

134 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 9, NO. 1, MARCH 2019

3D sensor signals, scene geometry needs an efficient repre-

sentation that is scalable in level of detail and efficient in

compression, while its photometric attributes are a new class

of signal that is not sampled on an uniform Euclidean grid and

therefore needs new sampling, filtering, and transform tools

to represent and compress. Recent advances in Graph Signal

Processing (GSP) [7] have provided a rich set of tools for that.

The remainder of this paper is structured as follows: First

an overview on point cloud data and its characteristics is given

in Section II, followed by an overview of previous works on

point cloud compression in Section III. Section IV describes

the development and evaluation of the MPEG CfP on PCC,

with Sections V, VI, and VII describing the three selected

approaches in more detail. A brief summary of the coding

performance of each proposal is given in Section VIII, before

this paper is concluded in Section IX.

II. POINT CLOUD DATA

Many emerging applications including immersive VR/MR

video, automotive/robotic navigation, and medical imaging

require the capture and processing of 3D scene/object geom-

etry data. This data, in its most primitive form, consists of

a collection of points called a point cloud. This section will

introduce some of the aspects of point cloud data.

A. Characteristics

A point cloud consists of a set of individual 3D points.

Each point, in addition to having a 3D (x, y, z) position,

i.e., spatial attribute, may also contain a number of other

attributes such as color, reflectance, surface normal, etc. There

are no spatial connections or ordering relations specified

among the individual points.

For computer graphics and gaming applications in partic-

ular, 3D scene object geometry is typically represented by

polygonal meshes comprising a list of vertices together with

their connectivity information in terms of edges and faces.

Such polygonal meshes are well suited for compact represen-

tation of dense surfaces, but they have problems representing

non-manifold structures. Key advantages of a point cloud

representation over polygonal meshes are its flexibility to

represent non-manifold geometry and its real-time processing

potential as there is no need to store, maintain, or process

surface topological information.

For efficient processing of point cloud data, each point is

quantized into a cubic grid composed of 2−d × 2−d × 2−d

size voxels which are formed from volumetric subdivision,

up to d levels of detail (LoD), of a 1 × 1 × 1 cubic

root voxel. Resulting voxels may be mapped into an octree

data structure to create a voxelized octree, which facilitates,

in turn, the traversal, search, and access of the neighboring

voxels [8], [9].

B. Use Cases & Applications

3D point cloud data finds applications in many fields,

including cultural heritage/museums, 3D free viewpoint video,

real-time immersive telepresence, content VR viewing with

interactive parallax, mobile mapping, and autonomous naviga-

tion [10], [11]. Regarding cultural heritage applications, point

cloud data scans are used to archive and visualize objects in

museums including historical statues and buildings [12], [13].

Typical point clouds in this use case may contain from millions

to billions of points with finer than 1 cm of geometric precision

and an 8-12 bits per color component accuracy [10].

The goal of immersive video is to go beyond higher image

quality (4K/8K TV) and to provide a higher sense of 3D user

experience and interactivity. Real-time 3D telepresence is

one of the key applications of immersive video and 3D

point clouds, for which a collection of random and unrelated

points is a preferred data representation format because of

its simplicity for visualization, filtering and editing. Some

industrial examples of 3D telepresence include Microsoft’s

Holoportation [14] and 8i’s volumetric video technology [15].

Variations of immersive video include HMD (head-mounted

display) based VR and 3D free viewpoint sports replay and

broadcasting [16], which may not require real time process-

ing and may in addition contain mesh based graphical data

content. Such media-related use cases may usually contain

between 100,000 and 10,000,000 point locations and color

attributes with 8-10 bits per color component [17], along with

as some sort of temporal information, similar to frames in a

video sequence.

For navigation purposes, it is possible to generate a 3D map

by combining depth measurements from a high-density laser

scanner, e.g. LIDAR, camera captured images and localization

data measured with GPS and an inertial measurement unit

(IMU) [18]. Such maps can further be combined with road

markings such as lane information and road signs to create

maps to enable autonomous navigation of vehicles around a

city. This use case requires the capture of millions to billions

of 3D points with up to 1 cm precision, together with addi-

tional attributes, namely color with 8-12 bits per color com-

ponent, surface normals and reflectance properties attributes.

To address this wide range of applications, the MPEG

PCC standardization activity created three general categories

of point cloud test data: static, dynamic, and dynamically

acquired [10].

C. Capture & Acquisition

There already exist many standards to compress images,

video, and LIDAR sensor data, so the objective of this

emerging PCC standard is not to compress the raw sensor

data, but to compress the point cloud representations of the

objects or scenes captured by the sensors. The coding tech-

niques developed here are generally designed to be agnostic

of the specific sensors used to create the point cloud data, so it

is assumed that prior to compression, 3D data from different

sensors was fused to generate the point cloud representation

to be compressed.

An example of a sensor system used to dynamically acquire

data for mobile mapping and autonomous navigation purposes

is shown in Fig. 1 [18]. The LIDAR sensors mounted on top

of a vehicle continuously acquire point locations relative to the

vehicle, based upon the azimuth and elevation of the emitted

laser beam, along with the range and intensity of any returned

reflections of the laser. GPS and inertial sensors on the vehicle

are used to determine the location of the vehicle. By combining

SCHWARZ et al.: EMERGING MPEG STANDARDS FOR POINT CLOUD COMPRESSION 135

Fig. 1. Sensor system for generating mobile mapping point clouds
(from [18]).

Fig. 2. Example studio for capturing dynamic point clouds.

the relative LIDAR-captured point locations along with the

location of the vehicle, the point locations can be converted

to absolute (x, y, z) coordinates relative to a fixed origin of a

geographic coordinate system. Fixed RGB cameras mounted

on the vehicle capture image sequences or video. These data

are fused in a post-capture processing operation so that each

point, in addition to having a LIDAR-captured reflectance

attribute, can have a single RGB color attribute associated with

it. The fusing process can also clean the data, e.g. by removing

redundant or outlying points. The end result of this process is

a point cloud comprising a list of (x, y, z) point coordinates

along with reflectance and RGB attributes associated with each

point. Additional attributes such as latitude, longitude, and

GPS timestamps can also be included as attributes, however,

compression of these additional attributes is currently outside

the scope of this standard under development.

To capture high-resolution real-time point clouds of moving

objects such as people for applications such as AR/VR/MR,

volumetric video, and telepresence, an arrangement of sensors

in a studio environment can be used to surround and capture

representations of anything within a 3D space, such as that

shown in Fig. 2. Multiple video or imaging cameras can be

used to capture the color attributes in the scene, and the

location of objects in 3D space can be captured through

means such as infrared depth cameras, photogrammetry and

stereo disparity, and illumination of the scene with struc-

tured light or lasers. Real-time and post-production computer

processing of the data results in a sparse voxelized point cloud

representing the captured objects. An example of a method

for capturing voxelized point clouds using only cameras is

described in [19].

The same types of sensors described here can also be used

to acquire data for generating point clouds of static objects

such as buildings and their interiors, objects and assemblies

for industrial and cultural heritage applications, and terrain

features. For example, RGB and depth cameras were used

to generate the large-scale dataset of indoor scenes described

in [20]. By fusing data from aerial images and LIDAR scans

along with ground based LIDAR and imaging data, point

cloud models of cities can be generated, as demonstrated

in [21]. Capturing point clouds of cultural and historical

objects or archeological sites can also be done with these

kinds of sensors. A high-level overview of various methods

for acquiring point cloud representations of cultural objects

can be found in [22].

III. PREVIOUS WORK

There has been plenty of work on point cloud compression

in the past, but most works aim only at the compression of sta-

tic point clouds, instead of time-varying point clouds as needed

for AR/VR/MR applications. For example, a point cloud

codec was introduced in [23] based on octree composition.

Techniques were based on bit reordering in the subdivision

bytes to reduce the entropy. This method also included color

coding based on frequency of occurrence (colorization) and

normal coding based on spherical quantization. A similar work

in [24] used surface approximations to predict occupancy

codes and an octree structure to encode color information.

The work in [5] introduced a real-time octree-based codec that

could also exploit temporal redundancies by XOR operations

on the octree byte stream. This method could operate in real

time, as the XOR prediction is simple and fast. A disadvantage

of this approach is that the effectiveness is significant only for

scenes with limited movement, which is not always the case.

In [6], an extension to this framework was introduced, com-

bining the octree-based codec with a common image codec

for color attribute coding. Thanou et al. [25] introduced a

time-varying point cloud codec that can predict graph-encoded

octree structures between adjacent frames. The method uses

spectral wavelet-based features to achieve this and an encoding

of differences to achieve a lossless encoding. This method also

includes the color coding method from [26], which defines

small subgraphs based on the octree of the point cloud. These

subgraphs are then used to efficiently code the colors by

decomposing them on the eigenvectors of the graph Laplacian.

In comparison to point clouds, 3D objects are often coded

as 3D meshes, for which a significant number of compression

methods were developed. Early work on mesh compression

includes [27]–[29]. Mesh codecs can be categorized as pro-

gressive, i.e., allowing a lower resolution rendering from

partial bit streams, and single rate, for which only decoding at

full resolution is available [30]. For networked transmission,

progressive methods have generally been preferred, but for

3D immersive video, single rate methods can also be useful,

as they introduce less encoder computation and bitrate over-

head [31]. Several works [32]–[34] have aimed at compressing

object-based immersive 3D video using single-rate coding.

While these methods are promising, it seems that methods

based on 3D point clouds can result in coding with even less

overhead and more flexible progressive rendering capabilities,

as the point cloud format is simpler to acquire and process.

