k,�≤d
,

is constant in time.

123



Foundations of Computational Mathematics

Proof Using the Hamiltonian equations written above, we have for all k, l = 1, . . . , d

d

dt

(

Di (t)
)

k,�
= 〈dxi v(u(k)

i (t)), pu�

i 〉 − 〈u(k)
i , dxi v

T pu�

i 〉 = 0.

Hence, Di (t) is a constant matrix. ��
Note that, at this point, all those equations are fundamentallymodeling the deformation
of the frames {xi , (u(k)

i )} but are not yet taking into account the invariances that result
from the representation of the discrete oriented varifolds as oriented frames. Those
extra invariances can be derived from the boundary conditions of the PMP:

p(1) = −∂qg(q)|q=q(1), with g(q) = λ‖μq − μtar‖2W ∗ . (35)

As a clear consequence of (29), μq and thus g(q) are independent of the choices of
the frame vectors (u(k)

i )k=1,...,d that span the same oriented vector spaces Ti with the
same d-volumes ri . This in turn leads to a set of conditions satisfied by the different
components of the final costate p(1) and, with Lemma 2, of the full path p(t). These
are summed up by the following result:

Proposition 14 Let (q(t), p(t)) be optimal trajectory, then for all i , the matri-
ces Di (t) as defined above are constant scalar matrices. In particular, we have
puki (t) ⊥ Span({u(�)

i (t)}� �=k) for all t ∈ [0, 1], i = 1, . . . , N and k = 1, . . . , d.

This result, which proof can be found in Appendix, is particularly interesting from a
computational point of view as it allows to partly alleviate the redundancy introduced
by the frame representation of Grassmannians. Indeed, we see that the costates p(t)
actually lie in affine subspaces of R

Nn(d+1) of lower dimensions N (n+d(n−d)+1),
which is precisely the dimension of the ’true’ state space (Rn × ˜Gd(R

n) × R)N .

6.3 Registration Algorithm

Based on the optimality equations of the previous section, we can now easily design
an algorithm to solve the discrete registration problem. As mentioned earlier, optimal
trajectories are completely determined, through the Hamiltonian equations (32) and
(33), by the initial conditions q(0) = q0, which is known, and p(0). One of the
standard class of methods in optimal control, known as shooting methods, consists
in directly optimizing the cost function over p(0), which has been the approach of
choice in many past works on shape registration such as [18,49,51].We adopt a similar
strategy for our particular problem.

The main issue is to compute the gradient of the total energy E with respect to the
initial costate p(0). The regularization term being equal to Hr (p(0), q(0)) thanks to
the conservation of the reduced Hamiltonian, its gradient can be obtained by direct
differentiation of (34). The fidelity term g(q(1)), on the other hand, depends indirectly
on the initial costate p(0) via the integration of the forward reducedHamiltonian equa-
tions. As standard for this type of optimal control problems, c.f. [7,51], the gradient
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of g(q(1)) with respect to p(0) can be computed by flowing backward in time the
adjoint Hamiltonian system

Ż(t) = −dF(q(t), p(t))T Z(t) (36)

where F(q, p) = (∂pHr (p, q),−∂q Hr (p, q)), Z(t) = (q̃(t), p̃(t)) ∈ R
n × (Rn)d

the adjoint variables of the system, together with the end-time conditions q̃(1) =
−∂qg(q)|q=q(1) and p̃(1) = 0. Although being a linear system of ODEs, the adjoint
equations can be tedious to derive and implement, in particular given the rather intricate
expression of the reduced Hamiltonian function considered here. Instead, the differ-
ential appearing on the right hand side of (36) can be approximated efficiently based
on the finite difference trick proposed in [7] (Sect. 4.1). Indeed, it can be rewritten as
follows:

dF(q, p)T Z =
(

∂p(∂q Hr ) · q̃ − ∂q(∂q Hr ) · p̃
∂p(∂pHr ) · q̃ − ∂q(∂pHr ) · p̃

)

which only involves directional derivatives of the components of the function F in the
directions of q̃ and p̃. We then specifically approximate the above by centered finite
difference

dF(q, p)T Z ≈
(

α

−β

)

, with

(

α

β

)

= F(q − ε p̃, p + εq̃) − F(q + ε p̃, p − εq̃)

2ε

for some small ε > 0, which only requires at each time t two evaluations of the same
function F that appears in the forward reduced Hamiltonian equations.

