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Integrated computational materials engineering (ICME) calls for the inte-
gration of simulation tools and experiments to accelerate the development of
materials. ICME approaches tend to be computationally costly, and recently,
Bayesian optimization (BO) has been proposed as a way to make ICME more
resource efficient. Conventional BO, however, is sequential (i.e., one-at-a-
time) in nature, which makes it very time-consuming when the evaluation of a
materials design choice is costly. While conventional high-throughput ap-
proaches enable the synthesis and characterization (or simulation) of mate-
rials in a parallel manner, they tend to be “open loop” and are unable to
provide recommendations of what to try next once the parallel experiment/
simulation has been carried out and analyzed. Here, we address this problem
by introducing a batch BO framework that enables the exploration of the
material’s design space in a parallel fashion. We augment this approach by
incorporating information fusion frameworks capable of integrating multiple
information sources. Demonstrating the proposed approach in the computa-
tional design of dual-phase steel, we show that batch BO can result in a
significant reduction in the time and resources needed to carry out the design
task. The proposed approach has wider applicability, well beyond the ICME
example used to demonstrate it.
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INTRODUCTION

Integrated computational materials engineering
(ICME)! calls for the integration of various compu-
tational tools (validated against experiments) to
establish quantitative process—structure—property—
performance (PSPP) relationships. Inverting these
relationships can accelerate the design of materi-
als—under the key assumption that simulations are
faster and cheaper than experiments. However,
there are still significant challenges to this
approach.

(Received June 25, 2020; accepted September 18, 2020;
published online October 13, 2020)

Despite the assumption that simulations are
cheaper than experiments, a major drawback of
ICME implementations is the considerable compu-
tational cost associated with evaluating PSPP
chains. This has recently been addressed through
the deployment of Bayesian optimization (BO) to
efficiently balance the exploration and exploitation
of materials design spaces.>?

Furthermore, most ICME frameworks tend to
assume that there is a single information source
(i.e., model) per linkage along the PSPP chain. In
recent work,>® however, we showed that this is an
unnecessary limitation, as the combination of mul-
tiple information sources—each containing at least
some wuseful information about the problem
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space—always results in significant improvements
in the efficiency of ICME-based alloy design
schemes.

A limitation shared by modern (i.e., BO-based)
and more traditional ICME frameworks is that the
vast majority of them query PSPP relationships in a
sequential manner (i.e., one-at-a-time). In compu-
tational settings, such sequential exploration of
materials spaces is far from effective, given the
availability of high-performance research comput-
ing (HPRC) facilities that make high-throughput
materials simulations relatively straightforward.
When it comes to experimental materials science,
there has been sustained growth in the number of
synthesis and characterization approaches amen-
able to parallelization. Indeed, the Materials Gen-
ome Initiative (MGI)® stimulated the development
of high-throughput (i.e., combinatorial) experimen-
tal” ™ or computational’’ schemes as a way to
accelerate the exploration of materials design
spaces.

High-throughput experimental methods tend to
involve  thin-film'?  combinatorial libraries,
although, very recently, additive manufacturing
platforms have been used for parallel synthesis of
alloys.® While optical and electrical properties are
most easily measured in a high-throughput fash-
ion,® recent approaches have shown that it is
possible to rapidly measure other material proper-
ties such as composition and microstructure,®!°
hardness,'® and even the transformation tempera-
ture of shape-memory alloy thin films.” These high-
throughput approaches, while highly advantageous,
suffer from the fact that they tend to be open-loop,
one-shot approaches, as they lack principled policies
to integrate the information gained from the high-
throughput exploration to decide what to do next
once the first information-gathering step has been
taken.

There are significant opportunities to further
improve BO-based ICME approaches®® by incorpo-
rating the ability to query the materials design
space in a parallel fashion. This would combine the
advantages of ICME (i.e., closed loops) and combi-
natorial materials science while addressing their
common limitations (i.e., agnosticism regarding
resource constraints). We note, however, that such
an approach would also significantly benefit exclu-
sively experimental combinatorial materials
science efforts, including recently proposed con-
cepts such as self-driven laboratories'® — as well
as their computational counterparts'*—that, so far,
have been implemented using sequential BO
schemes.

The challenge of exploring and exploiting design
spaces in a parallel and optimal fashion can be set
as a general problem of Batch Bayesian Optimiza-
tion (BBO). The key challenge to BBO is how to
carry out such balanced exploration/exploitation in
parallel while maintaining optimality throughout
the process. Some common approaches to BBO
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include multistep look-ahead policies'®!® where

the batch is created by sequentially adding the
predictions from the surrogate model and predicting
a new best point. Another approach considered
adding queries that maximize the variance after
each seqsuential addition from the surrogate
model.!”™® A third approach attempts to extract
multiple peaks from the same acquisition function
by removing peaks that have already been
identified.'®

A more recent approach by Joy et al.?° considers a
slightly more intuitive approach: in sparsely sam-
pled high-dimensional problem spaces, it is too risky
to place too much confidence on the tuning of the
hyperparameters of the surrogate model, as the
latter will depend heavily on the data captured thus
far. Instead, Joy et al. assume that the hyperpa-
rameters can take any possible value (within rea-
sonably set bounds) and proceed to carry out BO
over all the surrogate models that result from
sampling the hyperparameter space. The predic-
tions from this batch of BO optimizations are
clustered according to the number of samples that
will be evaluated in the next step, as described
below.

