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Abstract—Due to the increased popularity of augmented and
virtual reality experiences, the interest in capturing the real
world in multiple dimensions and in presenting it to users
in an immersible fashion has never been higher. Distributing
such representations enables users to freely navigate in multi-
sensory 3D media experiences. Unfortunately, such representa-
tions require a large amount of data, not feasible for transmission
on today’s networks. Efficient compression technologies well
adopted in the content chain are in high demand and are
key components to democratize augmented and virtual reality
applications. Moving Picture Experts Group, as one of the main
standardization groups dealing with multimedia, identified the
trend and started recently the process of building an open
standard for compactly representing 3D point clouds, which are
the 3D equivalent of the very well-known 2D pixels. This paper
introduces the main developments and technical aspects of this
ongoing standardization effort.

Index Terms—Point cloud coding, 3D data coding, immersive
video coding.
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I. INTRODUCTION

DVANCES in 3D sensing and capturing technology

have unleashed a new wave of innovation in Virtual/
Augmented/Mixed reality (VR/AR/MR) content creation and
communication, as well as 3D sensing for smart city, robotics
and automated driving applications. There is now a huge inter-
est from the virtual reality market in being able to represent
digitally the real world in three dimensions, thus enabling
the end-user to freely navigate in this digital representation.
Volumetric visual data describes a 3D scene and objects with
its geometry (shape, size, position in 3D-space) and respective
attributes (e.g., color, opacity, reflectance, albedo), plus any
temporal changes. Such data is typically computer-generated
from 3D models, or is captured from real-world scenes using
a variety of solutions such as multiple cameras or a com-
bination of video and dedicated geometry sensors. Common
representation formats for such volumetric data are polygon
meshes or point clouds. Temporal information is included in
the form of individual capture instances, similar to frames in
a 2D video, or by other means, e.g., position of an object
as a function of time. Because volumetric video describes a
complete 3D scene or object, such data can be visualized
from any viewpoint. Therefore, volumetric video is a key
enabling technology for any AR, VR, or MR applications,
especially for providing Six Degrees of Freedom (6DoF)
viewing capabilities.

While MPEG in prior standards has already addressed
the coding of 3D worlds [1], specifically computer-generated
worlds, recently it launched an ambitious road map of tech-
nologies for coding representations of real 3D scenes [2].
One of these technologies is called Point Cloud Compression
(PCC) and is expected to be delivered as an ISO standard in the
beginning of 2020. In 2017, MPEG issued a call for proposals
on PCC, and since then it has been evaluating and improving
the performances of the proposed technologies [3]. Such point
cloud data presents new challenges to the signal processing
and compression research community. Previous compression
solutions for volumetric visual representations either focused
on computer-generated content [1], [4] or suffered from low
spatial and temporal compression performance [5], [6] when
dealing with captured natural content. For natural captured
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3D sensor signals, scene geometry needs an efficient repre-
sentation that is scalable in level of detail and efficient in
compression, while its photometric attributes are a new class
of signal that is not sampled on an uniform Euclidean grid and
therefore needs new sampling, filtering, and transform tools
to represent and compress. Recent advances in Graph Signal
Processing (GSP) [7] have provided a rich set of tools for that.

The remainder of this paper is structured as follows: First
an overview on point cloud data and its characteristics is given
in Section II, followed by an overview of previous works on
point cloud compression in Section III. Section IV describes
the development and evaluation of the MPEG CfP on PCC,
with Sections V, VI, and VII describing the three selected
approaches in more detail. A brief summary of the coding
performance of each proposal is given in Section VIII, before
this paper is concluded in Section IX.

II. POINT CLOUD DATA

Many emerging applications including immersive VR/MR
video, automotive/robotic navigation, and medical imaging
require the capture and processing of 3D scene/object geom-
etry data. This data, in its most primitive form, consists of
a collection of points called a point cloud. This section will
introduce some of the aspects of point cloud data.

A. Characteristics

A point cloud consists of a set of individual 3D points.
Each point, in addition to having a 3D (x,y,z) position,
i.e., spatial attribute, may also contain a number of other
attributes such as color, reflectance, surface normal, etc. There
are no spatial connections or ordering relations specified
among the individual points.

For computer graphics and gaming applications in partic-
ular, 3D scene object geometry is typically represented by
polygonal meshes comprising a list of vertices together with
their connectivity information in terms of edges and faces.
Such polygonal meshes are well suited for compact represen-
tation of dense surfaces, but they have problems representing
non-manifold structures. Key advantages of a point cloud
representation over polygonal meshes are its flexibility to
represent non-manifold geometry and its real-time processing
potential as there is no need to store, maintain, or process
surface topological information.

For efficient processing of point cloud data, each point is
quantized into a cubic grid composed of 279 x 274 x 274
size voxels which are formed from volumetric subdivision,
up to d levels of detail (LoD), of a 1 x 1 x 1 cubic
root voxel. Resulting voxels may be mapped into an octree
data structure to create a voxelized octree, which facilitates,
in turn, the traversal, search, and access of the neighboring
voxels [8], [9].

B. Use Cases & Applications

3D point cloud data finds applications in many fields,
including cultural heritage/museums, 3D free viewpoint video,
real-time immersive telepresence, content VR viewing with
interactive parallax, mobile mapping, and autonomous naviga-
tion [10], [11]. Regarding cultural heritage applications, point

cloud data scans are used to archive and visualize objects in
museums including historical statues and buildings [12], [13].
Typical point clouds in this use case may contain from millions
to billions of points with finer than 1 cm of geometric precision
and an 8-12 bits per color component accuracy [10].

The goal of immersive video is to go beyond higher image
quality (4K/8K TV) and to provide a higher sense of 3D user
experience and interactivity. Real-time 3D telepresence is
one of the key applications of immersive video and 3D
point clouds, for which a collection of random and unrelated
points is a preferred data representation format because of
its simplicity for visualization, filtering and editing. Some
industrial examples of 3D telepresence include Microsoft’s
Holoportation [14] and 8i’s volumetric video technology [15].
Variations of immersive video include HMD (head-mounted
display) based VR and 3D free viewpoint sports replay and
broadcasting [16], which may not require real time process-
ing and may in addition contain mesh based graphical data
content. Such media-related use cases may usually contain
between 100,000 and 10,000,000 point locations and color
attributes with 8-10 bits per color component [17], along with
as some sort of temporal information, similar to frames in a
video sequence.

For navigation purposes, it is possible to generate a 3D map
by combining depth measurements from a high-density laser
scanner, e.g. LIDAR, camera captured images and localization
data measured with GPS and an inertial measurement unit
(IMU) [18]. Such maps can further be combined with road
markings such as lane information and road signs to create
maps to enable autonomous navigation of vehicles around a
city. This use case requires the capture of millions to billions
of 3D points with up to 1 cm precision, together with addi-
tional attributes, namely color with 8-12 bits per color com-
ponent, surface normals and reflectance properties attributes.