With the above approach to compute the gradient with respect to p(0), the reg-
istration algorithm then consists of essentially the same steps as the aforementioned
works:
1: repeat
2: From (q(0), p(0)) compute (q(t), p(t)) by forward integration of the reduced

Hamiltonian system given by (32) and (33).
3: Compute g(q(1)) and −∂qg(q)|q=q(1).
4: Integrate backward the adjointHamiltonian equations (36) to obtain ∂p(0)g(q(1)).
5: Deduce the gradient of the full cost function with respect to p(0).
6: Update p(0).
7: until convergence
For the numerical ODE integration steps of lines 2 and 4, we use a standard RK4
scheme with regular time samples in [0, 1], where we typically take T = 15 time
steps in most of the experiments that we present in the next section. Note that one
can easily replace the RK4 scheme by even higher order or adaptive step methods
although in practice we have found this to be unnecessary for the types of ODEs
involved here. The optimization update in line 6 follows the limited memory BFGS
algorithm, specifically the implementation provided by the HANSO library [43]. One
can further take additional advantage of the dimensionality reduction provided by
Proposition 14 by restricting each of the components puki (0) to the linear subspace
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Span({u(�)
i (0)}� �=k)

⊥. Lastly, as in Sect. 6.1, all kernel summation and differentiation
operations appearing in both the varifold fidelity terms and Hamiltonian equations
are coded in CUDA using the KeOps library [16]. The full implementation of the
varifold approximation and diffeomorphic registration approach is available at https://
github.com/charoncode/Var_LDDMM together with the scripts and data of some of
the simulations presented in the next section.

7 Results

Wenowpresent some results of the previous algorithms on discrete varifolds of dimen-
sion d = 1 and d = 2. In all these experiments, we choose the deformation kernel

K of V to be a diagonal Gaussian kernel K (x, y) = exp(−|x−y|2
σ 2
V

)I d. The kernel

function ρ is a Gaussian of scale σρ . The choice of these scales is adapted to the sizes
of the shapes in each of the experiment. We will not discuss these questions more in
detail here, since this is not our main topic and it has been more thoroughly analyzed
in previous works such as [12,34,37]. The function γ is chosen, depending on the
situation, in the different classes of functions discussed in detail in [37], the main
distinction being whether the considered varifolds are rectifiable or not according to
the conditions given by Theorems 3 and 4 and whether the shapes carry a relevant ori-
entation or not. In particular, one can use γ (t) = t2 to recover an orientation invariant

fidelity metric, or γ (t) = e
− 2

σ2γ
(1−t)

which leads to an orientation sensitive distance
that satisfy the conditions of Theorem 4. All simulations are run on a desktop computer
equipped with a NVIDIA Quadro P5000 graphics card.

7.1 Diffeomorphic Registration

We start with results of registration obtained from the algorithm of Sect. 6.3. In this
section, we will mostly focus on examples involving 2-varifolds, and the reader may
refer to [34] for additional examples in the case d = 1. First, as a sanity check, we
compare our 2-varifold registration approach applied to triangulated surfaces with the
previous LDDMM mesh surface matching implementation of [18,37] using the same
kernel size parameters, in which case we expect both approaches to be theoretically
equivalent as pointed out in the last paragraph of Sect. 4.2. Shown in Fig. 1 are trian-
gulated surfaces of amygdala segmented from two different subjects of the BIOCARD
database [41], containing 563 vertices, 1122 triangles and 488 vertices, 972 triangles,
respectively. Following the simple procedure outlined at the beginning of Sect. 5.1,
we obtain discrete 2-varifolds (one Dirac for each triangle). The first row in the figure
shows the optimal deformation estimated with our approach through the evolution of
the discrete varifold of the source shape (red) to the target varifold (blue). Discrete
varifolds are here displayed in the form of tangent patches and normal vectors (instead
of 2-frames) for the purpose of better visualization. Now, the estimated vector fields vt
define a path of dense deformations of the full spacewhichwe can also apply to deform
the original triangulated surface, which we show on the second row of Fig. 1. This is
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Fig. 1 Surface registration of two amygdalas (data courtesy of S.Ardekani) using discrete varifold LDDMM
(1st and 2nd row) and surface mesh LDDMM (3rd row). The first row depicts the evolution of the deformed
tangent spaces along the geodesic. The parameters used are the same for both methods; namely a weighting
constant λ = 10 between the regularization and fidelity term, a deformation scale σV = 4.75, a scale
σρ = 3 for the spatial kernel of the fidelity term and a Gaussian function on the sphere of scale σγ = 1 for
the function γ

