
Journal of Chromatography A 1635 (2021) 461632 

Contents lists available at ScienceDirect 

Journal of Chromatography A 

journal homepage: www.elsevier.com/locate/chroma 

Peptides and pseudopeptide ligands: a powerful toolbox for the 

affinity purification of current and next-generation biotherapeutics 

Wenning Chu 

a , §, Raphael Prodromou 

a , §, Kevin N. Day 

a , John D. Schneible 

a , 
Kaitlyn B. Bacon 

a , John D. Bowen 

a , Ryan E. Kilgore 

a , Carly M. Catella 

a , Brandyn D. Moore 

a , 
Matthew D. Mabe 

a , Kawthar Alashoor b , Yiman Xu 

c , Yuanxin Xiao 

d , Stefano Menegatti a , ∗

a Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606 
b Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY 14642 
c College of Material Science and Engineering, Donghua University, 201620 Shanghai, People’s Republic of China 
d College of Textile, Donghua University, Songjiang District, Shanghai, 201620, People’s Republic of China 

a r t i c l e i n f o 

Article history: 

Received 15 September 2020 

Revised 14 October 2020 

Accepted 15 October 2020 

Available online 22 October 2020 

Keywords: 

Affinity ligands 

peptides 

peptoids 

pseudopeptides 

biotherapeutics 

a b s t r a c t 

Following the consolidation of therapeutic proteins in the fight against cancer, autoimmune, and neu- 

rodegenerative diseases, recent advancements in biochemistry and biotechnology have introduced a host 

of next-generation biotherapeutics, such as CRISPR-Cas nucleases, stem and car-T cells, and viral vec- 

tors for gene therapy. With these drugs entering the clinical pipeline, a new challenge lies ahead: how to 

manufacture large quantities of high-purity biotherapeutics that meet the growing demand by clinics and 

biotech companies worldwide. The protein ligands employed by the industry are inadequate to confront 

this challenge: while featuring high binding affinity and selectivity, these ligands require laborious en- 

gineering and expensive manufacturing, are prone to biochemical degradation, and pose safety concerns 

related to their bacterial origin. Peptides and pseudopeptides make excellent candidates to form a new 

cohort of ligands for the purification of next-generation biotherapeutics. Peptide-based ligands feature ex- 

cellent target biorecognition, low or no toxicity and immunogenicity, and can be manufactured affordably 

at large scale. This work presents a comprehensive and systematic review of the literature on peptide- 

based ligands and their use in the affinity purification of established and upcoming biological drugs. 

A comparative analysis is first presented on peptide engineering principles, the development of ligands 

targeting different biomolecular targets, and the promises and challenges connected to the industrial im- 

plementation of peptide ligands. The reviewed literature is organized in (i) conventional ( α-)peptides tar- 

geting antibodies and other therapeutic proteins, gene therapy products, and therapeutic cells; (ii) cyclic 

peptides and pseudo-peptides for protein purification and capture of viral and bacterial pathogens; and 

(iii) the forefront of peptide mimetics, such as β-/ γ -peptides, peptoids, foldamers, and stimuli-responsive 

peptides for advanced processing of biologics. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

The introduction of vaccines in the prophylaxis of infectious 

iseases [ 1 , 2 ] and monoclonal antibodies (mAbs) in the treatment 

f cancer and autoimmune disorders [ 3 , 4 ] are amongst the high-

st – if not the highest – achievement of 20 th century medicine. 

y drastically cutting infant mortality and increasing the odds of 

he survival for patients affected by diseases until then deemed in- 
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urable, these molecules have demonstrated that biological drugs, 

r “biotherapeutics”, hold true promise to improve the quality of 

ife of humankind at large [ 5 , 6 ]. These effort s continue at a new

evel in the 21 st century with the consolidation and expansion of 

he first-generation biotherapeutics, and the introduction of next- 

eneration biological drugs. These include new protein species, 

uch as bi-specific antibodies [7] and endonucleases ( e.g. , CRISPR 

as) [8] , and complex biologics, such as viral vectors for gene ther- 

py ( e.g. , adeno associated virus, AAV) [9] , Car-T cells for cancer 

herapy [10] , and stem and progenitor cells for tissue engineering 

nd regenerative medicine [11] . 

The increased molecular complexity of these species, while im- 

roving their therapeutic efficacy, poses new challenges to their 

anufacturing. In particular, downstream processing represents 

https://doi.org/10.1016/j.chroma.2020.461632
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Fig. 1. Overview of the current scenario of peptide and pseudopeptide ligands, 

their biomolecular and biological targets, and main applications of peptide ligand- 

mediated adsorption of biotherapeutics and biologics. 
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ne of the major voices of cost, as demonstrated by three decades 

f industrial mAb manufacturing [12] . The discovery and engineer- 

ng of mAb-specific protein ligands ( e.g. , Protein A and G) played 

 crucial role in enabling the manufacturing of large amounts of 

Abs, but also impacted significantly on their price [13] . On the 

ther hand, only few engineered ligands are available for the next- 

eneration biotherapeutics. While some new ligands have recently 

een introduced, based on camelid antibody fragments targeting 

uman Fab- κ or Fab- λ for the purification of bispecific mAbs [14] , 

nd different AAV serotypes [15] , most of the above mentioned tar- 

ets remain orphan of ligands. 

The dearth of affinity ligands targeting the biotherapeutics of 

he future poses an urgent need as well as a major opportunity: 

o establish a new generation of ligands that possess the desirable 

ualities of protein ligands – namely, the high affinity and selec- 

ivity – without the downsides of high cost, biochemical lability, 

nd toxicity and immunogenicity. In this context, synthetic peptide 

nd pseudopeptides represent a promising family of scaffolds to 

evelop cost effective affinity ligands ( Fig. 1 ) [16] . Peptides, both 

atural and engineered, feature an excellent biorecognition activ- 

ty towards proteins and other biomolecules [17] , while also being 

menable to affordable large-scale synthesis with minimal to no 

ariability. Most notably, the advancements in peptide chemistry 

hrough the last decade have expanded this family well beyond the 

atural ( α-)peptides, introducing β- and γ -peptides [18] , peptoids 

19] , foldamers [20] , as well as peptide hybrids integrating stimuli- 

esponsive moieties for controlling the target capture and release 

sing external signals [21] . The exploration in chemical diversity 

as been accompanied by a comparable effort in structural diver- 

ity, resulting in the development of cyclic and polycyclic ligands 

ith superior binding strength and selectivity [22] . Completing this 

oolbox are the myriad methods for engineering protein-targeting 

eptides and pseudopeptides, grouped in combinatorial selection 

ethods [23] and rational design [24] . The former include biolog- 

cal display methods, such as phage [25] , mRNA [26] , and yeast 

27] display, and the screening of synthetic libraries in either solid 

r liquid phase [ 28 , 29 ]. 

The implementation of these chemistries and sequence engi- 

eering approaches has resulted in a plethora of peptide and pseu- 

opeptide ligands for a wide variety of targets. Such is the vari- 

ty of ligand properties and applications that not only the novice, 

ut also the experienced reader may feel bewildered before the 

ole of literature. To provide guidance exploring this field, we en- 

eavored to select and summarize the major contributions to the 

ngineering of synthetic peptide-based ligands for the affinity pu- 

ification of biotherapeutics. We have structured this work using 
2 
he chemical classification of the ligands and the typology of bio- 

ogical targets as criteria to organize the reviewed material. In so 

oing, we trust that this contribution will prove useful to present 

he state-of-the-art of the field, demonstrate the value of its an- 

illary role to biotechnology and biomedicine at large, and propose 

irections that hold the most promise to advance the future of this 

echnology. 

. Peptide design, discovery, and development: perspectives 

nd challenges 

Implementing peptide-based ligands in industrial biomolecu- 

ar and biological separations stands at the crossroad between (i) 

he fundamental physicochemical features of these molecules, (ii) 

he technology of discovery and development of biospecific se- 

uences, (iii) the scalability of synthesis and conjugation to chro- 

atographic supports, and (iv) the industrial and regulatory re- 

uirements ( Fig. 2 ). 

.1. Fundamental properties of peptide-based ligands 

The realm of peptides comprises a large variety of aliphatic and 

romatic foldamers [30] , some of which – e.g. , linear and cyclic 

-peptides and peptoids – have been widely utilized as ligands, 

hereas others – e.g. , β- and γ -peptides, and the so-called Class A 

nd Class B peptide mimetics [31] – have been explored to a lesser 

egree. Together with the progress in the chemistry of polyamide 

ackbones, a considerable effort has been devoted towards expand- 

ng the diversity of side chain functional groups beyond the natural 

nes – also known as “canonical” or “proteinogenic” – to include a 

road variety of non-natural moieties [17] . 

The first element determining the biorecognition activity of 

eptide-based ligands is the balance between enthalpic and en- 

ropic contributions in the free energy of target:ligand interac- 

ion [ 32 , 33 ]. The enthalpic contribution is mostly determined by 

he physicochemical identity of the moieties displayed on the side 

hain or along the backbone of the monomers, and specifically 

heir ability to form non-covalent interactions ( i.e. , electrostatic, π- 

ffects, van der Waals forces, and hydrophobic effects) with their 

artners on the binding epitope of the target [34-36] . The entropic 

ontribution is determined by the disruption of the water shell on 

he binding site and the loss of conformational freedom that the 

igand undergoes upon binding. The latter is always an unfavor- 

ble contribution, but it can be mitigated by increasing the rigid- 

ty of the ligand [37-40] . In proteins, the binding epitopes com- 

rise amino acids optimally displayed within a structured frame- 

ork that grants them a characteristically high binding affinity and 

electivity [41] . 

Linear ( α-)peptides displaying natural amino acids form the 

istorical core – and currently the largest group – of peptide-based 

igands for bioseparations [ 16 , 42 , 43 ]. Being affordable and scalable,

inear canonical α-peptides have been developed for the purifi- 

ation of antibodies and other therapeutic proteins, gene therapy 

roducts, and therapeutic cells [44] . Among all peptides, however, 

hey are the most prone to biochemical degradation and their high 

exibility causes a substantial penalty to their binding energy [45] . 

esistance to proteolytic enzymes can be achieved by replacing 

atural with non-natural amino acids [46] . These also improve the 

hemical diversity of α-peptides by introducing moieties that form 

tronger non-covalent interactions, thus boosting the enthalpic 

omponent of the binding energy. Modifying the backbone chem- 

stry has also proved a valuable design parameter to increase bio- 

hemical stability and binding affinity: β- and γ -peptides [ 47 , 48 ] 

s well as N-substituted peptides – known as “peptoids” or poly N- 

ubstituted glycines [49] – are not prone to proteases and feature 

ackbones with a different profile of hydrophobicity vs. hydrogen 
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Fig. 2. Interplay between physicochemical features, technology of discovery and development, application towards different target, and industrial and regulatory requirements 

connected to biospecific peptide-based ligands. 
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ond-forming moieties; these have been shown to improve binding 

electivity by privileging side chain group-based interactions with 

he target protein [ 19 , 50 , 51 ]. 

To mitigate the entropic penalty, constrained peptides with 

igid backbone and orientation of the residues have been intro- 

uced: these include cyclic and polycyclic peptides with one or 

ore intra-cycle covalent linkage [52-54] , and peptide foldamers 

eaturing a cyclic alkyl, alkenyl, or aryl backbone [55] . Foldamers 

re particularly interesting owing to their protein-like ability to 

ne-tune the presentation of the residues [ 56 , 57 ] and enhance 

heir interaction with the target, thus optimizing both enthalpic 

nd entropic components to the binding energy [ 58 , 59 ]. A rigid

tructure, on the other hand, is not necessarily an immovable one. 

ecently, linear and cyclic peptides as well as peptide mimetics in- 

egrating stimuli-responsive moieties have been introduced, whose 

inding activity for a target can be switched on -and- off reversibly 

nd remotely via exposure to external fields [ 60 , 61 ]. These lig-

nds feature efficient photo-isomerization of both free and protein- 

ound forms, substantial variation in protein binding energy upon 

hoto-isomerization, and stability of the protein-bound isomer un- 

er physiological conditions [ 62 , 63 ]. 

The advancements in peptide synthesis technology are closing 

he “affinity gap” between peptide-based ligands and their pro- 

ein counterparts. While small differences remain, the increasingly 

rotein-like biorecognition mechanism of recently discovered pep- 

ides and pseudopeptides attests their potential as next-generation 

igands for biomanufacturing. 

.2. Discovery and development technologies 

The identification and optimization of biospecific peptide-based 

igands relies on the high-throughput construction and interro- 

ation of large ensembles of sequences – known as “libraries” –

gainst the desired biomolecular or biological target. A myriad of in 

itro and in silico tools are now available for building and screening 

ibraries of peptides and pseudopeptides. 

The in vitro technology for de novo discovery of peptide-based 

igands relies on biological and synthetic libraries. Biological li- 

raries are all liquid-phase and include mRNA-, yeast-, ribosomal- 

 and phage-display technologies [64] ; the latter has been recog- 

ized with the 2018 Nobel Prize in Chemistry (to George Smith 

nd Sir Gregory Winter) for its potential as a drug discovery tool 

 65 , 66 ]. These libraries are characterized by a large diversity ( >

0 9 variants), allow facile sequencing owing to the recent devel- 
3 
pment in high-throughput gene sequencing [ 67 , 68 ], and enable 

he identification of ligands with high affinity and selectivity via 

irected evolution [ 69 , 70 ]. As a result, display technology is the 

ool of choice for the identification of ligands for difficult biosep- 

rations, where the target is present at low titer ( e.g. , therapeutic 

iral vectors and cells) in a highly complex medium. On the other 

and, by relying on the cellular biosynthetic machinery, biological 

ibraries limit the inclusion of amino acids with non-natural back- 

one and side chain groups, or complex structural modifications 

eyond simple cyclization [71-73] . Furthermore, while enabled by 

odon editing, the exclusion of specific amino acids from biological 

isplay peptide libraries - and therefore the resulting ligands - is 

hallenging. This poses an issue in industrial bioseparations, where 

he use of alkaline conditions mandated for the cleaning-in-place 

f the adsorbent prevents the use of peptide ligands containing as- 

aragine or glutamine [74] . 

The limitations inherent to biological libraries can be overcome 

y synthetic libraries, which are available in either liquid or – pre- 

ominantly – solid phase. The latter are the offspring of combina- 

orial synthesis methods that enabled the construction of diverse 

ibrary formats ( e.g. , overlapping, alanine scanning, positional, trun- 

ation, random, and scrambled [ 75 , 76 ]) on a variety of substrates 

 e.g. , polymer beads and porous resins, membranes, microarrays, 

tc. [77-79] ). The major advantages of synthetic libraries include 

i) a virtually infinite variety of chemical and structural editing 

nd (ii) the direct screening of ligand candidates on solid phase. 

he former includes the display of any non-natural residue, the hy- 

ridization of different backbones, cyclization and poly-cyclization, 

nd the integration of stimuli-responsive moieties, all of which 

mprove biorecognition strength, selectivity, and process control 

 62 , 80 , 81 ]. Among synthetic libraries on solid phase, the microar-

ay [ 82 , 83 ] and the “one-bead-one-peptide” (OBOP) [ 84 , 85 ] have

een applied countless times to the discovery of peptide and pep- 

ide mimetic ligands for protein targeting and purification as these 

ethods are easy and affordable to apply and are well suited to 

igh throughput screening. Critical to this end has been the in- 

roduction of equipment enabling rapid library screening, such as 

he machines for automated miniaturized synthesis on 2D sub- 

trates, MALDI-MS imaging for peptide microarrays [86] , and mi- 

rofluidic devices for automated screening and sorting of OBOP li- 

raries [ 28 , 29 , 87 , 88 ]. 