There are international standards for mesh compression [1],

[35] defined, which are greatly beneficial for interoperability

136 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 9, NO. 1, MARCH 2019

Fig. 3. Data path for 3D geometry based tele-immersion use case.

between devices and services. These methods have been

mostly designed for remote rendering and have low decoder

complexity and a slightly higher encoder complexity. For 3D

immersive and augmented 3D video coding, it is essential to

have both low encoder and decoder complexity, analogous to

video coding in video conferencing systems as compared with

video on demand.

Somewhat related, multiview video plus depth (MVD)

representation was considered for storing video and depth

maps from multiple cameras in extensions of the international

HEVC standard [36]. For such representations arbitrary view

points can be rendered by interpolation between different cam-

era views using techniques from depth image based rendering

(DIBR), enabling free viewpoint functionality. While these

formats can be used to represent the visual 3D scene, they

do not explicitly store 3D object geometries, which is useful

for composite rendering in immersive communications and

augmented reality. Therefore, these formats are not directly

applicable to immersive and augmented 3D object-based video

combining real and virtual content.

IV. MPEG CFP PROCESS

In 2014, the MPEG 3D graphics coding (3DG) group

started an exploration to study the feasibility of adapting its

tools to advanced immersive applications such as virtual tele-

portation. These applications typically deal with photo-realistic

meshes and point clouds of millions of points acquired from

3D scanners and/or computer vision algorithms. Initial scans

of 3D meshes and point cloud content were contributed, and

a practical streaming prototype was developed as part of the

Reverie FP7 project [37]. The block diagram of the data flow

in immersive communications is shown in Fig. 3. In such

systems real-time communication processing is important as is

the resilience to noisy data and handling of dense point clouds.

The advantage of this approach is that composite rendering

in scenes facilitates AR, VR, and free view point function-

alities. However, for this use case, existing MPEG standards

for 3D graphics were found to be less suitable due to the

fact that several requirements like noise resilience and low

encoder latency were not fully addressed. These standards

were mostly developed with computer animated content in

mind, which typically dealt with sparse geometric content with

limited amounts of noise. This realization led to the start of

an exploration activity.

Fig. 4. Point cloud examples for the three different categories. (a) Static.
(b) Dynamic (detail). (c) Dynamically acquired (detail).

A. CfP Development

Following several experiments and evaluations of techniques

available for immersive media applications, it was found that

point clouds were particularly suitable for these kinds of

applications. Point cloud data scored well in experiments com-

paring visual quality, bitrate, and compression performance as

well as computational complexity [38]. In addition, other use

cases were introduced such as free viewpoint broadcasting and

3D scans produced by mobile mapping systems.

A call for proposals was developed in close co-

operation with stakeholders including major mobile device

manufacturers and leading startups that also provided some of

the highly realistic content needed for the effort. The call for

proposals on point cloud compression (PCC) was published in

January 2017 targeting an international standard for PCC [3]

addressing three categories: static point clouds (category 1);

dynamic, time varying point clouds used for immersive

video and AR video (category 2); and dynamically acquired

point clouds, e.g., used in mobile mapping (category 3).

Representative examples for data in these three categories are

shown in Fig. 4.

B. Evaluation Methodology

During the CfP development period, evaluation metrics

were developed in a series of experiments, requirements, and

use case assessments. To have a baseline for determining

target bitrates and distortions, a recent hybrid octree-image

point cloud codec for tele-immersive video [6] was chosen

as anchor. Quality metrics described in [39] and [40] were

selected for the objective quality assessment. These metrics

are referred as point-to-point (D1) and point to plane (D2)

geometry distortion metrics. In the first geometry metric (D1),

SCHWARZ et al.: EMERGING MPEG STANDARDS FOR POINT CLOUD COMPRESSION 137

the comparison is such that the Mean Square Error (MSE)

between the reconstructed point and the closest corresponding

points in the reference point cloud is calculated. In the sec-

ond geometry metric (D2), the MSE is calculated between

the reconstructed point and the surface plane in the given

reference test data. Surface normals are provided with the

reference test data to facilitate the computation of the surface

planes. The D1 metric is also used for assessing attribute

(color or reflectance) distortion in YUV color space. Peak

signal-to-noise-ratios (PSNR) are obtained based on the 3D

volume resolution for geometry, and respectively for color

depths for each color channel. Bjontegaard-delta (BD) metrics

are derived comparing the distortions against the anchor imple-

mentation at predefined target bitrates [41]. Additional effort

was put in choosing meaningful target bitrates, e.g. covering

a wide range of applications and qualities, and establishing a

method for plotting rate-distortion (RD) curves based on the

objective metrics and rate-points. For example, for dynamic

(category 2) point clouds, the target bitrates were in the range

of 3 to 55 MBit/s, representing 0.2% to 5% of the original

uncompressed data.

In addition to using objective metrics, a subjective evalua-

tion methodology was defined that consisted of rendering the

point clouds using a virtual camera path and then performing

the quality assessment via techniques similar to those used

to evaluate video quality. For the subjective assessment only

three static objects and three dynamic scenes were considered

among the total of 30 test objects considered in the overall CfP.

The entire set of 19 static objects, five dynamic objects and six

dynamic acquisition scenes were considered for the objective

evaluation. This reduced subjective test set was due to the

need to minimize the effort required to complete the tests and

because dynamic acquisition scenes are typically processed by

a computer and are not directly viewed as a final product. The

subjective visual quality assessment of the static and dynamic

scenes was made possible by using a point cloud renderer

designed by Technicolor [42]. This software allows specifying

a camera view path, displaying a static representation of a

point cloud, rotating it on three axes, and zooming. When

rotating and zooming a static object, it is possible to record a

track of all the movements. The recorded tracks are used to

create video clips. The same process is applied on dynamic

sequences, where the video clips were produced by rotating

the object while playing it out. The tracks used to create video

from the static and dynamic 3D files were not known to the

proponents; this was done to avoid any bias in the coding

process to a particular point of view.

The subjective tests for 3D point cloud compression were

done using the absolute category rating (ACR) test method

as specified by ITU-T Recommendation P.910 [43]. The

decision to use ACR was made considering the high number

of submissions received (9 + anchor), the high number of

test points to evaluate (171), and the short time available to

run the subjective experiments before the CfP evaluation. The

range used for the experiment was a five grades of quality

scale from 1 (bad) to 5 (excellent). The testing environment

was carefully designed and implemented. Two to three people

at the same time were seated in front of a 4K top quality 55”

Fig. 5. Overview of the L-PCC compression and decompression process.

consumer TV set. All viewers were seated at two times the

active screen height (2H) distance from the TV screen. There

were in total 22 participants: 9 male, and 13 female, with ages

between 20 and 30 years, all screened for vision acuity and

color vision. Additional details on the objective and subjective

evaluation methods are available in the CfP document [3] and

its corrigenda [44].

C. Results and Next Steps

A total of 13 different proposals were submitted to MPEG,

and they were evaluated in October 2017. The results of

the subjective assessment [45] were almost in line with the

objective evaluations [46]. The average confidence interval

for the subjective evaluation of static content was 0.48 MOS

values, while that of dynamic content was 0.34 MOS values.

Thus, it was concluded that the experiment was correctly

conducted and the results obtained could be used by the

group for making decisions with respect to the appropriate

technologies to be selected.

As an outcome, three different technologies were chosen as

test models (TMs) for the three different categories targeted:

LIDAR point cloud compression (L-PCC) for dynamically

acquired data, surface point cloud compression (S-PCC) for

static point cloud data, and video-based point cloud com-

pression (V-PCC) for dynamic content. The three different

approaches are described in more detail in the following

sections.

V. LIDAR POINT CLOUD COMPRESSION

The L-PCC codec was designed to efficiently compress

LIDAR point clouds, which usually exhibit highly irregular

sampling. Because of such characteristics, L-PCC compresses

first the point cloud geometry information by exploiting an

octree-based encoding strategy. The reconstructed geometry

is then used to build a Level-Of-Detail (LoD) structure,

which makes it possible to efficiently predict attributes and

encode/transmit them in a scalable manner.

Fig. 5 provides an overview of the L-PCC compression and

decompression processes.

138 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 9, NO. 1, MARCH 2019

Fig. 6. Generating octree structure by recursive subdivision.

The remainder of this section is organized as follows:

Section V-A describes the octree-based coding process for

the geometry information. Section V-B then describes the

attributes transfer module, which is a process that helps

determine the appropriate attribute values that should be

associated with the reconstructed geometry information. The

LoD generation, an essential process that enables efficient

hierarchical prediction of the attributes, is then described in

Section V-C. Finally, an interpolation-based prediction module

that is used to further improve the coding efficiency of the

attribute values by exploiting spatial correlations as well as

the quantization and dequantization steps that are applied on

the residuals are described in Section V-D.

A. Octree-Based Geometry Coding

Let (X i = (xi , yi , zi))i=1...N be the set of 3D positions

associated with the points of the input point cloud. The

L-PCC encoder computes the quantized positions (X̂ i)i=1...N

as follows:

X̂ i = ⌊(X i − Xshi f t) × s⌋, (1)

where Xshi f t and s are user-defined parameters that are

signaled in the bitstream.

Equivalently, at the decoder, the reconstructed positions

(X̃ i)i=1...N are generated by applying the following inverse

quantization process:

X̃ i =
X̂ i

s
+ Xshi f t . (2)

After quantization, an optional process that removes

duplicate points may be applied. It consists of merging points

sharing the same quantized positions into a single point.

The attribute values associated with the merged point are

computed using the attributes transfer module described in

subsection V-B.

The octree-based encoding process compresses the quan-

tized positions as follows: First, a cubical axis-aligned bound-

ing box B is defined by the two extreme points (0,0,0) and

(2n ,2n ,2n), where n is the smallest integer that verifies the

following inequality:

2n > max

(
max

1≤ j≤n
(x̂ j), max

1≤ j≤n
(ŷ j), max

1≤ j≤n
(ẑ j).