very comparable to the result of the surface mesh LDDMM registration approach dis-
played on the third row. In terms of computation times, the varifold registration takes
a total of 494s (0.99s per iteration of BFGS) against 92.5s (0.18s per iterations) for the
surface LDDMM algorithm. This difference comes from mainly two factors: the fact
that the numerical complexities are quadratic in the number of Diracs (i.e., triangles)
for varifold matching as opposed to the number of vertices for surface LDDMM, and
from the increased dimensionality of the Hamiltonian systems in our model.

In Fig. 2, we consider amore challenging registration scenario whichwas originally
studied in [5]. Here, one of the two shape is a triangulated surface of a heart membrane
segmented from high resolution CT imaging while the second one only consists of a
sparse set of cross-sectional curves of the heart contour obtained from lower resolution
clinical cardiac MRI data. The varifold framework of this paper leads to an alternative
registration approach to the one proposed in [5] that relies on a tailored closest point
fidelity cost for the surface to curve set comparison. In our case, we instead represent
both shapes as 2-varifolds and register them using the exact same varifold registration
algorithm as in the previous example. The triangulated surface is again associated with
a discrete 2-varifold in the same way as above. As for the set of cross-sectional curve
set, we first obtain its 1-varifold representation {xi , u(1)

i } which involve the tangent

vectors u(1)
i to the curve that passes through xi . We then complete it into a 2-varifold

by adding a second “vertical” (i.e., inter-sectional) frame vector u(2)
i , which can be

estimated in this case by simply finding the projection of xi onto the corresponding
curve in the section immediately above (note that this does involve any attempt to
estimate an actual surface mesh of the data). We show the 2-varifolds associated
with each shape in the first row of Fig. 2 and as well as the result of the 2-varifold
registration both from curve set to surface and surface to curve set. In each case, we
have again applied the estimated deformation between varifolds on the original shapes
for visualization.
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Fig. 2 Registration between two shapes of hearts of different nature. On top row: illustration of the 2-
varifolds associated with the sectional contour curves (left) for a first subject and to a triangulated surface
(right) for the second subject. In the second and third rows are shown the two results of varifold registration
of surface to contour curves and contour curves to surface, respectively

Along the same lines, we finally look into the case of even less structured data
objects. Specifically, as displayed on the first row of Fig. 3, we consider two noisy point
clouds which are obtained by first randomly selecting vertices from the groundtruth
surfaces (with replacement) and then adding some Gaussian noises (σ = 0.028) to the
position of each sampled point. A first possible registration approach could be to treat
such point clouds as standard measures of R