In silico tools have acquired an increasingly higher status in the 

eld of peptide discovery and development [89] . Recent advance- 

ents in hardware technology, in fact, have boosted the power and 
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ccessibility of computing resources, enabling faster simulations of 

ore complex systems [ 90 , 91 ]. This has morphed the in silico eval-

ation of protein:peptide interactions from the validation to the 

iscovery phase, where virtual libraries of peptides and peptide 

imetics can be screened in a high-throughput fashion against 

utative binding sites on target biomolecules [ 19 , 92 ]. A myriad of

roprietary as well as open access algorithms are available for per- 

orming “druggability” ( i.e. , identify putative binding sites on the 

urface of the target biomolecule) [ 93 , 94 ], “docking” ( i.e. , identify

inding poses of a candidate ligand on the target biomolecule) 

95] , and molecular dynamics ( i.e. , refine the target:ligand com- 

lex and evaluate the binding energy and affinity) simulations 

96] . While the current landscape of in silico tools is mostly fo- 

used on the design of α-peptides ligands, recent advancements in 

orce field development are opening avenues towards the screen- 

ng of virtual ensembles of peptoids, foldamers, and other peptide 

imetics [97] . Alongside discovery, computational analysis main- 

ains its role in ligand evaluation and validation, as it provides a 

olecular-level decomposition of the binding energy at the level 

f either the single residue or the single energetic contribution 

 e.g. , electrostatic, hydrogen bonding, or hydrophobic interactions) 

 98 , 99 ]. This information is critical to carry out a rational optimiza-

ion of the ligand sequence and operation [ 100 , 101 ]. Of particular

elevance in this regard is the ability of current tools to simulate 

he immobilization of the ligand on a solid phase [102-104] , as 

ell as the ionic strength and pH of the environment in which the 

arget:ligand complex is formed [ 105 , 106 ], to evaluate realistically 

hromatographic process steps (binding, washing, and elution). 

.3. Scalability and conjugation to chromatographic substrates 

One of the major advantages that synthetic peptides and pep- 

ide mimetics hold over their protein counterpart is the ability to 

e mass manufactured affordably and with no batch-to-batch vari- 

bility [107] . Liquid phase Fmoc/tBu synthesis [108] , in particular, 

ffords large amounts ( > 10 kg) of highly pure peptide at prices 

s low as $ 10 – 15 per gram, enabling inexpensive manufactur- 

ng of peptide-based affinity adsorbents. Reducing the cost of bio- 

rocessing – especially the downstream segment – remains a key 

bjective, and an increasing number of companies are directing 

heir attention to synthetic ligands, including peptides and peptide 

imetics [42] , as a means to make the manufacturing of biologics 

ore affordable. It must be noted, however, that industrial pep- 

ide manufacturers can currently synthesize only linear α-peptides 

onfidently. Advanced compounds, like α-peptides integrating non- 

atural amino acids, peptoids and foldamers, and cyclic and poly- 

yclic structures, on the other hand, are subjected to a steep price 

ncrease due to the limited availability of the necessary building 

locks and special reagents for difficult couplings or orthogonal de- 

rotection steps. Nonetheless, it is foreseen that the manufacturing 

f advanced peptides and peptide mimetics will progress, just like 

he synthesis of α-peptides which has evolved from a niche tech- 

ology to a mainstream commodity. 

Furthermore, chemical synthesis allows appending residues 

edicated to the conjugation of the ligand onto the chromato- 

raphic substrate, either via traditional ( e.g. , the N-terminal or 

ysine’s side chain amino group to an NSH ester- or epoxide- 

ctivated substrate; or the thiol group of a cysteine to a 

aleimide-, epoxide-, or alkylhalide-activated substrate [109] ) or 

rthogonal conjugation strategies ( e.g. , thiol-ene or alkine-azide 

click” chemistry employing amino acids displaying “clickable”

roups such as allylglycine, propargylglycine, or azidolysine [110] ). 

 multitude of chromatographic substrates have been demon- 

trated for the conjugation of peptide and pseudopeptide lig- 

nds, including agarose and sepharose, polymethacrylates, and sil- 
4 
ca resins [ 111 , 112 ], or polysulfone, polyester, and polyamide mem- 

ranes [ 113 , 114 ]. 

The ligand density of peptides on substrates can be accurately 

ontrolled, which is critical to minimize variability among lots of 

eptide-based affinity adsorbents, due to small size of peptide lig- 

nds and the use of precise conjugation chemistry. 

A critical aspect still in need of improvement is represented by 

he values of binding capacity. The contending protein-based affin- 

ty adsorbents feature values > 40 mg of target protein per mL of 

dsorbent [ 115 , 116 ]. While scant, the available literature on opti- 

izing the capacity of peptide-based adsorbents has demonstrated 

hat, whilst high values are reachable, they require a laborious ad 

oc optimization, which is inherently connected to the character of 

eptides as small-molecule ligands. Their size is in fact compara- 

le to the nanoscopic features of the chromatographic support sur- 

ace, which imposes the use of spacer arms and careful optimiza- 

ion of their surface density to ensure effective display to capture 

he target biomolecule. Nonetheless, a large degree of variability is 

navoidable and peptide and pseudopeptide ligands that provide 

igh binding capacity on silica resin, afford rather different capaci- 

ies on Sepharose or polymethacrylate resins [111] . Growing efforts 

owards the purification of complex targets, such as viruses and 

ells, pose new challenges to the design of peptide-based adsor- 

ents. Critical in this regard is the formation of multipoint inter- 

ctions between the biological targets and the ligands, which in- 

reases dramatically the binding strength – a phenomenon known 

s “avidity” – and makes the elution of the target challenging 

 44 , 117 , 118 ]. Overcoming these issues requires a holistic rethink-

ng of peptide-based ligands and the adsorbent, where the ligand 

urface density, the topology of the pore surface, and the pore size 

re adjusted concurrently to afford an optimal balance between ca- 

acity and selectivity of capture, and effectiveness of release and 

ioactivity of the recovered product. 

.4. Industrial applications and regulatory concerns 

The growing success of companies such as LigaTrap Technolo- 

ies [119] , Avitide [120] , and Astrea Bioseparations [121] demon- 

trates that peptides and peptide mimetics are on course to be- 

ome the next-generation ligands for bioseparations. Biological 

herapeutics are rapidly expanding beyond mAbs and a multitude 

f new affinity ligands and adsorbents will be soon needed to 

eet the demand of clinics and biotech companies worldwide. 

wo decades of Protein A-based technology has taught invaluable 

essons about the ideal properties of affinity ligands and associated 

egulatory requirements. 

In this regard, several key properties of peptide and peptide 

imetic ligands are only superficially known, such as their (i) abil- 

ty to effectively clear the myriad of host cell proteins (HCPs) and 

ucleic acids, especially those that pose safety concerns to pa- 

ients [ 122 , 123 ], to the levels mandated by regulatory bodies ( <

00 ppm), (ii) chemical and biochemical stability – and resulting 

inding capacity and selectivity – across the intended lifetime of 

he adsorbent (up to 200 cycles), and (iii) safety and biocompat- 

bility. To date, only a few peptide and peptoid ligands have un- 

ergone in-depth scrutiny of these properties, whereas the vastest 

ajority of published ligands have been investigated only regard- 

ng their binding affinity and capacity as well as the product re- 

overy and purity they afford. 

Reassurance that these challenges will be met successfully 

s given by the outstanding chemical and biochemical stability 

f peptide mimetics. While in fact the secondary amide bonds 

n the backbone of α-peptides can be hydrolyzed by the acidic 

uffers used for product elution and the alkaline solutions used for 

leaning-in-place, the tertiary amide bonds forming the backbone 

f peptoids and foldamers feature a substantially higher stability 
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Fig. 3. IgG binding sites of the earliest (PAM, violet, PDB: 3D6G) and latest 

(WQRHGI, magenta, [38] ) published IgG-binding peptide ligands in comparison with 

protein ligands Protein A (green, PDB: 1FC2), Protein G (blue, PDB: 1FCC), and Pro- 

tein L (red, PDB: 4HKZ). 
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124] . The superior strength and durability of peptide mimetics, 

ombined with their excellent biorecognition properties and ease 

f conjugation, suggests that these molecules will soon occupy a 

ole of preeminence in the proscenium of peptide-based ligands. 

. Linear α-peptide and small protein ligands 

.1. Purification of therapeutic antibodies 

Monoclonal and polyclonal antibodies represent the largest 

lass of biotherapeutics currently on the market, with more than 

0 products approved in the US alone [125] . Monoclonal antibod- 

es (mAbs) form the current arsenal in the fight against cancer, 

utoimmune and neurodegenerative diseases, and viral diseases 

126] . Polyclonal antibodies (pAbs) are supplied to patients affected 

y autoimmune, infectious, and idiopathic diseases [ 127 , 128 ], and 

ave garnered interest as potential treatments in the recent vi- 

al pandemic [ 129 , 130 ]. The chromatographic purification of anti- 

odies, while established, suffers from cost and footprint overrun 

 131 , 132 ]. A key role in this context is played by Protein A me-

ia, currently the industrial standard for mAb capture via affinity 

hromatography, due to their high selectivity and binding capac- 

ty. Protein A adsorbents, however, are expensive (up to $15,0 0 0 

er liter), require rather harsh elution conditions, and are prone to 

eaching toxic and immunogenic ligand fragments upon repeated 

se [ 92 , 133 ]. To address the growing demand for therapeutic mAbs 

hile also containing the costs and improving the safety of the pu- 

ification process, short peptides have emerged as alternative lig- 

nds ( Fig. 3 ) [134] . 

Linear α-peptides in particular can be manufactured afford- 

bly on the large scale, and are inherently safer and more robust 

han bacterial protein ligands. They exhibit good binding affinity 

nd selectivity, and enable product elution under milder condi- 

ions, thus reducing the risk of product denaturation and aggrega- 

ion [ 19 , 135 ]. The first antibody-binding peptides date back to the 

ork of Fassina et al. on the “Protein A-mimetic” (PAM) peptide 

136] and its inverso form D-PAM [137] . Following these pioneer- 

ng studies, remarkable advances have been made in the field of 

mall linear peptide ligands for IgG purification ( Table 1 ). 

Our group has produced substantial work on peptide ligands 

or antibody purification, beginning with a series of studies on 

WRGWV, HFRRHL, and HYFKFD targeting the Fc region of IgG 
5 
IgG-Fc) by screening solid-phase synthetic hexapeptide libraries 

138] . Peptide HWRGWV was evaluated in depth by purifying ther- 

peutic mAb from commercial Chinese Hamster Ovary (CHO) cell 

ulture fluids [ 112 , 139 ] and a Lemma plant extract [140] , perform-

ng comparably with Protein A and Protein G control resins. The 

igand was also utilized for purifying human polyclonal antibodies 

rom an immunoglobulin-rich paste of human plasma derived from 

he Cohn-Oncely [ 141 , 142 ], as well as silk milk and whey return-

ng high IgG yield and purity. Billakanti et al . utilized HWRGWV 

or the extraction of polyclonal bovine IgG from milk with purity 

bove 85%, demonstrating the usefulness of the ligand for the pro- 

uction of nutraceuticals [143] . Of interest is also the ability of 

his ligand to target all four subclasses of human IgG [138] , hu- 

an IgA and IgM [144-146] , as well as animal ( e.g. , rabbit and

lama [ 111 , 138 ]) antibodies with high selectivity, affording high 

roduct quality from diverse sources. This is particularly relevant 

n demonstrating the effectiveness of IgG-binding peptide ligands 

ver traditional bacterial ligands Protein A, Protein G, and Protein 

, whose targeting ability is rather narrow [147-149] . The work 

n HWRGWV also demonstrated the flexibility of synthetic pep- 

ide ligands towards conjugation on different substrates. The pep- 

ide has in fact been conjugated to polymethacrylate (Toyopearl) 

nd agarose (Sepharose and WorkBeads) resins [ 112 , 139 ], a ceramic 

uorapatite (CFT) matrix [150] , a megaporous cryogen [151] , and 

isposable silica resins with optimized functional density, and par- 

icle and pore size [111] . The latter study is particularly interest- 

ng, since it demonstrates the amenability of peptide ligands to- 

ards the development of single-use, disposable and recyclable ad- 

orbents. 

Combinatorial strategies for ligand discovery alternative to 

creening synthetic solid-phase libraries rely on biopanning of 

iquid-phase biological libraries [ 149 , 159 ]. In recent work, Kruljec 

t al . screened three phage-display libraries of linear heptameric, 

inear dodecameric peptides, and cyclic nonameric peptides against 

gG-Fc. AGNGSYWYGVWF was selected among the identified se- 

uences as model to develop variants via N- and C- terminal 

rimming, alanine scanning, and sequence mutagenesis. The opti- 

ized peptide GSYWYDVWF was utilized to recover human IgG 

rom spiked growth medium and crude human serum with 95% 

urity, and sustained functional performance over 25 chromato- 

raphic runs [126] . Following a similar approach, Sun et al . iden- 

ified candidate ligands by panning a heptapeptide phage-display 

ibrary against IgG-Fc. The sequences were evaluated via molecular 

ocking and molecular dynamics (MD) simulations to estimate the 

ree energy of binding and the contribution of each amino acid in 

he sequence. All seven candidates showed affinity towards human, 

anine, and murine IgG as well as human IgM [160] . 

The use of integrated computational-experimental approaches 

o discover and refine IgG-targeting peptides has become main- 

tream in recent years. Huang et al . utilized the IgG:Protein A com- 

lex as a starting model for the biomimetic design of affinity pep- 

ide ligands [161] . Based on the in silico study of the IgG:Protein A 

nteraction, the authors constructed an in silico ensemble of 8-mer 

eptides and screened it against IgG-Fc using the docking software 

utodock Vina. Based on the preliminary docked structure, a round 

f sequence refinement followed via flexible docking in Rosetta 

lexPrepDock, which returned 15 candidate peptides. Upon refine- 

ent via MD simulations, the sequence FYWHCLDE was selected 

or experimental evaluation via IgG purification from serum and 

ell culture supernatants, affording purity and yield ∼ 90% [162- 

64] ; in line with the initial simulations, FYWHCLDE and its vari- 

nts FYCHWALE and FYCHTIDE were found to target the Protein A 

inding site on the Fc region of IgG. In subsequent work, the group 

eveloped the dual-peptide affinity system FYWHCLDE-FYCHTIDE, 

hich showed a synergistic effect in IgG binding, substantially in- 

reasing product yield and purity compared to single-ligand adsor- 
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Table 1 

Overview of published results on antibody-binding peptide ligands. 