)
(3)

An octree structure is then built by recursively subdivid-

ing B , as depicted in Fig. 6. At each stage, the current cube is

subdivided into 8 sub-cubes. An 8-bit code, named the subdivi-

sion code, is then generated by associating an 1-bit value with

each sub-cube in order to indicate whether it contains points

(i.e., is occupied and has a value of 1) or not (i.e., is empty and

has a value of 0). Only occupied sub-cubes with a size higher

Fig. 7. Overview of Level of detail generation process.

than 1 are further subdivided. Since points may be duplicated,

multiple points may be mapped to the same sub-cube of size 1.

In order to handle such a situation, the number of points c for

each sub-cube of dimension 1 is also arithmetically encoded.

On the decoder side, the decoding process starts by reading

from the bitstream the bounding box B . The same octree

structure is then built by subdividing B according to the

subdivision codes read from the bitstream. Each time a sub-

cube of dimension 1 is reached, the number of points c for

that sub-cube is arithmetically decoded and c points located

at the origin of the sub-cube are generated.

B. Attribute Transfer

Given the input point cloud positions (X i)i=1...N , the input

point cloud attributes (A1i , A2i , . . . , ADi), where D is

the number of attributes, and the reconstructed positions

(X̃ i)i=1...Nrec , the objective of the attributes transfer module

is to determine the attribute values (ÃDi)i=1...Nrec associated

with the reconstructed positions (X̃ i)i=1...Nrec that minimize

the attribute distortions described in Section IV-B.

For each point i in the reconstructed point cloud, let X̃ i be

its position, X∗
i be the position of its nearest neighbor in the

original point cloud, A∗
Di be the attribute value associated with

X∗
i , and Q+

i = (X+
i (h))h=1...H(i) be the set of points in the

original point cloud that share X̃ i as their nearest neighbor in

the reconstructed point cloud. A+
Di(h))h=1...H(i) are also the

corresponding attribute values of the points in Q+
i .

If Q+(i) is empty, then ÃDi is assigned the attribute value

A∗
Di . Otherwise, ÃDi is computed as attribute value averaged

over all the points in the original point cloud that share the

reconstructed position as their nearest neighbor, as follows:

ÃDi =
1

H (i)

∑

h=1...H(i)

ADh+ (4)

C. Level of Detail Generation

The level of detail (LOD) generation process illustrated

in Fig. 7 re-organizes the input point cloud into a set of

refinement levels (Rl)l=1...L . This is done according to a set

of Euclidean distances (dl)l=1...L that are specified by the user

SCHWARZ et al.: EMERGING MPEG STANDARDS FOR POINT CLOUD COMPRESSION 139

and by verifying the following two conditions: (1) dL = 0 and

(2) dl < dl−1. The objective of this process is that the first

LOD, i.e. refinement level R1, contains points that are in effect

a coarse representation of the point cloud, because all points in

that LOD are separated by a distance of at least d1. Subsequent

LODs or refinement levels include points that are closer

together, because the distances dl decrease as l increases.

The re-ordering process is deterministic and operates on

the quantized positions ordered according to the octree

decoding process. It is applied at both the encoder and the

decoder side. This process first marks all the points as non-

visited, and the set of visited points, denoted as V , is set

as empty. L-PCC proceeds iteratively. At each iteration l,

the refinement level Rl is generated as follows: L-PCC iterates

over all the points. If the current point has been visited, then it

is ignored. Otherwise, the minimum distance D of the current

point to the set V is computed. If D is strictly lower than dl ,

then the current point is ignored. Otherwise, the current point

is marked as visited and added to both Rl and V . This process

is repeated until all the points are traversed. The level of detail

at iteration l, L O Dl , is obtained by taking the union of the

refinement levels R1, R2, . . . , Rl .

D. Interpolation-Based Attributes Prediction

The attributes associated with the point cloud are

encoded/decoded in the order defined by the LOD generation

process. At each step, only the already encoded/decoded points

are considered for prediction. More precisely, the attribute

value Ãi is predicted by using a linear interpolation

process based on the distances of the nearest neighbors of

point X̃ i . More precisely, let ∇i be the set of the k-nearest

neighbors of the current point X̃ i , let (Â j) j∈∇i be their

decoded/reconstructed attribute values, and (δ j) j∈∇i their dis-

tances to X̃ i . The predicted attribute value Ŵ̃i is then given by:

Ŵ̃i =
1

k
∑

j∈∇i

1

δ2
j

∑

j∈∇i

1

δ2
j

Â j (5)

The prediction residuals ρ̃i are then computed as follows:

ρ̃i = Ãi − Ŵ̃i (6)

The residuals ρ̃i are quantized and arithmetically encoded.

The reconstructed attributes values are subsequently obtained

as follows:

Âi = ρ̂i + Ŵ̃i , (7)

where ρ̂i are the reconstructed prediction residuals.

The experimental evaluation of the proposed hierarchical

prediction scheme shows that the optimal choice of the

number of nearest neighbors k and the distances (dl)l=1...L

is content dependent and may be computationally expen-

sive. However, a practical encoder implementation could be

designed by considering different computational complexity

and RD performance trade-offs. For instance, the optimal

number of nearest neighbors k could be chosen based on

a Rate-Distortion Optimization (RDO) process. This process

consists of evaluating the Lagrangian costs associated with

Fig. 8. Block diagram of the S-PCC encoder and decoder.

different values of k ∈ {1, 2, 3, . . . , K } and selecting the one

with the lowest cost. Determining the optimal set of distances

(dl)l=1...L could also be formulated as an RDO optimization

problem. However, evaluating the Lagrangian cost for all

possible combinations would be computationally prohibitive.

One way to reduce the size of the search space is to impose the

following simple recursive relationship between the sampling

distances:

dl−1 =
dl

2
, ∀l ∈ {2, . . . , L − 1}. (8)

By introducing such a constraint, the sequence of distances

(dl)l=1...L becomes entirely defined by dL−1. A search strat-

egy, such as the binary search method, could be then applied

to determine the distance d∗
L−1 that minimizes the Lagrangian

cost function.

VI. SURFACE POINT CLOUD COMPRESSION

The S-PCC codec was designed to efficiently compress

high-detail static point clouds, which usually exhibit a high

sampling density, approximating a 3D surface. The remainder

of this section is organized as follows: Section VI-A describes

the overall S-PCC architecture, Section VI-B describes the

encoder, and Section VI-C describes the decoder.

A. S-PCC Architecture

The S-PCC architecture comprises an encoder and decoder,

which in turn comprise various modules, as shown in Fig. 8.

Communication between modules is done by passing lists

of point locations and/or point attributes. Parameters to the

S-PCC encoder include the following, many of which are

passed to the decoder in the bitstream header:

• depth: depth of encoding octree

• level: octree level for geometry encoding

• geomstepsize: geometry quantization stepsize

• colorstepsize: color quantization stepsize

• mbpstarget: total bitrate target in Mbps

• fps: frames per second

• scale: frame-to-world scale parameter for decoded PLY

• translation: frame-to-world translation for decoded PLY

B. S-PCC Encoder

The input to the S-PCC encoder is the original, uncom-

pressed point cloud. The point cloud comprises a list of real-

valued point locations, (xworld
i , yworld

i , zworld
i), i = 1, . . . , N ,

where N is the number of points in the input point cloud,

140 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 9, NO. 1, MARCH 2019

Fig. 9. Block diagram of the S-PCC geometry encoder and decoder.

and a corresponding list of real-valued point attributes,

(A1i , A2i , . . . , ADi), i = 1, . . . , N , where Di is the number of

attributes for point i . All attributes are processed in indepen-

dent channels. In this section, we will focus on the case where

the attributes are the three RGB color channels: (Ri , Gi , Bi),

i = 1, . . . , N , and therefore Di = 3 ∀i .

The original point locations are expressed in a coordinate

system that has meaning to the user. In the S-PCC, this

coordinate system is called the world coordinate system.

Furthermore, the original point colors are typically expressed

in an RGB color space. However, it is more convenient to

process the point locations in a different coordinate system,

and to process the point colors in a different color space.

Thus, just after the original point cloud enters the S-PCC

encoder, it is processed by a coordinate transformation module,

in which the original point locations are transformed from their

original (world) coordinates into internal (frame) coordinates,

and the original point colors are transformed from RGB to

YUV.

The transformation from world to frame coordinates may

be specified by using the parameters translation = (tx , ty, tz)

and scale = s, as

(xi , yi , zi) =
(
(xworld

i , yworld
i , zworld

i) − (tx , ty, tz)
)

/s. (9)

If translation and scale are specified, the transformed loca-

tion parameters (xi , yi , zi) must lie in the cube [0, 2depth)3.

If they are not specified, they are derived in the module

by computing a minimum bounding cube of the input point

locations, and scaling and translating such that in the frame

coordinate system, all point locations (xi , yi , zi) lie in the cube

[0, 2depth)3, and along at least one dimension, the minimum

and maximum are respectively 0 and 2depth − 1. For the color

attributes, the transformation from (Ri , Gi , Bi) to (Yi , Ui , Vi),

i = 1, . . . , N , in the module follows ITU-R Rec. BT.709 as

required in [3].

Details of the S-PCC geometry encoder module are shown

in Fig. 9, and described as follows:

• Voxelization. Voxelization is the process of grouping

points together into voxels, which are the set of unit cubes

[i − 0.5, i + 0.5) × [j − 0.5, j + 0.5) × [k − 0.5, k + 0.5)

for integer values of i , j , and k between 0 and 2depth −1.