3 (i.e., 0-varifolds) and follow the simple
point distribution LDDMM algorithm for unlabeled point sets proposed in [28]. The
result shown on the third row of Fig. 3 illustrates the shortcomings of such a model for
this type of data. Indeed, one can see that, in the absence of any tangential information,
many details of the target shape are not well recovered. Furthermore, this point set
model is not robust to sampling changes and imbalances which results in the mis-
matches observed below the ear region. An arguably more adequate method would be
to exploit the fact that these point clouds are close to their underlying surfaces. How-
ever, due to noise and the presence of outliers, estimating triangulations of the point
clouds with standard meshing algorithms can prove particularly challenging and inef-
ficient. Instead, our approach consists in directly learning the 2-varifold structure from
the point clouds based on the geometric multi-resolution analysis (GMRA) framework
developed in [2]. Here, we fix a specific scale and GMRA then provides local parti-
tions with estimates of tangent planes to the point clouds which eventually gives us
an approximate representation as a 2-varifold illustrated on the second row of Fig. 3.
Besides its robustness and numerical efficiency, such manifold learning algorithm is
also particularly well suited for our proposed registration framework since it naturally
leads to approximations in the form of 2-varifolds (and generally not meshes). In the
last row of Fig. 3, we show the deformed point cloud resulting from the deformation
estimated by the 2-varifold registration algorithm. It obviously outperforms the direct
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Fig. 3 Registration of noisy point clouds. Top row: the source (blue) and target (red) point clouds with,
respectively, 58962 and 54834 points. Second row: illustration of the target 2-varifold obtained by GMRA
with only 512Diracs. Third row: result of direct registration of the rawpoint clouds. Bottom row: registration
estimated from the approximate 2-varifolds (Color figure online)

point cloud registration described above both in terms of quality of matching but also
computation time (10 mins vs 39 mins in total).

7.2 Approximation and Registration

In this second part, we examine some results of the varifold quantization procedure
proposed in Sect. 5, and in particular its interplay with the registration algorithm.
Specifically, we wish to numerically validate the statements of Corollary 2 and The-
orem 13. We shall consider the following protocol. Starting from a highly sampled
shape (that we treat as the groundtruth) for which the associated varifold μ0 is com-
posed of a very high number of Diracs, we compute the compressed varifolds given
by the μN of (24) for increasing values of N and evaluate the resulting quantization
error in terms of the dW ∗ metric. Then, we solve the registration problems to a fixed
target μtar from the source varifolds given by the μN in lieu of μ0, and compare
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N = 25, rel err=12.19% N = 40, rel err=1% N = 150, rel err=0.01%

N = 25 N = 40 N = 150

Fig. 4 Compression and registration of 1-varifolds. The first row shows the results of the quantization algo-
rithm on the 1-varifold associated with the source shape for different values of N ; the relative quantization
errors are plotted on the left (blue curve) and compared to the errors obtained with a uniform subsampling
scheme (green curve). The second row shows the registration results using the approximated source in the
first row. The plot on the left of the second row shows the difference to the groundtruth optimal energy when
solving the registration problem from the approximate source given by the varifold quantization (blue) and
the direct subsampling approach (green) (Color figure online)

the estimated solutions to the registration of the groundtruth. For comparison, we will
evaluate the total energy E(vN ) of the estimated deformation fields vN for the original
problem, i.e.,

E(vN ) =
∫ 1

0
‖vN

t ‖2V dt + λ‖(ϕvN

1 )#μ0 − μtar‖2W ∗ .

We shall also compare this overall approach against the alternative idea of directly
subsampling the original meshes and registering those subsampled shapes with point
set mesh LDDMM.

We begin with a 1-varifold toy example given by the curves shown in Fig. 4 from
the Kimia database. These very simple curves segmented from binary images have a
relatively high number of points to start with (368 vertices and edges). We look first
at how well they can be approximated with smaller number of Diracs through the
quantization approach described above. The upper row shows the plot of the relative
approximation error ‖μN − μ0‖W ∗/‖μ0‖W ∗ of the source curve as a function of N
(blue) as well as the same error in varifold norm when instead the curve is uniformly
subsampled (green). Consistent with the fact that varifold quantization should provide
the optimal error rate at a given N , we observe that the error is indeed smaller than
with the subsampling approach. We also display a few of the quantized μN for several
values of N . As a second step, we compute the optimal deformations from the reduced
shapes to the fixed target and compare their registration energies to the “groundtruth”
E(v∗) estimated from the full resolution source shape. The corresponding plots for
the quantization versus subsampling methods are shown on the lower row in blue and
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Source surface (42448 triangles) Target surface (50352 triangles)

Relative quantization error plot N = 65, rel err=28% N = 125, rel err=7.1% N = 375, rel err=0.07%

Fig. 5 Compression and registration of 2-varifolds. On top, the source and target triangulated surfaces. The
second row shows the results of the quantization algorithm on the 2-varifold associated with the source
shape for different values of N ; the relative quantization errors are plotted on the left (blue curve) and
compared to the errors obtained with a mesh subsampling scheme (green curve). The plot on the third row
shows the difference to the groundtruth optimal energy when solving the registration problem from the
approximate source given by the varifold quantization (blue) and the mesh subsampling approach (green)
(Color figure online)

green, respectively. It suggests again a faster convergence to the optimal energy E(v∗)
with the quantization strategy, although the difference between the two methods is
rather tenuous in this example.