To address this wide range of applications, the MPEG
PCC standardization activity created three general categories
of point cloud test data: static, dynamic, and dynamically
acquired [10].

C. Capture & Acquisition

There already exist many standards to compress images,
video, and LIDAR sensor data, so the objective of this
emerging PCC standard is not to compress the raw sensor
data, but to compress the point cloud representations of the
objects or scenes captured by the sensors. The coding tech-
niques developed here are generally designed to be agnostic
of the specific sensors used to create the point cloud data, so it
is assumed that prior to compression, 3D data from different
sensors was fused to generate the point cloud representation
to be compressed.

An example of a sensor system used to dynamically acquire
data for mobile mapping and autonomous navigation purposes
is shown in Fig. 1 [18]. The LIDAR sensors mounted on top
of a vehicle continuously acquire point locations relative to the
vehicle, based upon the azimuth and elevation of the emitted
laser beam, along with the range and intensity of any returned
reflections of the laser. GPS and inertial sensors on the vehicle
are used to determine the location of the vehicle. By combining
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Fig. 1.
(from [18]).

Sensor system for generating mobile mapping point clouds

Fig. 2.

Example studio for capturing dynamic point clouds.

the relative LIDAR-captured point locations along with the
location of the vehicle, the point locations can be converted
to absolute (x, y, z) coordinates relative to a fixed origin of a
geographic coordinate system. Fixed RGB cameras mounted
on the vehicle capture image sequences or video. These data
are fused in a post-capture processing operation so that each
point, in addition to having a LIDAR-captured reflectance
attribute, can have a single RGB color attribute associated with
it. The fusing process can also clean the data, e.g. by removing
redundant or outlying points. The end result of this process is
a point cloud comprising a list of (x, y, z) point coordinates
along with reflectance and RGB attributes associated with each
point. Additional attributes such as latitude, longitude, and
GPS timestamps can also be included as attributes, however,
compression of these additional attributes is currently outside
the scope of this standard under development.

To capture high-resolution real-time point clouds of moving
objects such as people for applications such as AR/VR/MR,
volumetric video, and telepresence, an arrangement of sensors
in a studio environment can be used to surround and capture
representations of anything within a 3D space, such as that
shown in Fig. 2. Multiple video or imaging cameras can be
used to capture the color attributes in the scene, and the
location of objects in 3D space can be captured through
means such as infrared depth cameras, photogrammetry and
stereo disparity, and illumination of the scene with struc-
tured light or lasers. Real-time and post-production computer
processing of the data results in a sparse voxelized point cloud
representing the captured objects. An example of a method
for capturing voxelized point clouds using only cameras is
described in [19].

The same types of sensors described here can also be used
to acquire data for generating point clouds of static objects
such as buildings and their interiors, objects and assemblies
for industrial and cultural heritage applications, and terrain

features. For example, RGB and depth cameras were used
to generate the large-scale dataset of indoor scenes described
in [20]. By fusing data from aerial images and LIDAR scans
along with ground based LIDAR and imaging data, point
cloud models of cities can be generated, as demonstrated
in [21]. Capturing point clouds of cultural and historical
objects or archeological sites can also be done with these
kinds of sensors. A high-level overview of various methods
for acquiring point cloud representations of cultural objects
can be found in [22].

III. PREVIOUS WORK

There has been plenty of work on point cloud compression
in the past, but most works aim only at the compression of sta-
tic point clouds, instead of time-varying point clouds as needed
for AR/VR/MR applications. For example, a point cloud
codec was introduced in [23] based on octree composition.
Techniques were based on bit reordering in the subdivision
bytes to reduce the entropy. This method also included color
coding based on frequency of occurrence (colorization) and
normal coding based on spherical quantization. A similar work
in [24] used surface approximations to predict occupancy
codes and an octree structure to encode color information.
The work in [5] introduced a real-time octree-based codec that
could also exploit temporal redundancies by XOR operations
on the octree byte stream. This method could operate in real
time, as the XOR prediction is simple and fast. A disadvantage
of this approach is that the effectiveness is significant only for
scenes with limited movement, which is not always the case.
In [6], an extension to this framework was introduced, com-
bining the octree-based codec with a common image codec
for color attribute coding. Thanou et al. [25] introduced a
time-varying point cloud codec that can predict graph-encoded
octree structures between adjacent frames. The method uses
spectral wavelet-based features to achieve this and an encoding
of differences to achieve a lossless encoding. This method also
includes the color coding method from [26], which defines
small subgraphs based on the octree of the point cloud. These
subgraphs are then used to efficiently code the colors by
decomposing them on the eigenvectors of the graph Laplacian.

In comparison to point clouds, 3D objects are often coded
as 3D meshes, for which a significant number of compression
methods were developed. Early work on mesh compression
includes [27]-[29]. Mesh codecs can be categorized as pro-
gressive, i.e., allowing a lower resolution rendering from
partial bit streams, and single rate, for which only decoding at
full resolution is available [30]. For networked transmission,
progressive methods have generally been preferred, but for
3D immersive video, single rate methods can also be useful,
as they introduce less encoder computation and bitrate over-
head [31]. Several works [32]-[34] have aimed at compressing
object-based immersive 3D video using single-rate coding.
While these methods are promising, it seems that methods
based on 3D point clouds can result in coding with even less
overhead and more flexible progressive rendering capabilities,
as the point cloud format is simpler to acquire and process.
There are international standards for mesh compression [1],
[35] defined, which are greatly beneficial for interoperability
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Fig. 3. Data path for 3D geometry based tele-immersion use case.

between devices and services. These methods have been
mostly designed for remote rendering and have low decoder
complexity and a slightly higher encoder complexity. For 3D
immersive and augmented 3D video coding, it is essential to
have both low encoder and decoder complexity, analogous to
video coding in video conferencing systems as compared with
video on demand.

Somewhat related, multiview video plus depth (MVD)
representation was considered for storing video and depth
maps from multiple cameras in extensions of the international
HEVC standard [36]. For such representations arbitrary view
points can be rendered by interpolation between different cam-
era views using techniques from depth image based rendering
(DIBR), enabling free viewpoint functionality. While these
formats can be used to represent the visual 3D scene, they
do not explicitly store 3D object geometries, which is useful
for composite rendering in immersive communications and
augmented reality. Therefore, these formats are not directly
applicable to immersive and augmented 3D object-based video
combining real and virtual content.

IV. MPEG CFP PROCESS

In 2014, the MPEG 3D graphics coding (3DG) group
started an exploration to study the feasibility of adapting its
tools to advanced immersive applications such as virtual tele-
portation. These applications typically deal with photo-realistic
meshes and point clouds of millions of points acquired from
3D scanners and/or computer vision algorithms. Initial scans
of 3D meshes and point cloud content were contributed, and
a practical streaming prototype was developed as part of the
Reverie FP7 project [37]. The block diagram of the data flow
in immersive communications is shown in Fig. 3. In such
systems real-time communication processing is important as is
the resilience to noisy data and handling of dense point clouds.