Specifically, the locations of all points within a voxel are

quantized to the voxel center, and the attributes of all

points within the voxel are averaged and assigned to the

voxel. A voxel is said to be occupied if it contains any

point of the point cloud.

• Determining blocks. In the S-PCC, the cube of voxels is

partitioned into blocks of W × W × W voxels, analogous

to the partitioning of video pictures into blocks of

W × W pixels. W is known as the blockwidth. The

blockwidth is constant, W = 2depth−ℓ, where ℓ = level is

a parameter to the encoder and is passed to the decoder

in the bitstream header. A block is said to be occupied

if it contains any occupied voxels. The use of blocks

to represent geometry is important for spatial random

access, view-dependent coding and rendering, parallel

processing, out-of-core processing for large datasets, and

the formation of “slices” and other units for network

packetization and error resilience.

• Entropy encoding of blocks. The set of occupied blocks

is encoded with an octree, in which the leaves of the

octree represent the occupied blocks. If the octree has

height ℓ = level, then the blocks at the leaves have

blockwidth W = 2(depth−ℓ) voxels on a side. The para-

meter level is placed in the bitstream header. An octree

can be represented by one byte for each internal (non-

leaf) node of the tree, where the bits indicate the occupied

children of the node. These are known as occupancy

bytes. Currently, the occupancy bytes are entropy-coded.

If ℓ = level is equal to depth, then W = 1, the blocks

are 1 × 1 × 1, and the octree represents the collection

of voxels losslessly. If the depth of the tree is large

enough, then there is at most one point in each voxel,

and thus the geometry of the original point cloud can

be represented losslessly, up to depth bits of precision

(maximum of 21 bits is currently allowed) for each

spatial component.

If ℓ = level is less than depth, then the blocks are

2 × 2 × 2 or larger and it is necessary to represent the

collection of voxels within the block, possibly with loss.

S-PCC represents the geometry within each block as a

surface that intersects each edge of the block at most

once. Since there 12 edges of a block, there can be at most

12 such intersections. Each such intersection is called

a vertex. The collection of vertices is a list (x̂k, ŷk, ẑk),

k = 1, . . . , Nvert . These vertices are sufficient to

reconstruct a surface within the block by reconstructing

a non-planar polygon through the vertices as a collection

of triangles. Although there are other surfaces that can

be parameterized by such a set of vertices, for example,

as an implicit surface of a Bézier Volume, S-PCC uses

triangles as they are particularly friendly to standard

graphics processing.

• Entropy encoding of vertices. Vertices, nominally being

intersections of a surface with edges of a block, are shared

across neighboring blocks, not only guaranteeing conti-

nuity across blocks of the reconstructed surface, but also

reducing the number of bits required to code the collec-

tion of vertices. The set of vertices is coded in two steps.

Firstly, the set of all unique edges of occupied blocks is

computed, and a bit vector determines which edges con-

tain a vertex and which do not. Secondly, for each edge

SCHWARZ et al.: EMERGING MPEG STANDARDS FOR POINT CLOUD COMPRESSION 141

Fig. 10. Block diagram of S-PCC color encoder and decoder.

that contains a vertex, the position of the vertex along the

edge is uniformly scalar-quantized to a small number of

levels, typically equal to the block width if the geometric

spatial resolution is desired to approximate the voxel res-

olution, but it could be any number of levels. The number

of levels is equal to the block width divided by geomStep-

size. The bit vector and the vertex positions are further

compressed by an entropy coder, along with the octree

occupancy bytes, and become the geometry bitstream.

The S-PCC encoder contains an instantiation of the geom-

etry decoder. Details of the geometry decoder module are

described in Section VI-C. The output of the geometry decoder

is a list of refined vertices (x̂r , ŷr , ẑr), r = 1, . . . , Nre f .

The re-coloring module assigns colors to the refined ver-

tices, by taking colors from the original (uncompressed)

point cloud. There are many ways to perform re-coloring,

with corresponding effects on both computation and compres-

sion performance. In the S-PCC, re-coloring is implemented

by coloring each refined vertex (x̂r , ŷr , ẑr) with the color

(Ỹr , Ũr , Ṽr) = (Yir , Uir , Vir) of the input point (xir , yir , zir)

closest to (x̂r , ŷr , ẑr) in Euclidean distance, i.e.,

ir = arg min
i

(
(x̂r − xi)

2 + (ŷr − yi)
2 + (ẑr − zi)

2
)

. (10)

Thus the output of the re-coloring module is the list of colors

(Ỹr , Ũr , Ṽr), r = 1, . . . , Nre f , corresponding to the refined

vertices (x̂r , ŷr , ẑr), r = 1, . . . , Nre f .

The color encoder module compresses the colors

(Ỹr , Ũr , Ṽr), r = 1, . . . , Nre f , of the re-colored points,

using information from the already-available (or already-

decoded) locations (x̂r , ŷr , ẑr), r = 1, . . . , Nre f , of the

re-colored points as side information. Details of the color

encoder module are shown in Fig. 10, and described as

follows:

• Voxelization. All the refined vertices within a voxel

are quantized to the voxel center, and the attributes of

the refined vertices within the voxel are averaged and

assigned to the voxel. This produces a list of voxel colors

(Ỹn, Ũn, Ṽn), n = 1, . . . , Nvox , along with a list of the

associated voxel locations (x̂n, ŷn, ẑn), n = 1, . . . , Nvox ,

as side information.

• Spatial Transform. The voxel colors (Ỹn, Ũn, Ṽn),

n = 1, . . . , Nvox , are transform-coded, analogously to

a color image, by a spatial transform, quantizer, and

entropy coder. The colors are spatially transformed

using the Region Adaptive Hierarchical Transform

(RAHT) [47], [48], to obtain transformed colors

(T Yn, T Un, T Vn), n = 1, . . . , Nvox .

• Quantization. The transformed coordinates are

quantized by a uniform scalar quantizer with stepsize

colorStepsize, to obtain the quantized transform

coordinates (T̂ Y n, T̂ Un, T̂ V n), n = 1, . . . , Nvox ,.

The same stepsize is used for all color components.

The colorStepsize is communicated to the color decoder

through the bitstream header.

• Entropy encoding. The quantized, transformed

coefficients are entropy-encoded using RLGR [49].

The output from the S-PCC encoder and the input to the

decoder is a bitstream that comprises a geometry bitstream,

a color bitstream, and a bitstream header. The bitstream header

contains parameters needed to decode the geometry and color

bitstreams, namely depth, level, geomStepsize, colorStepsize,

translation, and scale.

C. S-PCC Decoder

The geometry decoder module decompresses the geometry

bitstream into decoded geometry. This module is also instan-

tiated in the S-PCC encoder. Details of the geometry decoder

are shown in Fig. 9, and described as follows:

• Entropy decoding of blocks. The occupancy bytes of

the octree are entropy-decoded and the octree is recon-

structed. If the level of the octree is equal to the depth as

indicated in the bitstream header, then this is a lossless

representation of the geometry at that level of precision.

• Entropy decoding of vertices. If the level of the octree is

smaller than the depth, then this is a lossy representation

of the geometry, and vertices are entropy-decoded, in two

steps. Firstly, the set of all unique edges of occupied

blocks is computed, and a bit vector is entropy-decoded

to indicate which edges contain a vertex and which

do not. Secondly, for each edge that contains a vertex,

the position of the vertex along the edge is entropy-

decoded and dequantized, resulting in a list of vertices

(x̂k, ŷk, ẑk), k = 1, . . . , Nvert .

• Vertex reconstruction. For each block, the vertices on

the block edges determine a surface through the block.

The surface is a non-planar polygon. The polygon is trian-

gulated into planar triangles. The method of triangulation

is defined so that the triangulation is unique given the

vertices on the block edges.

• Upsampling. Each triangle is refined (or subdi-

vided or upsampled) by an upsamplingFactor (times

the blockwidth) to obtain regularly-spaced points on

the surface of the triangle, called re f ined ver tices,

(x̂r , ŷr , ẑr), r = 1, . . . , Nre f . The purpose of the refined

vertices is to create geometry at a spatial resolution

greater than or equal to the spatial resolution of the color

142 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 9, NO. 1, MARCH 2019

information. The list of these refined vertices is the output

of the geometry decoder.

The color decoder module decompresses the color bitstream

into decoded color components (Ŷn, Ûn, V̂n), n = 1, . . . , Nvox ,

and their associated locations (x̂n, ŷn, ẑn), n = 1, . . . , Nvox ,

given the refined vertices (x̂r , ŷr , ẑr), r = 1, . . . , Nre f ,

as side information. Details of the color decoder module

are shown in Fig. 10. First, the refined vertices (x̂r , ŷr , ẑr),

r = 1, . . . , Nre f , are voxelized to obtain the decoded voxel

locations (x̂n, ŷn, ẑn), n = 1, . . . , Nvox . Then, the color

transform coefficients are entropy-decoded, inverse-quantized,

and inverse-transformed to produce a list of decoded col-

ors, (Ŷn, Ûn, V̂n), n = 1, . . . , Nvox . The inverse transform

uses, as side information, the list of decoded voxel locations

(x̂n, ŷn, ẑn), n = 1, . . . , Nvox .

Before the reconstructed point cloud exits the S-PCC

decoder, the point locations are transformed from “frame”

coordinates into “world” coordinates in the inverse coordinate

transform module, according to the parameters translation =

(tx , ty, tz) and scale = s (which are obtained from the

bitstream header), as

(xworld
i , yworld

i , zworld
i) = s · (xi , yi , zi) + (tx , ty, tz), (11)

and the reconstructed point colors are transformed from

(Ŷn, Ûn, V̂n) to (R̂n, Ĝn, B̂n) according to ITU Rec. BT.709,

n = 1, . . . , Nout , where Nout = Nvox .