Those effects can bemuchmore significant in the two-dimensional case.We empha-
size it with the triangulated heart surfaces of Fig. 5 (data courtesy of C. Chnafa, S.
Mendez and F. Nicoud, University of Montpellier). The source surface has a total of
42448 triangles leading to the same number of Diracs for the source 2-varifold μ0 and
thus compressing the representation may be in that case quite critical from a computa-
tional standpoint. Indeed, computing the groundtruth matching at full resolution takes
more than 7 hours (68s per iteration) in this case. We again compare two approaches:
our quantization algorithm applied to μ0 versus directly subsampling the triangulated
surface itself (we use here the reducepatch function in MATLAB to reduce the ini-
tial mesh to a given number of triangles). For both methods, we compute the relative
approximation error ‖μN −μ0‖W ∗/‖μ0‖W ∗ with different values of N , the number of
Diracs (resp. triangles) of the compressed varifold (resp. mesh). This is shown on the
left second row in Fig. 5. Unsurprisingly, we see that the quantization approach leads
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to a much faster decrease in the error as a function of N but that in addition we obtain
a very good approximation of μ0 with only a small fraction of the initial number of
Diracs. Some of the quantized varifolds μN are displayed in the figure. We also eval-
uate how well the solution of the registration problem to the target varifold or surface
can be approximated based on the quantized source shapes. With v∗ being a numer-
ical solution for the groundtruth and vN the solutions based on the quantized source
shapes, the third row of Fig. 5 shows the difference of the energies E(vN ) − E(v∗).
We observe again a faster convergence toward the groundtruth optimal energy with
the varifold quantization than with mesh subsampling.

8 Discussion

In this paper,we proposed a registration framework between varifolds that goes beyond
the previous restrictions of such models to the registration of discrete or smooth sub-
manifolds of R

n . To achieve so, we studied a general class of distances between
oriented varifolds based on reproducing kernels and derived a deformation model on
the space Vd , which are combined into an optimal control formulation of the registra-
tion problem between any two varifolds. We also examined the possibility to couple
this approach with a quantization/compression methodology in order to eventually
tackle the registration problem, in practice, on discrete varifolds with a relatively low
number of Dirac masses.

We showed that first of all this setting leads to an equivalent yet alternative for-
mulation to the diffeomorphic registration of rectifiable sets such as continuous or
discrete curves and surfaces; the resulting higher-order Hamiltonian systems in our
model provides richer local patterns for the deformations but at the price of a higher
numerical cost. From an application standpoint, however, the main advantage we
expect from this framework is that it applies very naturally to more general geometric
objects, in particular to typical situations where well-defined and reliable meshes are
not available. We gave a taste of it through some of the examples of Sect. 7, although
future work on a larger scale will be needed in order to evaluate such benefits more
thoroughly. Besides the cases mentioned here, there are also several types of data that
could constitute interesting test applications for this setting. This includes, for instance,
high-angular resolution diffusion MRI in which the data are effectively modeled as
spatially distributed orientation probability distribution functions consistent with the
Young measure representation of varifolds in (4), or the case of contrast-invariant
image registration c.f. [34].