The advantage of this approach is that composite rendering
in scenes facilitates AR, VR, and free view point function-
alities. However, for this use case, existing MPEG standards
for 3D graphics were found to be less suitable due to the
fact that several requirements like noise resilience and low
encoder latency were not fully addressed. These standards
were mostly developed with computer animated content in
mind, which typically dealt with sparse geometric content with
limited amounts of noise. This realization led to the start of
an exploration activity.

Fig. 4. Point cloud examples for the three different categories. (a) Static.
(b) Dynamic (detail). (c) Dynamically acquired (detail).

A. CfP Development

Following several experiments and evaluations of techniques
available for immersive media applications, it was found that
point clouds were particularly suitable for these kinds of
applications. Point cloud data scored well in experiments com-
paring visual quality, bitrate, and compression performance as
well as computational complexity [38]. In addition, other use
cases were introduced such as free viewpoint broadcasting and
3D scans produced by mobile mapping systems.

A call for proposals was developed in close co-
operation with stakeholders including major mobile device
manufacturers and leading startups that also provided some of
the highly realistic content needed for the effort. The call for
proposals on point cloud compression (PCC) was published in
January 2017 targeting an international standard for PCC [3]
addressing three categories: static point clouds (category 1);
dynamic, time varying point clouds used for immersive
video and AR video (category 2); and dynamically acquired
point clouds, e.g., used in mobile mapping (category 3).
Representative examples for data in these three categories are
shown in Fig. 4.

B. Evaluation Methodology

During the CfP development period, evaluation metrics
were developed in a series of experiments, requirements, and
use case assessments. To have a baseline for determining
target bitrates and distortions, a recent hybrid octree-image
point cloud codec for tele-immersive video [6] was chosen
as anchor. Quality metrics described in [39] and [40] were
selected for the objective quality assessment. These metrics
are referred as point-to-point (D1) and point to plane (D2)
geometry distortion metrics. In the first geometry metric (D1),
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the comparison is such that the Mean Square Error (MSE)
between the reconstructed point and the closest corresponding
points in the reference point cloud is calculated. In the sec-
ond geometry metric (D2), the MSE is calculated between
the reconstructed point and the surface plane in the given
reference test data. Surface normals are provided with the
reference test data to facilitate the computation of the surface
planes. The D1 metric is also used for assessing attribute
(color or reflectance) distortion in YUV color space. Peak
signal-to-noise-ratios (PSNR) are obtained based on the 3D
volume resolution for geometry, and respectively for color
depths for each color channel. Bjontegaard-delta (BD) metrics
are derived comparing the distortions against the anchor imple-
mentation at predefined target bitrates [41]. Additional effort
was put in choosing meaningful target bitrates, e.g. covering
a wide range of applications and qualities, and establishing a
method for plotting rate-distortion (RD) curves based on the
objective metrics and rate-points. For example, for dynamic
(category 2) point clouds, the target bitrates were in the range
of 3 to 55 MBit/s, representing 0.2% to 5% of the original
uncompressed data.

In addition to using objective metrics, a subjective evalua-
tion methodology was defined that consisted of rendering the
point clouds using a virtual camera path and then performing
the quality assessment via techniques similar to those used
to evaluate video quality. For the subjective assessment only
three static objects and three dynamic scenes were considered
among the total of 30 test objects considered in the overall CfP.
The entire set of 19 static objects, five dynamic objects and six
dynamic acquisition scenes were considered for the objective
evaluation. This reduced subjective test set was due to the
need to minimize the effort required to complete the tests and
because dynamic acquisition scenes are typically processed by
a computer and are not directly viewed as a final product. The
subjective visual quality assessment of the static and dynamic
scenes was made possible by using a point cloud renderer
designed by Technicolor [42]. This software allows specifying
a camera view path, displaying a static representation of a
point cloud, rotating it on three axes, and zooming. When
rotating and zooming a static object, it is possible to record a
track of all the movements. The recorded tracks are used to
create video clips. The same process is applied on dynamic
sequences, where the video clips were produced by rotating
the object while playing it out. The tracks used to create video
from the static and dynamic 3D files were not known to the
proponents; this was done to avoid any bias in the coding
process to a particular point of view.

The subjective tests for 3D point cloud compression were
done using the absolute category rating (ACR) test method
as specified by ITU-T Recommendation P.910 [43]. The
decision to use ACR was made considering the high number
of submissions received (9 + anchor), the high number of
test points to evaluate (171), and the short time available to
run the subjective experiments before the CfP evaluation. The
range used for the experiment was a five grades of quality
scale from 1 (bad) to 5 (excellent). The testing environment
was carefully designed and implemented. Two to three people
at the same time were seated in front of a 4K top quality 55”
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Fig. 5. Overview of the L-PCC compression and decompression process.
consumer TV set. All viewers were seated at two times the
active screen height (2H) distance from the TV screen. There
were in total 22 participants: 9 male, and 13 female, with ages
between 20 and 30 years, all screened for vision acuity and
color vision. Additional details on the objective and subjective
evaluation methods are available in the CfP document [3] and
its corrigenda [44].

C. Results and Next Steps

A total of 13 different proposals were submitted to MPEG,
and they were evaluated in October 2017. The results of
the subjective assessment [45] were almost in line with the
objective evaluations [46]. The average confidence interval
for the subjective evaluation of static content was 0.48 MOS
values, while that of dynamic content was 0.34 MOS values.
Thus, it was concluded that the experiment was correctly
conducted and the results obtained could be used by the
group for making decisions with respect to the appropriate
technologies to be selected.

As an outcome, three different technologies were chosen as
test models (TMs) for the three different categories targeted:
LIDAR point cloud compression (L-PCC) for dynamically
acquired data, surface point cloud compression (S-PCC) for
static point cloud data, and video-based point cloud com-
pression (V-PCC) for dynamic content. The three different
approaches are described in more detail in the following
sections.

V. LIDAR POINT CLOUD COMPRESSION

The L-PCC codec was designed to efficiently compress
LIDAR point clouds, which usually exhibit highly irregular
sampling. Because of such characteristics, L-PCC compresses
first the point cloud geometry information by exploiting an
octree-based encoding strategy. The reconstructed geometry
is then used to build a Level-Of-Detail (LoD) structure,
which makes it possible to efficiently predict attributes and
encode/transmit them in a scalable manner.

Fig. 5 provides an overview of the L-PCC compression and
decompression processes.
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Fig. 6. Generating octree structure by recursive subdivision.

The remainder of this section is organized as follows:
Section V-A describes the octree-based coding process for
the geometry information. Section V-B then describes the
attributes transfer module, which is a process that helps
determine the appropriate attribute values that should be
associated with the reconstructed geometry information. The
LoD generation, an essential process that enables efficient
hierarchical prediction of the attributes, is then described in
Section V-C. Finally, an interpolation-based prediction module
that is used to further improve the coding efficiency of the
attribute values by exploiting spatial correlations as well as
the quantization and dequantization steps that are applied on
the residuals are described in Section V-D.