The output from the decoder is the point cloud reconstructed

from the bit stream. The reconstructed point cloud comprises a

list of real-valued point locations, (xworld
i , yworld

i , zworld
i), n =

1, . . . , Nout , where Nout is the number of points in the output

point cloud, and a corresponding list of color components,

(R̂n, Ĝn, B̂n),n = 1, . . . , Nout . The number of output points

Nout is generally different from the number of input points N .

VII. VIDEO-BASED POINT CLOUD COMPRESSION

The main philosophy behind V-PCC is to leverage existing

video codecs for compressing the geometry and texture

information of a dynamic point cloud. This is essentially

achieved by converting the point cloud into a set of different

video sequences. In particular, two video sequences, one that

captures the geometry information and another that captures

the texture information of the point cloud data, are generated

and compressed using existing video codecs, such as MPEG-

4 AVC, HEVC, AV1 etc. Additional metadata, which are

needed for interpreting the two video sequences, i.e., an

occupancy map and auxiliary patch information, are also

generated and compressed separately. The video generated

bitstreams and the metadata are then multiplexed together

so as to generate the final point cloud V-PCC bitstream.

It should be noted that the metadata information represents a

relatively small amount (i.e., 5-20%) of the overall bitstream.

The bulk of the information is handled by the video codec.

Fig. 11 and Fig. 12 provide an overview of the V-PCC

compression and decompression processes, respectively.

The remainder of this section is organized as follows:

Subsection VII-A describes the patch generation and packing

processes, which aim at determining how to best decompose

Fig. 11. Overview of the V-PCC encoding process.

Fig. 12. Overview of the V-PCC decoding process.

the input point cloud into patches and how to most efficiently

fit those patches into a rectangular 2D grid. Subsection VII-B

details the image generation and padding processes, which

transform the point cloud geometry and texture information

into temporally correlated, piecewise smooth, 2D images

suited for coding using traditional video codecs. The

processes of generating the auxiliary patch information and

occupancy map are described in subsections VII-C and VII-D,

respectively. Subsection VII-E describes the smoothing

module and the geometry and texture reconstruction processes.

A. Patch Generation & Packing

Leveraging traditional video codecs to encode point clouds

requires mapping the input point cloud to a regular 2D grid.

The objective is to find a temporally-coherent low-distortion

injective mapping that would assign each point of the 3D point

cloud to a cell of the 2D grid.

Maximizing the temporal coherency and minimizing the

distance/angle distortions enables the video encoder to take

full advantage of the temporal and spatial correlations of

the point cloud geometry and attributes signals. An injective

mapping guarantees that all the input points are captured by

the geometry and attributes images and could be reconstructed

without loss. Simply projecting the point cloud on the faces

of a cube or on the sphere does not guarantee lossless recon-

struction due to auto-occlusions (i.e., auto-occluded points are

not captured), and generates in practice significant distortions.

In order to avoid such limitations, V-PCC decomposes the

input point cloud into a set of patches, which could be inde-

pendently mapped, through a simple orthogonal projection,

SCHWARZ et al.: EMERGING MPEG STANDARDS FOR POINT CLOUD COMPRESSION 143

Fig. 13. Overview of the V-PCC patch generation process.

to a 2D grid without suffering from auto-occlusions nor

requiring re-sampling of the point cloud geometry. Further-

more, the patch generation process aims at generating patches

with smooth boundaries, while minimizing their number and

the mapping distortions. In order to resolve this NP-hard

optimization problem, V-PCC applies a heuristic segmentation

approach that is described in Fig. 13.

First, the normal at every point is estimated as described

in [50]. An initial clustering of the point cloud is then obtained

by associating each point with one of the six unit cube

oriented planes. More precisely, each point is associated with

the plane that has the closest normal (i.e., maximizes the dot

product of the point normal and the plane normal). The initial

clustering is then refined by iteratively updating the cluster

index associated with each point based on its normal and the

cluster indexes of its nearest neighbors. The final step consists

of extracting patches by applying a connected component

extraction procedure.

The packing process aims at mapping the extracted patches

onto a 2D grid, while trying to minimize the unused space

and to guarantee that every T × T block (e.g., 16 × 16 block)

of the grid is associated with a unique patch.

V-PCC uses a simple packing strategy that iteratively tries

to insert patches into a W × H grid. W and H are user

defined parameters, which correspond to the resolution of

the geometry/texture images that will be encoded. The patch

location is determined through an exhaustive search that is

performed in raster scan order. The first location that can

guarantee an overlapping-free insertion of the patch is selected

and the grid cells covered by the patch are marked as used.

If no empty space in the current resolution image can fit a

patch then the height H of the grid is temporarily doubled

and the search is performed again. At the end of the process,

H is reduced so as to account only for the used grid cells.

B. Image Generation & Padding

The image generation process exploits the 3D to 2D

mapping computed during the packing process to store the

geometry and texture of the point cloud as images. Fig. 14

shows an example of generated geometry and texture images.

In order to better handle the case of multiple points being

projected to the same pixel, each patch is projected onto two

images, referred to as layers. More precisely, let H (u, v) be the

set of points of the current patch that get projected to the same

pixel (u, v). The first layer, also called the near layer, stores the

point of H (u, v) with the lowest depth D0. The second layer,

referred to as the far layer, captures the point of H (u, v) with

Fig. 14. Example of geometry (left) and texture (right) images.

the highest depth within the interval [D0, D0 + τ], where τ is

a user-defined parameter that describes the surface thickness.

The padding process aims at filling the empty space between

patches in an attempt to generate a piecewise smooth image

that may be better suited for video coding. V-PCC uses a

simple padding strategy, which processes each block of T ×T

pixels independently. If the block is empty (i.e., all its pixels

belong to the empty space), then the pixels of the block are

filled by copying either the last row or column of the previous

T × T block in raster order. If the block is full (i.e., does

not contain any empty pixels), nothing is done. If the block

has both empty and filled pixels, then the empty pixels are

iteratively filled with the average value of their non-empty

neighbors.

C. Auxiliary Patch and Block Information Coding

In order for the decoder to be able to reconstruct the

3D point cloud from the geometry and texture images, the fol-

lowing patch/block metadata information is encoded in the

bitstream:

• For each patch, the index of its projection plane, its 3D

location, and its 2D bounding box.

• For each T × T block, the index of the patch to which it

belongs.

The patch metadata is predicted and arithmetically encoded.

The block to patch mapping information, is encoded as fol-

lows: Let L be the ordered list of the indexes of the patches

such that their 2D bounding box contains that block. The order

in the list is the same as the order used to encode the 2D

bounding boxes. L is called the list of candidate patches. The

empty space between patches is considered as a patch and is

assigned the special index 0. This patch is also added to the

candidate patches list of all the blocks. Let I be the index of

the patch to which the current T × T block belongs to and

let J be the position of I in L. Instead of explicitly encoding

the index I , its position J is arithmetically encoded. This can

lead to better coding efficiency.

D. Occupancy Map Coding

The occupancy map consists of a binary map that indicates

for each cell of the grid whether it belongs to the empty

space or to the point cloud. The occupancy map compression

leverages the auxiliary information described in the previ-

ous subsection, in order to detect the empty T × T blocks

(i.e., blocks with patch index 0). The remaining blocks are

encoded using the following process.

144 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 9, NO. 1, MARCH 2019

Fig. 15. Sub-blocks traversal orders.

The occupancy map could be encoded with a precision of

B0 × B0 blocks. B0 is a user-defined parameter. In order to

achieve lossless encoding, B0 should be set to 1. In practice

B0 = 2 or B0 = 4 result in visually acceptable results, while

significantly reducing the number of bits required to encode

the occupancy map.

The occupancy map compression module first associates

binary values with all B0 × B0 sub-blocks belonging to

the same T × T block. A value of 1 is associated with a

sub-block if it contains at least a non-padded pixel and a

value of 0 otherwise. If a sub-block has a value of 1 it is

said to be full; otherwise it is an empty sub-block. If all the

sub-blocks of a T × T block are full then also the block is

said to be full. Otherwise, the block is said to be non-full.

Then, for each T × T block, a flag is arithmetically encoded

that indicates whether this block is full or not. If the block

is non-full, additional information indicating the location of

the full/empty sub-blocks is encoded by using the following

strategy. First, the encoder chooses one of the four sub-block

traversal orders depicted in Fig. 15 and explicitly signals its

index in the bitstream. Then, the binary values associated with

the sub-blocks are ordered according to the chosen traversal

order and compressed using a run-length encoding strategy.

E. Smoothing & Geometry/Texture Reconstruction

The smoothing procedure aims at alleviating potential dis-

continuities that may arise at the patch boundaries due to com-

pression artifacts. The implemented approach moves boundary

points to the centroid of their nearest neighbors. The point

cloud geometry reconstruction process exploits the occupancy

map information in order to detect the non-empty pixels in the

geometry/texture images/layers. The 3D positions of the points

associated with those pixels are computed by leveraging the

auxiliary block/patch information and the geometry images.

More precisely, let P be the point associated with the pixel

(u, v), let (d0, s0, r0) be the 3D location of the patch to which

it belongs, and let (u0, v0, u1, v1) be its 2D bounding box.

P could be expressed in terms of depth d(u, v), tangential

shift s(u, v), and bi-tangential shift r(u, v) as follows:

d(u, v) = d0 + g(u, v) (12)

s(u, v) = s0 − u0 + u (13)

r(u, v) = r0 − v0 + v (14)

where g(u, v) is the luma component of the geometry image.

