
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 31, NO. 1, JANUARY 2021 355

Fast DST-VII/DCT-VIII With Dual Implementation

Support for Versatile Video Coding

Zhaobin Zhang , Xin Zhao, Xiang Li, Senior Member, IEEE, Li Li , Member, IEEE,

Yi Luo, Shan Liu, and Zhu Li , Senior Member, IEEE

Abstract— The Joint Video Exploration Team (JVET) recently
launched the standardization of the next-generation video coding
named Versatile Video Coding (VVC) with the inherited technical
framework from its predecessor High-Efficiency Video Coding
(HEVC). The simplified Enhanced Multiple Transform (EMT)
has been adopted as the primary residual coding transform
solution, termed Multiple Transform Selection (MTS). In MTS,
only the transform set consisting of DST-VII and DCT-VIII
remains, excluding the other transform sets and the dependency
on intra prediction modes. Significant coding gains are achieved
by introducing new DST/DCT transforms, but the full matrix
implementation is relatively costly compared to partial butterfly
in terms of both software run-time and operation counts. In this
work, we exploit the inherent features existing in DST-VII and
DCT-VIII. Instead of repeating the element-wise additions and
multiplications in full matrix operation, these features can be
leveraged to achieve more efficient implementations which only
use partial elements to derive the identical results. Existing
transform matrices are further tuned to utilize these (anti-
)symmetric features. A partial butterfly-type fast algorithm with
dual-implementation support is proposed for DST-VII/DCT-VIII
transform in VVC. Complexity analysis including operation
counts and software run-time are conducted to validate the
effectiveness. In addition, we prove the features are perfectly
supported by theory. The proposed fast methods achieve notice-
able software run-time savings without compromising on coding
performance by comparing with the VVC Test Model VTM-
3.0. It is shown that under Common Test Condition (CTC) with
inter MTS enabled, an average of 9%, 0%, and 3% decoding time
savings are achieved for All Intra (AI), Random Access (RA) and
Low Delay B (LDB), respectively. Under low QP test condition
with inter MTS enabled, the proposed fast methods achieve 1%,
2% and 4% decoding time savings on average for AI, RA, and
LDB, respectively.

Index Terms— Versatile video coding (VVC), fast DST-VII/
DCT-VIII, multiple transform selection (MTS), Enhanced multi-
ple transform (EMT), adaptive multiple transform (AMT), VVC
test model (VTM).

Manuscript received January 24, 2020; accepted February 15, 2020. Date
of publication February 28, 2020; date of current version January 7, 2021.
This work was supported in part by a grant from NSF I/UCRC under Award
1747751 and in part by the Tencent Media Lab. This article was recommended
by Associate Editor Dr. B. Jeon. (Corresponding author: Zhu Li.)

Zhaobin Zhang, Li Li, and Zhu Li are with the Department of Computer
Science and Electrical Engineering, University of Missouri–Kansas City,
Kansas, MO 64110 USA (e-mail: zzktb@mailumkc.edu; lil1@umkc.edu;
lizhu@umkc.edu).

Xin Zhao, Xiang Li, Yi Luo, and Shan Liu are with Tencent
America, LLC., Palo Alto, CA 94306 USA (e-mail: xinzzhao@tencent.com;
xlxiangli@tencent.com; juvenalluo@tencent.com; shanl@tencent.com).

Color versions of one or more of the figures in this article are available
online at https://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSVT.2020.2977118

I. INTRODUCTION

ALTHOUGH deep learning-based methods for image/

video coding [1]–[6] have achieved remarkable progress,

there are still many issues need to be solved to be widely

used in real applications. Conventional codecs are still playing

an indispensable role in industrial application scenarios. Since

October 2015, ISO/IEC MPEG and ITU-T VCEG have been

working together as the Joint Video Exploration Team (JVET)

to explore the state-of-the-art techniques and prepare for

the next-generation video coding standards [7] with capabil-

ity beyond HEVC, termed Versatile Video Coding (VVC).

VVC inherits the block-based hybrid video coding framework

from its predecessors H.265/HEVC [8] and H.264/AVC [9],

but introduces new block partitioning schemes. It supports

up to 128 × 128 Coding Tree Units (CTU) with recursive

quadtree (QT) and nested recursive multi-type tree (MTT)

partitioning. Various techniques have been incorporated to

improve the compression efficiency in the under-development

VVC Test Model (VTM). The primary intra prediction tools

include up to 65 prediction angles, prediction filtering using

neighboring reference samples and cross-component linear

model (CCLM) prediction (Y to Cb, Cr). The primary inter

prediction tools include affine motion compensation (4 × 4

subblocks), improved temporal merge motion vector (MV)

predictors (8×8 subblocks) and Adaptive Motion Vector Res-

olution switches between 1/4, 1, 4 sample accuracy for MVD.
In hybrid video coding frameworks, two techniques of

crucial importance to achieve efficient compression efficiency

are prediction and residual transform coding. The predic-

tion process focuses on removing the statistical redundancy

between the current block and the reference block and trans-

form coding deals with the inter-pixel correlations which is

typically done with linear transforms. A variety of transform

schemes have been developed in the literature among which

the DCT type II (DCT-II) [10] becomes the most popular

solution due to its superior capability of balancing the coding

efficiency and the time complexity [11].
In regards to energy compaction performance, it is

theoretically proven that DCT-II can efficiently approxi-

mate the optimal signal-dependent Karhunen-Loève trans-

form (KLT) [12]–[15] under the first-order stationary Markov

assumption. However, the drastic dynamics existing in natural

image content are not always following the first-order Markov

condition [16].

1051-8215 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on January 16,2021 at 04:25:42 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-5961-5163
https://orcid.org/0000-0002-7163-6263
https://orcid.org/0000-0002-8246-177X

356 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 31, NO. 1, JANUARY 2021

To better capture the dynamic characteristics of image data

content, numerous of transform schemes [17]–[25] have been

proposed in the past decades. But those methods suffer from

either limited coding efficiency or impractical complexity that

hinders the application on video coding codecs. The notewor-

thy milestone comes when the Enhanced Multiple Transform

(EMT), i.e., Adaptive Multiple Transform [12] is proposed.

In EMT, four additional transforms including DST-VII, DST-I,

DCT-V, and DCT-VIII are introduced. It is reported to achieve

−3.1% BD-Rate reduction for AI configuration, and up to

−3.6% and −4.0% BD-Rate reduction on 2K and 4K content,

respectively [11] which makes it one of the rarest techniques

that can achieve more than 2% coding gains since HEVC.

EMT serves as the foundation and prototype of developing

the VVC transform solutions due to its superior capability.

Since there are five kinds of transforms need to be eval-

uated to select the optimal category, the encoder run-time

complexity is very expensive. In the recent VVC working

draft [26], the simplified EMT, named Multiple Transform

Selection (MTS) is adopted as the primary residual transform

solution after comprehensive consideration about relative mer-

its. In MTS, only the transform set consisting of DST-VII and

DCT-VIII remains, excluding the other transform sets and the

dependency on intra prediction modes [26], [27].

In VVC, there are two types of MTS, including explicit

MTS (with signaling) and implicit MTS (without signaling).

The implicit MTS applies DST-VII/DCT-VIII based on block

size information (small blocks always use DST-VII for intra),

and there is no transform type signaling. The switching

between explicit and implicit MTS is done by high-level

syntax flags, such that the encoder could choose either explicit

MTS or implicit MTS, based on the different trade-off between

coding performance and encoder complexity. More detailed

design regarding implicit MTS can be found in [28]. It should

be noted that our fast method applies to both explicit MTS

and implicit MTS, as long as DST-VII or DCT-VIII is used.

This paper is an extended version of our previous work [7].

The major changes and additional contributions include the

updated content according to current VVC development status,

finer description of the fast methods, theoretical analysis

and proof, evaluation results with a newer test model under

low QP test condition with and without inter MTS enabled.

The proposed scheme was adopted in the 13th JVET Meet-

ing of ITU-T VCEG and ISO/IEC as the primary trans-

form solution [29]. The contributions can be summarized as

follows.

• The inherent characteristics of DST-VII and DCT-VIII

transforms are exploited to derive the partial

butterfly-type features. Based on the features, a fast

DST-VII/DCT-VIII algorithm is devised for VVC with

finer description.

• The proposed fast method supports both full matrix mul-

tiplication and fast implementation with an approximate

of 50% operation counts reduction.

• To compensate the rounding error deviation, the transform

matrices are tuned to satisfy the (anti-)symmetric features

without apparent side impacts on coding efficiency.

TABLE I

BASIS FUNCTIONS OF DCT-II, DST-VII AND

DCT-VIII FOR N -POINT INPUT

• We prove the (anti-)symmetric features leveraged to

devise the fast algorithm in theory.

• Extensive experiments are conducted under varied test

conditions. The proposed scheme achieves significant

coding time reduction by comparing with VTM-3.0,

yet still maintains almost the same coding efficiency

performance.
The remainder of this paper is organized as follows.

Section II introduces the sinusoidal transforms involved in this

paper and reveals corresponding characteristics. Section III

elaborates the technical details of the proposed fast method.

We prove the features in Section IV. Section V performs the

complexity analysis, in terms of both the number of arithmetic

operations and software execution time. Section VI shows the

experimental results. The paper is summarized and concluded

in Section VII.