A. Octree-Based Geometry Coding

Let (X; = (xi,yi,2i));=1_n be the set of 3D positions
associated with the points of the input point cloud. The
L-PCC encoder computes the quantized positions ()A( i)i=1..N
as follows:

Xi = [(Xi = Xsnife) X 5], (1)

where Xgpir, and s are user-defined parameters that are
signaled in the bitstream.

Equivalently, at the decoder, the reconstructed positions
(f(,-)izlm Ny are generated by applying the following inverse
quantization process:

A

. X
X; = Tl + Xshift- (2)

After quantization, an optional process that removes
duplicate points may be applied. It consists of merging points
sharing the same quantized positions into a single point.
The attribute values associated with the merged point are
computed using the attributes transfer module described in
subsection V-B.

The octree-based encoding process compresses the quan-
tized positions as follows: First, a cubical axis-aligned bound-
ing box B is defined by the two extreme points (0,0,0) and
(2",2",2"™), where n is the smallest integer that verifies the
following inequality:

2" > max ( max (%;), max (y;), max (2]-).) 3)
I<j=n I<j=n I<j=n

An octree structure is then built by recursively subdivid-
ing B, as depicted in Fig. 6. At each stage, the current cube is
subdivided into 8 sub-cubes. An 8-bit code, named the subdivi-
sion code, is then generated by associating an 1-bit value with
each sub-cube in order to indicate whether it contains points
(i.e., is occupied and has a value of 1) or not (i.e., is empty and
has a value of 0). Only occupied sub-cubes with a size higher
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Fig. 7. Overview of Level of detail generation process.

than 1 are further subdivided. Since points may be duplicated,
multiple points may be mapped to the same sub-cube of size 1.
In order to handle such a situation, the number of points ¢ for
each sub-cube of dimension 1 is also arithmetically encoded.

On the decoder side, the decoding process starts by reading
from the bitstream the bounding box B. The same octree
structure is then built by subdividing B according to the
subdivision codes read from the bitstream. Each time a sub-
cube of dimension 1 is reached, the number of points ¢ for
that sub-cube is arithmetically decoded and ¢ points located
at the origin of the sub-cube are generated.

B. Attribute Transfer

Given the input point cloud positions (X;);=1..n, the input
point cloud attributes (Ay;, Az, ..., Ap;j), where D is
the number of attributes, and the reconstructed positions
(f(,-)izl__, N, the objective of the attributes transfer module
is to determine the attribute values (A Di)i=1...N,,. associated
with the reconstructed positions (f( i)i=1..N,. that minimize
the attribute distortions described in Section IV-B.

For each point i in the reconstructed point cloud, let X; be
its position, X be the position of its nearest neighbor in the
original point cloud, A7, be the attribute value associated with
X7, and Ql.+ = (X;r(h))h:]m[—[g‘) be the set of points in the
original point cloud that share X; as their nearest neighbor in
the reconstructed point cloud. AJISi(h))h:l_,_ H(i) are also the
corresponding attribute values of the points in Q;“.

If Ot (i) is empty, then Ap; is assigned the attribute value
A%, Otherwise, Ap; is computed as attribute value averaged
over all the points in the original point cloud that share the
reconstructed position as their nearest neighbor, as follows:

~ 1
Avi = 1 > Apht )
! h=1..H(i)

C. Level of Detail Generation

The level of detail (LOD) generation process illustrated
in Fig. 7 re-organizes the input point cloud into a set of
refinement levels (R;);=;..r. This is done according to a set
of Euclidean distances (d;);=1...;. that are specified by the user
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and by verifying the following two conditions: (1) d; = 0 and
(2) di < dj—1. The objective of this process is that the first
LOD, i.e. refinement level R, contains points that are in effect
a coarse representation of the point cloud, because all points in
that LOD are separated by a distance of at least d;. Subsequent
LODs or refinement levels include points that are closer
together, because the distances d; decrease as [ increases.

The re-ordering process is deterministic and operates on
the quantized positions ordered according to the octree
decoding process. It is applied at both the encoder and the
decoder side. This process first marks all the points as non-
visited, and the set of visited points, denoted as V, is set
as empty. L-PCC proceeds iteratively. At each iteration [,
the refinement level R; is generated as follows: L-PCC iterates
over all the points. If the current point has been visited, then it
is ignored. Otherwise, the minimum distance D of the current
point to the set V is computed. If D is strictly lower than d,
then the current point is ignored. Otherwise, the current point
is marked as visited and added to both R; and V. This process
is repeated until all the points are traversed. The level of detail
at iteration /, LO Dy, is obtained by taking the union of the
refinement levels Ry, R, ..., R;.

D. Interpolation-Based Attributes Prediction

The attributes associated with the point cloud are
encoded/decoded in the order defined by the LOD generation
process. At each step, only the already encoded/decoded points
are considered for prediction. More precisely, the attribute
value A; is predicted by using a linear interpolation
process based on the distances of the nearest neighbors of
point X;. More precisely, let V; be the set of the k-nearest
neighbors of the current point X;, let (A j)jev; be their
decoded/reconstructed attribute values, and (J;) jev; their dis-
tances to X;. The predicted attribute value T'; is then given by:

Y 5 ®)

I =
kZJEV 52 jev;

The prediction residuals p; are then computed as follows:
pi = Ai — T; (6)

The residuals p; are quantized and arithmetically encoded.
The reconstructed attributes values are subsequently obtained
as follows:

A= pi + T, (7)

where p; are the reconstructed prediction residuals.

The experimental evaluation of the proposed hierarchical
prediction scheme shows that the optimal choice of the
number of nearest neighbors k& and the distances (d;);=1..1
is content dependent and may be computationally expen-
sive. However, a practical encoder implementation could be
designed by considering different computational complexity
and RD performance trade-offs. For instance, the optimal
number of nearest neighbors k& could be chosen based on
a Rate-Distortion Optimization (RDO) process. This process
consists of evaluating the Lagrangian costs associated with
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Fig. 8. Block diagram of the S-PCC encoder and decoder.

different values of k € {1,2,3,..., K} and selecting the one
with the lowest cost. Determining the optimal set of distances
(d))i=1.... could also be formulated as an RDO optimization
problem. However, evaluating the Lagrangian cost for all
possible combinations would be computationally prohibitive.
One way to reduce the size of the search space is to impose the
following simple recursive relationship between the sampling
distances:

vie{2,...,L—1}. (8)

By introducing such a constraint, the sequence of distances
(dr)i=1...1 becomes entirely defined by dy_i. A search strat-
egy, such as the binary search method, could be then applied
to determine the distance d; _, that minimizes the Lagrangian
cost function.

d
doi =2,
1=

VI. SURFACE POINT CLOUD COMPRESSION

The S-PCC codec was designed to efficiently compress
high-detail static point clouds, which usually exhibit a high
sampling density, approximating a 3D surface. The remainder
of this section is organized as follows: Section VI-A describes
the overall S-PCC architecture, Section VI-B describes the
encoder, and Section VI-C describes the decoder.