At the theoretical level, there are several questions left open by this work which we
believe can constitute interesting tracks for future work. One is to study the possibility
of extending all or part of the results of Sect. 5 to more general kernel metrics (in
particular currents) and determining tighter quantization error bounds. Moreover, the
registration model at play in this paper is based on the pushforward group action of
Diff(Rn) on Vd . Yet, other group actions could be have been considered, as briefly
evoked in Sect. 4.1, that involve different choices of reweighing factor, for which we
could expect very different properties of the solutions to the registration problem.
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Lastly, some additional work on the numerical side is likely needed for potential
future applications to large scale databases, most notably to generalize this work to
the estimation of means and atlases over populations of many high-resolution shapes.
Indeed, as we pointed out, even with the ability to compress the size of varifolds
in the registration pipeline using the quantization approach, the higher complexity
of the dynamical equations involved in the registration model has a non-negligible
numerical toll. This could be improved in the future by using more efficient com-
putational schemes for the repeated evaluations of sums of kernels and derivative
of kernels appearing in the Hamiltonian equations, possibly along the lines of fast
multiple methods.
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Appendix

Proof of Theorem 3 We first prove that Hd(X � Y ) = 0. Let us denote by W pos and
WG the RKHS associated with kernels k pos and kG , respectively. Suppose that X and
Y are rectifiable sets as above such that ‖μX − μY ‖W ∗ = 0 and Hd(X � Y ) > 0.
Without loss of generality, wemay assume thatHd (X \Y ) > 0. FromLusin’s theorem,
there exists a subsetU of X such that T |U is continuous andHd(X \U ) < Hd(X \Y ).
Let us denote by E := U ∩ (X \Y ), we see thatHd(E) > 0. Since forHd a.e. x ∈ E ,

lim sup
r→0

Hd(Br (x) ∩ E)

π
d
2

Γ ( d2 +1)
rd

≥ 1

2d
,

(cf [24]), there exists x0 ∈ E, Hd(Br (x0) ∩ E) > 0 for any r > 0.
Let g : ˜Gn

d → R be defined by g(·) = kG(T (x0), ·). Since x �−→ g(T (x)) is
continuous on E and g(T (x0)) > 0, there exists r0 > 0 such that ∀ x ∈ Br0(x0) ∩
E, g(T (x)) > 0. Let A

.= Br0(x0) ∩ E and h(x) := 1A(x), then Hd(A) > 0 and
g(T (x)) > 0, ∀ x ∈ A. Using the density of Cc(R

n) in L1(Rn,Hd (X ∪ Y ))

together with the fact that k pos is C0-universal, there exist { f j }∞j=1 ⊂ Cc(R
n) and

{h j }∞j=1 ⊂ W pos such that lim
j→∞ f j = h in L1(Rn,Hd (X∪Y )) and‖ f j−h j‖∞ < 1

j .

Now, since h j ⊗ g ∈ W and μX = μY in W ∗, we have

0 = (μX − μY )(h j ⊗ g) =
∫

X
h j (x)g(T (x))dHd(x)

−
∫

Y
h j (y)g(S(y))dHd(y) →

∫

A
g(T (x))dHd(x) > 0,

which is a contradiction. Hence, we have Hd(X � Y ) = 0
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Next, we show that T (x) = S(x) Hd -a.e.. Let F := {x ∈ X |T (x) = −S(x)}
and assume thatHd(F) > 0. From Lusin’s theorem, there exists subset F ′ ⊂ F such
that T |F ′ is continuous andHd(F ′) > 0. Using the upper density argument as above,
we can find z0 ∈ F ′ such that Hd(Br (z0) ∩ F ′) > 0 for all r > 0. Since the map
x �→ 〈T (x), T (z0)〉 restricted to F ′ is continuous, there exists a δ0 > 0 satisfying:

〈T (x), T (z0)〉 > 0, ∀x ∈ Bδ0(z0) ∩ F ′.

Define B := Bδ0(z0) ∩ F ′, η(·) := γ (〈·, T (z0)〉) and u(x) := η(T (x)) − η(S(x)).
Observe that, from the assumption γ (t) �= γ (−t), ∀t ∈ [−1, 1],

u(x) = η(T (x)) − η(−T (x)) �= 0, ∀x ∈ F ′.