Peptide Target Antibody Source Purity (%) Yield (%) REF 

HWRGWV hIgG cMEM 95.8 89.6 144, 152 

HWRGWV hIgA cMEM 91.6 83.8 144 

HWRGWV hIgA CHO CCCF 96 90.3 146 

HWRGWV SIgA CHO CCCF 94.3 91.73 146 

HWRGWV hIgM cMEM 75.7 86.0 144 

HWRGWV hIgM Human B lymphocyte cells > 95 > 95 146 

HWRGWV MAb2 CHO CCCF > 94 > 84 [ 112,139 ] 

HWRGWV MAb1 CHO CCCF > 94 > 84 [ 112,139 ] 

HYFKFD MAb1 CHO CCCF 93 86 139 

HFRRHL MAb1 CHO CCCF 95 84 139 

HWRGWV mAb Lemma plant extract 90 96 140 

HWRGWV pAbs Cohn fraction II + III of human plasma 95 84 153 

HWRGWV pAbs Bovine skim milk 92 74 [ 143,153 ] 

HWRGWV pAbs Bovine whey 93 85 153 

HWRGWV mAb CHO CCCF > 90 > 85 111 

HWRGWV-KPRSVSG hIgG E.coli lysate 94 87 150 

CEWW IgG cMEM 95.2 35.8 154 

CEWW IgG CHO CCCF 95.8 53.3 154 

HEYW IgG cMEM 98.7 61.1 154 

HEYW IgG CHO CCCF 98.7 65.8 154 

DWHW IgG cMEM 95.6 79.6 154 

DWHW IgG CHO CCCF 98.1 85.4 154 

Ac-YFRH mAb CHO CCCF 99 89 155 

W-ABI mAb CHO CCCF 98.9 88.6 156 

FYE-ABI hIgG Human serum 93.9 88.9 157 

GSYWYDVWF hIgG Spiked growth medium and human serum 95 N/A 126 

GVKCTWSSIVDWVCVDM IgY Chicken egg yolk > 90 ∼70 158 
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ents [164] . The same group also developed variant FYCHWQDE, 

hich was utilized to purify IgG from diluted clarified human 

erum at 80% yield and 90% purity [ 165 , 166 ]. In a similar manner,

ei et al. utilized Autodock Vina to identify tetrameric peptides 

ith high IgG-Fc affinity and low human serum albumin affin- 

ty. The lead candidate peptides DWHW, CEWW, and HEYW were 

valuated experimentally by studying the effect of salt, pH, and 

ow rate on binding performance. In particular, DWHW was able 

o purify IgG from CHO cell culture supernatants with 95% purity 

nd 85% yield [154] . Based on previous IgG-binding peptide lig- 

nds found in literature, Wang et al. designed a focused tetrameric 

eptide library comprising two aromatic residues followed by an 

rginine and an aromatic/aliphatic residue, and used the Flexible 

ocking module of Discovery Studio to screen the library against 

he protein A binding site of IgG-Fc. Upon MD refinement of the 

ocked structures, the lead candidate ligand Ac-YFRH was selected 

or experimental studies, affording a remarkable IgG purification 

rom a clarified CHO cell culture supernatants with 99% purity and 

9% yield [155] . Tong et al. utilized alanine scanning and MD sim- 

lations to evaluate the binding to a highly conserved consensus 

inding site and several Fc-binding ligands including protein A, 

rotein G, and Fc receptors for IgG (Fc γ Rs) [167] . These studies 

emonstrated the importance of hydrophobic interactions and aro- 

atic residues in Fc targeting. Accordingly, tryptophan-mimetic 5- 

mino-benzimidazole (ABI) was adopted as a ligand for mAb pu- 

ification via multimodal charge induction chromatography. The 

igand was tested by isolate mAb from cell culture fluids, afford- 

ng 88.6% yield and 98.9% purity [156] . In an effort to further de-

elop this ligand, MD simulations were used to guide the design 

f complementary tripeptide ligands to balance the hydrophobic 

nd electrostatic contributions to Fc binding. The selected tripep- 

ide FYE was conjugated to the ABI moiety and the resulting ligand 

as utilized to isolate human IgG from human serum with 88.9% 

ield and 93.9% purity [157] . 

In a recent effort, our group developed an integrated 

omputational-experimental approach for the discovery of linear 

eptide ligands with high purification performance [92] . An en- 
6 
emble of 60,0 0 0 linear hexametric variants of HWRGWV were 

nitially generated and screened in silico using a high-throughput 

earch algorithm to identify sequences targeting IgG-Fc. The se- 

ected sequences were then negatively screened in silico against a 

anel of 24 model host cell proteins (HCPs) to down-select candi- 

ate ligands with high affinity and selectivity. Sequences WQRHGI 

nd MWRGWQ were conjugated to Toyopearl resins and evalu- 

ted by measuring by static binding capacity (52.6 and 57.5 mg 

f IgG per mL of adsorbent, respectively) and dynamic binding 

apacity (DBC 10% of 30.1 and 36.4 mg/mL, respectively, at 2 min- 

tes residence time). Measurements of binding affinity via isother- 

al titration calorimetry (ITC) confirmed the in silico values of 

inding energy and the affinity-like binding activity of both pep- 

ides. WQRHGI-WorkBeads resin was utilized to purify a therapeu- 

ic mAb from an industrial CHO cell culture harvest, affording a 

emarkable 500-fold reduction in HCP titer and performing consis- 

ently over 100 chromatographic cycles. 

While most antibody therapeutics on the market or in clini- 

al trials are IgG-based, increasing attention has been given to Im- 

unoglobulin A (IgA) and M (IgM). IgA has value in the treatment 

f infectious and malignant diseases [146] , while monoclonal IgM 

ffers promising anticancer and antitumor activity in melanoma 

atients [168] . Compared to the mole of studies on IgG purifi- 

ation, much less work has been conducted on the purification 

f IgA and IgM. Our group has demonstrated the utility of lig- 

nd HWRGWV towards IgA and IgM recovery from recombinant 

ources: artificial cell culture fluid mimetic, with 80% yield and 

0% purity for hIgA, and 75.7% yield and 86.0% purity for hIgM 

 144 , 152 ]; a CHO cell culture supernatant and a human B lym-

hocyte cell culture supernatant with both purity and yield above 

0% [145] . Notably, the dynamic binding capacity of HWRGWV- 

oyopearl resin for IgM is much greater than protein-based affin- 

ty ligands and competitive with commercial adsorbents KAPTIVE- 

, CaptureSelect IgM, and Ultralink Immobilized Mannan Binding 

rotein [145] . 

Recently, avian immunoglobulins (IgY) have gained increasing 

ttention for their therapeutic potential as they represent a read- 
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Table 2 

Overview of published results on non-antibody protein-binding peptide ligands. 

Peptide Target Antibody Source Purity (%) Yield (%) REF 

W-W HSA N/A N/A N/A [ 187 ] 

DWDLRLLY Caps Cell lysate 70.1 N/A [ 188 ] 

DYWWQSWE PCV2 Cap N/A 98 90 [ 189 ] 

KVPLITVSKAK rhFSH CHO CCCF 94 41 [ 190 ] 

SMWRTYIGSGSG hGH Pichia pastoris CCCF 91 20 [ 191 ] 

SMWRTYHGSGSG hGH Pichia pastoris CCCF 95 80 [ 191 ] 

HRCGSWLHPCLA BDDrFVIII CHO CCCF 99.9 85 [ 192,193 ] 

EYKSWEYC BDDrFVIII Diluted plasma N/A N/A [ 194,195 ] 

(3-IAA)E ψ [CH2NH]YC FVIII FBS-containing cell culture medium N/A N/A [ 196 ] 
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ly available and economical substitute to IgG [169-172] . Protein A 

nd G, however, do not bind IgY, and conventional IgY purifica- 

ion procedures achieve low yield and purity. In the effort to de- 

elop effective ligands for IgY purification, Khan et al. screened a 

7 phage display library of decameric disulfide-cyclic peptides. Of 

he 30 sequences identified, 3 showed particularly high binding 

ffinity and specificity, and were further characterized via enzyme- 

inked immunosorbent assay (ELISA), surface plasmon resonance 

SPR), immunoprecipitation, and affinity chromatography. The se- 

ected peptide GVKCTWSSIVDWVCVDM was biotinylated and im- 

obilized onto a HiTrap Streptavidin HP column, and used to ex- 

ract IgY from chicken egg yolk, affording ∼ 70% yield and > 90% 

urity [80] . 

Recent advances in antibody engineering have led to the de- 

elopment of recombinant fragments for use as functional alter- 

atives to whole mAbs. While offering advantages in terms of 

herapeutic efficacy and cost effectiveness, these antibody deriva- 

ives introduce new challenges to downstream processing. Protein 

 chromatography, in fact, cannot capture non-Fc fragments or se- 

ectively purify target heterodimer bispecific antibodies from the 

omodimers. To address these issues, Nascimiento et al. screened 

hage display libraries to identify the first peptide ligands target- 

ng Fab- κ [149] . Of three selected sequences WHYNWQDVSDRQ 

A5), WIPNSEFEHERT (B1), and HQNHHSTFWEIY (C7) found to tar- 

et Fab with micromolar affinity, B1 was selected for its binding 

onsistency across the panel of target Fabs and immobilized onto 

HS activated Sepharose Fast Flow for evaluation via affinity chro- 

atography. The peptide managed to recover Fab from a crude E. 

oli cell lysate with 84% yield and 90% purity, enabling gentle 

lution conditions (pH 5) and reproducible results across multi- 

le chromatographic cycles. In a similar manner, Akiyama et al . 

creened a phage-display library of linear peptides against consen- 

us sequences comprising heavy and light-chain variable-regions 

f human antibodies, and designed by aligning the Fv region of 

uman IgG [173] . Library screening returned several candidate lig- 

nds, a subset of which were characterized in combination by pu- 

ifying trastuzumab-derived single chain variable fragments from 

osetta2 E. coli , affording 60% yield. 

.2. Purification of other therapeutic proteins 

With regards to downstream processing, mAbs have the advan- 

age of a conserved structural framework that can targeted by a 

ingle ligand irrespective of the antigen specificity. Non-antibody 

rotein therapeutics, on the other hand, rarely share conserved 

tructural regions, and affinity ligands must therefore be tailored to 

very target ( Fig. 4 ). Antibody substitutes, blood factors, therapeu- 

ic enzymes, and hormones are the most targeted species ( Table 2 ). 

Small-molecular-weight scaffolds, including adnectins [174] , 

nticalins [175] DARPins [176] , knottins [177] , and affibodies 

178] hold true promise as alternatives to antibodies in human 

herapy and biotechnology [ 179 , 180 ]. These species feature cus- 

omizable binding affinity and can be expressed inexpensively and 
7 
t high titer in bacteria, and [180] . Among them, affibodies hold a 

rominent position, with more than a dozen products on the mar- 

et, regulatory approval for human therapy [ 181 , 182 ], and a grow- 

ng body of literature demonstrating their value in basic research 

183-185] . Yet, the purification of affibodies does not benefit from 

n established platform technology, limiting their availability and 

ncreasing their price. In a recent study, Barozzi et al. presented 

he discovery of peptides that target the constant regions of affi- 

odies by screening a solid-phase synthetic peptide library simul- 

aneously against multiple model affibodies [186] . The selected se- 

uences were evaluated via chromatographic studies and in silico 

ocking to demonstrate targeting of the conserved affibody do- 

ain. Peptide IGKQRI was further validated through purification of 

n anti-ErbB2 affibody from an Escherichia coli lysate affording in 

1% yield and 91% purity. 

A prominent role among blood factors is played by Factor VIII 

FVIII), which is utilized in the treatment of Hemophilia A [197] . 

ntravenous supplementation of FVIII requires the production and 

urification of massive amounts of FVIII worldwide, which tra- 

itionally relied on immunoaffinity chromatography followed by 

on exchange-based product polishing [ 198 , 199 ]. To replace expen- 

ive antibody ligands, Jungbauer et al. reported a series of oc- 

americ peptides with high affinity to FVIII identified by screen- 

ng a combinatorial spot library. The peptide EYKSWEYC showed 

he best performance for FVIII purification by affinity chromatog- 

aphy from diluted plasma, although the values of purity and yield 

ere not reported [ 194 , 195 ]. In later work, Kelly et al. screened

hage-display libraries to identify peptides targeting the recombi- 

ant B-Domain Deleted Factor VIII (BDDrFVIII). The identified se- 

uence HRCGSWLHPCLA was used to purify BDDrFVIII from CHO 

uids affording 85% recovery and 99.9% purity [ 192 , 193 ]; this pep-

ide provides a 10,0 0 0-fold reduction in host cell proteins and host 

ell-derived DNA, comparable in performance with immunoaffinity 

urification techniques. 

Another family of major interest among protein therapeutics is 

hat of hormones, whose best-known members are insulin, ery- 

hropoietin, and gonadotropic hormones [200-202] . Among the lat- 

er, follicle stimulating hormone (FSH) is clinically used to assist 

eproduction technologies of in-vitro fertilization (IVF) and intra- 

ytoplasmic sperm injection [ 203 , 204 ]. In a recent study, Messina 

t al . designed a short peptide ligand KVPLITVSKAK for the purifi- 

ation of rhFSH via affinity chromatography. The peptide sequence 

as selected by generating and screening variants of the FSH re- 

eptor exoloop 3 [205] . As the variant with the highest affinity 

or FSH, KVPLITVSKAK was conjugated to the chromatography resin 

ulfoLink agarose and utilized to purify rhFSH from a crude sam- 

le of CHO cell supernatant, returning 94% purity and 41% yield 

190] . In another study, Chandra et al . developed a peptide affin- 

ty ligand for the human growth hormone (hGH) by screening a 

mall peptide library using the hGH-binding protein and human 

rolactin receptor as reference binders [191] . The peptides in the 

ibrary were designed via receptor epitope mapping, identification 

f interacting regions and adjacent loops, and mutated variants of 
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Fig. 4. Overview of the current scenario of biotherapeutics: protein-, virus-, and cell-based targets. 
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hese sequences. Using a microarray screening method, the can- 

idate ligand SMWRTYIGSGSG was selected to purify hGH from a 

ichia pastoris cell culture fluid, affording 91% purity but only 20% 

ield. Histidine mutagenesis of the ligand resulted in the peptide 

ariant SMWRTYHGSGSG, which was found able of capturing hGH 

rom the same Pichia pastoris fluid with 95% purity and 80% yield. 

Among the emerging enzyme therapeutics, CRISPR-Cas nucle- 

ses hold a prominent place owing to the ubiquitous application of 

RISPR in biotechnology, medicine, and bioprocessing [ 8 , 206 ]. De- 

pite the incipient clinical trials and the growing use of Cas nucle- 

ses in organism engineering, affinity ligands targeting these pro- 

eins are missing, posing a major roadblock to the long-term suc- 

ess of this technology. To address this challenge, Day et al . imple- 

ented an orthogonal dual fluorescence method to screen a solid- 

hase peptide library against a model mixture of Streptococcus pyo- 

enes Cas9 spiked in E.coli cell lysate and identify Cas9-binding 

eptides. Selected octameric sequences GYYRYSEY and YYHRHGLQ 

ere shown to target the RecII domain of Cas9, and utilized to pu- 

ify Cas9 from a E.coli cell lysate with recovery of 86 ∼89% and pu- 

ity of 91 ∼93% [207] . 