A. S-PCC Architecture

The S-PCC architecture comprises an encoder and decoder,
which in turn comprise various modules, as shown in Fig. 8.
Communication between modules is done by passing lists
of point locations and/or point attributes. Parameters to the
S-PCC encoder include the following, many of which are
passed to the decoder in the bitstream header:

o depth: depth of encoding octree

o level: octree level for geometry encoding

o geomstepsize: geometry quantization stepsize

o colorstepsize: color quantization stepsize

o mbpstarget: total bitrate target in Mbps
fps: frames per second
o scale: frame-to-world scale parameter for decoded PLY
translation: frame-to-world translation for decoded PLY

B. S-PCC Encoder

The input to the S-PCC encoder is the original, uncom-
pressed point cloud. The point cloud comprises a list of real-
valued point locations, (xworld, ylworld, ;Uorld), i=1,
where N is the number of points in the input point cloud,

[l
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and a corresponding list of real-valued point attributes,
(A1i, Aziy ..., Ap;), i =1,..., N, where D; is the number of
attributes for point 7. All attributes are processed in indepen-
dent channels. In this section, we will focus on the case where
the attributes are the three RGB color channels: (R;, G;, B;),
i=1,...,N, and therefore D; = 3 Vi.

The original point locations are expressed in a coordinate
system that has meaning to the user. In the S-PCC, this
coordinate system is called the world coordinate system.
Furthermore, the original point colors are typically expressed
in an RGB color space. However, it is more convenient to
process the point locations in a different coordinate system,
and to process the point colors in a different color space.
Thus, just after the original point cloud enters the S-PCC
encoder, it is processed by a coordinate transformation module,
in which the original point locations are transformed from their
original (world) coordinates into internal (frame) coordinates,
and the original point colors are transformed from RGB to
YUV

The transformation from world to frame coordinates may
be specified by using the parameters translation = (t,, ty, t;)
and scale = s, as

iy i zi) = (Crerte, yportd zoortdy — (i1, 1)) /5. 9)

If translation and scale are specified, the transformed loca-
tion parameters (x;, y;, z;) must lie in the cube [0, 2d€p’h)3.
If they are not specified, they are derived in the module
by computing a minimum bounding cube of the input point
locations, and scaling and translating such that in the frame
coordinate system, all point locations (x;, y;, z;) lie in the cube
[0, Zdep’h)3, and along at least one dimension, the minimum
and maximum are respectively 0 and 24¢P"* — 1. For the color
attributes, the transformation from (R;, G;, B;) to (¥;, U;, V;),
i =1,...,N, in the module follows ITU-R Rec. BT.709 as
required in [3].

Details of the S-PCC geometry encoder module are shown
in Fig. 9, and described as follows:

o Voxelization. Voxelization is the process of grouping
points together into voxels, which are the set of unit cubes
[[ —0.5,i +0.5) x[j—0.5,740.5) x[k—=0.5,k+0.5)
for integer values of i, j, and k between 0 and pdepth _ 1
Specifically, the locations of all points within a voxel are
quantized to the voxel center, and the attributes of all
points within the voxel are averaged and assigned to the

voxel. A voxel is said to be occupied if it contains any
point of the point cloud.

Determining blocks. In the S-PCC, the cube of voxels is
partitioned into blocks of W x W x W voxels, analogous
to the partitioning of video pictures into blocks of
W x W pixels. W is known as the blockwidth. The
blockwidth is constant, W = 29¢Pth—C where ¢ = level is
a parameter to the encoder and is passed to the decoder
in the bitstream header. A block is said to be occupied
if it contains any occupied voxels. The use of blocks
to represent geometry is important for spatial random
access, view-dependent coding and rendering, parallel
processing, out-of-core processing for large datasets, and
the formation of “slices” and other units for network
packetization and error resilience.

Entropy encoding of blocks. The set of occupied blocks
is encoded with an octree, in which the leaves of the
octree represent the occupied blocks. If the octree has
height £ = level, then the blocks at the leaves have
blockwidth W = 2@P*h=0) yoxels on a side. The para-
meter level is placed in the bitstream header. An octree
can be represented by one byte for each internal (non-
leaf) node of the tree, where the bits indicate the occupied
children of the node. These are known as occupancy
bytes. Currently, the occupancy bytes are entropy-coded.
If ¢ = level is equal to depth, then W = 1, the blocks
are 1 x 1 x 1, and the octree represents the collection
of voxels losslessly. If the depth of the tree is large
enough, then there is at most one point in each voxel,
and thus the geometry of the original point cloud can
be represented losslessly, up to depth bits of precision
(maximum of 21 bits is currently allowed) for each
spatial component.

If ¢ = level is less than depth, then the blocks are
2 x 2 x 2 or larger and it is necessary to represent the
collection of voxels within the block, possibly with loss.
S-PCC represents the geometry within each block as a
surface that intersects each edge of the block at most
once. Since there 12 edges of a block, there can be at most
12 such intersections. Each such intersection is called
a vertex. The collection of vertices is a list (Xg, Yk, Zk),
k = 1,..., Nye+s. These vertices are sufficient to
reconstruct a surface within the block by reconstructing
a non-planar polygon through the vertices as a collection
of triangles. Although there are other surfaces that can
be parameterized by such a set of vertices, for example,
as an implicit surface of a Bézier Volume, S-PCC uses
triangles as they are particularly friendly to standard
graphics processing.

Entropy encoding of vertices. Vertices, nominally being
intersections of a surface with edges of a block, are shared
across neighboring blocks, not only guaranteeing conti-
nuity across blocks of the reconstructed surface, but also
reducing the number of bits required to code the collec-
tion of vertices. The set of vertices is coded in two steps.
Firstly, the set of all unique edges of occupied blocks is
computed, and a bit vector determines which edges con-
tain a vertex and which do not. Secondly, for each edge
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that contains a vertex, the position of the vertex along the
edge is uniformly scalar-quantized to a small number of
levels, typically equal to the block width if the geometric
spatial resolution is desired to approximate the voxel res-
olution, but it could be any number of levels. The number
of levels is equal to the block width divided by geomStep-
size. The bit vector and the vertex positions are further
compressed by an entropy coder, along with the octree
occupancy bytes, and become the geometry bitstream.

The S-PCC encoder contains an instantiation of the geom-
etry decoder. Details of the geometry decoder module are
described in Section VI-C. The output of the geometry decoder
is a list of refined vertices (X., y,,2,), r =1,..., Nyef.