From this, we may assume that u(x) > 0, ∀x ∈ F ′. Let { f ′
j } j and {h′

j } j be sequences
inCc(R

n) andWpos such that f ′
j converges to 1B in L

1(Rn,Hd F) and ‖ f ′
j−h′

j‖∞ <

1/ j . We obtain

0 = (μX − μY |h′
j ⊗ η) =

∫

X
h′
j (x)u(x)dHd(x) →

∫

B
u(x)dHd(x) > 0,

which is impossible. ��

Proof of Theorem 8 Thanks to the first term in E , any minimizing sequence of E is
bounded in L2([0, 1], V ). Let {v j } be a subsequence of such minimizing sequence
which converges weakly to some v̄ in L2([0, 1], V ). Using the results of [53] Chapter
7.2, we know that

lim
j→∞ ‖(ϕv j

1 − ϕv̄
1 )|K ‖1,∞ = 0.

Furthermore, for any ω ∈ W , we have

∣

∣

∣

(

(ϕ
v j
1 )#μ0 − (ϕv̄

1 )#μ0|ω
)∣

∣

∣

=
∣

∣

∣

∣

∫

K
JSϕ

v j
1 (x)ω(ϕ

v j
1 (x), dxϕ

v j
1 · S) − JSϕ

v̄
1 (x)ω(ϕv̄

1 (x), dxϕ
v̄
1 · S)dμ0

∣

∣

∣

∣

≤
∫

K
|JSϕv j

1 (x)|
∣

∣

∣ω(ϕ
v j
1 (x), dxϕ

v j
1 · S) − ω(ϕv̄

1 (x), dxϕ
v̄
1 · S)

∣

∣

∣ dμ0

+
∫

K

∣

∣

∣JSϕ
v j
1 (x) − JSϕ

v̄
1 (x)

∣

∣

∣

∣

∣

∣ω(ϕv̄
1 (x), dxϕ

v̄
1 · S)

∣

∣

∣ dμ0

Now, using the embedding W ↪→ C1
0(R

n × ˜Gn
d)
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∣

∣

∣

(

(ϕ
v j
1 )#μ0 − (ϕv̄

1 )#μ0|ω
)∣

∣

∣

≤
(∫

K
|JSϕv j

1 (x)|dμ0

)

‖ω‖1,∞‖(ϕvN

1 − ϕv̄
1 )|K ‖1,∞ + C‖(ϕv j

1 − ϕv̄
1 )|K ‖1,∞

≤ C ′‖(ϕv j
1 − ϕv̄

1 )|K ‖1,∞.

Taking supremum over all ω ∈ W with ‖ω‖W ≤ 1, we obtain that

‖(ϕv j
1 )#μ0 − (ϕv̄

1 )#μ0‖W ∗ ≤ C ′‖(ϕv j
1 − ϕv̄

1 )|K ‖1,∞ → 0

as j → ∞. Combining this with lower semicontinuity of v �→ ‖v‖2
L2([0,1],V )

, we
finally obtain that

E(v̄) ≤ lim inf
j→∞ E(v j )

and hence v̄ is a global minimizer. ��
Proof of Proposition 9 Recall that for all φ ∈ Diff(Rn), g(φ) = λ‖φ#μ0 − μtar‖2W ∗
which we may rewrite as

g(φ) = λ(φ#μ0|KW (φ#μ0 − 2μtar )) + λ‖μtar‖2W ∗ .

Thus, the variation with respect to φ in the Banach space B writes

∂φg(φ) = ∂φ(φ#μ0|ω0)

where ω0
.= 2λKW (φ#μ0 − μtar ) ∈ W . Moreover,

(φ#μ0|ω0) =
∫

Rn×˜Gn
d

ω0(φ(x), dxφ · T )JTφ(x)dμ0(x, T ).

Taking the variation with respect to φ along any u ∈ C1
0(R

n, R
n), we obtain:

(∂φg(φ)|u) =
∫

Rn×˜Gn
d

∂xω0(φ(x), dxφ · T ) · u(x)JTφ(x)dμ0(x, T )

+
∫

Rn×˜Gn
d

∂Tω0(φ(x), dxφ · T ) · (dxu|T )JTφ(x)dμ0(x, T )

+
∫

Rn×˜Gn
d

ω0(φ(x), dxφ · T ).divT u(x).JTφ(x)dμ0(x, T ) (37)

where the last term follows from the differentiation of Gram determinant matrices,
while the notation ∂T in the second term is a shortcut notation for differentiation on
the Grassmannian which we do not explicit further here, we, however, refer to the
similar computations done in [18] and to the developments in Sect. 6 for more details.
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For the first term, we can rely on the Young measure decomposition μ0 = |μ0| ⊗ νx
introduced at the end of Sect. 2.1 which gives:

(1) =
∫

Rn
α̃(φ, x) · u(x) d|μ0|(x), where α̃(φ, x)

=
∫

˜Gn
d

∂xω0(φ(x), dxφ · T )JTφ(x)dνx (T ).