II. DISCRETE SINUSOIDAL TRANSFORM FAMILY

The discrete sinusoidal transform family [30] covers the

well-known discrete Fourier transform, cosine transform, sine

transform and the Karhunen-Loève transform. Among all the

members, there are eight kinds of transforms based on cosine

functions and another eight kinds of transforms based on sine

functions, namely DCT-I, DCT-II, …, DCT-VIII and DST-I,

DST-II, …, DST-VIII, respectively. Variants of discrete cosine

and sine transforms are derived from different symmetry of

their symmetric-periodic sequences [31]. The transform basis

functions of selected types of DCT and DST as used in this

paper, i.e., DCT-II, DST-VII, and DCT-VIII are formulated

in Table I.

To better understand the sinusoidal families involved in

this paper, the first four principal basis functions of DCT-II,

DST-VII, and DCT-VIII are visualized in Figure 1 for a

64-point input, i.e., N = 64. It can be seen that the most

principal DCT-II basis, i.e., T0 shows a constant magnitude

distribution, while the DST-VII and DCT-VIII characterize

a gradually increasing and gradually decreasing magnitude

distribution of the data samples, respectively. Across the

plots, we can observe that non-overlapping distributions can

be characterized by DST-VII and DCT-VIII under different

phases and periods.

The characteristics of the transform basis functions intu-

itively reveal that the advantages by applying DST-VII/

DCT-VIII for intra prediction residuals along the intra

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on January 16,2021 at 04:25:42 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: FAST DST-VII/DCT-VIII WITH DUAL IMPLEMENTATION SUPPORT FOR VERSATILE VIDEO CODING 357

Fig. 1. The first four basis functions of DCT-II, DST-VII and DCT-VIII.

prediction direction since the residual magnitude generally

increases along the intra prediction directions. As is observed

in Figure 1, inter-prediction residual generally shows a larger

residual magnitude for residues closer to PU boundary, thus

joint utilization of DST-VII and DCT-VIII would be beneficial

to better de-correlate the residual blocks.

III. FAST MULTIPLE TRANSFORM SELECTION

In this section, the proposed fast method for DST-VII

and DCT-VIII is presented in detail. First, the proposed fast

transform scheme is described, including the (anti-)symmetric

properties which are considered beneficial for reducing arith-

metic operations. Second, an example is provided to showcase

how these features are leveraged to devise the fast algorithm.

Finally, the transform matrix tuning is presented to compensate

for the deviation induced by the rounding error. Multiple

measures have been taken to achieve the orthogonality and

efficiency of the tuned transform matrices.

In the block-based hybrid video coding scheme, linear

transforms are typically applied to the residual blocks obtained

from inter- or intra-frame prediction. VVC supports up to

64 × 64 transform block and introduces the non-square trans-

form block partition scheme. To achieve efficient implemen-

tation, existing HEVC/VVC reference software deploys a

two-dimensional transform as a consecutive combination of

two one-dimensional transforms with each for horizontal and

vertical, respectively. The resulting coefficients are further

processed by quantization and entropy coding. Typically,

the forward and inverse transform matrices are transposed

matrix of each other.

In the remaining sections, we present the proposed method

by using DST-VII forward transform as an example unless

otherwise specified. Unless otherwise stated, description to the

algorithm is based on the 8-bit transform matrix representation.

The proposed scheme is applicable to both 8-bit and 10-bit

transform matrix representation. This paper only focuses on

16-, 32- and 64-point transform sizes for the following reasons:

1) There is already a similar fast algorithm implemented for

4-point transform. 2) No similar (anti-)symmetric features are

observed to the best of our knowledge. 3) The benefits are

quite limited even 4-point and 8-point fast implementation is

achieved due to their relative small transform sizes. It should

be noted that the inverse transforms are the transposed matrices

hence the similar deployment can be realized. In addition,

the same philosophy can be seamlessly migrated to DCT-VIII.

A. Fast Transform

In the following chapters, unless other stated, we denote the

residual coefficients vector {x0, . . . , x15} as input vector,

the transformed output vector {y0, · · · , y15} as output vector,

the transform matrix derived from Table I as transform matrix,

a vector from the transform matrix as transform vector, each

element in the transform matrix as element. The first feature

that is noteworthy to mention is that there exist only N
distinct possible values except for 0 in an N-point transform

matrix. Typically, the first basis vector contains all the values

while others only contain partial values with or without sign

changes and a possible 0. We denote the transform vector

which contains N unique values (usually the first transform

vector) as basis transform vector, and each element in the

basis transform vector as a member.

For example, we use {a, b, . . . , p} to represent the basis
transform vector of a 16-point DST-VII transform matrix that

is derived from the equations defined in Table I. To make it

simple, we use T to represent the whole transform matrix.

It should be understood that the actual values might be

different for a transform matrix of different sizes. For instance,

a might be a different number in a 32-point transform matrix

as it is in a 16-point transform matrix. However, it is assured

that the same member represents the identical number within

a transform matrix. Similar to the preprocessing applied on

DCT-II in HEVC, the transform matrix elements in VVC are

also scaled by a scale factor e.g., 64 ·
√

N or 256 ·
√

N , and

then rounded to the closest integer. Further tuning by an offset

might also be applied in the application.

Figure 2 sketches the framework of the proposed fast

method on a 16-point DST-VII forward transform. The input

vector {x0, · · · , x15} multiplies the transform matrix T to

obtain the output vector {y0, · · · , y15}. The filled red cir-

cle and green circle represent the subtraction and addition

operation, respectively. In the conventional full matrix mul-

tiplication, the transformed results are calculated by repeating

multiplying each input with the transform matrix element

and adding them together. By leveraging the innate partial

butterfly-type features, the proposed fast method accelerates

this process through the simplification process and the interme-

diate results re-use mechanism. The proposed scheme supports

both direct matrix multiplication and partial butterfly-type fast

method. Parallel processing is supported when selecting direct

matrix multiplication.

As shown with different colors in Figure 2, the DST-VII

transform matrix consists of three features that are considered

useful for a more efficient implementation. These features are

summarized as follows. It should be noted that these features

are non-overlapping, i.e., only one feature is applicable for a

given transform vector.

1) Feature #1: N members are included without consid-

ering the sign changes. These elements can be grouped

into several groups with a fixed number of elements.

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on January 16,2021 at 04:25:42 UTC from IEEE Xplore. Restrictions apply.

358 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 31, NO. 1, JANUARY 2021

Fig. 2. Fast 16-point DST-VII forward transform algorithm. The input vector {x0, · · · , x15} contains the residual coefficients, the output vector {y0, · · · , y15}
contains the transformed outputs and the middle part is the transform matrix denoted as T . Instead of using element-wise matrix multiplication, the fast algorithm
leverages the (anti-)symmetric characteristics in the transform vectors to derive the identical results. The colored entries are involved in the fast method to
derive the results whereas the entries with the white background are not used anymore. The benefits come from the reduced number of arithmetic operations.
Since Feature #3 mainly involves additions and subtractions, we describe it in (7) without illustrating in this figure.

An equation exists by manipulating additions in each

group.

2) Feature #2: Only a subset of the N members are

included without considering the sign changes. They

can be divided into several groups with a fixed number

of consecutive elements such that every two consecu-

tive groups are spatially symmetric or anti-symmetric,

i.e., symmetric by applying a negative sign.

3) Feature #3: Except for zero, some transform vector(s)

only contain(s) a single member when neglecting the

sign changes.

As mentioned in Feature #1, there exists an equation in

each group. We observe that the relationships can be expressed

using the following equations, i.e., three elements form a group

and five groups are derived in each two added elements equals

to another element.

a + j = l

b + i = m

c + h = n

d + g = o

e + f = p (1)

Take deriving y0 using the first transform vector (colored

in blue) as an example, conventional matrix multiplication

would directly calculate the following equation which requires

16 multiplications and 15 additions.

y0 = a · x0 + b · x1 + c · x2 + d · x3 + e · x4 + f · x5

+ g · x6 + h · x7 + i · x8 + j · x9 + k · x10

+ l · x11 + m · x12 + n · x13 + o · x14 + p · x15 (2)

Benefit from Feature #1 (1), when calculating (a · x0 +
j · x9 + l · x11) which requires three multiplications and two

additions, we can calculate its equivalent form a · (x0 + x11)+
j · (x9 + x11) by combing the common items thereby only two

multiplications are needed. Although the addition operations

are increased but some intermediate results can be re-used

to eliminate the additional cost. We will introduce this in

the following chapters. Similar simplification can be applied

to (b · x1 + i · x8 + m · x12), (c · x2 + h · x7 + n · x13),

(d · x3 + g · x6 + o · x14) and (e · x4 + f · x5 + p · x15).

Therefore, to calculate y0, instead of doing the element-wise

multiplication which requires 16 multiplications and 15 addi-

tions, the following equivalent formulation can be utilized to

derive the identical results.

y0 = a · (x0 + x11) + b · (x1 + x12) + c · (x2 + x13)

+ d · (x3 + x14) + e · (x4 + x15) + f · (x5 + x15)

+ g · (x6 + x14) + h · (x7 + x13) + i · (x8 + x12)

+ j · (x9 + x11) + k · x10 (3)

which requires 11 multiplications and 20 additions. So we

can save 5 multiplications but need 5 additional additions.