The re-coloring module assigns colors to the refined ver-
tices, by taking colors from the original (uncompressed)
point cloud. There are many ways to perform re-coloring,
with corresponding effects on both computation and compres-
sion performance. In the S-PCC, re-coloring is implemented
by coloring each refined vertex (%, y,,Z,) with the color
Y, U.,V,) = (Yi,, Ui, Vi) of the input point (x; , yi, zi,)
closest to (X, yr, Z,) in Euclidean distance, i.e.,

ir = argmin (G —x)? + (5, — )% + G- —20%) . (10)

Thus the output of the re-coloring module is the list of colors
Y., Uy, Vy), r = 1,..., Nyes, corresponding to the refined

vertices (X, r,2r), ¥ = 1, ..., Nyef.
_The color encoder module compresses the colors
Y., U, Vy), r = 1,..., Neer, of the re-colored points,

using information from the already-available (or already-
decoded) locations (X, 3,,2,), ¥ = 1,..., Nrey, of the
re-colored points as side information. Details of the color
encoder module are shown in Fig. 10, and described as
follows:

o Voxelization. All the refined vertices within a voxel
are quantized to the voxel center, and the attributes of
the refined vertices within the voxel are averaged and
assigned to the voxel. This produces a list of voxel colors
(Yn, Un, Vi), n = 1,..., Nyoyx, along with a list of the
associated voxel locations (X, Vu,2n), 7 = 1, ..., Nyox,
as side information.

o Spatial Transform. The voxel colors (Y, Uy, 17,,),
n = 1,..., Nyox, are transform-coded, analogously to
a color image, by a spatial transform, quantizer, and
entropy coder. The colors are spatially transformed
using the Region Adaptive Hierarchical Transform
(RAHT) [47], [48], to obtain transformed colors
(TY,, TU,, TVy), n=1,..., Nyox.

o Quantization. The transformed coordinates are
quantized by a uniform scalar quantizer with stepsize

colorStepsize, to obtain the quantized transform
coordinates (7Y,,TU,,TV,), n = 1,..., Nyox,.

The same stepsize is used for all color components.
The colorStepsize is communicated to the color decoder
through the bitstream header.

o Entropy encoding. The quantized, transformed
coefficients are entropy-encoded using RLGR [49].

The output from the S-PCC encoder and the input to the
decoder is a bitstream that comprises a geometry bitstream,
a color bitstream, and a bitstream header. The bitstream header
contains parameters needed to decode the geometry and color
bitstreams, namely depth, level, geomStepsize, colorStepsize,
translation, and scale.

C. S-PCC Decoder

The geometry decoder module decompresses the geometry
bitstream into decoded geometry. This module is also instan-
tiated in the S-PCC encoder. Details of the geometry decoder
are shown in Fig. 9, and described as follows:

o Entropy decoding of blocks. The occupancy bytes of
the octree are entropy-decoded and the octree is recon-
structed. If the level of the octree is equal to the depth as
indicated in the bitstream header, then this is a lossless
representation of the geometry at that level of precision.

« Entropy decoding of vertices. If the level of the octree is
smaller than the depth, then this is a lossy representation
of the geometry, and vertices are entropy-decoded, in two
steps. Firstly, the set of all unique edges of occupied
blocks is computed, and a bit vector is entropy-decoded
to indicate which edges contain a vertex and which
do not. Secondly, for each edge that contains a vertex,
the position of the vertex along the edge is entropy-
decoded and dequantized, resulting in a list of vertices
(),ek, yk, 2k)» k=1,..., Npert.

o Vertex reconstruction. For each block, the vertices on
the block edges determine a surface through the block.
The surface is a non-planar polygon. The polygon is trian-
gulated into planar triangles. The method of triangulation
is defined so that the triangulation is unique given the
vertices on the block edges.

o Upsampling. Each triangle is refined (or subdi-
vided or upsampled) by an upsampling Factor (times
the blockwidth) to obtain regularly-spaced points on
the surface of the triangle, called refined vertices,
(%r,Yr,2r), r =1,..., Nrey. The purpose of the refined
vertices is to create geometry at a spatial resolution
greater than or equal to the spatial resolution of the color
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information. The list of these refined vertices is the output
of the geometry decoder.
The color decoder module decompresses the color bitstream

into decoded color components (IA/,,, Un, \7,,), n=1,..., Nyox,
and their associated locations (X, Vu,2n), n = 1, ..., Nyox,

given the refined vertices (%r,3,,2r), r = 1,..., Nrey,
as side information. Details of the color decoder module
are shown in Fig. 10. First, the refined vertices (%,, yr, Zr),
r =1,..., Ny, are voxelized to obtain the decoded voxel
locations (X,, Yn,2n), # = 1,..., Nyox. Then, the color
transform coefficients are entropy-decoded, inverse-quantized,
and inverse-transformed to produce a list of decoded col-

ors, (Y,,U,, V,), n = 1,..., Nyox. The inverse transform
uses, as side information, the list of decoded voxel locations
()en» )A’n, 2”)’ n = 15 sevy Nl)Ox-

Before the reconstructed point cloud exits the S-PCC
decoder, the point locations are transformed from “frame”
coordinates into “world” coordinates in the inverse coordinate
transform module, according to the parameters translation =
(tx, ty, t;) and scale = s (which are obtained from the
bitstream header), as

(xjoortd yworld pworldy — g (x;, yi, 2i) + (tes ty, 1), (11)

and the reconstructed point colors are transformed from
(l?n, U,, \7”) to (12’,,, G, én) according to ITU Rec. BT.709,
n=1,..., Ny, where Ny,; = Nyoyx-

The output from the decoder is the point cloud reconstructed
from the bit stream. The reconstructed point cloud comprises a
list of real-valued point locations, (x}"”’ld , y}“orld, zl‘.“"rld), n=
1,..., Nous, where N,,; is the number of points in the output
point cloud, and a corresponding list of color components,
(Ién, G,,, é,,),n = 1,..., Nyy;. The number of output points
Noyr 1s generally different from the number of input points N.

VII. VIDEO-BASED POINT CLOUD COMPRESSION

The main philosophy behind V-PCC is to leverage existing
video codecs for compressing the geometry and texture
information of a dynamic point cloud. This is essentially
achieved by converting the point cloud into a set of different
video sequences. In particular, two video sequences, one that
captures the geometry information and another that captures
the texture information of the point cloud data, are generated
and compressed using existing video codecs, such as MPEG-
4 AVC, HEVC, AV1 etc. Additional metadata, which are
needed for interpreting the two video sequences, i.e., an
occupancy map and auxiliary patch information, are also
generated and compressed separately. The video generated
bitstreams and the metadata are then multiplexed together
so as to generate the final point cloud V-PCC bitstream.
It should be noted that the metadata information represents a
relatively small amount (i.e., 5-20%) of the overall bitstream.
The bulk of the information is handled by the video codec.
Fig. 11 and Fig. 12 provide an overview of the V-PCC
compression and decompression processes, respectively.