In a recent study, Trasatti et al. presented a method for the 

ational design of peptide affinity ligands for purifying a recom- 

inant human therapeutic enzyme [24] . The putative binding do- 

ains on the surface of the enzyme were initially identified in sil- 

co and utilized as target sites to screen a virtual library of peptides 

onstructed by mutating helical peptides derived from zipper-like 

roteins. The peptide variants with predicted complementarity to 

he target were evaluated experimentally via microarray screen- 

ng to identify candidate ligands with high binding affinity and 

entle elution conditions. Selected peptides were further evaluated 

n batch chromatography studies, where peptide-based resins cap- 

ured and eluted the target with substantially higher purity com- 

ared to commercial mixed-mode resin material. 

In recent work, Martinez-Ceron et al. developed a peptide 

gainst the Phospholipase A2 (PLA2) subunit of Crotoxin, a toxin 

n the venom of the rattlesnake species Crotalus durissus terrifi- 

us [208] . PLA2 has demonstrated antiviral activity against yellow 

ever and dengue viruses [209] , although no protein ligands are 

vailable for its large-scale purification. The authors synthesized 

nd screened a solid-phase combinatorial library of decameric pep- 

ides against biotinylated PLA2, using Streptavidin-Peroxidase and 

-Chloronapthol/H 2 O 2 to evaluate binding. The selected peptides 

ere sequenced with matrix-assisted laser desorption/ionization 

ime-of-flight mass spectrometry (MALDI-TOF-MS). Among the lig- 
u

8 
nds that were evaluated experimentally, the leading candidate 

eptide was shown to capture up to 97% of PLA2 in the source 

enom and remove most of the endogenous proteins present 

herein. 

.3. Peptide ligands for protein purification in flow-through mode 

In traditional biomanufacturing practice, the validation of a 

atch of therapeutic mAb only required the certification of resid- 

al impurities (HCP and DNA) to be below the FDA-imposed limits. 

oday, the introduction of advanced analytical techniques for pro- 

ein identification and quantification has shown that mAb batches 

ith acceptable global level of impurities can contain amounts of 

ingle high-risk HCP impurities (HR-HCPs) that either are a threat 

o patient health ( e.g. , are toxic or immunogenic) or can degrade 

he product or its excipients during storage resulting in harm- 

ul products. A growing body of literature is also documenting 

hat commercial Protein A and polishing adsorbents struggle to re- 

ove particular HR-HCPs [210-212] . Different HR-HCPs have been 

ighlighted both on a process-basis and a product-basis [ 212 , 213 ]. 

n some instances, HR-HCPs can be effectively cleared, but this 

equires implementing additional steps in the purification pro- 

ess [ 214 , 215 ]. “Hard-to-remove” HR-HCPs, however, have been re- 

orted to cause delays in FDA clinical trials of mAbs [ 216 , 217 ] and

rocess approval [ 218 , 219 ], and recall of mAb batches [ 220 , 221 ].

o address this challenge, Lavoie et al. developed a set of peptide 

igands that target the HCPs produced by CHO cells, with mini- 

al binding of the mAb product [222] by screening combinato- 

ial libraries of linear tetrameric and hexameric peptides [ 28 , 223 ]. 

he selected sequences were conjugated onto Toyopearl resins and 

tilized to purify therapeutic mAbs by capturing CHO HCPs in 

ow through mode ( Fig. 5 ). Optimization of the loading conditions 

buffer com position and pH, and loading ratio) afforded a > 90% 

urity of the mAb product and a > 80% yield. Importantly, the pro- 

eomics analysis of the effluent via mass spectrometry demon- 

trated that hard-to-remove and high-risk HCPs were effectively 

etained [222] , demonstrating the potential of this adsorbent for 

crubbing HCPs prior to Protein A capture step in a mAb purifica- 

ion platform [224] . Further improvement of this technology may 

equire targeted screening of peptide libraries against individual 

CPs that are escaping capture by the current ensemble of pep- 

ide ligands. 

The enrichment of low-abundance proteins in complex fluids 

sing ensembles of peptide ligands immobilized on chromato- 
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Fig. 5. Comparison of (A) flow-through mode vs. (B) bind-and-elute mAb purification using peptide ligands. 
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raphic substrates has also been investigated as a means to im- 

rove the outcome of proteomic studies. This technology, now 

nown as mixed-bed affinity chromatography [225] , was intro- 

uced by Thulasiraman et al. , who employed full combinatorial 

eptide libraries to capture proteins via broad-spectrum inter- 

olecular interactions in flow through mode [226] : as a com- 

lex protein mixture flows through the adsorbent, the less abun- 

ant proteins are captured and gradually build up into the column, 

hile high-titer proteins rapidly saturate their binding sites and 

he excess flow through; upon saturation, all proteins are desorbed 

rom the adsorbent, yielding a solution enriched in low-abundant 

roteins by up to 3 – 4 orders of magnitude [227] . The equalization 

f protein titers improves dramatically the detection of the species 

n solution. Contrary to mixed-mode resins where one ligand cap- 

ures multiple proteins [228] , mixed-bed affinity chromatography 

tilizes a pooled resin where each bead is functionalized with dif- 

erent ligands. This technique is particularly attractive for its abil- 

ty to magnify diluted species, and has great potential for prepara- 

ive and diagnostic applications, and proteomic studies on biolog- 

cal fluids [229-231] and plant extracts [ 232 , 233 ]. Combinatorial 

eptide libraries for low-abundance protein enrichment are now 

ommercially available under the name ProteoMiner (Bio-Rad, CA, 

SA). When tested against seven other protein depletion strategies, 

roteoMiner provided the best protein enrichment, affording a 1.5- 

old increase in protein detection [234] . D’Ambrosio et al. [235] , Ma 

t al. [236] , and Liu et al. [237] used ProteoMiner and its carboxy- 

ated version to remove highly abundant proteins from chicken egg 

hite or blood sample, increasing the number of identified pro- 

eins compared to the previously available list. Simo et al. also 

sed the ProteoMiner kit to enrich and study the low-abundance 

roteome of red blood cells by removing high-abundance species 

uch as albumin and immunoglobulins [238] . Restuccia et al. used 

he kit to detect novel protein species in human serum [239] . Fa- 

oli et al. also reported the proteomic characterization of African 

uff Adder snake venom after pre-fractionation using ProteoMiner 

eads to amplify low-abundance proteins, thus contributing to a 

ore comprehensive description of the venom proteome [240] . In 
9 
nother study, Li et al. solubilized proteins from human tissue in 

riton X-100 prior to loading onto ProteoMiner beads, and eluted 

he enriched proteins with a urea solution. The detergent’s solu- 

ilization of the high-titer hydrophobic proteins present in tissues 

nd cells enabled the capture and identification of new proteins 

rom the four human tissues including eight membrane/secreted 

roteins and five nucleus proteins [241] . This approach has spurred 

 number of recent advances in analytical protein enrichment us- 

ng peptide libraries on chromatographic substrates. In a recent 

tudy, Candiano et al. developed a peptide library modified with 

lcian Blue 8GX, a cationic dye targeting protein glycosylation 

roups, to improve the detection of glycoproteins and glycopep- 

ides in the human urinary proteome [242] . 

.4. Purification of gene therapy products 

.4.1. Purification of DNA. 

Plasmid DNA has recently emerged as a promising biotherapeu- 

ic class for vaccination and gene therapy applications [ 243 , 244 ]. 

mong the many forms of plasmid DNA - open circular, relaxed 

ircular, linear, supercoiled, and supercoiled denatured conforma- 

ions - the supercoiled isoform is considered to be the most effec- 

ive, owing to its stability and antigenicity. As with protein thera- 

eutics, this growth poses the need of affinity ligands for purifying 

ot just plasmid DNA, but specific isoforms of plasmid DNA as well 

245] . 

In early studies, chromatographic substrates functionalized with 

rginine-rich peptide ligands were shown to bind specifically and 

eparate the supercoiled and open circular isoforms of plasmid 

NA by interacting with the DNA backbone and specific nucleotide 

ases. These ligands have since been characterized and incorpo- 

ated into numerous platforms for the purification of plasmid DNA 

 246 , 247 ]. Bai et al . have studied the effect of ligand density and

pacer length on the binding efficiency of arginine towards su- 

ercoiled plasmid DNA and enable large scale purification. Longer 

pacer arms and increased ligand density improved binding ca- 

acity of the ligand, providing a more feasible chromatography 



W. Chu, R. Prodromou, K.N. Day et al. Journal of Chromatography A 1635 (2021) 461632 

m

c  

t

p

l

t

a

a

l

r

i

f

D

L

t

o

p

r

f  

t

i

s

p

a

l

p

v

m

l

p

n

f

a

p

b

c

t

H

w

b

m

3

a

n

c  

O

s

s

[

c

u

p

h

m

r

a

A

h

s

l

o

t

t

p

t

q

o

b

r

H

s

d

o

t

d

g

A

C

a

T

t

V

i

m

p  

p

n

c

i

t

o

c

C

a

t

u

h

n

a

c

p

i

[

v

u

fl

b

p

a

m

t

f

t

c

e

t

p

s

l

V

s

e

r

ethod for large scale supercoiled plasmid DNA purification from 

larified cell lysate [248] . In addition, Cardoso et al . utilized di- and

ri- arginine decorated monoliths as a plasmid DNA purification 

latform. Compared to a single arginine monolith, epoxy mono- 

ithic columns functionalized with di- and tri-arginine homopep- 

ides showed higher dynamic binding capacity of plasmid DNA, but 

lso caused longer retention times, and reduced elution efficiency 

nd yield [249] . These authors have also employed arginine-based 

igands to develop a negative-mode chromatography platform to 

emove host impurities from plasmid DNA. The preferential bind- 

ng of RNA, proteins, genomic DNA, and endotoxin impurities, in 

act, inhibited plasmid DNA capture, allowing up to 99% of plasmid 

NA recovery from an E. Coli lysate [250] . 

In another study, Ferreira et al. compared the performance of 

-tyrosine and oligo-L-tyrosine peptides for the affinity purifica- 

ion of supercoiled plasmid DNA. The study of binding conditions 

f pVAX1- LacZ and pcDNA3-FLAG-p53 plasmids to oligo-L-tyrosine 

eptides via SPR demonstrated the ability of these ligands to sepa- 

ate the supercoiled isoform from the open circular and linear iso- 

orms of plasmid DNA [251] . In a similar study, Santos el al. used L-

yrosine and L-tryptophan as ligands for purifying the supercoiled 

soform of pPH600, a plasmid forming the G-quadruplex secondary 

tructure. L-tyrosine in particular was able to recover supercoiled 

PH600 with high purity and yield [252] . SPR and chromatographic 

nalysis of single L-amino acid ligands demonstrated that these 

igands have specific biorecognition of supercoiled pVAX- LacZ and 

PH600 plasmids [253] . 

Minicircle DNA (mcDNA) vectors are similar to plasmid DNA 

ectors, but are depleted of the bacterial sequences [254] . These 

inimal plasmids avoid the transgene silencing and immuno- 

ogic responses caused by the bacterial elements, resulting in im- 

roved biologic efficacy [255] . Despite their therapeutic promise, 

o downstream process is available to meet the growing demand 

or mcDNA. In an effort to develop a minicircle DNA affinity lig- 

nd, Gaspar et al. evaluated the binding of novel arginine-based 

eptides to mcDNA via SPR, and found that binding is improved 

y lowering the ionic strength of the binding environment, indi- 

ating that electrostatic interactions play a central role in peptide- 

arget binding [256] . These researchers utilized a zinc-binding HH- 

HHHCC peptide to mimic a DNA-binding zinc-finger motif, which, 

hen complexed with the Zn 

+ 2 ion, exhibited significant DNA 

inding and was used to purify mcDNA with comparable perfor- 

ance with RR dipeptide ligands [ 256 , 257 ]. 

.4.2. Purification of viral therapeutics 

Viral products play an increasingly important role in therapy 

nd prophylaxis [258-260] . Recent advancements in genetic engi- 

eering and recombinant virus production have improved the effi- 

acy and titer of vaccines and vectors for gene therapy [ 261 , 262 ].

n the other hand, major challenges remain in their down- 

tream processing, where critical quality attributes such as cap- 

id protein makeup and full/empty capsid ratio remain unmet 

260] . As the current purification methods are expensive, time- 

onsuming, and difficult to scale-up, researchers have explored the 

se of synthetic ligands to improve chromatographic purification 

latforms. 

Among the viral vectors for gene therapy, a prominent role is 

eld by Adeno-Associated Virus (AAV) [ 258 , 263 ]. Commercial chro- 

atographic adsorbents for AAV purification employ ligands de- 

ived from engineered single-chain ( e.g. , camelid) antibodies and 

ntibody fragments, such as the POROS TM CaptureSelect TM AAVX 

ffinity Resin or AVB Sepharose HP resin [264-266] . Together with 

igh binding capacity and selectivity, however, these adsorbents 

uffer from the shortcomings inherent to protein ligands, such as 

imited targeting range and biochemical stability. The development 
10 
f robust and cost-effective peptide ligands is highly sought after 

o improve AAV biomanufacturing, especially owing to their poten- 

ial to enable single-use purification tools. 

Pulichela and Asokan pioneered the discovery of AAV-binding 

eptides by screening a phage display library of heptameric pep- 

ides against AAV serotype 8 (AAV8) capsids [267] . The selected se- 

uence GYVSRHP, named Pep8, was characterized for AAV binding 

n solid-phase, demonstrating the ability to bind not only AAV8, 

ut also AAV1, AAV2, AAV5, AAV6, and AAV9 capsids. Pep8-agarose 

esin was therefore evaluated by purifying AAV8 from clarified 

EK293 cell lysates. Gel electrophoresis and qPCR analyses demon- 

trated the ability of Pep8 to capture and enrich AAV8 vectors from 

ilute sources. 

Virus-like particles (VLPs) are regarded as the next frontier 

f vaccines, owing to the ease of recombinant expression, high 

iter, and optimal presentation of the antigen [ 268 , 269 ]. Fernan- 

es et al. utilized phage display to discover peptide ligands tar- 

eting retrovirus-like particles expressing the envelope protein 

mpho4070A (VLPs-AMPHO) [270] . The lead peptide candidate 

AAALAKPHTENHLLT was immobilized on agarose resin and evalu- 

ted against null virus-like particles (null-VLPs) and VLPs-AMPHO. 

he resulting adsorbent demonstrated selective VLPs-AMPHO cap- 

ure ( ∼16 μg/g resin) and virtually no null-VLP binding. While the 

LPs recovered in elution were not assessed for biological activ- 

ty, the recovery yields of the viral vectors reached 90-100% under 

ild elution using 12 mM imidazole in physiological buffer (PBS, 

H 7.4) [270] . In a similar study Zheng et al. screened a phage dis-

lay peptide library to discover peptide ligands targeting recombi- 

ant Porcine circovirus type II (PCV2) Cap protein [271] . PCV2 is a 

ircular, single-stranded DNA virus with porcine pathogenicity and 

s responsible for significant economic losses to the swine indus- 

ry [272] . The PCV2 Cap protein is the main antigenic determinant 

f PCV2 [273] and its recombinant form is utilized to prepare vac- 

ines against PCV-associated diseases. The selected sequence YHD- 

FSAGFCIG, characterized via SPR, exhibited a remarkable binding 

ffinity for PCV2 Cap protein, with a dissociation constant (K D ) in 

he nanomolar range. Owing to its high affinity, the peptide was 

tilized as primary capture agent to develop an ELISA kit with 

igh sensitivity for the detection of PCV2 Cap protein [271] . Fi- 

ally, YHDCFSAGFCIG was conjugated to magnetic beads and char- 

cterized for the affinity purification of PCV2 Cap protein from re- 

ombinant E. coli BL21 (DE3) cell culture, affording high yield and 

urity. In a more recent study, Hao et al. utilized molecular dock- 

ng to identify peptide sequences targeting the PCV2 Cap protein 

189] . The leading ligand candidate DYWWQSWE was characterized 

ia SPR, demonstrating high PCV2 Cap protein binding affinity, and 

tilized to purify the protein from recombinant BL21 cell culture 

uids with 98% purity and 90% yield. 