Typically, it is faster performing addition instruction than

multiplication instruction on modern CPUs. Thus time saving

can be achieved by the simplification process. In addition,

when calculating y2, y3, y6, y8, y9, y11, y12, y14, y15, similar

simplification can be achieved and what really matters is the

intermediate results of (x0 + x11), (x1 + x12), (x2 + x13),

(x3 + x14), (x4 + x15), (x5 + x15), (x6 + x14), (x7 + x13),

(x8 + x12), (x9 + x11) and k · x10 can be re-used. This could

save a lot more on top of that. In summary, the time complexity

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on January 16,2021 at 04:25:42 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: FAST DST-VII/DCT-VIII WITH DUAL IMPLEMENTATION SUPPORT FOR VERSATILE VIDEO CODING 359

Fig. 3. Repeating patterns are observed in Feature #2, in which every five
consecutive elements except zero constitute a group in a mirror-symmetric or
mirror-antisymmetric manner.

reduction from Feature #1 comes from the simplification

process and the intermediate results re-use mechanism.

We take the second transform vector (colored in orange)

from T to showcase how Feature #2 is leveraged to achieve a

better implementation.

As shown in Figure 3, the second transform vector can

be classified into three segments. Each segment consists of

the same five consecutive elements when neglecting the sign

changes. They are replicate with sign changes, or flipped

version of each other. Therefore, benefit from Feature #2,

when computing the transformed result y1, instead of doing

the following element-wise operation

y1 = c · x0 + f · x1 + i · x2 + l · x3 + o · x4

+ o · x5 + l · x6 + i · x7 + f · x8 + c · x9

− c · x11 − f · x12 − i · x13 − l · x14 − o · x15 (4)

which requires 15 multiplications and 14 additions, the fol-

lowing simplified form can be utilized to derive the identical

outcome with only 5 multiplications and 14 additions. The

reduced number of multiplications can lead to time complexity

reduction.

y1 = c · (x0 + x9 − x11) + f · (x1 + x8 − x12)

+ i · (x2 + x7 − x13) + l · (x3 + x6 − x14)

+ o · (x4 + x5 − x15) (5)

On top of that, when deriving y1, y4, y7, y10, y13, the inter-

mediate results (x0 +x9 −x11), (x1 +x8−x12), (x2 +x7−x13),

(x3 + x6 − x14) and (x4 + x5 − x15) can be re-used to

further reduce the operation counts. Therefore, the benefits

from Feature #2 come from both the simplification process

and the intermediate results re-use mechanism.

We take the sixth transform vector (colored in green) to

explain how Feature #3 is utilized to reduce the compu-

tational complexity. This transform vector has very distinct

characteristics, i.e., consists of only a single member k when

neglecting the sign changes. To calculate y5, the conventional

element-wise matrix multiplication calculates in the following

manner, which requires 11 multiplications and 10 additions.

y5 = k · x0 + k · x1 − k · x3 − k · x4 + k · x6 + k · x7

− k · x9 − k · x10 + k · x12 + k · x13 − k · x15 (6)

Benefit from Feature #3, we can alternatively derive the

identical results through the simplified formulation (7) by com-

bining the common terms which requires only 1 multiplication

and 10 additions. Therefore, the time reduction achieved from

Feature #3 comes from the simplification process.

y5 = k · (x0 − x2 + x3 − x5 + x6 − x8

+ x9 − x11 + x12 − x14 + x15) (7)

It should be noted that in a given transform matrix, the com-

bination pattern is fixed to implement Feature #1, i.e., the

pattern of addition of two elements equals to another element

only exists in the 16-point or 64-point transform matrices,

the pattern of addition of three elements equals to addition

of another two elements only exists in a 32-point transform

matrix. We summarize the applicable transform vectors for

the mentioned three features of 16, 32, and 64-point DST-VII

transform matrices as follows.

• 16-point transform

– Feature #1: T3n and T2+3m , where n = 0, · · · , 5,

m = 2, 3, 4

– Feature #2: T1+3n , where n = 0, · · · , 4

– Feature #3: T5

• 32-point transform

– Feature #1: T5 and T8+m+5n , where m =
0, · · · , 3, n = 0, · · · , 4 but n 6= 2 when m = 1

– Feature #2: T2+5n , where n = 0, · · · , 5

– Feature #3: T6 and T19

• 64-point transform

– Feature #1: T2+3n and T3m , where n = 0, · · · , 20,

m = 0, · · · , 21 but m 6= 7

– Feature #2: T1+3n , where n = 0, · · · , 20

– Feature #3: T21

For the DST-VII inverse transform, the transform matrix is

the transposed version of the forward transform matrix thereby

similar deployment can be achieved. The above-mentioned

features also exist in 32-point and 64-point transform matrices

with a slight difference of how the groups are identified and

the number of elements in each group. Therefore, a similar

implementation can be applied to 32-point and 64-point trans-

form matrices.

Since DST-VII and DCT-VIII share the same implemen-

tation logic, we omit full description to DCT-VIII to avoid

redundancy. It would be easier to understand by examining

the basis transform vector of DCT-VIII. The basis transform

vector of the 16-point DST-VII is

T DST−V I I
0 = {8, 17, 25, 33, 40, 48, 55,

62, 68, 73, 77, 81, 85, 87, 88, 88} (8)

and the basis transform vector of the 16-point DCT-VIII is

T DCT−V I I I
0 = {88, 88, 87, 85, 81, 77, 73,

68, 62, 55, 48, 40, 33, 25, 17, 8} (9)

To leverage the proposed rules, the fast method Feature #1 for

16-point DCT-III can be formulated as

T0(15 − j) + T0(6 + j) = T0(4 − j), j = 0, · · · , 4 (10)

which corresponds to (16) of the 16-point DST-VII

formulation.

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on January 16,2021 at 04:25:42 UTC from IEEE Xplore. Restrictions apply.

360 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 31, NO. 1, JANUARY 2021

TABLE II

COMPARISON OF THE TUNED TRANSFORM MATRICES AND THE ORIGINAL TRANSFORM MATRICES

B. Transform Matrix Tuning

Similar to HEVC, VVC implements the transform matrices

in a finite-precision approximation in the reference software.

Using integer operations is friendly to hardware implemen-

tation. In addition, it might also avoid potential mismatch

caused by the platforms from different manufactures. One of

the drawbacks is the finite-precision representation is not as

accurate as the floating-point representation. This might lead

to inferior coding efficiency. Another disadvantage is that the

useful features as mentioned in Section III-A are not valid in

the rounded transform matrices.

To better explain this point, we take the 32-point

DST-VII forward transform matrix as an example. We use

{a, b, . . . , z, A, B, . . . , F} to denote the basis transform vector
which is also the first transform vector. In floating-point 32-

point DST-VII forward transform matrix, Feature #1 can be

expressed with the following equations.

a + l + A = n + y

b + k + B = o + x

c + j + C = p + w

d + i + D = q + v

e + h + E = r + u

f + g + F = s + t (11)

In VVC test model, the transform matrix elements are

multiplied and scaled to the closest integer resulting in the

following actual values.

{a, b, . . . , F} = {4, 9, 13, 17, 21, 26, 30, 34, 38, 42,

46, 49, 53, 56, 60, 63, 66, 69, 71, 74, 76,

78, 81, 82, 84, 85, 87, 88, 89, 89, 90, 90

(12)

Therefore, for quintuple #1 in (11), the left side and the

right side can be calculated as

b + k + B = 9 + 46 + 88 = 143

o + x = 60 + 82 = 142 (13)

which are not equal any more. To bring this rounded transform

matrix back to validity for Feature #1, the basis transform

vector has to be tuned. In this example, we can either subtract

1 from b, k or B , or add 1 to o or x .

To make the adjusted transform matrices well-adapted in

video coding scenario, we define the following principles that

should be strictly followed during the tuning process. First,

the N-point transform matrix can be represented using N
distinct basis transform vector members without considering

the sign changes. Second, the orthogonality between any two

transform vectors should be optimized as much as possible.

Finally, the adjusted basis transform vector members should be

kept as close as possible to the floating-point basis transform

vector members.

The following metrics are defined to evaluate the quality of

the tuned transform matrices, including orthogonality, accu-

racy and norm measurement.

1) Orthogonality measure: oi j = dT
i d j/dT

0 d0, i 6= j
2) Closeness measure: mi j = |αci j − di j |/d00

3) Norm measure: ni = |1 − dT
i di/dT

0 d0|
Given the original N-point transform matrix element ci j =

Ti (j) as defined in Table I, the scaled approximated transform

matrix element of di j , which constitutes the scaled approxi-

mated transform vector di = [di0, . . . , di(N−1)]T , where i =
0, . . . , N − 1, the global optimization objective is defined as

follows.

D = |α2 · I−T · T T | (14)

where i, j = 0, . . . , N − 1, and the scale factor α = 64 ·
√

N .

The tuning process is deployed by trying all possible integer

values and evaluate the tuned transform matrix using the

above-mentioned three measurements and the optimal setting

will be adopted.

In addition, the per-element magnitude difference between

the tuned transform matrix T and the floating-point transform

matrix T0 is restrained to be no larger than 1. In such a way,

the adjusted transform matrices are kept as close as possible to

the original floating-point transform matrices to avoid severe

performance deviation. The tuned transform matrices in both

8-bit and 10-bit can be found in [29], [32].