We can also rewrite the third term as:

(3) =
∫

Rn×˜Gn
d

γ̃ (φ, x, T ) divT u(x) dμ0(x, T ), with γ̃ (φ, x, T )

= ω0(φ(x), dxφ · T ) JTφ(x).

As for the second term in (37), for each (x, T ) the integrand involves a linear com-
bination (depending on φ) of the partial derivatives of u along the subspace T , i.e.,
of the elements of the matrix dxu|T ∈ R

n×d . Thus, without attempting to specify this
term explicitly, we can in general write it as β̃(φ, x, T )dxu|T where B̃ is a continuous
map from B × R

n × G̃n
d into L(Rn×d , R) giving us

(2) =
∫

Rn×˜Gn
d

B̃(φ, x, T )dxu|T dμ0(x, T ).

The result of the theorem then follows by setting α(x)
.= α̃(ϕv

1 , x), β(x, T )
.=

β̃(ϕv
1 , x, T ) and γ (x, T ) = γ̃ (ϕv

1 , x, T ). ��
Proof of Proposition 14 We can treat the case of each particle i separately and thus,
without loss of generality, we may directly assume that N = 1. We write q(t) =
(x(t), u(1)(t), · · · , u(d)(t)), p(t) = (px (t), pu1(t), . . . , pud (t)) for the state and
costate variables along an optimal trajectory and

U
.= Span{u(1)(1), · · · , u(d)(1)}.

Consider the group of linear transformations, G
.= SL(U ) ⊕ GL(U⊥), i.e., for any

g ∈ G,

g(x) = g//(xU ) + g⊥(xU⊥),

where xU and xU⊥ are the orthogonal projections of x onU andU⊥, with g// ∈ SL(U )

and g⊥ ∈ GL(U⊥). The Lie algebra of G is g = sl(U ) × L(U⊥) and sl(U ) is the set
of all zero trace linear transformations ofU . Now, consider the action ofG onR

(d+1)n

defined as:

g · q := (q0, g(q1), · · · , g(qd)).
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for any q = (q0, . . . , qd) ∈ R
(d+1)n . We see that μg·q(1) = μq(1) for all g ∈ G and

therefore g(g · q(1)) = g(q(1)).
Now, if we let {gt } be a smooth curve in G that satisfies g0 = id and d

dτ |τ=0gτ =
h ∈ g, differentiating the equality g(gτ · q(1)) = g(q(1)) shows that for any h ∈ g,
we have

0 = (p(1)|h · q(1)) =
d
∑

k=1

〈puk (1), h(u(k)(1))〉

Since h ∈ g, we must have that h|U is a zero trace linear map. For any 1 ≤ i < j ≤ d,
wemay choose h such that h(u(i)(1)) = −h(u( j)(1)) and h(u(k)(1)) = 0, ∀k /∈ {i, j},
which leads to 〈u(i)(1), pui (1)〉 = 〈u( j)(1), pu j (1)〉. Consequently,

〈u(1)(1), pu1(1)〉 = · · · = 〈u(d)(1), pud (1)〉 = α

for some constant α. In addition, for any i �= j , we can also choose h such that
h(u(i)(1)) = u( j)(1) and h(u(k)(1)) = 0, ∀k /∈ {i, j}, which gives 〈u(i)(1), pu j (1)〉 =
0. It results that D(1) = α.Id×d .

Finally, since D(t) is constant by Lemma 2, we obtain that

D(t) =
⎛

⎜

⎝

α 0
. . .

0 α

⎞

⎟

⎠
,

for all t ∈ [0, 1]. ��
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