Building on the work of in silico development of single protein- 

inding peptides, MD simulations have been applied to identify 

eptide ligands for viral particles. In one example, Li et al. adopted 

 computational approach to identify putative binding sites on 

urine polyomavirus virus-like particles and develop targeted pep- 

ide ligands. Murine polyomavirus virus-like particles are capsids 

ormed by self-assembled capsomeres and have demonstrated in- 

eresting potential towards multiple therapeutic applications in- 

luding vaccination, gene therapy, drug delivery, and materials sci- 

nce [188] . The authors initially studied the interaction between 

he capsomeres and a minor coat protein on the capsid of murine 

olyomavirus and identified “hot spots”, namely putative binding 

ites on the surface of the capsomeres. A virtual library of peptide 

igands was docked in silico on the binding sites using Autodock 

ina, and selected complexes were refined and validated via MD 

imulations. The leading candidate DWDLRLLY was finally validated 

xperimentally, affording capsomere enrichment from a 15.6% pu- 

ity feedstock to 70.1% purity elution fraction [188] . 
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Fig. 6. (A) Adsorption and (B) cell binding via multi-point protein:peptide interactions (avidity). 
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.4.3. Removal of pathogenic contaminants from biological fluids. 

Bacterial and viral contamination in human therapeutics is a 

ajor concern in the biomanufacturing industry, given the large 

mount of therapeutic drugs derived from mammalian cell cul- 

ures or plasma fractionation [274] . The downstream processing of 

herapeutic products is required to comprise at least two distinct 

learance steps and clear 99.99% of contaminating viral particles 

nd bacterial toxins ( i.e. , 4 log reduction). In this context, the use 

f peptide ligands to capture virus particles and bacterial toxins 

n bioprocess streams has proven its potential to ensure product 

afety and patient’s health. 

The group led by Carbonell has pioneered the discovery of pep- 

ide ligands for contaminant removal from biological fluids [275- 

78] . In an early study, the peptide YYWLHH was selected by 

creening a solid-phase combinatorial library of hexametric pep- 

ides against staphylococcal enterotoxin B. The peptide, which fea- 

ures antibody-like affinity for the capsid, was conjugated to Toy- 

pearl resin and utilized to remove enterotoxin B from a mixture 

f SEB in either E. coli lysate or S. aureus fermentation broth in 

 single step, achieving more than 70% reduction [279] . In an- 

ther study, the team screened a solid-phase library for trimer 

eptides to identify ligands that capture porcine parvovirus (PPV). 

he selected peptides WRW, KYY, and RAA provided high clear- 

nce (4.5–5.5 log) of PPV particles from buffer, although only WRW 

as able to remove all detectable PPV at relatively low injection 

olumes when challenged against diluted human blood plasma. 

his work demonstrated that small peptide ligands hold promise 

o replace nanofiltration or anion exchange chromatography in re- 

oving viruses from biomanufacturing fluid streams [280] . In a 

ubsequent study, in the attempt to improve the capture of PPV 

y reducing its non-specific binding to plasma proteins, the au- 

hors examined the influence of peptide density and the use of 

ydrophilic spacer arms on the efficiency of virus removal. Their 

esults demonstrated that low WRW density enhanced binding se- 

ectivity, facilitating specific peptide-virus capture in the presence 

f plasma proteins [275] . 

Rogers et al. utilized phage display screening to identify dode- 

americ peptides targeting Norwalk virus-like particles (NV VLPs). 

orovirus (NoV) causes an estimated 21 million cases of gastroen- 

eritis in the US annually, resulting in high hospitalization rates 

nd loss of life in severe cases [281] . Immunosorbent diagnostics 

 e.g. , ELISA kits and lateral flow assays) are currently utilized for 

oV diagnosis detection. However, the development, production, 

nd quality control of anti-NoV antibodies are laborious and ex- 

ensive, and pose a defined need for robust and affordable de- 

ection tools. Peptide NV-N-R5-1, isolated by the team, targets the 

rotruding domain of the VP1 capsid protein and was utilized in 

ieu of antibodies to develop an ELISA test providing a limit of de- 

ection of 1.56 ng of NV VLP [282] . 

In another study, Memczak et al . developed three pep- 

ides derived from complementarity determining regions of anti- 
11 
emagglutinin antibody heavy chain against influenza A spike gly- 

oprotein. The peptides were identified as substitutes to antibodies 

o detect and characterize influenza viruses and aid in the devel- 

pment of vaccines and therapeutics. In particular, sequence ARD- 

YDYDVFYYAMD (PeB) and its mutant variant ARDFYGYDVFFYAMD 

PeB 

GE ) showed strong binding of influenza A/Aichi/2/68 H3N2 and 

ther medically relevant influenza strains, demonstrating potential 

or application in viral detection and treatment [283] . 

.5. Purification of Therapeutic Cells 

Cell purification technology plays a key role in advanced ther- 

peutic and diagnostic applications [284] , including personalized 

ell therapy [285] , tissue engineering [286] , disease monitoring 

287] , as well as drug discovery [288] and fundamental cell biol- 

gy [289] . Numerous cell isolation techniques have therefore been 

roposed to meet the growing demand for phenotypically pure cell 

opulations. While several of these methods rely on the size and 

he superficial physicochemical properties of cells [290] , affinity- 

ased separations have become an established mainstream in cell 

urification [291] . Affinity-based cell separations have traditionally 

elied on antibodies targeting surface proteins that are unique or 

ver-expressed on the target cells. Despite their significant cost, 

ntibodies are attractive owing to their high affinity and selectivity 

292] . When immobilized on a solid surface, antibodies drive cell 

apture by “avidity”, which refers to the multivalent, also known 

s multi-point, interaction between the antibodies and multiple 

opies of the target protein on the cell’s surface [293] ( Fig. 6 ).

ue to the high inherent binding strength of antibodies, avidity 

esults in very strong cell capture [294] , which imposes harsh elu- 

ion conditions that can be detrimental to cell functionality and 

iability [295] ; furthermore, the high binding strength of antibod- 

es can also trigger undesired intracellular signaling cascades as 

ell as cell death [296] . To overcome these limitations, peptides 

ave emerged as alternative affinity ligands for cell separations. 

eptides typically exhibit milder affinity compared to antibodies, 

hich enables using gentler elution conditions that can preserve 

ell viability and functionality [297] . The advances in peptide se- 

ection via screening of phage display [298] , mRNA display [299] , 

nd synthetic [300] peptide libraries as well in silico peptide en- 

embles [301-303] have spurred a remarkable growth in peptide- 

ased tools for cell purification. 

Cell-targeting peptides are commonly immobilized onto solid 

ubstrates to capture cells via adhesion, and are often used in diag- 

ostic applications, where a particular cell phenotype is indicative 

f a disease. For example, circulating tumor cells (CTCs) shed from 

rimary tumor tissue are typically indicative of metastasis [304] . 

ccordingly, the isolation of CTCs from peripheral blood plays a 

ignificant role in monitoring disease progression and evaluating 

herapeutic efficacy. Bai et al . discovered the peptide VRRDAPRF- 

MQGLDACGGNNCNN specific to the EpCAM biomarker, which is 
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ver-expressed on CTCs but not on other blood cells [305] . This 

nti-EpCAM peptide (K D ∼ 1.98 nM) showed comparable bind- 

ng affinity to that of an anti-EpCAM antibody (K D ∼ 0.269 nM), 

nd was conjugated to magnetic nanoparticles to isolate breast, 

rostate, and liver cancer cells from spiked human blood, afford- 

ng high capture efficiency ( > 90%) and selectivity ( > 93%). Other 

pCAM-binding peptides have been identified for use in capturing 

TCs for diagnostic applications [306] . Peptides specific to other 

iomarkers have also been used to isolate cancer cells and CTCs. 

ne example is represented by the RGD peptide, which targets 

he αv β3 integrins overexpressed on many cancer cell types [307] . 

iao et al . functionalized nanofibers integrated into a microfluidic 

evice with RGD peptides to capture cancer cells and CTCs [308] . 

549 cancer cells expressing high levels of αv β3 integrin were 

aptured with high efficiency (91.8%), but only moderate purity 

33.1%), from a spiked suspension of white blood cells. Notably, 

he RGD peptide was conjugated to the nanofiber using an acid- 

abile linker, which enabled nondestructive recovery of the cap- 

ured cells. 

Cell-binding peptides have also been applied to the rapid de- 

ection of low concentration pathogenic bacteria in food sources 

r bodily fluids. The early detection of pathogens is often difficult 

ue to their low concentrations, and most samples must be con- 

entrated to increase the bacterial concentration above the limit 

f detection (10 3 to 10 6 CFU/mL) to enable analysis [309] . Sam- 

le concentration, however, is laborious and can result in a loss of 

ample. To overcome this issue, immobilized anti-microbial pep- 

ides (AMPs) are frequently employed as ligands to develop bioas- 

ays where enrichment and detection of bacteria is achieved on 

he same device [310-314] . In one example, Qiao et al . developed 

 high-sensitivity electrochemical biosensor for quantifying E.coli 

157:H7 cells by combining the capture of bacteria using the an- 

imicrobial peptide Magainin I (GIGKFLHSAGKGKAFVGEIMK) with 

nzymatic signal amplification [315] . The assay could detect E.coli 

ells spiked into apple juice and ground beef samples for concen- 

rations as low as 84 and 233 CFU/mL, respectively. As the iden- 

ity of pathogens in a sample is often unknown, an ideal detec- 

ion platform must be able to detect a variety of pathogens. The 

se of peptide arrays allows for multiplexed detection of pathogens 

s demonstrated by Paradoux et al. [309] . In this work, six differ- 

nt AMPs were spotted onto a chip for surface plasmon resonance 

maging. Each AMP exhibited a distinct binding with the pathogens 

ested and allowed for the unequivocal identification of unknown 

athogens within a sample by comparing the binding pattern on 

he array to the binding profile of known pathogens. 

Beyond diagnostics and pathogen detection, adhesion-based cell 

eparation is also advantageous in tissue engineering applications. 

rior to culturing on scaffolds, in fact, cell populations must fre- 

uently be enriched from a heterogeneous suspension obtained 

rom a tissue sample. Ploufee et al . developed microfluidic devices 

unctionalized with peptide REDV or VAPG to enrich endothelial or 

mooth muscle cells, respectively [316] . These peptides are derived 

rom cell-binding proteins: REDV is found in the type III connect- 

ng region of fibronectin [317] , while VAPG is derived from elastin 

318] . Using these peptide ligands, endothelial and smooth cells 

ere recovered at 86% and 83% purity, respectively, correspond- 

ng to a 3-fold enrichment compared to the inlet concentration. To 

mprove the performance of the device, the phage-derived peptide 

GGVRLY was utilized in lieu of REDV to improve the capture en- 

othelial cells [319] . 

A significant challenge when separating cells for tissue engi- 

eering is posed by the low abundance of target cell types in 

athological tissues [320] . Cells derived from primary tissues are 

enerally anchorage-dependent and will not perform further func- 

ions, like proliferation, unless adsorbed onto a scaffold that mim- 

cs the extracellular matrix of the native tissue [321] . Peptide lig- 
12 
nds are ideal binding moieties for recruiting particular cell types 

o adhere to substrate biomaterials. The RGD peptide has been 

xtensively utilized for broad-spectrum cell adhesion on tissue 

ulture substrates [ 322 , 323 ], although more cell-specific ligands 

re known. In one study, Shao et al . enhanced the adhesion of 

ynovium-derived mesenchymal stem cells by conjugating the hep- 

apeptide LTHPRWP on polycaprolactone electrospun meshes and 

uman decalcified bone scaffolds [324] . Peptides t argeting mes- 

nchymal stem cells (DPIYALSWSGMA [320] , as well as disulfide 

yclic peptides CDNVAQSVC [325] and CTTNPFSLC [326] ) and hu- 

an dermal fibroblasts (GTPGPQGIAGQRQVV [327] ) have also been 

sed for cell recruitment to scaffolds. 

As shown above, affinity-based cell separations have relied 

eavily on the use of peptide ligands derived from nature rather 

han engineered synthetic peptides. Given the growing demand for 

ure cell populations and the broadening diversity of cell targets, 

ynthetic peptide ligands are destined to play a leading role in 

his field. Screening combinatorial libraries is a key technology to 

evelop cell-targeting peptides: Liu et al. have utilized it to iden- 

ify peptides specific to cancer cells and tumors [328] . Andrieu et 

l. performed in vivo phage display to discover peptides docking 

n target tissues and organs [329] . Similarly, library screening has 

erved to identify peptides targeting embryonic stem cells [330] , 

ematopoietic stem cells [331] , neural cells [332] , dendritic cells 

333] , tumor-associated macrophages [334] , erythrocytes [335] , 

hondrocytes [ 336 , 337 ], and osteoblasts [176] . The application of 

ombinatorial selection technologies towards the discovery of cell- 

inding peptides is likely to increase as novel biomarkers are iden- 

ified that are unique to target cell populations. In this context, 

eptide ligands binding EGFR [338] , VEGF [339] , VCAM-1 [ 340 , 341 ],

PAC-1 [342] , FLT3 [343] , E-selectin [344] , TfR [345] , CXCR4 [346] ,

D4 [347] , CD81 [348] , CD133 [349] , and CD206 [350] have been

iscovered. 

. Cyclic peptide and pseudopeptides 

Cyclic peptides and pseudopeptides such as α-peptides com- 

rising non-natural amino acids, β- and γ -peptides, azapeptides 

nd peptoids (N-substituted peptides), and peptide foldamers rep- 

esent a growing realm of ligands with superior biorecognition 

roperties as well as higher chemical and biochemical stability 

 134 , 351-354 ] ( Fig. 7 ). The wide chemical diversity of pseudopep-

ides featuring residues with synergistic combinations of charged, 

ydrogen-bonding, and hydrophobic moieties, and optimal presen- 

ation on β- and γ - backbones enhance the enthalpic compo- 

ent of the free energy of binding; the rigid structure of cyclic 

nd polycyclic peptides, and foldamers removes detrimental en- 

ropic components, thus equally contributing to stronger bind- 

ng. Inspired by natural compounds, cyclic peptide ligands have 

merged rather early in the literature as superior ligands [355- 

57] , whereas pseudopeptides are a rather recent addition to the 

eld [ 19 , 50 , 135 , 354 , 358-360 ]. 

.1. Cyclic peptide ligands 

Cyclic peptides have long been recognized as excellent scaffolds 

o develop synthetic affinity ligands targeting protein and cell ther- 

peutics given their superior binding affinity and selectivity, and 

esistance to proteolysis compared to their linear counterparts. 