The comparison between the tuned transform matrices and

the original transform matrices is tabulated in Table II. The

worst value of oi j , mi j and ni are used to measure the level of

approximation. As can be seen from the table, in most cases,

although the tuned transform matrices are farther from the

orthonormal transform matrices, they provide better orthogo-

nality and norm properties.

The sinusoidal graphs are also provided in Figure 4 to

show the closeness of the original transform basis and the

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on January 16,2021 at 04:25:42 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: FAST DST-VII/DCT-VIII WITH DUAL IMPLEMENTATION SUPPORT FOR VERSATILE VIDEO CODING 361

Fig. 4. Sinusoidal graphs of 16-point and 32-point DST-VII among the
floating-point transform basis, the original transform basis and the proposed
transform basis.

proposed transform basis to the floating-point transform basis.

Here, the floating-point transform basis is directly derived

from the formula listed in Table I and multiplied by a scale

factor, the original transform basis refers to the existing one

in the reference software prior to the proposed scheme was

adopted, the proposed transform is the proposed transform

basis presented in this paper. We can observe from the graph

that, there are only some minor differences on the basis at the

peak of wave and the bases look close among the three curves.

IV. THEORETICAL DERIVATION

To demonstrate the validity of the proposed features utilized

to design the fast methods, we prove them from theory. Since

Feature #2 and Feature #3 are very straightforward, we omit

the theoretical proof process.

A. 16-Point Transform

In the 16-point DST-VII example, Feature #1 (1) can be

expressed in the form of (15). Therefore, Feature #1 can be

summarized in a more compact form as in (16).

T0(0) + T0(9) = T0(11)

T0(1) + T0(8) = T0(12)

T0(2) + T0(7) = T0(13)

T0(3) + T0(6) = T0(14)

T0(4) + T0(5) = T0(15) (15)

T0(j) + T0(9 − j) = T0(11 + j), j = 0, · · · , 4 (16)

According to the basis function defined in Table I, they can

be re-written in the following format.

T0(j) =
√

4

2N + 1
· sin

π(j + 1)

2N + 1

T0(9 − j) =
√

4

2N + 1
· sin

π(10 − j)

2N + 1

T0(11 + j) =
√

4

2N + 1
· sin

π(12 + j)

2N + 1
(17)

Therefore, proving (16) is equivalent to proving (18) by

removing the non-zero element

√

4
2N+1

.

sin
π(j + 1)

2N + 1
+ sin

π(10 − j)

2N + 1
= sin

π(12 + j)

2N + 1
(18)

The proof process is provided as follows.

sin
π(12 + j)

2N + 1
− sin

π(10 − j)

2N + 1

= 2 cos
11π

2N + 1
sin

π(1 + j)

2N + 1

= 2 cos
π

3
sin

π(1 + j)

2N + 1

= sin
π(j + 1)

2N + 1
(19)

Therefore, (16) has been proven.

B. 32-Point Transform

In the 32-point DST-VII transform matrix, the relationships

defined in (11) can be expressed in the following form.

T0(0) + T0(11) + T0(26) = T0(13) + T0(24)

T0(1) + T0(10) + T0(27) = T0(14) + T0(23)

T0(2) + T0(8) + T0(28) = T0(15) + T0(22)

T0(3) + T0(8) + T0(29) = T0(16) + T0(21)

T0(4) + T0(7) + T0(30) = T0(17) + T0(20)

T0(5) + T0(6) + T0(31) = T0(18) + T0(19) (20)

Therefore, we can describe Feature #1 in 32-point transform

in a compact manner as defined in (21).

T0(j) + T0(11 − j) + T0(26 + j)

= T0(13 + j) + T0(24 − j), j = 0, · · · , 5 (21)

Based on definitions in Table I, we have

T0(j) =
√

4

2N + 1
· sin

π(j + 1)

2N + 1

T0(11 − j) =
√

4

2N + 1
· sin

π(12 − j)

2N + 1

T0(26 + j) =
√

4

2N + 1
· sin

π(27 + j)

2N + 1

T0(13 + j) =
√

4

2N + 1
· sin

π(14 + j)

2N + 1

T0(24 − j) =
√

4

2N + 1
· sin

π(25 − j)

2N + 1
(22)

After removing the non-zero element

√

4
2N+1

, we can prove

the equivalent objective as described in (23).

sin
π(j + 1)

2N + 1
+ sin

π(12 − j)

2N + 1
+ sin

π(27 + j)

2N + 1

= sin
π(14 + j)

2N + 1
+ sin

π(25 − j)

2N + 1
(23)

On the left side of the equation, when we combine the sec-

ond and the third term, we achieve the following expression:

sin
π(j + 1)

2N + 1
+ sin

π(12 − j)

2N + 1
+ sin

π(27 + j)

2N + 1

= sin
π(j + 1)

2N + 1
+ 2 sin

39π

2(2N + 1)
cos

π(−15 − 2 j)

2(2N + 1)
(24)

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on January 16,2021 at 04:25:42 UTC from IEEE Xplore. Restrictions apply.

362 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 31, NO. 1, JANUARY 2021

TABLE III

FEATURE #1 APPLICABLE VECTORS IN 16-POINT DST-VII TRANSFORM MATRIX

Similar processing can be performed on the right terms, then

the right side is transformed to (25).

sin
π(14 + j)

2N + 1
+ sin

π(25 − j)

2N + 1

= 2 sin
π39

2(2N + 1)
cos

π(−11 + 2 j)

2(2N + 1)
(25)

Equation (23) can be re-written as (26) by substituting

corresponding items with (24) and (25).

sin
π(j + 1)

2N + 1
+ 2 sin

39π

2(2N + 1)
cos

π(−15 − 2 j)

2(2N + 1)

= 2 sin
39π

2(2N + 1)
cos

π(−11 + 2 j)

2(2N + 1)
(26)

After merging similar items, the objective becomes

sin
π(j + 1)

2N + 1
= 2 sin

39π

2(2N + 1)

[

cos
π(−11 + 2 j)

2(2N + 1)

− cos
π(−15 − 2 j)

2(2N + 1)

]

(27)

The right-most 2 items can be further simplified as follows.

cos
π(−11 + 2 j)

2(2N + 1)
− cos

π(−15 − 2 j)

2(2N + 1)

= −2 sin
−26π

4(2N + 1)
sin

π(4 + 4 j)

4(2N + 1)
(28)

Then we substitute corresponding items in (27), the objec-

tive turns to this form

sin
π(j + 1)

2N + 1

= −4 sin
39π

2(2N + 1)
sin

−26π

4(2N + 1)
sin

π(4 + 4 j)

4(2N + 1)
(29)

Since sin
π(j+1)
2N+1

is a non-zero element, we obtain the final

simplified objective equation (30) which is equivalent to (21).

sin
39π

2(2N + 1)
· sin

13π

2(2N + 1)
= 1

4
(30)

This equation turns to be an identity relation since N is

32. Therefore, the Feature #1 of 32-point DST-VII transform

matrix as described in (21) has been proved.

C. 64-Point Transform

Similar to 16-point and 32-point transform matrices, the 64-

point Feature #1 also can be expressed in a compact manner.

T0(j) + T0(41 − j) = T0(43 + j), j = 0, · · · , 20 (31)

Based on the definitions in Table I, each item in (31) can

be expanded to the following form.

T0(j) =
√

4

2N + 1
· sin

π(j + 1)

2N + 1

T0(41 − j) =
√

4

2N + 1
· sin

π(42 − j)

2N + 1

T0(43 + j) =
√

4

2N + 1
· sin

π(44 + j)

2N + 1
(32)

Replacing corresponding items in (31) with those in (32)

and removing the non-zero item

√

4
2N+1

, we obtain an equiv-

alent objective equation.

sin
π(j + 1)

2N + 1
+ sin

π(42 − j)

2N + 1
= sin

π(44 + j)

2N + 1
(33)

Start from the left side, each term can be expressed as the

following form.

sin
π(j + 1)

2N + 1
= sin

[

π(44 − j)

2N + 1
− 43π

2N + 1

]

(34)

sin
π(42 − j)

2N + 1
= sin

[

π(−44 − j)

2N + 1
+ 86π

2N + 1

]

(35)

The terms on the right side can be further expanded to

achieve this description.

sin

[

π(44 − j)

2N + 1
− 43π

2N + 1

]

= sin
π(44 + j)

2N + 1
cos

43π

2N + 1
− cos

π(44 + j)

2N + 1
sin

43π

2N + 1
(36)

sin

[

π(−44 − j)

2N + 1
+ 86π

2N + 1

]

= sin
π(−44 − j)

2N + 1
cos

86π

2N + 1
+cos

π(−44 − j)

2N + 1
sin

86π

2N + 1
(37)

When we add (36) and (37) and merge the common terms,

we obtain the following equivalent objective.

sin
π(j + 1)

2N + 1
+ sin

π(42 − j)

2N + 1

= sin
π(44 + j)

2N + 1

[

cos
43π

2N + 1
− cos

86π

2N + 1

]

+ cos
π(44 + j)

2N + 1

[

sin
86π

2N + 1
− sin

43π

2N + 1

]

(38)

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on January 16,2021 at 04:25:42 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: FAST DST-VII/DCT-VIII WITH DUAL IMPLEMENTATION SUPPORT FOR VERSATILE VIDEO CODING 363

TABLE IV

THE NUMBER OF ARITHMETIC OPERATIONS FOR

A 1D FORWARD/INVERSE TRANSFORM

Since N = 64, (38) is equivalent to (39) as follows.

sin
π(j + 1)

2N + 1
+ sin

π(42 − j)

2N + 1

= sin
π(44 + j)

2N + 1

[

cos
π

3
− cos

2π

3

]

+ cos
π(44 + j)

2N + 1

[

sin
2π

3
− sin

π

3

]

(39)

It is obvious that

cos
π

3
− cos

2π

3
= 1 (40)

sin
2π

3
− sin

π

3
= 0 (41)

Finally, (39) can be expressed in the following format.

sin
π(j + 1)

2N + 1
+ sin

π(42 − j)

2N + 1
= sin

π(44 + j)

2N + 1
(42)

Therefore, (31) has been proven.