The current work combines the approaches of
Ghoreishi et al.*® for multi-information-source BO
and Joy et al.?° for batch BO into a single frame-
work. Additionally, a thermodynamic model con-
necting chemistry and processing conditions to
microstructure phase constitution is connected to
the microstructural mechanics models to establish a
(chemistry) processing—structure—property chain.
The framework is demonstrated using the same
four micromechanical models used in Ref. 4, namely
the isowork, isostress, and isostrain reduced-order
models, as well as a finite element representative
volume element (RVE) micromechanical model,
connecting the microstructure of a dual-phase steel
to its mechanical response. We start by presenting
each of the elements of the framework and proceed
to evaluate its performance under different policies
for continuation/termination of the optimization
loop.

METHODS

The design objective of the current work is the
maximization of the normalized strain-hardening
rate (1/7(dt/dep)) of dual-phase high-strength steel.
This parameter was chosen as it is an indication of
ductility and formability, with higher values indi-
cating better ductility and formability. The current
work considers the optimization of a dual phase
(martensite—ferrite) composed of Fe, C, Mn, and Si.
The material is considered to undergo a single-stage
intercritical annealing heat treatment followed by
rapid quenching. For simplification, the only param-
eters optimized are the concentration of C (wt.%)
and the intercritical annealing temperature. The
Mn and Si compositions are kept constant in the
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current work. The ranges for the two parameters
and the composition of Mn and Si are presented in
Table 1.

The first part of this section deals with descrip-
tions of the individual computational tools used in
both of these methods. These descriptions are not a
detailed analysis of the methods, and interested
readers are directed to the various references,
should further information on the methods be
required. Later in this section, we explain how
these computational tools are combined into the
current framework. After constructing the frame-
work, the optimization process is tested using three
different case studies, describing the parameters
and termination criteria used in each of the case
studies.

Computational Tools
Gaussian Process

One of the major ingredients in BO is a surrogate
model capable of predicting the outcome of experi-
ments yet to be carried out, as well as the uncer-
tainty associated with those predictions.?’ In BO
problems, such predictive models tend to be con-
structed out of Gaussian processes (GPs) due to
their underlying mathematical properties (includ-
ing smoothness, controllable modeled correlation
among observed points, etc.). A GP is a nonpara-
metric statistical model that defines a stochastic
process f(x), where all the finite distributions of the
model are assumed to be multivariate normal.
Using this definition, the joint probability distribu-
tion of the outputs from the stochastic process may
be modeled as an n-dimensional multivariate nor-
mal distribution for any finite set of inputs
X = {xlv"'7xn}>

p(f(x1),....f(xn)) ~ N n(n, C), (1)

where u is the mean vector and C is the covariance
function. The mean and covariance are defined by a
mean function u(-) and a covariance function C(-,-)
with the following properties:

w(x:) =p; = E[f (x;)], (2)

C(xi, x;) =C;; = cov[f(x;),f(x;)]. (3)

Table I. The optimization approach was conducted
on dual-phase steel alloyed with C, Mn, and Si. The
aim is to optimize the carbon content and
intercritical annealing temperature in the range
shown to obtain a maximum in the normalized
strain-hardening rate

T [°C] Xc [wt.%] Xvin [Wt.%] Xs; [wt.%]

650-850 0-1 0.328 0.283

From the above definitions, we formally define a
Gaussian process as f(-) ~ GP(u, C). A more detailed
explanation of this kind of stochastic process is
provided in the work by Rasmussen and Williams.??

The covariance function of the GP captures the
degree of correlation between two different locations
in the input space. The ability to make explicit
inferences (through well-defined covariances) about
the degree to which observations are correlated is
one of the reasons why GPs tend to be the model
class of choice in BO. The assumption that current
information about the state of a system can be used
to infer yet-to-be-observed states is inherent to BO.
Due to the difference in scales (e.g., temperature
and compositions) between the inputs of the current
approach, the inputs were rescaled to the interval
[0, 1]. Therefore, the notion of space is abstract and
the spatial dependence denotes a metric represent-
ing the distance between two points in a mathe-
matical space. In the current work, the Matérn class
of covariance functions was used, since they are
generally more robust when the smoothness of the
data is not known:**

C(Xi, XJ')

_ o2V (Ve —x) UK V20 (x; — )
~ T () I ! l '

(4)

The Matérn class of covariance functions is defined
by Eq. 4, where a}% is referred to as the signal
variance, [ is the characteristic length scale, and v is
a parameter that determines the shape of the
function. However, it is more common to define
the function by specifying a value for v. The function
has a closed-form solution for values of v =r + 1/2,
where r € Z". One of the more common values is
v = 5/2.22 This choice reduces the covariance func-
tion to the form shown in Eq. 5.