The formation of a disulfide bond between cysteine residues 

anking a protein-targeting peptide segment represents the sim- 

lest way to achieve peptide cyclization; furthermore, because it 

voids the need for chemical ligation, it was the earliest strat- 

gy used to construct biological display libraries of cyclic peptides 

355-357] . In an early study, Delano et al. screened a M13 phage 

isplay library of disulfide cyclic peptides against the Fc region of 
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Fig. 7. Structure of (A) α-peptides, (B) β-peptides, (C) γ -peptides, (D) azapeptides, and (E) peptoids (N-substituted peptides). 
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gG. The selected 13-mer sequence DCAWHLGELVWCT, named Fc- 

II, was found to bind the Fc region of IgG with affinity compara- 

le to that of Protein A and Protein G [355] . In a later study, the

airpin-inducing D-Pro-L-Pro template was introduced as a N- to 

- link of Fc-III to form a bicyclic structure, which improved its IgG 

inding affinity 80-fold [196] . In a recent study aimed at reproduc- 

ng the increased affinity without the synthetic effort associated 

ith D-Pro and N- to C- cyclization, Gong et al . replaced the D- 

ro-L-Pro linker with two cysteine residues to mimic the bicyclic 

tructure with a second disulfide bond. This variant, denoted as 

c-III-4C, featured a 30-fold increase in IgG binding affinity com- 

ared with the Fc-III cognate [361] . In a separate study to deter- 

ine the effect of cyclization on binding performance, derivatives 

f PEG-conjugated Fc-III peptide, referred to as Fc-binding pep- 

ide (FcBP) in this paper, were prepared and tested [353] : FcBP- 

er was prepared by substituting both cysteine residues with ser- 

ne, while FcBP-Red was prepared by reducing the disulfide bond 

f FcBP with DTT prior to use. NHS-activated Sepharose TM 4 Fast 

low resins functionalized with FcBP, FcBP-Ser, FcBP-Red, Protein A, 

nd Protein G ligands were evaluated for IgG binding and purifica- 

ion. As anticipated, FcBP-Ser-resin showed a significant decrease 

n IgG binding capacity; on the other hand, FcBP-Red showed con- 

iderable IgG binding capacity despite the absence of a rigid cyclic 

tructure, and enabled IgG elution at pH 4.8, providing much gen- 

ler elution conditions compared to protein A and FcBP resins. Fi- 

ally, the FcBP resin was utilized to isolate antibodies from porcine 

nd human sera, affording 95% product purity and long lifecycle. 

creening a synthetic library of disulfide-cyclic peptides, Verdo- 

iva et al . selected the sequence (CFHH) 2 -KG, denoted as “FcRM”, 

s a ligand for IgG purification. The cyclic peptide proved useful 

or the purification of mouse monoclonal antibodies from crude 

ybridoma supernatants and polyclonal antibodies from human 

erum with both yield and purity higher than 90%. Further inves- 

igation demonstrated that FcRM can bind both Fab and Fc frag- 

ents of different isotypes, suggesting the presence of multiple 

eptide binding sites on the antibody. This makes FcRM useful for 

oth the purification of antibodies and appealing for the genera- 

ion of Fc-receptor antagonists [356] . 

While easy to screen and construct, disulfide-cyclic peptides 

uffer from the chemical lability of the disulfide bond, which can 

e easily hydrolyzed in mild reducing conditions. The resulting 

ree cysteines can form disulfide bonds with the both the pro- 

ein target and impurities in the feed, or become oxidized thus 

ltering the binding activity of the ligand. Alternative cyclization 

trategies relying on chemical ligation have therefore been ex- 

lored. Following the work by Robert and coworkers [ 362 , 363 ],

enegatti et al. constructed and screened a mRNA display libraries 

f chemically cyclized peptides to discover cyclic peptide ligands 

argeting IgG-Fc ( Fig. 8 ). The cyclization of library peptides was 
13 
chieved via solid-phase crosslinking using the bis-amine-reactive 

isuccinimidyl glutarate (DSG) [ 364 , 365 ]. Among the selected lig- 

nd candidates evaluated by IgG binding emerged the cyclic pep- 

ide cyclo[ DSG -M-WFRHY-K], which was ultimately used to purify 

herapeutic mAbs from clarified CHO cell culture fluids with 96% 

ield and 93% purity [364] . Using this method, Bowen et al. iden- 

ified cyclic peptides targeting the WW domains of Yes-Associated 

rotein 1 (WW-YAP) [117] . The mRNA display library was screened 

gainst yeast cells displaying WW-YAP and magnetized with iron 

xide nanoparticles to isolate of WW-binding mRNA-peptide fu- 

ions. The selected peptides cyclo[ DSG- M-AFRLC-K] and cyclo[ DSG- 

-LDFVNHRSRG-K] featured high affinity for WW (K D ∼ μM) and 

ere evaluated via chromatographic binding in competitive con- 

itions. In a recent study, Bacon et al. utilized a yeast-display li- 

rary of DSG-cyclized peptides to discover ligands binding inter- 

eukin 17 (IL17). The selected peptide cyclo-[ DSG -RMRWLRGRR-K] 

eatured high IL17 affinity (K D ∼ 0.3 μM), supported by in silico- 

alculated K D ∼ 0.1 μM [27] . Besides chemical ligation, enzymatic 

outes have been explored for the cyclization of peptides displayed 

n biological libraries. In particular, several groups have demon- 

trated the use of transglutaminase to form peptide-protein con- 

ugates or peptide macrocycles [366-369] . In recent work, Bowen 

t al. utilized this approach to construct yeast display libraries of 

yclic peptides, whose construct was optimized to evaluate the ef- 

ciency of cyclization via dual fluorescence flow cytometry [370] . 

ibrary screening against YAP and its WW domain returned the 

yclic peptide cyclo[ E- LYLAYPAH -K ], which featured high binding 

ffinity (K D ∼ 0.84 and 1.67 μM for WW and YAP, respectively) and 

electivity. 

An inherent advantage of biological libraries as tools for lig- 

nd discovery is the presence of a polynucleotide encoding for the 

isplayed peptide, which can be easily expanded and sequenced 

o identify the candidate peptide ligand. Sequencing cyclic pep- 

ide leads selected from synthetic libraries, on the other hand, 

s laborious and involves significant guesswork. In an effort to 

mprove sequencing throughput and confidence, Pei and cowork- 

rs developed the “one-bead-two-peptide” method, wherein ev- 

ry library bead is segregated into an outer layer, which displays 

yclic peptides and is accessible to the target protein, and an in- 

er core, which is impervious to proteins and contains the lin- 

ar peptide precursor. The selected beads are analyzed via Ed- 

an degradation to determine the sequence of the linear pep- 

ides in the core [360] . This method has been successfully ap- 

lied to identify cyclic peptides [371-373] and peptide/peptoid hy- 

rids [374-377] with protein-binding activity. In later work, our 

roup developed an alternative sequencing strategy that employs 

ibraries of cyclic depsipeptides, where the protein-binding se- 

uence is framed in its cyclic form by two ester bonds [371] . Fol-

owing screening, the selected beads are treated with an aque- 
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Fig. 8. Production of a mRNA display library of cyclic peptides: (A) preparation of a precursor mRNA-display library of linear peptides, (B) adsorption of the mRNA-display 

library on a polyT solid phase and reaction with DSG, (C) mRNA-display library of cyclic peptides, and (D) desorption of the library. 

Fig. 9. Model structure of the cyclic depsipeptide and its linearized structure upon alkaline treatment. 
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us alkaline solution that cleaves the framed peptide as a linear 

equence and releases it in solution, enabling de novo sequenc- 

ng via mass spectrometry ( Fig. 9 ). This method has been demon- 

trated via the discovery of cyclic peptides targeting IgG-Fc and 

ecombinant human erythropoietin (rHuEpo). The Fc-binding pep- 

ide cyclo[(N α-Ac)-S(G)-RWHYFK-Gly-E] was conjugated to Toy- 

pearl resins and demonstrated IgG binding on par with con- 

rol ligands [371] . The rHuEpo-binding cyclic peptides cyclo[(N α- 

c)Dap(A)-FSLLSH- AE] and cyclo[(N α- Ac)Dap(A)-VVFFVH- AE] were 

elected from a library designed after the Epo-binding site of the 

po receptor [352] . The peptides were analyzed by molecular dock- 

ng and sequence mutagenesis using non-natural amino acids to 

ain molecular-level understanding of the rHuEpo:peptide interac- 

ion, improve binding selectivity, and enable elution under mild 

onditions. The sequence FSLLSH was selected for its high affinity 

K D = 0.46 μM) and utilized to purify rHuEpo from a CHO cell cul- 

ure fluid, affording yield and purity above 90%, and a Pichia pas- 

oris cell culture fluid, resulting in product yield and purity of 96% 

nd 84%, respectively [378] . 

Cyclic peptides are also finding a role in cell purification, a field 

ntil recently dominated by linear peptides. In particular, peptides 

ith multiple randomized cycles are most attractive as each cy- 

le will bind to a unique epitope on the cell, thereby increas- 

ng specificity [379] . Phage-derived bicyclic peptides have been 

dentified for several cell receptors, including the human epider- 

t

14 
al growth factor receptor 2 (HER2) [380] , NOTCH1 [381] , various 

embers of the integrins family [382] , and the Platelet-Derived 

rowth Factor Receptor-beta (PDGFR- β) [383] . These peptides have 

een shown to mediate the adhesion of cells onto solid sub- 

trates [384] , although true chromatographic application have not 

et been demonstrated. 

.2. α-peptide ligands incorporating non-natural amino acids 

Next to the proteinogenic amino acids, which comprise the 

0 canonical and several natural non-canonical amino acids ( e.g. , 

rnithine, citrulline, pyrrolysine, selenocysteine, etc.) [ 385 , 386 ], a 

yriad of synthetic non-canonical amino acids (sncAAs) have been 

eveloped for integration in α-peptide ligands either by engineer- 

ng the translation machinery of cells [387] or traditional peptide 

ynthesis via Fmoc/tBu chemistry [135] . The amino acids in this 

amily display chemophore groups that provide synergistic com- 

inations of binding modes ( i.e. , electrostatic, hydrophobic, hydro- 

en bonding, etc.) [135] or the D-enantiomeric form of the pro- 

einogenic residues that occur in nature as L enantiomers [137] . 

he outstanding chemical diversity of sncAAs increases dramati- 

ally the target binding affinity and selectivity of peptide ligands 

s well as their chemical and biochemical stability ( e.g. , resistance 

o proteolysis) [135] . 
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Fig. 10. Structural comparison of IgG-binding ligands (A) peptide HWRGWV, (B) peptide Ac-HW Met CitGW Met V, and (C) peptoid PL16. 
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Several researchers have explored the use of single ncAAs as ad- 

anced mixed-mode ligands. In one example, Bresolin et al. utilized 

rtho -phospho-L-serine (opSer) immobilized on agarose gel to cap- 

ure IgG via immobilized metal ion affinity chromatography (IMAC) 

388] . Upon optimization of the binding conditions (sodium phos- 

hate at pH 6.5) and target properties (high isoelectric point rang- 

ng between 8.15 and 8.45), the opSer-agarose resin demonstrated 

 binding capacity of 24.2 mg/mL and extracted IgG from human 

erum with purity of 89% and yield of 58%. The binding capacity 

f opSer for cationic proteins is higher than that of other singu- 

ar amino acids owing to the electrostatic interactions facilitated 

y the combination of phosphate and carboxyl groups. In analo- 

ous work, Afonso et al. demonstrated the use of ortho -phospho-L- 

yrosine (opTyr) as a ligand for the purification of micro interfering 

NA (miRNA), achieving 52% purity and 71% yield from a marine 

hotosynthetic bacterium R. sulfidophilum DSM 1374 cell culture 

uid [389] . The work on opTyr was extended in two studies by 

avan et al. , who showed that the amino acid can serve as affinity 

igand for IgG purification [ 390 , 391 ]. The optimization of the bind-

ng conditions to a low conductivity zwitterionic buffer improved 

he capacity and selectivity of IgG adsorption, resulting in ∼91% 

urity and 48% yield of IgG from human plasma; furthermore, by 

argeting the Fab region of IgG, P-Tyr enables fractionating a mix- 

ure of Fab and Fc fragments, affording Fab recovery and purity of 

6.2% and 98%, respectively. 

The application of ncAAs to the purification of IgG has been 

xtended to peptide sequences. In one example, our group re- 

laced cationic and aromatic residues in IgG-binding peptides 

WRGWV, HFRRHL, and HYFKFD with non-natural analogs to de- 

elop protease-resistant variants [135] . A virtual library of non- 

atural peptide variants was screened in silico via molecular dock- 

ng against the crystal structure of human IgG. Selected variants 

ere conjugated to Toyopearl resin and evaluated via IgG purifi- 

ation upon intermediate exposure to strong proteases. In partic- 

lar, Ac-HW Met CitGW Met V ( Fig. 10 ), comprising methylated trypto- 

han (W Met ) and citrulline (Cit) in lieu of tryptophan and arginine, 

howed a strong resistance against trypsin and α-chymotrypsin, 

nd extracted polyclonal IgG from Cohn II + III fraction of human 

lasma with 94% yield and 92% purity. Notably, the N-terminal 

cetylation and the ncAAs reduced the positive charge of the pep- 

ide, thus increasing its binding selectivity by suppressing non- 

pecific binding of anionic proteins ( e.g. , albumin). In a later study, 

slam et al. demonstrated that variant Ac-HW Met CitGW Met V, when 

onjugated to WorkBeads resin via a tris(2-aminoethyl)amine 

TREN) spacer, provides superior HCP clearance (2.15 log 10 ) from 

 mAb expressing industrial CHO cell culture supernatant [133] . In 

 similar work, Saavedra et al. developed the peptide affinity lig- 

nd Ac-FFVRp-opSer-EVFFK to purify phospholipase A 2 (PLA2), a 

oxin with pharmacological applications and found in the venom 

f the Crotalus durissus terrificus snake [392] . The peptide, designed 

o mimic a phospholipid, folds in a two tailed β-sheet and iso- 

ated PLA2 from the venom with 90% purity. In another study, 
15 
ollinsova et al. screened an ensemble of pseudopeptides with gen- 

ral formula Ac-Xaa-DL-Ala- ψ[PO 2 
−-CH 2 ]-DL-Leu-Xaa ′ -( βAla) 2 im- 

obilized on amino-PEGA resin [393] . The selected ligand Val-Phe- 

[PO 2 
−-CH 2 ]-Leu-His-NH 2 was found able to purify the rat liver 

etaine homocysteine S-methyltransferase (BHMT) with 80% yield 

nd > 90% purity. 

The integration of ncAAs in peptide ligands for improved affin- 

ty and stability was also extended to biological libraries. Screen- 

ng a phage display library of branched peptides containing β- 

yclohexyl-L-alanine (Cha), D-Ser, D-Asp, D-Arg, and β-Ala, Jacob- 

en et al. identify a peptide that isolates intact urokinase-type plas- 

inogen activator receptor (uPAR) to a greater than 95% purity 

394] . The receptor serves as a target for cancer treatment and 

he current purification strategy relies on costly and laborious im- 

unoaffinity chromatography. The selected peptide ligand, denoted 

s AE152, was coupled to activated Sepharose and the resulting ad- 

orbent featured a uPAR-binding capacity of 0.21 mg/mL, double 

hat of the immunoaffinity resin R2 (0.103 mg/mL); furthermore, 

hile achieving comparable purity levels, AE152 only captured in- 

act uPAR, whereas R2 would target degraded uPAR as well. 