In summary, these features utilized to design the fast DST-

VII/DCT-VIII method are tenable in theory. These inherent

properties are perfectly supported and considered useful for a

more efficient implementation. It is the deviation caused by

the rounding operation in the finite-precision expression that

breaks the (anti-)symmetric properties.

V. COMPLEXITY ANALYSIS

We provide complexity analysis in this section, including

both the number of arithmetic operation counts and the

actual software execution time. In the software execution

time section, two experiments are devised 1) using a separate

test program to execute the transform operation by a large

number of repetitions and calculate the average transform time;

2) collecting the actual transform time from the VTM.

A. Arithmetic Operations

In the element-wise matrix multiplication, N2 multiplica-

tions and N(N − 1) additions are needed to derive a 1D

inverse transformed results. Therefore, the doubled number of

operations are needed for calculating a 2D transform results.

We calculate the number of operation counts involved in a 1D

transform process to conduct the comparison.

According to the three features as mentioned above,

a reduced number of operation counts can be achieved.

To check the practical effects, we tabulate the numbers of

arithmetic operations required for a 1D N-point transform of

the full-matrix multiplication and the fast method in Table IV.

Overall, 41.8%, 33.1% and 43.8% total number of arithmetic

operations are saved for 16-point, 32-point and 64-point

DST-VII/DCT-VIII transform, respectively.

To showcase how these numbers of operation counts are

obtained, we take the 16-point DST-VII inverse transform

as an example to introduce the details. To derive a single

output element, 16 multiplications and 15 additions are needed

using element-wise matrix multiplication. Therefore, to obtain

an output vector, 16 times operation counts are required,

i.e., 256 multiplications and 240 additions.

However, if using the proposed fast methods, Feature #1 can

be applied to 10 transform vectors, Feature #2 can be applied

to 5 transform vectors and Feature #3 can be applied to

the remaining transform vector. In Feature #1, there are

16 shared values to be re-used which occupy 25 additions and

another shared value which requires 1 multiplication. To use

these shared values derive the transformed results for the

10 transform vectors, an additional of 10 × 10 multiplications

and 10 × 10 additions are needed. Thus 101 multiplication

operations and 125 addition operations are required by apply-

ing Feature #1. The number of operation counts can be

calculated in a similar way for performing Feature #2, resulting

in 25 multiplications and 20 additions. When applying Fea-

ture #3, there are 1 multiplication and 10 addition operations.

By summing them up, the total numbers of multiplications and

additions needed to derive a 1D 16-point DST-VII transformed

vector are 127 and 155, respectively. Therefore, 50.4% and

35.4% operation counts reduction are achieved for multiplica-

tion and addition, respectively.

For the 1D 32-point and 64-point transforms, the numbers

of operation counts can be calculated in a similar way.

As tabulated in Table IV, 39.5% and 27.6% total number

of multiplications and additions are reduced to derive a 1D

32-point transformed results. In a 1D 64-point transform case,

46.1% and 42.2% operation counts reduction are achieved for

multiplication and addition, respectively.

B. Software Execution Time

In this subsection, we devise two experiments to compare

the software execution time between the proposed fast method

and the direct matrix multiplication. Firstly, a standalone test

program is used to measure the run-time (in seconds) of

individual transform functions by repeating a large number

of times. Secondly, the proposed fast method is integrated

into VTM-3.0 and executed over all the CTC test sequences,

the transform time is collected to provide a statistical summary

showing the ratio of the run-time between the proposed fast

transform and the anchor. It should be noted that the matrix

multiplication implementation is the same no matter which

VTM version is used.

The standalone program to measure the run-time of individ-

ual functions is written in C, and auto-vectorization is disabled

(#pragma loop(no_vector)) for compiling to provide

a fair comparison. The total number of repeating iterations

are set empirically so that the total execution time is within

a reasonable range. The detailed configurations of the test

environment are available below.

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on January 16,2021 at 04:25:42 UTC from IEEE Xplore. Restrictions apply.

364 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 31, NO. 1, JANUARY 2021

TABLE V

COMPARISONS ON SOFTWARE EXECUTION SPEED (SECONDS)

Fig. 5. Encoding and decoding software execution time of the Luma component under AI and RA configurations. The straight lines are linear regression
approximation with L2 norm constraints.

– CPU: i7-6600U CPU @ 2.6 GHz

– Windows 10 Pro, 64-bit

– Memory (RAM): 16 GB

– Compiler: Visual Studio 2017

The results of All Intra (AI) and Random Access (RA)

are tabulated in Table V. By repeating the 16-point DCT-VIII

transform function by 223 times, the proposed fast method can

save 57.52% and 67.76% software execution time for forward

and inverse transform, respectively. In the 32-point DCT-VIII

transform, an average of 48.65% and 62.84% time savings

are achieved for forward and inverse transform, respectively.

Similarly, an average time saving of 52.73% and 64.08% is

observed for forward and inverse transform, respectively.

In the second experiment, the 16-point, 32-point, and

64-point DST-VII/DCT-VIII fast methods are integrated into

VTM-3.0 reference software. All the test sequences from VVC

CTC are utilized for the testing. The software execution time

of both forward and inverse transform are collected for the

Luma component. Encoding process involves both forward and

inverse transforms since the RDO process, while the decoding

process only involves the inverse transform. To validate the

individual contribution of each block-level, we enable the fast

method from the smallest block size and increase gradually to

the largest block size.

The statistical results are illustrated in Figure 5. fast16
denotes enabling fast methods of block size 16, fast16+32
represents enabling fast methods of both block size 16 and 32,

and fast16+32+64 means enabling fast methods of all block

levels. The vertical axis is the encoding/decoding time of the

proposed fast methods and the horizontal axis is the encod-

ing/decoding time of the anchor. The solid lines are the linear

regression approximations with the mean squared loss. The

average percentage of time reduction can be approximately

represented by (1− l)×100% where l is the slope of the solid

line.

Overall, the superiority is quite remarkable, especially dur-

ing inverse transform process. It is observed in Figure 5

that an average of 56%, 57% inverse decoding time savings

are achieved under AI and RA configuration, respectively.

In inverse transform of the encoding process, an average

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on January 16,2021 at 04:25:42 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: FAST DST-VII/DCT-VIII WITH DUAL IMPLEMENTATION SUPPORT FOR VERSATILE VIDEO CODING 365

TABLE VI

ADDITIONAL METRICS RELATED TO THE PROPOSED FAST METHOD

of 34% and 49% time savings have been achieved for AI

and RA configuration, respectively. In addition, superiority

is increased when involving the 32-point and 64-point fast

method implementation. Take the decoding time of inverse

transform under AI configuration i.e., Figure 5a as an example,

14% average time saving is achieved when only the 16-point

fast implementation is enabled. 31% more time saving is

achieved when the 32-point fast method is enabled on top

of that. An additional 11% time saving is observed when

the 64-point fast transform is enabled. Therefore, each size

of fast transform has its own contributions to the final perfor-

mance. The decreased superiority during the forward transform

process is caused by the fact that the encoder needs to traverse

all possible transforms to perform rate-distortion optimization

thereby dilutes the superiority of the fast methods.

C. Other Metrics

The additional metrics that might help better understanding

the proposed method are tabulated in Table VI. The proposed

method shares the following merits, no additional memory

requirements for storing transform matrices, no additional

computations required at the encoder/decoder side, the com-

binations of transform block size and transform type used

for secondary transform are consistent with VTM reference

software, the minimum bit-precision is unchanged, etc.

VI. EXPERIMENTS

A. Experiment Settings

The proposed fast methods are integrated to VVC Test

Model VTM-3.0 [33]. Three sets of experiments are con-

ducted, including the CTC Set, the Low QP Set and comparing

with relevant methods. The CTC Set uses the common test

condition [34] as defined by Joint Video Experts Team (JVET)

for evaluating proposals during the VVC standards devel-

opment. The quantization parameters (QP) are set to 22,

27, 32, 37. The Low QP set uses low QP values of 2,

7, 12, 17 to test the high-quality compression performance.

In each set, we provide the results of both inter MTS is

disabled and enabled. By default, the intra MTS is enabled in

VVC common test condition. We also compare with similar

schemes [35]–[37] proposed in MPEG meeting and analyze

relative merits.