VB (x; — x; 5xi—x~2
C(xi, X)) =a§<1+ (l ) | & T 2)

exp<_L<x;—xf>>.

(5)

Reification

A key ingredient of the present framework is the
simultaneous consideration of multiple information
sources at once and their fusion to achieve better,
unbiased predictions that take advantage of all the
useful information provided by each model individ-
ually.® Information fusion requires the quantifica-
tion of the statistical correlations among the
different information sources and between the
sources and the ground truth. The reification
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method developed by Thomison and Allaire®* esti-
mates the model correlations by sequentially ele-
vating each model at a time as “truth” (i.e., the
model is “reified”), followed by the computation of
the statistical correlation between this reified model
and the other sources.

Assuming that we have two models, fi(x) and
f2(x), that can both estimate the quantity of interest
(y) with some discrepancy,

y = fix) = f1(x) + o1 (x), (6)

y = fa(x) = fa(x) + d2(x), (7)

where f(x) is the mean prediction and the model
discrepancies 0;(x) are assumed to be normally
distributed with 31(x) ~ (0, 0%) and
da(x) ~ N(0,02).

Using this information, we reify model 1 and then
calculate the error of each model. Since model 1 has
been reified, the standard deviation of model 1
(f1(x*)) at a single point in the design space (x*) is
defined simply by the model discrepancy as

f1l&") = file’) = f1(x") = 61(2"), (8)

and the error for model 2, with respect to model 1, is
defined by

fox") = fa(x") = fo(x"), 9)

=f1(c") = fox") + dr(x). (10)

To calculate the correlation it is necessary to
calculate both the mean squared errors and the
covariance. Using the errors above, the mean
squared errors are defined by

Ef3 (")) = Eld1(x")] = of, (11)

Ef5(x")?) = E[(f1(x") = Fo(e"))*] + Eld1(x")]),  (12)

= (f1(x") = fox")* + 03, (13)
while the covariance is given by
[Ebgl(x*)ﬂ(x*)} = U% (14)

The Pearson correlation coefficient (p) can then be
calculated as

. o2 c
pr(xt) = L= - . (15)

7 i) - Fa)? o

where the subscript on the coefficient indicates
which model has been reified. This process is
repeated for the other model to obtain the value of
po(x*). When more than two models are used, the
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correlation coefficients are calculated for each pair
of models. The average correlation (p) is used in the
model fusion approach and is calculated as follows:

— * G% * 0-2 * 16
X )=—F5"75 X -5 X ).
p( ) 0%—&-0‘%1)1( )+O'%+O'%p2( ) ( )

Theoretically, this reification approach can be
expanded to any number of models. However, there
are practical limits to how many models can be
considered, based on the computational resources
available as well as the time necessary to compute
all the relevant pairwise correlations. In most cases
it is unlikely that such a computational limit can be
reached, since the number of models/sources corre-
sponding to every linkage of the PSPP chain is
likely to be generally modest.

Model Fusion

Given Eqs. 6 and 7 for the two models that
estimate the quantity of interest (y), the fused model
can be represented by the equation

y =ki(@)f1(x") + k2 (x")fa(x"), (17)

where ki(x*) and kg(x*) are real-valued scalar
quantities subject to k1(x*) + k2(x*) = 1. By assum-
ing that both models have a normal distribution
given by fil@’) ~ N (f1(x*), 0%) and
fa(x*) ~ N (fy(x*),02), it is possible to solve Eq. 17
for k£1(x*) and ka(x*) by solving the following min-
imization problem:

min k” Tk subject to ky + &y = 1 (18)

where k = [k1,ks)” and

_[ BAe Efe Nz(x*)]} _ [ ot 90102}
Hfae)fie)] Elfae)) pozor o
(19)

The covariance matrix, X, requires the correlation
coefficient, p. This is approximated using the reifi-
cation approach outlined previously that provides p
as an estimate of this quantity. The solution of this
minimization problem defines a fused model for y
that has a mean defined by

(03 — po1o2)f1(x") + (0% — po10a)fo(x)
Ely] =2 02 + o2 — 2,510“102 (20)

and variance
1 — p2)o2¢2
2( 2/) )6162 . (21)
0% + 05 — 2po103

Var(y) =

The proof and full derivation of these equations can
be found in the work by Winkler.?® While it is not
considered in the current work , it is worthwhile to
note that this reification fusion approach could be
used to estimate the impact of parameter
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uncertainty on the BO itself by constructing multi-
ple models with different parameters, using the
reification approach to weigh the importance of each
of the models, relative to the “ground truth.”