VIII. PERFORMANCE EVALUATION

The initial submissions to the PCC CfP were evaluated as

described in Section IV-B and a selection of results is pre-

sented in Tab. I: Overall Bjontegaard-delta bitrates (BDBR) are

TABLE I

SELECTION OF OBJECTIVE EVALUATION RESULTS (BDBR)

Fig. 16. Subjective evaluation V-PCC results for RedandBlack (a),
Soldier (b), and Longdress (c), as well as S-PCC for a static frame of
Longdress (d).

reported for lossy coding using L-PCC, S-PCC and V-PCC.

For the dynamic content in V-PCC, the results are separated

in all-intra (AI) and random-access (RA) coding. It shall be

noted that objective distortions introduced by V-PCC were

actually so low, that there was little to no overlap with the

anchor distortion values. Thus no reliable objective BDBR

calculations could be performed in many cases. Nonetheless,

this is an indicator that the anchor was considerably worse than

the proposed technologies, and even at its highest specified

rate, for a lot of the content, it could not match the performance

of V-PCC at the worst specified rate. The full sets of objective

and subjective results, including RD-curves, are available

in [45] and [46], where S-PCC is denoted as “P02” and V-PCC

as “P07”.

A. L-PCC Coding Performance

Only one solution was submitted as proposal for LIDAR

point cloud compression. The proposal, as described in

Section V, showed significant improvements over the anchor

data and was consequently selected as the basis for the test

model for this category. For lossless geometry compression

without attributes, an encoded size of around 18 Bits per

point (bpp) was achieved, which translates to a compression

ratio of almost 20%. For lossy geometry without attributes,

almost 40% BDBR savings for higher quality rate points was

achieved. No subjective evaluation was carried out for L-PCC.

B. S-PCC Coding Performance

Three solutions were submitted as S-PCC solutions. Out of

these, the proposal described in Section VI scored the highest

SCHWARZ et al.: EMERGING MPEG STANDARDS FOR POINT CLOUD COMPRESSION 145

Fig. 17. Objective metric RD-curves for sequence Soldier.

Fig. 18. Original (uncompressed) and reconstructed point clouds for
sequences RedAndBlack at 3.5 MBit/s (top), and Soldier at 11 MBit/s
(bottom). (a) Original. (b) Anchor. (c) V-PCC. (d) Original. (e) Anchor.
(f) V-PCC.

in the objective and subjective evaluations. For lossy geometry

and lossy attribute coding, around 30% D1 BDBR, 10% D2

BDBR, and 15% Luma BDBR bit savings were achieved,

compared to the anchor. The subjective evaluation showed

conclusive results, as seen in the example shown in Fig. 16d.

Therefore this solution was selected to be the basis for the test

model for this category.

C. V-PCC Coding Performance

A total of nine solutions were submitted as dynamic point

cloud compression proposals. These submissions included sev-

eral video-based solutions. Out of all submission, the proposal

described in Section VII scored highest in the objective and

subjective evaluations. Fig. 16a-c show the results of the

subjective evaluation for three dynamic sequences compressed

with V-PCC, against the anchor at different bitrate points.

During the subjective evaluation, uncompressed point clouds

were shown as hidden reference, thus the bitrates shown for

“uncompressed” in Fig. 16 do not represent actual bitrates, but

the respective target bitrate point of the test point. The benefits

of V-PCC over the anchor in terms of visual quality are clearly

visible and in line with the objective evaluation results, e.g. as

shown in Fig. 17: Even at the lowest target point, reasonable

quality was achieved, and already at the third target point

the achieved quality was close to the uncompressed data.

Depending on the sequence, this means compression factors

between 1:100 to 1:500 are feasible. Thus this approach was

selected as the basis for the test model for this category.

IX. CONCLUSION & OUTLOOK

At the time of writing this paper, the standardization

process is still ongoing. However, the main development

orientation is set. The final standard, to be published early

2020, will consist of two classes of solutions in order to

address the compression of point clouds. The first class,

called video-based and equivalent to V-PCC, will leverage

the usage of well-known 2D video technologies by projecting

the points into 2D frames [52]. This approach is appropriate

for point sets with a relatively uniform distribution of points

in 3D space and clearly outperforms any state-of-the-art. For

more sparse distributions, a second class is more appropriate.

It is called G-PCC, for geometry-based, and is equivalent to

the combination of L-PCC and S-PCC [53]. G-PCC consists

of decomposing the 3D space into a hierarchical structure

of cubes and encoding each point as an index of the cube it

belongs to. The first class – the V-PCC – has the advantage of

rapid deployment in the market and reuse of decades of tech-

nology advancements in video encoding, while the G-PCC has

the advantage of a native 3D representation and the potential

of improvements yet to be exploited. While relying on video

coding may be a comfortable solution because it is expected

that the importance of video content will be conducive to the

development of even better technologies in the future, it is

also clear that V-PCC has limitations in exploiting temporal

correlations. The traditional motion estimation based on

2D macro-blocks is not well suited to compensate color

patches having forms and locations that vary with high

frequencies. Creating and arranging the patches is outside the

scope of the standard; however it will not be always easy for

encoders to obtain stationary patches. Future technology may

consider a hybrid approach combining the two classes.

Software [54], [55] and latest performance evaluations

are published through MPEG and updated regularly [56].

Interested parties are kindly invited to participate and provide

their own contributions to the standardization process.

REFERENCES

[1] K. Mamou, T. Zaharia, and F. Prêteux, “FAMC: The MPEG-4 standard
for animated mesh compression,” in Proc. Int. Conf. Image Process.,
Oct. 2008, pp. 2676–2679.

[2] MPEG121 Version of MPEG Standardisation RoadMap,
document ISO/IEC JTC1/SC29/WG11 MPEG, N 17332, MPEG,
Jan. 2018.

146 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 9, NO. 1, MARCH 2019

[3] Call for Proposals for Point Cloud Compression (V2),
document ISO/IEC JTC1/SC29/WG11 MPEG, N 16763, 3D Graphics,
Apr. 2017.

[4] Google. Draco 3D Data Compression. Accessed: Jun. 22, 2018.
[Online]. Available: https://github.com/google/draco

[5] J. Kammerl, N. Blodow, R. B. Rusu, S. Gedikli, M. Beetz, and
E. Steinbach, “Real-time compression of point cloud streams,” in Proc.

Int. Conf. Robot. Autom., May 2012, pp. 778–785.

[6] R. Mekuria, K. Blom, and P. Cesar, “Design, implementation, and
evaluation of a point cloud codec for tele-immersive video,” IEEE Trans.
Circuits Syst. Video Technol., vol. 27, no. 4, pp. 828–842, Apr. 2017.

[7] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and
P. Vandergheynst, “The emerging field of signal processing on graphs:
Extending high-dimensional data analysis to networks and other irregular
domains,” IEEE Signal Process. Mag., vol. 30, no. 3, pp. 83–89,
May 2013.

[8] R. L. de Queiroz and P. A. Chou, “Motion-compensated compression of
dynamic voxelized point clouds,” IEEE Trans. Image Process., vol. 26,
no. 8, pp. 3886–3895, Aug. 2017.

[9] C. Jackins and S. Tanimoto, “Oct-trees and their use in representing
three-dimensional objects,” Comput. Graph. Image Process., vol. 14,
no. 3, pp. 249–270, 1980.

[10] C. Tulvan, R. Mekuria, Z. Li, and S. Laserre, Use Cases for Point Cloud

Compression, document ISO/IEC JTC1/SC29/WG11 MPEG, N 16331,
Jun. 2016.

[11] K. Sugimoto, R. A. Cohen, D. Tian, and A. Vetro, “Trends in efficient
representation of 3D point clouds,” in Proc. APSIPA ASC, Dec. 2017,
pp. 364–369.

[12] SCANLAB. London Shipping Galleries. Accessed: Jun. 22, 2018.
[Online]. Available: http://scanlabprojects.co.uk/projects/sciencemuseum

[13] Culture 3D Cloud. Accessed: Jun. 22, 2018. [Online]. Available:
http://c3dc.fr/

[14] Microsoft Holoportation. Accessed: Jun. 22, 2018. [Online]. Available:
http://research.microsoft.com/en-us/projects/holoportation/

[15] 8i—Real Human Holograms for Augmented, Virtual and Mixed Reality.
Accessed: Jun. 22, 2018. [Online]. Available: http://8i.com/

[16] Intel 360 Replay Technology. Accessed: Jun. 22, 2018. [Online]. Avail-
able: https://www.intel.
com/content/www/us/en/sports/360-replay.html

[17] R. Mekuria, C. Tulvan, and Z. Li, Requirements for Point Cloud

Compression, document ISO/IEC JTC1/SC29/WG11 MPEG, N 16330,
Jun. 2016.

[18] Mitsubishi Electric’s Mobile Mapping System (MMS).
Accessed: Jun. 22, 2018. [Online]. Available:
http://www.mitsubishielectric.com/bu/mms/

[19] C. Loop, C. Zhang, and Z. Zhang, “Real-time high-resolution sparse
voxelization with application to image-based modeling,” in Proc. 5th

High-Perform. Graph. Conf., 2013, pp. 73–79.

[20] I. Armeni, A. Sax, A. R. Zamir, and S. Savarese. (Feb. 2017). “Joint 2D-
3D-semantic data for indoor scene understanding.” [Online]. Available:
https://arxiv.org/abs/1702.01105

[21] C. Früh and A. Zakhor, “Constructing 3D city models by merging
aerial and ground views,” IEEE Comput. Graph. Appl., vol. 23, no. 6,
pp. 52–61, Nov. 2003.

[22] J. Bedford, Photogrammetric Applications for Cultural Heritage: Guid-
ance for Good Practice. Swindon, U.K.: Historic England, 2017.