In those experiments, a set of 26 video sequences ranging

from 416×240 to 3840×2160 are tested, including four artifi-

cial sequences with the computer screen and mixed natural and

screen content. It should be noted that Class D and Class F

(screen content) are excluded in the overall average perfor-

mance. The Bjøntegaard delta bitrates (BD-Rate) [38], [39] is

used to evaluate the relative coding improvement. The run-time

ratio of the proposed method to anchor as defined in (43) is

used to evaluate the time complexity, with 100% represents

no run-time saving. All Intra (AI), Random Access (RA) and

Low Delay B (LDB) configurations are covered. Under AI

configuration, every picture is coded as Intra while under RA,

intra period is set as one second, GOP size is set to 8. The

codec is operating in 10-bit mode, RDOQ is enabled. The

decoding time and encoding time are measured in seconds.

1T = TProposed

TAnchor
× 100% (43)

B. Common Test Condition

The run-time results under common test condition are

shown in Table VII. An average of 9%, 0%, and −1%

decoding time savings are achieved for AI, RA and LDB con-

figurations, respectively and 4%, 0%, and 1% overall encoding

time savings are achieved for AI, RA, and LDB configura-

tions, respectively. Among AI, RA and LDB configurations,

the proposed fast methods achieve the most significant average

decoding time reduction under AI configuration with up to 9%

decoding time saving. In addition, the proposed fast methods

behave consistently comparing with the anchor across all

the resolutions. In high-resolution contents, the proposed fast

method is slightly better than in low-resolution contents which

could probably be caused by more sizes of fast transform

matrices are involved. In the encoding process, the most time

saving is with Sequence Tango2 and FoodMarket4 of 7%;

CampfireParty2, RitualDance and RaceHorses of 2%; and Par-
tyScene of 6% for AI, RA and LDB configuration, respectively.

In the decoding process, the most time saving is with Sequence

Tango2 and FoodMarket4 of 14%; RitualDance of 4%; and

PartyScene of 7% for AI, RA and LDB, respectively.

An increased superiority is observed when inter MTS is

enabled for RA and LDB which is also as expected. Overall,

0% and 3% decoding time savings are achieved for RA and

LDB, respectively; an average of 2% and 3% encoding time

savings are achieved for RA and LDB, respectively. The

overall decoding time saving increases from −1% to 3% for

LDB, and the overall encoding time saving increases from 0%

to 2% for RA, from 1% to 3% for LDB. This demonstrates the

fast method is of significant benefits for inter coding process,

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on January 16,2021 at 04:25:42 UTC from IEEE Xplore. Restrictions apply.

366 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 31, NO. 1, JANUARY 2021

TABLE VII

RUN-TIME PERFORMANCE OF THE PROPOSED FAST METHOD COMPARED WITH VTM-3.0 UNDER COMMON TEST CONDITION

TABLE VIII

BD-RATE PERFORMANCE OF PROPOSED FAST METHOD (TUNED TRANSFORM MATRIX) COMPARED WITH VTM-3.0

UNDER COMMON TEST CONDITION WITH INTER MTS DISABLED

especially when inter MTS is enabled when more transform

types are involved in the RDO process.

Although some sequences happen to occupy more time

than the anchor, e.g., decoding time of BlowingBubbles under

AI, encoding time of BasketballDrill under RA with inter

MTS off, the overall time saving is quite encouraging. This

phenomenon is probably caused by the CPU perturbation

while executing since the decoding time is too short on these

sequences.

To validate the coding efficiency by using the tuned trans-

form matrices, we collect the BD-Rate results as shown

in Table VIII. Overall, the proposed fast method achieves

0.01%, −0.01% and 0.01% Luma component BD-Rate reduc-

tion under AI, RA, and LDB respectively compared with

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on January 16,2021 at 04:25:42 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: FAST DST-VII/DCT-VIII WITH DUAL IMPLEMENTATION SUPPORT FOR VERSATILE VIDEO CODING 367

TABLE IX

RUN-TIME PERFORMANCE OF PROPOSED FAST METHOD COMPARED WITH VTM-3.0 ANCHOR UNDER LOW QP TEST CONDITION

the anchor. The Luma component achieves very similar

BD-Rate performance in most cases and only trivial difference

has been observed compared with anchor. There exist some

differences, but they are tolerable by considering the time

saving it can bring. In summary, no noticeable side effects

have been introduced by replacing with the tuned transform

matrices. The BD-Rate results when inter MTS is enabled are

similar to Table VIII thus are omitted here.

C. Low QP Test Condition

The run-time results using low QP values are tabulated

in Table IX. In contrast to common test condition, the pro-

posed fast method achieves decreased superiority for AI and

increased superiority for RA and LDB. Under the AI test

condition, the decoding time saving decreases from 9% to 1%

and the encoding time saving decreases from 4% to 2%.

In contrast, both the decoding and encoding saving increases

from 0% to 1% under RA test condition. Under the LDB con-

figuration, the decoding time saving decreases from 1% to 0%,

and the encoding time increases from −1% to 0%. The

changes under the AI test condition are caused by the fact that

more smaller block transforms involved in low QP encoding

process thus the time saving has been diluted. The essence of

the proposed fast method is to accelerate the transform process

by reducing the number of operation counts. Therefore, more

time saving can be achieved in larger block transform sizes.

The changes under RA and LDB test conditions are mostly

caused by the fluctuations in terms of both the transform size

and the transform counts which heavily depends on the coding

parameter settings.

When inter MTS is enabled, an improved time saving

performance has also been observed in RA and LDB test

conditions. The encoding time saving increases by 1% and 2%

for RA and LDB, respectively. The decoding time increases by

1% and 4% for RA and LDB, respectively. This phenomenon

is consistent with that of using normal QP values which reveals

that more transform block sizes are involved thereby more time

saving is obtained.

To check the effects on the coding efficiency by introducing

the new transform matrices under low QP test conditions,

we collect the BD-Rate results in Table X. An average

of 0.02%, 0.01%, and 0.00% changes are observed for AI, RA,

and LDB, respectively. In the Luma component, a large portion

of classes are not affected by introducing the tuned transform

matrices, i.e., identical coding efficiency has been achieved.

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on January 16,2021 at 04:25:42 UTC from IEEE Xplore. Restrictions apply.

368 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 31, NO. 1, JANUARY 2021

TABLE X

BD-RATE PERFORMANCE OF PROPOSED FAST METHOD (TUNED TRANSFORM MATRIX) COMPARED WITH VTM-3.0

ANCHOR UNDER LOW QP TEST CONDITION WITH INTER MTS DISABLED

TABLE XI

BD-RATE AND ENCODING/DECODING TIME COMPARISON WITH RELATED METHODS

Marginal fluctuations are observed in the other classes which

are tolerable since the overall changes are very trivial that can

be neglected.

D. Comparison With Relevant Methods

We compare the proposed methods with relevant schemes

that were discussed in the core experiments on complexity

reduction of MTS. The DFT-based scheme JVET-M0288 [35],

transform adjustment-based method JVET-M0538 [36]

and Transform Adjustment Filters (TAF)-based solution

JVET-M0080 [37] are included in this comparison.

In JVET-M0288 [35], a DFT-based scheme is proposed by

replacing DST-VII and DCT-VIII with corresponding DFT

transforms. The existent symmetries can be utilized to devise

efficient fast transform implementation. In JVET-M0538 [36],

the authors perform a transform “adjustment” in which the

DST-VII and DCT-VIII transform matrices are processed

vector by vector. The transform vector is decomposed to a

combination of an “adjusted” part and a DCT-II coefficients

part. The “adjusted” part is achieved by multiplying the 8

lowest frequency coefficients with a pre-defined 8 × 8 matrix.

The remaining part is copied from the DCT-II transform matrix

coefficients. The primary benefits come from the regular

patterns in DCT-II transforms which enable faster parallel

computation, and the “zero-out” technique used in DCT-II of

dimension 64 which reduces the worst-case number of mul-

tiplications. In JVET-M0080 [37], another adjustment-based

method is proposed called TAF, in which the transform matri-

ces are approximated using a low complexity adjustment stage.

TAF is implemented as a sparse matrix, used as a preprocessor

towards the partial butterfly DCT-II algorithm.

The results are shown in Table XI, including Luma com-

ponent BD-Rate reduction, encoding and decoding time ratio

over VTM-3.0 with and without inter MTS enabled. It can

be observed that though JVET-M0288 achieves better per-

formance in terms of decoding time savings, it requires a

two-stage implementation which is not friendly in parallel

computation required scenarios. Another set of DFT trans-

form sets need to be stored in the reference software which

requires additional memory space. The JVET-M0538 achieves

better decoding time savings when inter MTS is on com-

pared with the proposed method, but leads to larger coding

degradation. When tested over VTM-3.0 with inter MTS

off, it achieves inferior decoding time saving with noticeable

encoding time increase. Over VTM-3.0 with inter MTS off,

JVET-M0080 performs slightly better in terms of decoding

time saving, but with much significant coding performance

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on January 16,2021 at 04:25:42 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: FAST DST-VII/DCT-VIII WITH DUAL IMPLEMENTATION SUPPORT FOR VERSATILE VIDEO CODING 369

degradation by comparing with the proposed method. Over

VTM-3.0 with inter MTS on, the proposed method performs

better than JVET-M0080 in terms of both software run-time

savings and coding performance. In addition, none of the

counterparts supports dual implementation, i.e., direct matrix

multiplication and fast transform deployment.