The remainder of this section is organized as follows:
Subsection VII-A describes the patch generation and packing
processes, which aim at determining how to best decompose
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the input point cloud into patches and how to most efficiently
fit those patches into a rectangular 2D grid. Subsection VII-B
details the image generation and padding processes, which
transform the point cloud geometry and texture information
into temporally correlated, piecewise smooth, 2D images
suited for coding using traditional video codecs. The
processes of generating the auxiliary patch information and
occupancy map are described in subsections VII-C and VII-D,
respectively. Subsection VII-E describes the smoothing
module and the geometry and texture reconstruction processes.

A. Patch Generation & Packing

Leveraging traditional video codecs to encode point clouds
requires mapping the input point cloud to a regular 2D grid.
The objective is to find a temporally-coherent low-distortion
injective mapping that would assign each point of the 3D point
cloud to a cell of the 2D grid.

Maximizing the temporal coherency and minimizing the
distance/angle distortions enables the video encoder to take
full advantage of the temporal and spatial correlations of
the point cloud geometry and attributes signals. An injective
mapping guarantees that all the input points are captured by
the geometry and attributes images and could be reconstructed
without loss. Simply projecting the point cloud on the faces
of a cube or on the sphere does not guarantee lossless recon-
struction due to auto-occlusions (i.e., auto-occluded points are
not captured), and generates in practice significant distortions.

In order to avoid such limitations, V-PCC decomposes the
input point cloud into a set of patches, which could be inde-
pendently mapped, through a simple orthogonal projection,



SCHWARZ et al.: EMERGING MPEG STANDARDS FOR POINT CLOUD COMPRESSION 143

Iterative
segmentation
refinement
procedure

.| Normal-based
input segmentation initial
point cloud segmentation

»final patches

refined
segmentation

J Patch
segmentation

Fig. 13.  Overview of the V-PCC patch generation process.

to a 2D grid without suffering from auto-occlusions nor
requiring re-sampling of the point cloud geometry. Further-
more, the patch generation process aims at generating patches
with smooth boundaries, while minimizing their number and
the mapping distortions. In order to resolve this NP-hard
optimization problem, V-PCC applies a heuristic segmentation
approach that is described in Fig. 13.

First, the normal at every point is estimated as described
in [50]. An initial clustering of the point cloud is then obtained
by associating each point with one of the six unit cube
oriented planes. More precisely, each point is associated with
the plane that has the closest normal (i.e., maximizes the dot
product of the point normal and the plane normal). The initial
clustering is then refined by iteratively updating the cluster
index associated with each point based on its normal and the
cluster indexes of its nearest neighbors. The final step consists
of extracting patches by applying a connected component
extraction procedure.

The packing process aims at mapping the extracted patches
onto a 2D grid, while trying to minimize the unused space
and to guarantee that every T x T block (e.g., 16 x 16 block)
of the grid is associated with a unique patch.

V-PCC uses a simple packing strategy that iteratively tries
to insert patches into a W x H grid. W and H are user
defined parameters, which correspond to the resolution of
the geometry/texture images that will be encoded. The patch
location is determined through an exhaustive search that is
performed in raster scan order. The first location that can
guarantee an overlapping-free insertion of the patch is selected
and the grid cells covered by the patch are marked as used.
If no empty space in the current resolution image can fit a
patch then the height H of the grid is temporarily doubled
and the search is performed again. At the end of the process,
H is reduced so as to account only for the used grid cells.

B. Image Generation & Padding

The image generation process exploits the 3D to 2D
mapping computed during the packing process to store the
geometry and texture of the point cloud as images. Fig. 14
shows an example of generated geometry and texture images.

In order to better handle the case of multiple points being
projected to the same pixel, each patch is projected onto two
images, referred to as layers. More precisely, let H (u, v) be the
set of points of the current patch that get projected to the same
pixel (u, v). The first layer, also called the near layer, stores the
point of H (u, v) with the lowest depth Dy. The second layer,
referred to as the far layer, captures the point of H (u, v) with

Fig. 14. Example of geometry (left) and texture (right) images.

the highest depth within the interval [ Dy, Do + 7], where 7 is
a user-defined parameter that describes the surface thickness.

The padding process aims at filling the empty space between
patches in an attempt to generate a piecewise smooth image
that may be better suited for video coding. V-PCC uses a
simple padding strategy, which processes each block of 7' x T
pixels independently. If the block is empty (i.e., all its pixels
belong to the empty space), then the pixels of the block are
filled by copying either the last row or column of the previous
T x T block in raster order. If the block is full (i.e., does
not contain any empty pixels), nothing is done. If the block
has both empty and filled pixels, then the empty pixels are
iteratively filled with the average value of their non-empty
neighbors.

C. Auxiliary Patch and Block Information Coding

In order for the decoder to be able to reconstruct the
3D point cloud from the geometry and texture images, the fol-
lowing patch/block metadata information is encoded in the
bitstream:

o For each patch, the index of its projection plane, its 3D

location, and its 2D bounding box.

o For each T x T block, the index of the patch to which it

belongs.

The patch metadata is predicted and arithmetically encoded.
The block to patch mapping information, is encoded as fol-
lows: Let L be the ordered list of the indexes of the patches
such that their 2D bounding box contains that block. The order
in the list is the same as the order used to encode the 2D
bounding boxes. L is called the list of candidate patches. The
empty space between patches is considered as a patch and is
assigned the special index 0. This patch is also added to the
candidate patches list of all the blocks. Let / be the index of
the patch to which the current 7 x T block belongs to and
let J be the position of / in L. Instead of explicitly encoding
the index I, its position J is arithmetically encoded. This can
lead to better coding efficiency.

D. Occupancy Map Coding

The occupancy map consists of a binary map that indicates
for each cell of the grid whether it belongs to the empty
space or to the point cloud. The occupancy map compression
leverages the auxiliary information described in the previ-
ous subsection, in order to detect the empty 7 x T blocks
(i.e., blocks with patch index 0). The remaining blocks are
encoded using the following process.
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Fig. 15. Sub-blocks traversal orders.

The occupancy map could be encoded with a precision of
By x By blocks. By is a user-defined parameter. In order to
achieve lossless encoding, By should be set to 1. In practice
Bo =2 or By = 4 result in visually acceptable results, while
significantly reducing the number of bits required to encode
the occupancy map.

The occupancy map compression module first associates
binary values with all By x By sub-blocks belonging to
the same 7 x T block. A value of 1 is associated with a
sub-block if it contains at least a non-padded pixel and a
value of O otherwise. If a sub-block has a value of 1 it is
said to be full; otherwise it is an empty sub-block. If all the
sub-blocks of a 7" x T block are full then also the block is
said to be full. Otherwise, the block is said to be non-full.
Then, for each T x T block, a flag is arithmetically encoded
that indicates whether this block is full or not. If the block
is non-full, additional information indicating the location of
the full/empty sub-blocks is encoded by using the following
strategy. First, the encoder chooses one of the four sub-block
traversal orders depicted in Fig. 15 and explicitly signals its
index in the bitstream. Then, the binary values associated with
the sub-blocks are ordered according to the chosen traversal
order and compressed using a run-length encoding strategy.