[23] Y. Huang, J. Peng, C.-C. J. Kuo, and M. Gopi, “A generic scheme for
progressive point cloud coding,” IEEE Trans. Vis. Comput. Graphics,
vol. 14, no. 2, pp. 440–453, Mar./Apr. 2008.

[24] R. Schnabel and R. Klein, “Octree-based point-cloud compression,” in
Proc. 3rd Eurograph./IEEE VGTC Conf. Point-Based Graph. (SPBG),
Jul. 2006, pp. 111–121.

[25] D. Thanou, P. A. Chou, and P. Frossard, “Graph-based compression
of dynamic 3D point cloud sequences,” IEEE Trans. Image Process.,
vol. 25, no. 4, pp. 1765–1778, Apr. 2016.

[26] C. Zhang, D. Florêncio, and C. Loop, “Point cloud attribute compression
with graph transform,” in Proc. Int. Conf. Image Process. (ICIP),
Oct. 2014, pp. 2066–2070.

[27] G. Taubin and J. Rossignac, “Geometric compression through topo-
logical surgery,” ACM Trans. Graph., vol. 17, no. 2, pp. 84–115,
1998.

[28] C. Touma and C. Gotsman, “Triangle mesh compres-
sion,” in Proc. Graph. Interface Conf., Vancouver, BC,
Canada, Jun. 1998, pp. 26–34. [Online]. Available:
http://graphicsinterface.org/proceedings/gi1998/gi1998-4/

[29] J. Rossignac, “Edgebreaker: Connectivity compression for triangle
meshes,” IEEE Trans. Vis. Comput. Graphics, vol. 5, no. 1, pp. 47–61,
Jan. 1999.

[30] J. Peng, C.-S. Kim, and C.-C. J. Kuo, “Technologies for 3D mesh
compression: A survey,” J. Vis. Commun. Image Represent., vol. 16,
no. 6, pp. 688–733, Dec. 2005.

[31] R. Mekuria, P. Cesar, and D. Bulterman, “Low complexity connectiv-
ity driven dynamic geometry compression for 3D tele-immersion,” in
Proc. Int. Conf. Acoust., Speech Signal Process. (ICASSP), May 2014,
pp. 6162–6166.

[32] R. N. Mekuria and P. S. C. Cesar, “A basic geometry driven mesh coding
scheme with surface simplification for 3DTI,” IEEE COMSOC MMTC

E-Lett., vol. 9, no. 3, pp. 6–8, May 2014.

[33] A. Doumanoglou, D. Alexiadis, S. Asteriadis, D. Zarpalas, and
P. Daras, “On human time-varying mesh compression exploiting activity-
related characteristics,” in Proc. Int. Conf. Acoust., Speech Signal
Process. (ICASSP), May 2014, pp. 6147–6151.

[34] J. Hou, L. P. Chau, Y. He, and N. Magnenat-Thalmann, “A novel
compression framework for 3D time-varying meshes,” in Proc. Int.

Symp. Circuits Syst. (ISCAS), Jun. 2014, pp. 2161–2164.

[35] K. Mamou, T. Zaharia, and F. Prêteux, “TFAN: A low complexity
3D mesh compression algorithm,” Comput. Animation Virtual Worlds,
vol. 20, nos. 2–3, pp. 343–354, Jun. 2009.

[36] G. Tech, Y. Chen, K. Müller, J.-R. Ohm, A. Vetro, and Y.-K. Wang,
“Overview of the multiview and 3D extensions of high efficiency video
coding,” IEEE Trans. Circuits Syst. Video Technol., vol. 26, no. 1,
pp. 35–49, Jan. 2016.

[37] R. Mekuria, M. Sanna, S. Asioli, E. Izquierdo, D. C. A. Bulterman, and
P. Cesar, “A 3D tele-immersion system based on live captured mesh
geometry,” in Proc. 4th ACM Multimedia Syst. Conf. (MMSys), 2013,
pp. 24–35.

[38] R. N. Mekuria, P. Cesar, and D. C. Bulterman, “Source
coding for transmission of reconstructed dynamic geometry:
A rate-distortion-complexity analysis of different approaches,”
Proc. SPIE, vol. 9217, Sep. 2014. [Online]. Available:
https://www.spiedigitallibrary.org/conference-proceedings-of-
spie/9217/92170S/Source-coding-for-transmission-of-reconstructed-
dynamic-geometry–a/10.1117/12.2063657.short?SSO=1

[39] D. Tian, H. Ochimizu, C. Feng, R. A. Cohen, and A. Vetro, “Geometric
distortion metrics for point cloud compression,” in Proc. IEEE Int. Conf.

Image Process. (ICIP), Sep. 2017, pp. 3460–3464.

[40] R. Mekuria, S. Laserre, and C. Tulvan, “Performance assessment of point
cloud compression,” in Proc. Vis. Commun. Image Process. (VCIP),
Dec. 2017, pp. 1–4.

[41] G. Bjøntegaard, Calculation of Average PSNR Differences Between RD-
Curves, document ITU-T SG16/Q6, VCEG-M33, 2001.

[42] C. Guede, J. Ricard, S. Lasserre, and J. Llach, Technicolor Point Cloud

Renderer, document ISO/IEC JTC1/SC29/WG11 MPEG, M 40229,
Apr. 2017.

[43] Subjective Video Quality Assessment Methods for Multimedia Applica-

tions, document ITU-T Rec. P.910, 2008.

[44] Clarification and Corrigenda for CfP on Point Cloud Coding V2,
document ISO/IEC JTC1/SC29/WG11 MPEG, N 17091, 3D Graphics,
Jul. 2017.

[45] V. Baroncini, P. Cesar, E. Siahaan, I. Reimat, and S. Subramanyam,
Report of the Formal Subjective Assessment Test of the Submission

Received in Response to the Call for Proposals for Point Cloud Com-

pression, Contribution to MPEG, document ISO/IEC JTC1/SC29/WG11
MPEG, M 41786, Oct. 2017.

[46] M. Preda, Merged Results of PCC CfP, document ISO/IEC
JTC1/SC29/WG11 MPEG, M 41501, Oct. 2017.

[47] R. L. de Queiroz and P. A. Chou, “Compression of 3D point clouds using
a region-adaptive hierarchical transform,” IEEE Trans. Image Process.,
vol. 25, no. 8, pp. 3947–3956, Aug. 2016.

[48] P. A. Chou and R. L. de Queiroz, Transform Coder for Point Cloud

Attributes, document ISO/IEC JTC1/SC29/WG11 MPEG, M 38674,
May 2016.

[49] H. S. Malvar, “Adaptive run-length/Golomb-Rice encoding of quantized
generalized Gaussian sources with unknown statistics,” in Proc. Data

Compress. Conf. (DCC), Mar. 2006, pp. 23–32.

[50] H. Hoppe, T. DeRose, T. Duchamp, J. A. McDonald, and W. Stuetzle,
“Surface reconstruction from unorganized points,” in Proc. SIGGRAPH,
1992, pp. 71–78.

[51] A. M. Tourapis, D. Singer, Y. Su, and K. Mammou, BD-Rate/BD-

PSNR Excel Extensions, document ISO/IEC JTC1/SC29/WG11 MPEG,
M 41483, Oct. 2017.

SCHWARZ et al.: EMERGING MPEG STANDARDS FOR POINT CLOUD COMPRESSION 147

[52] PCC WD V-PCC (Video-Based PCC), document ISO/IEC
JTC1/SC29/WG11 MPEG, N 17770, 3D Graphics, Jul. 2018.

[53] PCC WD G-PCC (Geometry-Based PCC), document ISO/IEC
JTC1/SC29/WG11 MPEG, N 17771, 3D Graphics, Jul. 2018.

[54] PCC Test Model Cat2, document ISO/IEC JTC1/SC29/WG11 MPEG,
N 17767, 3D Graphics, Jul. 2018.

[55] PCC Test Model Cat13, document ISO/IEC JTC1/SC29/WG11 MPEG,
N 17762, 3D Graphics, Jul. 2018.

[56] Common Test Conditions for PCC, document ISO/IEC JTC1/SC29/
WG11 MPEG, N 17766, 3D Graphics, Jul. 2018.

Sebastian Schwarz (SM’18) received the Dipl.Ing.
degree in media technology from the Technical
University of Ilmenau, Germany, in 2009, and the
Dr.Tech. degree from Mid Sweden University, Swe-
den, in 2014. Before joining Nokia, he held a Marie
Skłodowska-Curie Fellowship as an Experienced
Researcher with BBC R&D, London. He is currently
the Research Leader of the Volumetric Video Coding
Team, Nokia Technologies, Tampere, Finland. He
has authored over 20 conference and journal papers
on immersive media and video coding topics. He is

currently an Editor of the ISO/IEC committee draft for video-based point
cloud compression (ISO/IEC 23090-5) and the Co-Chair of the MPEG Ad
Hoc Group on System Technologies for V-PCC.

Marius Preda received the degree in engineering
from the Politehnica Bucharest, the M.B.A. degree
from the IMT Business School, Paris, and the Ph.D.
degree in mathematics and informatics from Univer-
sity Paris V. He is currently an Associate Professor
with the Institut MINES-Télécom and the Chairman
of the 3D Graphics Group, ISO Moving Picture
Expert Group. He contributes to various ISO stan-
dards with technologies in the fields of 3D graphics,
virtual worlds, and augmented reality. He leads a
research team with a focus on augmented reality,

cloud computing, games, and interactive media and regularly presents results
in journals and at speaking engagements worldwide. He received several ISO
certifications of appreciation.