In summary, the compared methods fail to support the

following features simultaneously.
• Noticeable software run-time saving.

• Negligible coding performance degradation.

• Parallel computation supported.

• Dual-implementation supported.
The proposed scheme achieves a superior overall performance

by considering the run-time saving, side effects on coding per-

formance and dual-implementation with capability of parallel

computation supported.

VII. CONCLUSION

This paper presents a fast DST-VII/DCT-VIII method with

dual-implementation support for Multiple Transform Selec-

tion (MTS) which is adopted by the under-development

next-generation video coding standard VVC. The inherent par-

tial butterfly-type features are exploited to reduce the number

of arithmetic operations. A fast DST-VII/DCT-VIII method is

devised by using these features which achieves an approxi-

mate of 50% arithmetic operations with dual-implementation

support, i.e., either full matrix multiplication or fast partial

butterfly-type implementation. Complexity analysis is per-

formed to validate the efficiency in terms of theoretical opera-

tion counts and software run-time. In addition, the theoretical

proof is provided to demonstrate that these beneficial features

are tenable in theory. Comprehensive experiments are con-

ducted by comparing with VTM-3.0 as well as relevant meth-

ods. The proposed method shares superior merits in varied

evaluation conditions. The proposed scheme was adopted in

the 13th JVET Meeting of ITU-T VCEG and ISO/IEC MPEG

in January 2019.

REFERENCES

[1] J. Ballé, V. Laparra, and E. P. Simoncelli, “End-to-end optimized
image compression,” 2016, arXiv:1611.01704. [Online]. Available:
http://arxiv.org/abs/1611.01704

[2] J. Ballé, D. Minnen, S. Singh, S. J. Hwang, and N. Johnston, “Varia-
tional image compression with a scale hyperprior,” in Proc. 6th Int.
Conf. Learn. Represent. (ICLR), 2018, pp. 1–23.

[3] N. Yan, D. Liu, H. Li, T. Xu, F. Wu, and B. Li, “Convolutional neural
network-based invertible half-pixel interpolation filter for video coding,”
in Proc. 25th IEEE Int. Conf. Image Process. (ICIP), Oct. 2018,
pp. 201–205.

[4] N. Yan, D. Liu, H. Li, B. Li, L. Li, and F. Wu, “Convolutional neural
network-based fractional-pixel motion compensation,” IEEE Trans. Cir-
cuits Syst. Video Technol., vol. 29, no. 3, pp. 840–853, Mar. 2019.

[5] G. Lu, W. Ouyang, D. Xu, X. Zhang, C. Cai, and Z. Gao, “DVC: An
End-To-End deep video compression framework,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, p. 11.

[6] N. Yan, D. Liu, H. Li, and F. Wu, “A convolutional neural network
approach for half-pel interpolation in video coding,” in Proc. IEEE Int.
Symp. Circuits Syst. (ISCAS), May 2017, pp. 1–4.

[7] Z. Zhang, X. Zhao, X. Li, Z. Li, and S. Liu, “Fast adaptive multiple
transform for versatile video coding,” in Proc. Data Compress. Conf.
(DCC), Mar. 2019, pp. 63–72.

[8] G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, “Overview of the
high efficiency video coding (HEVC) standard,” IEEE Trans. Circuits
Syst. Video Technol., vol. 22, no. 12, pp. 1649–1668, Dec. 2012.

[9] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview
of the H.264/AVC video coding standard,” IEEE Trans. Circuits Syst.
Video Technol., vol. 13, no. 7, pp. 560–576, Jul. 2003.

[10] N. Ahmed, T. Natarajan, and K. R. Rao, “Discrete cosine transform,”
IEEE Trans. Comput., vols. C–23, no. 1, pp. 90–93, Jan. 1974,
doi: 10.1109/T-C.1974.223784.

[11] X. Zhao, J. Chen, M. Karczewicz, A. Said, and V. Seregin, “Joint
separable and non-separable transforms for next-generation video cod-
ing,” IEEE Trans. Image Process., vol. 27, no. 5, pp. 2514–2525,
May 2018.

[12] X. Zhao, J. Chen, M. Karczewicz, L. Zhang, X. Li, and W.-J. Chien,
“Enhanced multiple transform for video coding,” in Proc. Data Com-
press. Conf. (DCC), Mar. 2016, pp. 73–82.

[13] K. Karhunen, Über Lineare Methoden in der Wahrscheinlichkeitsrech-
nung (Suomalaisen Tiedeakatemian toimituksia). Helsinki, Finland:
Suomalainen Tiedeakatemia, 1947, p. 79.

[14] M. Loeve, Probability Theory II, vol. 46. New York, NY, USA: Springer-
Verlag, 1978.

[15] R. Clarke, “Relation between the Karhunen Loève and cosine trans-
forms,” IEE Proc. F. Commun., Radar Signal Process., vol. 128,
no. 1, pp. 359–360, Nov. 1981. [Online]. Available: https://digital-
library.theiet.org/content/journals/10.1049/ip-f-1.1981.0061

[16] X. Zhao, L. Li, Z. Li, X. Li, and S. Liu, “Coupled primary and sec-
ondary transform for next generation video coding,” in Proc. IEEE Vis.
Commun. Image Process. (VCIP), Dec. 2018, pp. 1–4.

[17] R. H. Bamberger and M. J. T. Smith, “A filter bank for the directional
decomposition of images: Theory and design,” IEEE Trans. Signal
Process., vol. 40, no. 4, pp. 882–893, Apr. 1992.

[18] E. J. Candès and D. L. Donoho, “Ridgelets: A key to higher-dimensional
intermittency?” Phil. Trans. Roy. Soc. London. A, Math., Phys. Eng. Sci.,
vol. 357, no. 1760, pp. 2495–2509, Sep. 1999.

[19] J.-L. Starck, E. J. Candes, and D. L. Donoho, “The curvelet transform
for image denoising,” IEEE Trans. Image Process., vol. 11, no. 6,
pp. 670–684, Jun. 2002.

[20] M. N. Do and M. Vetterli, “The contourlet transform: An effi-
cient directional multiresolution image representation,” IEEE Trans.
Image Process., vol. 14, no. 12, pp. 2091–2106, Dec. 2005, doi:
10.1109/TIP.2005.859376.

[21] B. Zeng and J. Fu, “Directional discrete cosine transforms—A new
framework for image coding,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 18, no. 3, pp. 305–313, Mar. 2008.

[22] X. Zhao, L. Zhang, S. Ma, and W. Gao, “Video coding with rate-
distortion optimized transform,” IEEE Trans. Circuits Syst. Video Tech-
nol., vol. 22, no. 1, pp. 138–151, Jan. 2012.

[23] X. Cao and Y. He, “Singular vector decomposition based adaptive
transform for motion compensation residuals,” in Proc. IEEE Int. Conf.
Image Process. (ICIP), Oct. 2014, pp. 4127–4131.

[24] Y. Ye and M. Karczewicz, “Improved h.264 intra coding based on bi-
directional intra prediction, directional transform, and adaptive coeffi-
cient scanning,” in Proc. 15th IEEE Int. Conf. Image Process., 2008,
pp. 2116–2119.

[25] X. Zhao, L. Zhang, S. Ma, and W. Gao, “Rate-distortion optimized
transform for intra-frame coding,” in Proc. IEEE Int. Conf. Acoust.,
Speech Signal Process., Dallas, TX, USA, Mar. 2010, pp. 1414–1417,
doi: 10.1109/ICASSP.2010.5495468.

[26] B. Bross, J. Chen, and S. Liu, Versatile Video Coding (Draft 2),
document ITU-T SG 16 WP 3 ISO/IEC JTC 1/SC 29/WG 11 and JVET–
K1001, Joint Video Experts Team (JVET), Ljubljana, SI, USA, p. 10–18,
Jul. 2018.

[27] J. Chen, Y. Ye, and S. Kim, Algorithm description for versatile video
coding and test model 2 (vtm 2), document ITU-T SG 16 WP 3 ISO/IEC
JTC 1/SC 29/WG 11 and vols. JVET–K1002, Joint Video Experts Team
(JVET), Ljubljana, SI, USA, p. 10–18, Jul. 2018.

[28] H. Gao et al., Non-Ce6: Combined Test of Jvet-n0172/jvet-n0375/jvet-
n0419/jvet-n0420 on Unification of Implicit Transform Selection, doc-
ument ITU-T SG 16 WP 3 ISO/IEC JTC 1/SC 29/WG 11 and
JVET–N0866, Joint Video Experts Team (JVET), Geneva, Switzerland,
p. 10–18, Mar. 2019.

[29] X. Zhao, X. Li, Y. Luo, and S. Liu, Ce6: Fast dst-7/dct-8 With Dual
Implementation Support (Test 6.2.3), docuement ITU-T SG 16 WP 3
ISO/IEC JTC 1/SC 29/WG 13 and JVET–M0497, Joint Video Experts
Team (JVET), Marrakech, MA, USA, p. 10–18, Jan. 2019.

[30] A. K. Jain, “A sinusoidal family of unitary transforms,” IEEE Trans. Pat-
tern Anal. Mach. Intell., vols. PAMI–1, no. 4, pp. 356–365, Oct. 1979.