Pseudopeptides have also been successfully applied to the pu- 

ification of viral proteins. In one example, Martin et al. developed 

 CD4-mimetic peptide ligand for purifying the human immun- 

deficiency virus type 1 (HIV-1) envelope glycoprotein, which is 

ighly targeted in HIV vaccine development [395] . The ligand Tpa- 

LHFCQLRC(K-Biot)SLGLLGRCApTFCACV, wherein Tpa is thiopropi- 

nyl and K-Biot is biotinyl-lysine, was immobilized on Streptavidin 

epharose resin and used to purify the glycoprotein gp120(SF162) 

rom a HEK 293 cell culture supernatant to a purity greater than 

0% and yield of 56%. 

Transforming a peptide to its inverso and retroinverso forms 

as also proved effective in improving peptide stability with- 

ut sacrificing affinity and selectivity. The application of this ap- 

roach towards ligand development was pioneered by Verdoliva 

nd coworkers, who developed D-PAM as the inverso form of 

he IgG-targeting tetrameric tripeptide (Arg-Thr-Tyr) 4 -Ly 2 -Lys-Gly, 

nown as Protein A mimetic (PAM, TG19318) [136] . The authors 

emonstrated the ability of D-PAM to capture IgG of different an- 

mal species ( i.e. , bovine, horse, human, goat, mouse, rabbit, and 

heep) with high binding capacity (36-66 mg/mL) and purify it 

rom plasma sources with purity ( > 95%) and recovery (60-91%) 

omparable to those offered by PAM [ 137 , 396 ]. In a later study, Di-

on et al. further refined D-PAM by adding a phenylacetyl group 

o form D-PAM- 	 [397] . The new ligand achieved a 10-fold in- 

rease in dynamic IgG binding capacity compared to D-PAM and 

ecovered a highly pure ( > 90%) IgG product from several plasma 

ources. It was suggested that the superior affinity of D-PAM- 	

s due to the phenylacetyl group encouraging the display of the 

eptide’s arginine side chain, which results in stronger IgG bind- 

ng. Analogous studies were conducted by Giudicessi et al. , who 

eveloped D-variants of the previously discovered rHuEpo-binding 

eptide Ac-FHHFAHAK [398] . The resin-bound peptides were incu- 
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ated with trypsin, chymotrypsin, and CHO extract before being 

leaved from the solid phase using ammonia vapor and analyzed 

ia mass spectrometry. In particular, the retroinverse D-form of the 

eptide was shown to possesses a rHuEpo binding affinity compa- 

able to that of its L-cognate, while also featuring a much greater 

esistance to proteolytic degradation. 

Raj ̌canová et al. developed heptameric D/L-peptides VlPYFVl, 

lPYYVl, and VlPFYVl as ligands for the affinity purification of 

orcine pepsin A and rat pepsin C [399] . The adsorbents obtained 

y conjugating the peptides to Sepharose featured a binding ca- 

acity of 35-44 mg of pepsin A per mL resin and negligible bind- 

ng of pepsin C. In a similar study, Ku ̌cerová et al. utilized VfPF- 

Vl to separate human pepsin from gastricsin with high yield and 

urity [400] . Agnew et al. employed click chemistry to promote 

he identification of high-affinity protein-binding peptides via li- 

rary screening [401] . The peptide lklwfk-(D-Pra), initially selected 

s a weak ligand for bovine carbonic anhydrase II (bCAII, K D ∼ 500 

M), was bookended with two azide-displaying amino acids and 

onjugated to an anchor ligand via click chemistry. Upon a subse- 

uent round of screening, (D-Pra)-kwlwGl-Tzl-kfwlkl was selected, 

hich bound bCBAII with higher affinity (K D ∼ 3 μM). An addi- 

ional conjugation and screening round were conducted to identify 

 final ligand, rfviln-Tz 2 -kwlwGl-Tzl-kfwlkl, which bound bCAII and 

ts human analogue (hCAII) with antibody-like affinity (K D = 64 and 

5 nM, respectively). 

.3. Peptoid, azapeptide, and other peptide-mimetic ligands 

N-substituted oligoglycines, known as peptoids, and azapeptides 

re gaining momentum as the next generation of peptide-mimetic 

ompounds [402] . While sharing the same polyamide backbone 

f peptides, peptoids carry the side chain functional groups on 

he amide nitrogen, whereas azapeptides feature a nitrogen in 

ieu of the α-carbon. This endows them with a different space 

f conformations as well as a higher chemical and biochemical 

tability compared to their peptide counterparts [403-405] . Pep- 

oids are traditionally synthesized via the sub-monomer approach 

 406 , 407 ], which employs functional primary amines to append 

he side chain group to the backbone, thus expanding dramatically 

he chemical diversity of this class of peptide-mimetics [ 19 , 406 ]. A

ide variety of bioactive peptoids have been identified from com- 

inatorial libraries, including antimicrobials [408-410] , vectors for 

ucleic acid delivery [411] , lung surfactant mimetics [412] , anal- 

esics [413] , protein inhibitors [ 414 , 415 ], and agents for multidrug

esistance reversal [416] . These applications show the potential 

f peptoids as ligands for biomolecular purification from complex 

ixtures. A wide number of methods have been developed to fa- 

ilitate the use of peptoids in research, most of which are cen- 

ered around the screening of libraries to identify affinity ligands 

 19 , 417-419 ]. This results in a diverse discovery environment, span- 

ing from unbiased and fully combinatorial – as in the work by 

renn et al. , who screened a library of 100 million peptoids to 

dentify ligands which bind to the N-terminal SH3 domain of the 

roto-oncogene Crk [420] - to fully rational – as in the study by 

guyen et al. , who screened a library of only 12 peptide-peptoid 

ybrids to identify a high affinity ligand for the same protein [421] . 

Among the early methods of peptoid ligand development is 

he array screening technology. Alluri et al. reported the screen- 

ng of large arrays of protein-detecting peptoids ( ∼10 6 compounds) 

n chips or encoded beads. The peptoids selected to target the 

ouse double minute 2 homolog (Nlys-Nbsa-Nlys-Nser-Nbsa-Npip- 

bsa-Npip) and glutathione S-transferase (Nbsa-Nlys-Nbsa-Npip- 

lys) showed good affinity to their targets (K D ∼ 37 - 62 μM) 

417] . Following on this work, Reddy et al . modified the protein- 

etecting arrays into small-molecule microarrays (SMMs) using 

eptoids and introduced an ad hoc “fingerprinting” approach to 
16 
dentify protein-targeted ligands. In this approach, the majority of 

he peptoids in the library exhibit only above-background binding, 

hereas the few that possess high affinity for the target protein 

rovide unique protein fingerprinting. Testing with several model 

roteins demonstrated that peptoid SMMs can detect proteins ro- 

ustly and reproducibly in complex mixtures without sample la- 

eling, thus proving applicable to bioassay development [422] . In 

 parallel study, Heine et al . reported the synthesis and screening 

f peptoid arrays on cellulose membranes for the de novo discov- 

ry of ligands or drugs, and to study protein:peptoid interactions. 

he submonomer synthesis was successfully adapted to SPOT tech- 

ique on cellulose membranes [ 406 , 423 ] by replacing bromoacetic 

cid with its 2,4-dinitrophenylester. An array library of 8,0 0 0 pep- 

oids and peptomers was screened against the anti-transforming 

rowth factor α monoclonal antibody Tab-2, resulting in the iden- 

ification of affinity ligands (K D ∼ μM) [418] . 

A series of studies demonstrated that libraries of hybrid pep- 

oids comprising randomized sequences fused to a pre-ligand with 

oderate affinity for the target protein are powerful tools for the 

dentification of ligands with high binding affinity. The group led 

y Kodadek reviewed the peptoid array technology and developed 

 high-throughput method to isolate synthetic protein-binding lig- 

nds with antibody-like affinity [ 377 , 419 , 422 , 424 ]. To this end,

he authors constructed a large library ( ∼78,0 0 0) of chalcone- 

erminated octameric peptoids displayed on Tentagel resin. The 

eptoid-chalcone hybridization was meant to provide bivalent in- 

eraction with the target protein and lead to the identification 

f high-affinity ligands. The library was screened using the auto- 

ated bead-sorting machine COPAS (Union Biometrica, Holliston 

A) against fluorescein-labeled Mdm2, and the isolated leads were 

equenced by Edman degradation. The selected ligand featured a 

 D of 1.3 μM for Mdm2, corresponding to a 170-fold increase in 

ffinity compared to chalcone alone (K D ∼220 μM) [419] . The Ko- 

adek group further explored this method by constructing a library 

f peptoids comprising the N-terminal hexameric ligand BKH2, 

hich targets the KIX domain of the CREB-binding protein (K D ∼
95 μM), fused to downstream (C-terminal) hexameric randomized 

eptoids. Library screening against the KIX domain returned two 

igands, which bound KIX with K D s of 4.6 μM and 8.3 μM [425] . In

ubsequent work, the group further implemented this method to 

dentify ligands that selectively bind phosphorylated proteins [50] . 

n that study, a peptoid library was N-terminally fused with bi- 

tin and 3,4-dihydroxylphenylalanine (DOPA) and screened against 

he phosphorylated form of the phosphorylation-dependent in- 

eraction domain (PDID) of the Brd4 transcriptional coactivator. 

he N-terminal biotin served as a tag, while the DOPA group as- 

isted in binding of the target via nucleophilic attack. The lead 

eptoid Biotin-DOPA-Nlys-Nlys-Nmea-Nlys-Ntyr-Nleu targeted the 

hosphorylated form of the target protein selectively, yet with 

eak affinity (K D ∼ 50-100 μM). 

The combination of modeling tools with experimental char- 

cterization of focused ensembles of ligand candidates is at the 

eart of the rational design of protein-binding peptoids for use 

n bioseparations. This field has been recently reviewed by Matos 

t al. [42] , and it suffices here to report only a few cases stud-

es. Following upon the development of peptide ligands for Fac- 

or VIII (FVIII), Knör et al . presented a procedure for design- 

ng minimal FVIII-targeting peptoids starting from known pep- 

ide ligands [ 196 , 426 ]. The authors demonstrated their method by 

ownsizing the lead octapeptide EYHSWEYC into the mimetic (3- 

AA)E ψ[CH 2 NH]YC, which was used for purifying FVIII from FBS- 

ontaining medium with high yield and purity, and demonstrated 

esistance against serum proteases. The peptoid variant was proven 

o bind all isoforms of FVIII, demonstrating potential to reduce 

anufacturing costs compared to current immunoaffinity adsor- 

ents. Following a similar approach, our group recently published 
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 series of studies on the discovery and characterization of peptoid 

igands. We initially presented a rational-combinatorial method for 

ranslating protein-binding peptides into peptoids, using the IgG- 

inding peptide HWRGWV as reference ligand [19] . An ensemble 

f 60 variants generated by exploring the effect of physicochemi- 

al identity of the residues, their display and sequence, and the in- 

lusion of glycine spacers, was screened against IgG, leading to the 

dentification of peptoids PL-02, PL-16, and PL-22, which demon- 

trated superior binding activity than HWRGWV. Variants PL-16 

nd PL-22, in particular, featured high affinity (K D ∼ 0.78 μM and 

.54 μM) and binding capacity (48 and 57 mg of IgG per mL of 

dsorbent), and recovered human IgG from a CHO cell culture su- 

ernatant added with 1% fetal bovine serum (FBS) with 85% and 

8% purity, respectively. The peptoids also demonstrated high re- 

istance to strong alkali and proteolytic enzymes, and the ability 

o specifically capture monomeric IgG without binding aggregated 

pecies. A secondary result of this study was that peptoid PL-01, 

esigned as the formal translation of HWRGWV, possessed a lower 

ffinity (K D ∼ 17 μM) and capacity (21.6 mg/mL), indicating that 

tructural optimization is a key aspect of peptide-to-peptoid lig- 

nd translation. We utilized PL-16 immobilized on sepharose resin 

now LigaTrap 

R © IgG Resin) to purify (i) monoclonal IgG 2 (93% pu- 

ity and 67% yield) and IgG 3 (92% purity and 53% yield) antibodies 

rom a CHO cell culture supernatant added with 1% fetal bovine 

erum (FBS), as well as IgG from a diluted HEK 293 cell culture 

upernatant (0.1 mg of IgG per mL of fluid) added with 0.1% fe- 

al bovine serum (FBS) obtaining a remarkable 10-fold product en- 

ichment; (ii) polyclonal IgG from serum with 95% purity and 63% 

ield; and (iii) IgM from a CHO cell culture fluid added with 5% 

BS with 93% purity and 66% yield [359] . The latter result is par-

icularly remarkable since the commercial adsorbents for IgM pu- 

ification, HiTrap IgM HP resin and POROS CaptureSelect IgM ma- 

rix, afforded lower purity (76% and 92%) and much lower yield 

14% and 11%). To further demonstrate the broad targeting range of 

L-16 over protein ligands Protein A/G, we utilized PL16-sepharose 

esin to purify a panel of animal IgGs from the corresponding sera: 

ouse (yield of 47% and purity of 94%), rabbit (66.5% and 91.7%), 

oat (63% and 91-95%), donkey, llama (93% and 97%), and chicken 

gY (42% and 92%). 

As noted with peptides, cyclization of peptoids increases bind- 

ng affinity. Gao et al. were first to complete a comparison of lin- 

ar vs. macrocyclic peptoid libraries for discovering affinity lig- 

nds, and developed a method that could be extended to other 

ypes of oligomers [427] . The authors discovered that a library of 

acrocyles comprising 17-atom rings returned a higher number 

f stronger leads compared to three libraries of linear compounds. 

owever, as the ring size increased to 20 and 23 atoms the differ- 

nce between cyclic and linear libraries narrows, and it was con- 

luded that steric constraints of the 17-membered cyclic peptoids 

s conducive to higher affinity compared to linear or flexible cyclic 

eptoids. 

A number of studies by the Liang group recently reviewed by 

night et al. have also demonstrated that peptoid ligands pos- 

ess chirality recognition power to fractionate mixtures of enan- 

iomers [428] . Specifically, oligopeptoids constructed with S-N-(1- 

henylethyl) (S-Nspe) glycine immobilized on silica resins for an- 

lytical chromatography were utilized to fractionate a mixture of 

,1 ′ -bi-2-naph-thol (BINOL) derivatives. The enantioselectivity of 

he peptide ligands increased with the number of S-Nspe, reaching 

ts maximum at 6 monomers. Short peptoids built with R-Nspe and 

apped with alkyl chains, or cyclic chiral and aromatic monomers 

 e.g. , N 

′ -phenyl-L-proline and N 

′ -phenyl-L-leucine) were also evalu- 

ted, demonstrating that N-fusions of achiral monomers improved 

he fractionation ability of R-Nspe peptoid trimers. 

Introduced as affinity ligands by Barker et al. who employed 

hem for the purification of chymotrypsin and trypsin [429] , α- 
17 
za-peptides have demonstrated promising biorecognition activity. 

ost research on azapeptides, however, has focused on drug devel- 

pment, in particular inhibitors of protein targets like HIV protease 

430] , human neutrophil proteinase 3 [431] , and the cluster of dif- 

erentiation 36 class B scavenger receptor [432] , and their use as 

ffinity ligands is still in its infancy. This body of literature, how- 

ver, demonstrates that azapeptides hold promise as synthetic lig- 

nds for affinity chromatography [ 405 , 433 ]. 