Vittorio Baroncini received the Bacca Laurea
degree in physics from Rome University in 1974.
From 1986 to 2016, he was a Researcher with
Fondazione Ugo Bordoni. From 2000 to 2008,
he was the Chairman of ITU-R WP 6C (Quality
Assessment). Since 2004, he has been the Chairman
of the MPEG Test Group. He is an expert in objec-
tive and subjective video quality assessment. He is
currently acting as a consultant in the area of visual
quality assessment for EVAtech.

Madhukar Budagavi (SM’05) received the Ph.D.
degree in electrical engineering from Texas A&M
University. He is currently the Senior Director R&D
and the Multimedia Standards Team Leader of the
Standards and Mobility Innovation Lab, Samsung
Research America. He represents Samsung in multi-
media standards activities in MPEG, UHD Alliance,
and SMPTE. He was a co-editor of High Efficiency
Video Coding (HEVC): Algorithms and Architec-

tures (Springer, 2014) and the IEEE TRANSAC-
TIONS ON CIRCUITS AND SYSTEMS FOR VIDEO

TECHNOLOGY, special issue on HEVC extensions and efficient implemen-
tation. He is the Co-Chair of the MPEG Ad Hoc Group on Point Cloud
Coding.

Pablo Cesar (M’17) currently leads the Distrib-
uted and Interactive Systems Group, Centrum voor
Wiskunde en Infomartica (CWI). He is also an
Associate Professor with TU Delft, The Netherlands.
He is also a principal investigator from CWI on
two H2020 projects about object-based broadcast-
ing (2-IMMERSE) and 3D tele-immersion (VRTo-
gether). He is a member of the Editorial Board of
the IEEE MULTIMEDIA, ACM Transactions on Mul-

timedia, and IEEE TRANSACTIONS OF MULTIME-
DIA, among others. He has acted as an Invited Expert

at the European Commission’s Future Media Internet Architecture Think Tank.

Philip A. Chou (F’04) received the B.S.E. degree
from Princeton University, the M.S. degree from
the University of California at Berkeley, and the
Ph.D. degree from Stanford University. He has been
a Research Staff with AT&T Bell Laboratories,
the Xerox Palo Alto Research Center, Microsoft, and
Google. He has worked for start-ups Telesensory
Systems, Speech Plus, VXtreme, and 8i. He has
been an Affiliate Faculty Member with Stanford
University, the University of Washington, and The
Chinese University of Hong Kong. He is an Editor

of the ISO/IEC working draft for geometry-based point cloud compression
(ISO/IEC 23090-9).

Robert A. Cohen (S’85–M’90–SM’12) received the
B.S. and M.Eng. degrees in computer and systems
engineering and the Ph.D. degree in electrical engi-
neering from the Rensselaer Polytechnic Institute,
Troy, MI, USA. He was a Senior Member of the
Research Staff at Philips Research from 1990 to
2001 and a Principal Member of the Research Staff
at Mitsubishi Electric Research Laboratories from
2007 to 2018. He is currently a Senior Research Sci-
entist at Simon Fraser University, Canada. He is an
Editor of the ISO/IEC working draft for geometry-

based point cloud compression (ISO/IEC 23090-9).

Maja Krivokuća received the B.Eng. degree in
computer systems engineering and the Ph.D. degree
from The University of Auckland, New Zealand,
in 2010 and 2015, respectively. Since then, she
was with Mitsubishi Electric Research Laboratories
and 8i, where she is researching new compres-
sion algorithms for 3D point clouds. He has been
actively contributing to the emerging MPEG Point
Cloud Compression standard. He is an Editor of
the ISO/IEC working draft for geometry-based point
cloud compression (ISO/IEC 23090-9).

Sébastien Lasserre received the B.Sc. degree in
mathematics from the University of Strasbourg
in 2000, the M.Sc. degree in mathematics from
the University of Versailles St Quentin and Ecole
Normale Supérieure de Lyon, France, in 2002, and
the Ph.D. degree in applied mathematics from the
University Pierre et Marie Curie, France, in 2005.
From 2004 to 2006, he was a Monbusho Research
Fellow with the Institute for Laser Engineering,
Osaka, Japan. From 2007 to 2013, he was a Research
Scientist at Canon Research Centre France. From

2013 to 2017, he was a Principal Scientist at Technicolor HDR, where he
was involved in video and point cloud compression technologies. Since 2017,
he has been the Senior Standards Manager at BlackBerry Ltd., where he
continues his work on point cloud compression.

148 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 9, NO. 1, MARCH 2019

Zhu Li (SM’07) received the Ph.D. degree in
electrical and computer engineering from North-
western University in 2004. From 2012 to 2015,
he was the Senior Staff Researcher/Senior Man-
ager with Samsung Research America’s Multimedia
Standards Research. He is currently an Associate
Professor with the Department of Computer Science
and Electrical Engnieering, University of Missouri,
and the Director of the NSF I/UCRC Center for
Big Learning, UMKC. His research interests include
point cloud and light field compression, graph signal

processing, and deep learning.

Joan Llach received the M.S. and Ph.D. degrees
from the Universitat Politècnica de Catalunya,
Barcelona, Spain, in 1997 and 2003, respectively.
He has been a member of the Technicolor Research
Center, Princeton, NJ, USA, and the Philips
Research Lab, France. He is currently the Technol-
ogy Area Leader of Technicolor R&I France, where
he leads a research team working on compression,
transmission, and interactive applications of video.
He has actively participated in several standardiza-
tion efforts. He is also an Editor of the ISO/IEC

committee draft for video-based point cloud compression (ISO/IEC 23090-5).

Khaled Mammou received the Ph.D. degree in
applied mathematics and computer science from
the University of Paris V in 2008. He is currently a
Senior Software Engineer with Apple Inc., where he
is involved in designing and optimizing multimedia
codec solutions. He has been a member of the
ISO/IEC Moving Picture Experts Group (MPEG)
Committee since 2005, especially focusing on
3D graphics compression. He chaired the MPEG
Ad-Hoc Group on Multi-Resolution 3D Mesh
Coding (MR3DMC) and significantly contributed

to the standardization of the MR3DMC, Scalable Complexity 3D Mesh
Compression, and Frame-based Animated Mesh Compression MPEG
standards for static and animated 3D mesh compression. He is also the
Co-Chair of the MPEG Point Cloud Compression Ah-Hoc Group and
an Editor of the ISO/IEC committee draft for video-based point cloud
compression (ISO/IEC 23090-5) and the working draft for geometry-based
point cloud compression (ISO/IEC 23090-9).

Rufael Mekuria received the M.Sc. degree from
TU Delft in 2011 and the Ph.D. degree from
VU University in 2017. From 2011 to 2016, he was a
Researcher with the Centrum Wiskunde Informatica.
In 2016, he joined Unified Streaming/CodeShop,
where he is leading standardization and research
efforts. He is active in MPEG, where he established
the MPEG Point Cloud Coding Ad Hoc Group
in 2014, and continues working on point cloud com-
pression at Point Cloud Compression B.V., an estab-
lished CodeShop spinoff.

Ohji Nakagami (M’14) received the B.Eng. and
M.S. degrees in electronics and communication
engineering from Waseda University, Tokyo, Japan,
in 2002 and 2004, respectively. He has been
with Sony Corporation, Tokyo, Japan, since 2004.
Since 2011, he has been with the ITU-T Video
Coding Experts Group and the ISO/IEC Moving
Pictures Experts Group, where he has been con-
tributing on video coding standardization. He is an
Editor of the ISO/IEC committee draft for video-
based point cloud compression (ISO/IEC 23090-5)

and the ISO/IEC working draft for geometry-based point cloud compression
(ISO/IEC 23090-9).

Ernestasia Siahaan (M’17) received the Ph.D.
degree from the Multimedia Computing Group,
Delft University of Technology, The Netherlands,
in 2018. She was a Post-Doctoral Researcher with
Centrum voor Wiskunde en Infomartica, Amster-
dam, The Netherlands. She is currently a Consultant
for the International Trade Center, Switzerland.

Ali Tabatabai (LF’17) received the bachelor’s
degree in electrical engineering from Tohoku Uni-
versity, Sendai, Japan, and the Ph.D. degree in elec-
trical engineering from Purdue University. He was
the Vice President of the Sony US Research Center,
where he was responsible for research activities
related to VR/AR capture and next-generation video
compression. He is currently a Consultant and a
Technical Advisor to the Sony US Research Center
and the Sony Tokyo R&D Center. He is an Editor of
the ISO/IEC committee draft for video-based point

cloud compression (ISO/IEC 23090-5).

Alexis M. Tourapis received the Ph.D. degree in
electrical engineering from The Hong Kong Univer-
sity of Science and Technology in 2001. He has held
positions at Microsoft, Thomson Research, DoCoMo
USA Labs, and Dolby Laboratories, among others.
He has made several key contributions to stan-
dards, such as MPEG-4 AVC and HEVC. He is
currently a Software Standards Engineer with Apple
Inc. and represents Apple in several standardization
activities, including MPEG, ITU, and SMPTE. His
research interests span video/image processing and

compression, high-dynamic-range imaging, machine learning, and point cloud
compression, among others.

Vladyslav Zakharchenko received the Ph.D. degree
in optics and photonics from the National Techni-
cal University of Ukraine, Kyiv, in 2012. He was
with Samsung Electronics and AMD, where he was
involved in multimedia technologies. He is currently
a Principal Engineer and the Point Cloud Coding
Group Leader of Futurewei Technologies, Inc., Santa
Clara, CA, USA. His work is devoted to innovations
for volumetric media and close collaboration with
international standard committees. He is an Editor of
the ISO/IEC committee draft for video-based point

cloud compression (ISO/IEC 23090-5) and the ISO/IEC working draft for
geometry-based point cloud compression (ISO/IEC 23090-9).