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on January 16,2021 at 04:25:42 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/T-C.1974.223784
http://dx.doi.org/10.1109/TIP.2005.859376
http://dx.doi.org/10.1109/ICASSP.2010.5495468

370 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 31, NO. 1, JANUARY 2021

[31] S. A. Martucci, “Symmetric convolution and the discrete sine and cosine
transforms,” IEEE Trans. Signal Process., vol. 42, no. 5, pp. 1038–1051,
May 1994.

[32] Z. Zhang, X. Zhao, X. Li, and S. Liu, Ce6-Related: Fast dst-7/dct-
8 With Dual Implementation Support, document ITU-T SG 16 WP 3
ISO/IEC JTC 1/SC 29/WG 11 and VET–K0291, Joint Video Experts
Team (JVET), Ljubljana, SI, USA, pp. 10–18, Jul. 2018.

[33] J. VVC. (May 2019). Versatile Video Coding (VVC) Refer-
ence Software: VVC Test Model (VTM). [Online]. Available:
https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM/tree/VTM-3.0

[34] J. Boyce, K. Suehring, X. Li, and V. Seregin, Jvet common test
conditions and software reference configurations, document ITU-T SG
16 WP 3 ISO/IEC JTC 1/SC 29/WG 11 and JVET–J1010, Joint Video
Experts Team (JVET), San Diego, CA, USA, pp. 10–20, Apr. 2018.

[35] M. Koo, M. Salehifar, J. Lim, and S. Kim, Ce6: Fast dst-7/dct-8 Based
on DFT (test 6.2.1), document ITU-T SG 16 WP 3 ISO/IEC JTC
1/SC 29/WG 13 and JVET–M0288, Joint Video Experts Team (JVET),
Marrakech, MA, USA, pp. 10–18, Jan. 2019.

[36] A. Said, H. Egilmez, Y.-H. Chao, V. Seregin, and M. Karczewicz, Ce6:
Efficient Implementations of MTS With Transform Adjustments (tests
1.4a-d), document ITU-T SG 16 WP 3 ISO/IEC JTC 1/SC 29/WG 13,
vols. JVET–M0538, Joint Video Experts Team (JVET), Marrakech, MA,
USA, pp. 10–18, Jan. 2019.

[37] P. Philippe, Ce6: Mts simplification with transform adjustment (TAF)
(tests 1.5a-d), document ITU-T SG 16 WP 3 ISO/IEC JTC 1/SC 29/WG
13 and JVET–M0080, Joint Video Experts Team (JVET), Marrakech,
MA, USA, pp. 10–18, Jan. 2019.

[38] G. Bjontegaard, Calculation of Average PSNR Differences Between
Rd-Curves, document ITU-T SG16/Q6 and VCEG-M33, Austin, TX,
USA, pp. 10–18, Apr. 2001. [Online]. Available: http://wftp3.itu.int/av-
arch/video-site/0104_Aus/

[39] G. Bjontegaard, Improvement of Bd-PSNR Model, document ITU-
T SG16/Q6 and VCEG-AI11, Berlin, Germany, pp. 10–18,
Jul. 2008. [Online]. Available: https://www.itu.int/wftp3/av-arch/video-
site/0807_Ber/

Zhaobin Zhang received the B.S. and M.S. degrees
in mechanical electronic engineering from the
Huazhong University of Science and Technology,
Wuhan, China, in 2012 and 2015, respectively.
He is currently pursuing the Ph.D. degree with
the Department of Computer Science and Electrical
Engineering, University of Missouri–Kansas City.
His research interests include machine learning, and
image/video compression and processing.

Xin Zhao received the B.S. degree in electronic
engineering from Tsinghua University, Beijing,
China, and the Ph.D. degree in computer applica-
tions from the Institute of Computing Technology,
Chinese Academy of Sciences, Beijing, China.

In 2017, he joined Tencent America, LLC, Palo
Alto, CA, USA, where he is currently a Principal
Researcher. From 2012 to 2017, he was a Staff
Engineer with Qualcomm, San Diego, CA, USA.
Since 2012, he has been actively contributing to
the development of 3D extensions to H.264/AVC

and HEVC standards with Joint Collaborative Team on 3D Video Coding
Extensions (JCT-3V), the Development of Versatile Video Coding (VVC)
Standard with Joint Video Exploration Team (JVET) and explorations of
next-generation video coding technologies with Alliance for Open Media
(AOM). His research interests include image and video coding, video process-
ing, and transmission.

Xiang Li (Senior Member, IEEE) received the
B.Sc. and M.Sc. degrees in electronic engineering
from Tsinghua University, Beijing, China, and the
Dr.-Ing. degree in electrical, electronic and com-
munication engineering from the University of
Erlangen-Nuremberg, Germany. He was with Qual-
comm and Siemens. He has been working in the
field of video compression for years and is an active
contributor to international video coding standards.
He is currently a Senior Principal Researcher and
the Head of video coding standards in the Tencent

Media Lab, Tencent America, LLC. He has published more than 40 journals
and conference papers, 300 standard contributions, and holds 120 U.S. granted
and pending patents. He served as a chair and co-chair in a number of Ad Hoc
groups, core experiments, including the Co-Chair of JEM Reference Software,
VVC Reference Software, and a Co-Editor of MPEG-5 EVC.

Li Li (Member, IEEE) received the B.S. and Ph.D.
degrees in electronic engineering from the Univer-
sity of Science and Technology of China (USTC),
Hefei, Anhui, China, in 2011 and 2016, respec-
tively. He is currently a Visiting Assistant Professor
with the University of Missouri–Kansas City. His
research interest includes image/video coding and
processing. He received the Best 10% Paper Award
at the 2016 IEEE Visual Communications and Image
Processing (VCIP) and the 2019 IEEE International
Conference on Image Processing (ICIP).

Yi Luo received the M.S.E.E. degree from the
California Institute of Technology, Pasadena, CA,
USA. He has worked in speech, audio, and video
processing industry for more than 20 years. He is
currently a Senior Research with Tencent America,
LLC, Palo Alto, CA, USA. His research interest
includes the efficient software implementation of
video codec and its algorithm development.

Shan Liu received the B.Eng. degree in electronics
engineering from Tsinghua University and the M.S.
and Ph.D. degrees in electrical engineering from
the University of Southern California. She was the
Chief Scientist and the Head of the America Media
Lab, Futurewei Technologies. She was formerly the
Director of the Multimedia Technology Division,
MediaTek USA. She was also formerly with MERL,
Sony, and IBM. She is currently a Tencent Distin-
guished Scientist and a General Manager of Tencent
Media Lab, Tencent America, LLC. She has been

actively contributing to international standards since the last decade and
has numerous proposed technologies adopted into various standards. She
holds more than 100 granted U.S. and global patents, some of which have
been productized to serve millions of users daily. She served the Industrial
Relationship Committee for the IEEE Signal Processing Society from 2014 to
2015 and the Vice President of the Industrial Relations and Development of
Asia–Pacific Signal and Information Processing Association (APSIPA) from
2016 to 2017. She was named as APSIPA Industrial Distinguished Leader
in 2018.

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on January 16,2021 at 04:25:42 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: FAST DST-VII/DCT-VIII WITH DUAL IMPLEMENTATION SUPPORT FOR VERSATILE VIDEO CODING 371

Zhu Li (Senior Member, IEEE) received the Ph.D.
degree in electrical and computer engineering from
Northwestern University, in 2004. He was the AFRL
Summer Faculty, U.S. Air Force Academy, UAV
Research Center, in 2016, 2017, and 2018. He was
a Sr. Staff Researcher/Sr. Manager with Samsung
Research America’s Multimedia Core Standards
Research Lab, Dallas, from 2012 to 2015, a Senior
Staff Researcher at FutureWei, from 2010 to 2012,
an Assistant Professor with the Department of Com-
puting, The Hong Kong Polytechnic University, from

2008 to 2010, and a Principal Staff Research Engineer with the Multi-
media Research Lab (MRL), Motorola Labs, Schaumburg, Illinois, from
2000 to 2008. He is currently an Associate Professor with the Department of
CSEE, University of Missouri–Kansas City, Kansas City, USA, directs the

NSF I/UCRC Center for Big Learning, UMKC. He has 46 issued or pending
patents, more than 100 publications in book chapters, journals, conference
proceedings, and standards contributions in these areas. His research interests
include image/video analysis, compression, and communication and associated
optimization and machine learning problems.

He received the Best Paper Award from the IEEE International Conference
on Multimedia & Expo (ICME), Toronto, in 2006, and the Best Paper
Award from the IEEE International Conference on Image Processing (ICIP),
San Antonio, in 2007. He was an Associate Editor of the IEEE TRANSAC-
TIONS ON MULTIMEDIA from 2015 to 2019, and the IEEE TRANSACTIONS

ON CIRCUITS & SYSTEM FOR VIDEO TECHNOLOGY from 2016 to 2019.
He has been serving as an Associate Editor for the IEEE TRANSACTIONS

ON IMAGE PROCESSING since 2019 and has also been an Associate Editor-
in-Chief (AEiC) of the IEEE TRANSACTIONS ON CIRCUITS & SYSTEM FOR

VIDEO TECHNOLOGY, since 2020.

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on January 16,2021 at 04:25:42 UTC from IEEE Xplore. Restrictions apply.