A number of other peptide-mimetics that have demonstrated 

otential as affinity ligands, though not in an affinity chromatog- 

aphy context, include ones for binding human chromodomain- 

ontaining proteins CBX7 and CBX8 [434] , anti-AQP4 antibod- 

es [424] , the KIX domain of the CREB-binding protein [435] , 

hemokine interleukin-8 [436] , c-Jun N-terminal kinase 3 (JNK3) 

437] , polycomb repressive complex 2 (PRC2) [438] , the SH2 (Src 

omology 2) domain of oncoproteins and signal-transducing pro- 

eins [439] , the SH3 domain of Src-family PTKs [421] , and the 

volutionary-conserved EVH1 protein domain [440] . Lund et al. de- 

eloped the peptide-mimetics DAAG and D 2 AAG as ligands for IgG 

urification from cell culture fluids. The ligands were immobilized 

n sepharose resin and featured a binding capacity of 24 and 48 

g/mL, respectively, and afforded product purities over 93% and 

ecovery over 85% [441] . 

.4. The latest frontier: stimuli-responsive peptides 

The latest frontier in protein purification is represented by the 

se of remote physical stimuli, in lieu of pH and ionic strength, 

o control binding and release of target biologics to and from 

he chromatographic substrate [442] . This technology is ideal for 

iochemically labile products, such as physical dimer proteins 

nd cells, whose growing demand in research and clinical set- 

ings makes their isolation from complex sources an emerging is- 

ue in bioseparation research. Outside a narrow range of solu- 

ion conditions (pH and composition), in fact, labile biologics un- 

ergo rapid denaturation and loss of bioactivity. The integration 

f stimuli-responsive molecular switches into protein-binding pep- 

ides enables the design of ligands that capture the target pro- 

ein via native affinity and release it when exposed to an exter- 

al stimulus ( e.g. , light) of appropriate intensity. Stimuli-responsive 

witches, in fact, feature a reversible and controlled isomeriza- 

ion. Hence, exposure to stimuli triggers a reversible rearrange- 

ent of the ligand structure, thus acting as ON/OFF switch of 

rotein binding/elution ( Fig. 11 ). This enables performing the en- 

ire chromatographic process on a single optimal aqueous solvent, 

hus combining high product bioactivity with process intensifi- 

ation. A number of stimuli-responsive switches and peptide ge- 

metries have been proposed mostly revolving around the use 

f near UV light excitation. Linkers that have been used include 

zobenzenes, diarylethenes, acylhydrazones, hemithioindigos, stil- 

enes, and rhodopsin-like molecules, as reviewed below. 

.4.1. Azobenzene-peptide hybrids 

A prominent role among stimuli-responsive linkers for peptide 

odification is held by azobenzenes [ 22 , 443 ]. Native azobenzene 

ndergoes a trans-to-cis isomerization upon irradiation with 320 

m light, and a reverse cis-to-trans isomerization when exposed to 

50 nm light. The values of wavelength can be either red- or blue- 

hifted respectively by adding electron-donating or withdrawing 

roups in ortho position to the azo group [443] . The integration 

f azobenzene in peptides and proteins to endow the host with 

ight-controlled conformation has been studied extensively and 

ptimized using both in silico and experimental approaches [4 4 4- 

52] . Lesser effort, however has been dedicated to the engineering 

f azobenzene-peptide hybrids with light-controlled biorecognition 

ctivity [ 450 , 453-456 ]. Typically, two are the approaches towards 
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Fig. 11. Mechanism and function of stimuli-controlled peptide ligands: (A) stimuli- 

induced conformational switch and resulting (B) stimuli-controlled adsorption and 

release of a biomolecular target. 
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ntegrating native and modified azobenzenes into peptide and pro- 

eins, namely (i) hybridization with the combinatorial sequences 

f the libraries utilized for de novo discovery of photo-switchable 

igands or (ii) conjugation to scaffolds and ligands with known 

tructure. Myrhammar et al. , for example, incorporated an azoben- 

ene linker into affibodies and utilized them to build an adsorbent 

nabling light-controlled binding and elution of IgG [457] . The au- 

hors reported that, while elution was triggered upon exposure of 

he column to UV light, a substantial amount of protein remained 

dsorbed and was later eluted upon acidic regeneration of the 

esin. Other groups hybridized azobenzenes with peptides at the 

tage of library screening. Jafari et al. constructed a phage display 

ibrary of cysteine-bookened peptides cyclized using a bis-thiol- 

eactive azobenzene linker, and screened it against streptavidin. 

he selected ligand ACGFERERTCG featured a 4.5-fold difference 

n binding strength (K D ) between its cis and trans isomers [458] . 

n a follow-up study, Bellotto et al. created a combinatorial phage 

isplay library of cysteine-bookended heptapeptides cyclized 

ith 3,3’-bis(sulfanato)-4,4’-bis(bromoacetamido) azobenzene and 

creened it against streptavidin; prior to screening, the library was 

xposed to UV light to isomerize the ligands to the cis configura- 

ion and bias the selection towards cis-binders and trans-eluters. 

he selected peptides exhibited good binding selectivity, and a 

-fold shift in binding strength (K D ) upon light exposure [450] . 

iu et al. extended the selection of azobenzene-hybrid peptides 

o ribosome display using an azobenzene-modified lysine that 

as inserted into each peptide of the library [459] . The peptides 

ere collectively converted into their trans isomers and screened 

gainst streptavidin microbeads. Following library adsorption, 

he beads were irradiated with UV light to induce a trans-to-cis 

hoto-switching and induce loss of streptavidin binding. The se- 

ected peptides LA37(QAVLIMVAVXASSGQLGQFEGSDYKDDDDK), 

A40(QAHSCXVTIDVFFGQLGQFEGSDYKDDDDK), and LA81 

QAGVTXRRFIXYVGQLGQFEGSDYKDDDDK) were evaluated on 

olid phase and demonstrated increasing degrees of binding 

ffinity with LA81 exhibiting the greatest binding indicating a 

issociation constant of 6.31 μM. The conformational structure 

nd binding of the LA81 peptides were shown to be reversibly 

hoto-controlled upon UV/Vis excitation. [459] . 
18 
The incorporation of azobenzene into known sequences has also 

een explored. For example, Vaselli et al. conjugated the sequence 

f GRGDS to a glass substrate using an azobenzene linker via “click 

hemistry” [460] , and characterized both the surface distribution 

f GRGDS-Azo peptides via atomic force microscopy (AFM) and 

aman spectroscopy, and the isomerization of the azobenzene- 

eptide via contact angle and through UV-Vis spectroscopy. The 

uthors showed spatial control of binding and elution of human 

mbilical vein endothelial cells using light patterns demonstrat- 

ng applicability to cell purification. In this context, Parisot et al. 

452] developed hybrids of the FLAG-tag peptide DYKDDDDK with 

n azobenzene-displaying amino acid and evaluated their light- 

ontrolled binding of FLAG antibodies; the location of the photo- 

esponsive amino acid was systematically varied to attain light- 

ontrolled biorecognition. 

Our group recently developed a hybrid computational- 

ombinatorial approach based on a novel azobenzene-cyclized 

eptide structure where the length of the protein-binding pep- 

ide segment and the cyclization geometry are optimized to 

chieve a balance between chain flexibility and rigidity, which 

ltimately affords efficient photo-isomerization and a strong 

hift in binding affinity. To demonstrate our design, we devel- 

ped photo-switchable peptides targeting vascular cell adhesion 

arker 1 (VCAM1) starting from a known VCAM1-binding linear 

eptide. An ensemble of azobenzene-cyclized variants was ini- 

ially designed and screened in silico , and the selected variants 

valuated via surface plasmon resonance (SPR). In particular, 

yclo AZOB [G-VHAKQHRN-K] featured efficient light-controlled 

inding of VCAM1 with K D,Trans /K D,Cis ∼ 130. Finally, the biotin- 

yclo AZOB [G-VHAKQHRN-K] was used to fluorescently label brain 

icrovascular endothelial cells (BMECs), showing co-localization 

ith anti-VCAM1 antibodies in cis configuration and negligible 

inding in trans configuration ( Fig. 12 ). 

.4.2. Hemithioindigo-peptide hybrids 

Like azobenzene, hemithioindigos have been widely inves- 

igated for their photo-switching activity and regulation of 

eptide structure and function [461-465] . These photochromic 

witches comprise two structural groups, a hemistilbene and a 

emithioindigo, and undergo reversible isomerization from a sta- 

le ground-state E isomer to a photo-stationary state with high 

onversion to a metastable Z isomer in response to visible wave- 

engths of light ( > 400 nm) [466] . The photochromic behavior 

f hemithioindigo-peptide hybrids and its impact on bioactivity has 

een recently reviewed by Kitzig et al. [463] . Batjargal et al. eval- 

ated the impact of photo-isomerization of hemithioindigos in 

he context of protein structure and function, including (i) the 

se of hemithioindigos as ligands to induce/inhibit protein ac- 

ivity, (ii) the incorporation of hemithioindigos into amino acid 

ide-chains to alter protein structure and activity, and (iii) the in- 

orporation of hemithioindigos as linkers in the protein primary 

tructure and bioactivity [467] . Füllbeck et al. incorporated dif- 

erent meta- and para-substituted hemithioindigo photo-switches 

nto linear and cyclic peptides whose structures are relevant in cell 

ignaling [462] . The authors evaluated the photo-switching kinet- 

cs of the hemithioindigo-peptide hybrids via UV-Vis and IR spec- 

roscopy, and found that the hemithioindigo reverts to the ground- 

tate more slowly when incorporated into peptides and can there- 

ore induce long-term changes in the secondary structure of pep- 

ide hosts. 

.4.3. Diarylethenes-peptide hybrids 

Diarylethenes are a class of photochromic molecules that un- 

ergo reversible cyclization reactions between a ring-open and 

 ring-closed form in response to visible and UV light, respec- 

ively. The incorporation of diarylethenes into linear and cyclic 
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Fig. 12. Structure of the VCAM1:peptide complex formed by docking azobenzene-cyclic peptide cyclo AZOB [G-VHAKQHRN-K ∗] in (A) trans and cis configurations on the crystal 

structure of VCAM1 (PDB ID: 1VCA); selection of protein-binding peptides using (B) green light for protein binding and (C) blue light for protein elution; (D) imaging of 

brain microvascular endothelial cells (BMECs) with rhodamine-labeled anti-VCAM1 antibody, fluorescein-labeled cyclo AZOB [G-VHAKQHRN-K ∗], and overlay. 
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eptides as well as protein structures has deepened the under- 

tanding of the interconnected nature of photo-switching and 

eptide behavior. By analyzing the kinetics of diarylethene pho- 

oisomerization in different cyclic peptidomimetics, Schweigh et 

l. found that specific cyclic peptide frameworks greatly impact 

hoto-switching ability [468] . Several studies have been conducted 

o demonstrate the value of diarylethene-linked peptides as photo- 

witchable ligands. Fujimoto et al. , for example, incorporated di- 

rylethenes into several linear DNA-binding peptides with uniform 

-helical structure, and showed that the photoisomerization of di- 

rylethene drastically altered the secondary structure of the pep- 

ides and consequently their DNA binding affinity [469] . In another 

tudy, diarylethene residues were incorporated in cyclic peptide 

imetics of gramicidin S, endowing them with light-controlled 

econdary structure as well as antimicrobial activity and hemolytic 

ctivity [470] . The incorporation of diarylethenes into cyclic pep- 

ides forming β-hairpin showed similar results on their secondary 

tructure and biological activity ( i.e. , cytotoxicity) towards eukary- 

tic cells [471] ; while not applied to purification, the effectiveness 

f diarylethenes in regulating peptide structure and bioactivity has 

een demonstrated. 

.4.4. Stilbene-peptide hybrids 

Stilbenes are a class of molecules with a similar structure to 

zobenzenes [ 472 , 473 ]. Waldeck et al. characterized the photo- 

witching performance of stilbene derivatives when incorporated 

nto linear trimer peptidomimetics to evaluate their use in lieu 

f azobenzene in photo-switching applications [474] . The stilbene 

erivatives isomerize in response to 280 nm and 300 nm light, 

ith half lives of several hours and negligible thermal isomeriza- 

ion. Erdélyi et al. incorporated stilbene into two sets of peptide 

equences of differing lengths to achieve light-controlled inhibition 

f the R1 and R2 subunits of the M. tuberculosis ribonucleotide re- 

uctase [472] . The linear peptides were either modeled after the 

1 subunit binding region or comprised only of select residues ex- 

ected to endow binding activity. Photoisomerization resulted in 

ifferential binding of the inhibitory peptide sequence to the R2 

ubunit, with the E isomers demonstrating a stronger binding than 

he Z isomers. The opposite trend in light-controlled binding was 
19 
bserved with shorter peptide sequences, although the influence of 

hoto-isomerization on bioactivity remained. In later work, Karls- 

on et al. inserted a stilbene derivative into a peptide sequence that 

cted as an artificial hydrolase [475] . The enzymatic activity relied 

n both secondary helical motifs as well as tertiary aggregation of 

imers. By inserting the stilbene into the backbone to replace the 

urn in a helix-turn-helix motif, the tertiary structure of the en- 

yme was made light-modulated, resulting in controllable enzyme 

ctivity. Specifically, a 42% increase in the observed rate constant of 

he catalytic reaction was observed upon photoisomerization [473] . 

. Conclusions 

The growing demand for affordable biopharmaceutics led by 

he ageing world population and the increasing exposure to risk 

actors ( e.g. , air and water pollution) poses an urgent need to re- 

hink the manufacturing of biological therapeutics. Innovating pro- 

ess design and tools employed in the downstream segment will 

e critical to grant access to large amounts of highly pure and 

ioactive biotherapeutics, while containing cost to patients. A key 

ole in particular will be played by synthetic ligands that are selec- 

ive, robust, safe, and easily and reproducibly manufactured. Pep- 

ides are at the front line of this initiative, owing to the large va- 

iety of formats, physicochemical properties, and modes of opera- 

ion, which makes them suitable as affinity ligands for the purifi- 

ation of a wide range of biotherapeutics, from proteins, to viral 

ectors, and cells. It comes as no surprise that peptide-based affin- 

ty tools are now on the market and gathering significant attention 

rom multiple end users, from research labs to biopharmaceutical 

ompanies. Recent innovations in peptide chemistry, such as the 

ntroduction of non-natural amino acids and the hybridization of 

eptides with stimuli-responsive moieties, are taking peptide lig- 

nds a step further, enabling efficient purification of biological tar- 

ets that traditional chromatographic approaches were inadequate 

o target. In parallel, powerful computational tools are being intro- 

uced to aid the design of peptide and pseudopeptide ligands with 

ptimal target affinity and selectivity, and provide chemists and 

ngineers with a molecular-level understanding of biorecognition 

henomena on solid phase. With these resources at hand, peptides 



W. Chu, R. Prodromou, K.N. Day et al. Journal of Chromatography A 1635 (2021) 461632 

a

t

D

C

W

J

W

R

W

K

-

M

A

e

k

K

t

T

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

re indeed the leading candidates for engineering the next genera- 

ions of ligands for diagnostic bioseparation technologies. 
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