E. Smoothing & Geometry/Texture Reconstruction

The smoothing procedure aims at alleviating potential dis-
continuities that may arise at the patch boundaries due to com-
pression artifacts. The implemented approach moves boundary
points to the centroid of their nearest neighbors. The point
cloud geometry reconstruction process exploits the occupancy
map information in order to detect the non-empty pixels in the
geometry/texture images/layers. The 3D positions of the points
associated with those pixels are computed by leveraging the
auxiliary block/patch information and the geometry images.
More precisely, let P be the point associated with the pixel
(u, v), let (do, so, ro) be the 3D location of the patch to which
it belongs, and let (ug, v, u1,v1) be its 2D bounding box.
P could be expressed in terms of depth d(u,v), tangential
shift s(u, v), and bi-tangential shift r(u, v) as follows:

d(u,v) = do+ g(u,v) (12)
s(u,v) =850 —uo+u (13)
r(u,v) =rop—vo+0o (14)

where g(u, v) is the luma component of the geometry image.

VIII. PERFORMANCE EVALUATION

The initial submissions to the PCC CfP were evaluated as
described in Section IV-B and a selection of results is pre-
sented in Tab. I: Overall Bjontegaard-delta bitrates (BDBR) are

TABLE I
SELECTION OF OBJECTIVE EVALUATION RESULTS (BDBR)
DI D2 Y U v
L-PCC lossy | -36.8% | -22.0% N/A N/A N/A
S-PCC lossy | -26.9% -8.8% -14.7% -78.0% -78.3%
V-PCC Al -100%' | -97.8%2% | -84.2%2 | -90.3%2 | -91.9%2
V-PCC RA -100%' | -97.8%2 | -89.6%2 | -96.9%2 | -97.64%2

Note: Non-overlapping (1) and low overlapping (2) RD-curves
lead to less reliable BDBR calculations, as described in [51].
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Fig. 16. Subjective evaluation V-PCC results for RedandBlack (a),
Soldier (b), and Longdress (c), as well as S-PCC for a static frame of
Longdress (d).

reported for lossy coding using L-PCC, S-PCC and V-PCC.
For the dynamic content in V-PCC, the results are separated
in all-intra (AI) and random-access (RA) coding. It shall be
noted that objective distortions introduced by V-PCC were
actually so low, that there was little to no overlap with the
anchor distortion values. Thus no reliable objective BDBR
calculations could be performed in many cases. Nonetheless,
this is an indicator that the anchor was considerably worse than
the proposed technologies, and even at its highest specified
rate, for a lot of the content, it could not match the performance
of V-PCC at the worst specified rate. The full sets of objective
and subjective results, including RD-curves, are available
in [45] and [46], where S-PCC is denoted as “P02” and V-PCC
as “P07”.

A. L-PCC Coding Performance

Only one solution was submitted as proposal for LIDAR
point cloud compression. The proposal, as described in
Section V, showed significant improvements over the anchor
data and was consequently selected as the basis for the test
model for this category. For lossless geometry compression
without attributes, an encoded size of around 18 Bits per
point (bpp) was achieved, which translates to a compression
ratio of almost 20%. For lossy geometry without attributes,
almost 40% BDBR savings for higher quality rate points was
achieved. No subjective evaluation was carried out for L-PCC.

B. S-PCC Coding Performance

Three solutions were submitted as S-PCC solutions. Out of
these, the proposal described in Section VI scored the highest
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Fig. 18. Original (uncompressed) and reconstructed point clouds for
sequences RedAndBlack at 3.5 MBit/s (top), and Soldier at 11 MBit/s
(bottom). (a) Original. (b) Anchor. (c) V-PCC. (d) Original. (e) Anchor.
(f) V-PCC.

in the objective and subjective evaluations. For lossy geometry
and lossy attribute coding, around 30% D1 BDBR, 10% D2
BDBR, and 15% Luma BDBR bit savings were achieved,
compared to the anchor. The subjective evaluation showed
conclusive results, as seen in the example shown in Fig. 16d.
Therefore this solution was selected to be the basis for the test
model for this category.

C. V-PCC Coding Performance

A total of nine solutions were submitted as dynamic point
cloud compression proposals. These submissions included sev-
eral video-based solutions. Out of all submission, the proposal
described in Section VII scored highest in the objective and
subjective evaluations. Fig. 16a-c show the results of the

subjective evaluation for three dynamic sequences compressed
with V-PCC, against the anchor at different bitrate points.
During the subjective evaluation, uncompressed point clouds
were shown as hidden reference, thus the bitrates shown for
“uncompressed” in Fig. 16 do not represent actual bitrates, but
the respective target bitrate point of the test point. The benefits
of V-PCC over the anchor in terms of visual quality are clearly
visible and in line with the objective evaluation results, e.g. as
shown in Fig. 17: Even at the lowest target point, reasonable
quality was achieved, and already at the third target point
the achieved quality was close to the uncompressed data.
Depending on the sequence, this means compression factors
between 1:100 to 1:500 are feasible. Thus this approach was
selected as the basis for the test model for this category.

IX. CONCLUSION & OUTLOOK

At the time of writing this paper, the standardization
process is still ongoing. However, the main development
orientation is set. The final standard, to be published early
2020, will consist of two classes of solutions in order to
address the compression of point clouds. The first class,
called video-based and equivalent to V-PCC, will leverage
the usage of well-known 2D video technologies by projecting
the points into 2D frames [52]. This approach is appropriate
for point sets with a relatively uniform distribution of points
in 3D space and clearly outperforms any state-of-the-art. For
more sparse distributions, a second class is more appropriate.
It is called G-PCC, for geometry-based, and is equivalent to
the combination of L-PCC and S-PCC [53]. G-PCC consists
of decomposing the 3D space into a hierarchical structure
of cubes and encoding each point as an index of the cube it
belongs to. The first class — the V-PCC — has the advantage of
rapid deployment in the market and reuse of decades of tech-
nology advancements in video encoding, while the G-PCC has
the advantage of a native 3D representation and the potential
of improvements yet to be exploited. While relying on video
coding may be a comfortable solution because it is expected
that the importance of video content will be conducive to the
development of even better technologies in the future, it is
also clear that V-PCC has limitations in exploiting temporal
correlations. The traditional motion estimation based on
2D macro-blocks is not well suited to compensate color
patches having forms and locations that vary with high
frequencies. Creating and arranging the patches is outside the
scope of the standard; however it will not be always easy for
encoders to obtain stationary patches. Future technology may
consider a hybrid approach combining the two classes.

Software [54], [55] and latest performance evaluations
are published through MPEG and updated regularly [56].
Interested parties are kindly invited to participate and provide
their own contributions to the standardization process.
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