Knowledge Gradient

The second ingredient®! of any BO approach is the

acquisition function or policy that is used to select
the next experiment (or simulation/observation) to
carry out, given the data acquired thus far, as well
as the underlying model (i.e., GP with hyperparam-
eters) used to represent the problem space. In BO,
there are a large number of acquisition functions
that can be used, including probability of improve-
ment (PI),%® expected improvement (EI),2"?® upper
confidence bound (UCB),*® and knowledge gradient
(KG).2° In this work, we have selected the KG as it
tends to be better suited to potentially noisy prob-
lem spaces,>! although it should be pointed out that
KG is considerably more expensive to compute than
other acquisition functions, including EI, PI, and
UCB.

For the calculation of the knowledge gradient, we
define a set of M distinct alternative points in the
fused model input space and evaluate the mean, .,

and variance, (GZ)Q, using the posterior predictive
distribution of the fused model. The superscript n

denotes the iteration number. KG is then defined as

VK6 = max E, Kmax uﬁ,”) - (max ,uZ,)], (22)
x' x

xne{l,.. .M}

where F, is the conditional expectation with respect
to what is known after the first n iterations and y**!
is the Bayesian look-ahead prediction of the mean at
step n + 1. The knowledge gradient approach uses a

Bayesian look-ahead approach to estimate p7'!

conditional on g and (¢")%. This is done by first
defining the precision of the posterior predictive

distribution as " = (¢”) 2. According to the work by
Frazier et al.?’, the conditional variance for the
look-ahead step is defined by

sy =) ). @

where f° is the measurement precision and is
generally assumed to be constant over the entire
input space. Then, the look-ahead mean is defined
as

W = 1+ 5 (B) Zex, (24)

where Z is the standard normal distribution and e,
is a vector in R with all components zero except for
component x. For a full description of the method
and algorithm implemented in the current work,
refer to the work by Frazier et al.*°

Batch Bayesian Optimization

Given the formulation for the GP covariance
function shown in Eq. 5, the hyperparameters are
of, dn, and [. These three hyperparameters and the
available data determine the shape of the GP. The
characteristic length scale, I, will possibly have the
greatest effect, but the other two hyperparameters
also play a role. Usually, the hyperparameters are
determined by minimizing the log-marginal likeli-
hood of the GP, given the data. This is typically done
by either gradient-based optimization approaches or
BO methods.?? Unfortunately, when faced with
relatively sparse high-dimensional input spaces,
the optimized values of the hyperparameters may
be extremely dependent on the data already avail-
able, and it is thus too risky to make such definite
inferences about the covariance structure of the
entire problem space, and to use this assumed
correlation to evaluate the BO acquisition policy.

Joy et al.?’ propose that, under data-sparse con-
ditions, rather than selecting single values for each
of the hyperparameters, it is instead advisable to
sample a wide range of hyperparameters (within
reasonable bounds), thereby making no assumption
with regards to the shape of the underlying objec-
tive function and on the degree of correlation
between points in the design space. It follows that
each set of hyperparameters sampled through this
framework would result in different predictions as
to the location of the next best point to query, given
the current knowledge of the system and the
acquisition function used:

X1, = argmax vE¢ (x |GP(Dy, 01.,)), (25)

x€y

where the acquisition function, in this case, is the
knowledge gradient (as defined above), Dy is the
data available at the start of the iteration, and n is
the number of sets of hyperparameter values (0.,).
After acquiring all of these predicted “best design
points,” it is then possible to cluster them into the
number of clusters (K) required by the size of the
batch processing step. This is done using a k-
medoids approach, which clusters the samples to
minimize the total distance between the samples
and the selected medoids. The number of medoids
(K) is defined by the size of the batch available to
query the problem space. The difference between
this approach and a k-means approach is that the
medoids are samples in the dataset rather than the
arbitrary centroids predicted by 2-means that may
not necessarily exist in the data acquired thus far.
This clustering approach defines K points that can
be queried from the information source, in parallel.
For a more in-depth discussion of the technique,
refer to the Electronic Supplementary Materials.
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Mechanical Models

Three reduced-order models and one finite ele-
ment micromechanical model are used in the cur-
rent work. The reduced-order models represent
different approaches to homogenize the response of
a composite microstructure based on different
assumptions on the nature of the interactions/cou-
pling among the constituent phases in the
composite:

1. Anisostrain model, where the strain is assumed
to be the same in both phases®?

2. An isostress model, where the assumption is
made that the stress is homogeneous through-
out the composite®3

3. An isowork model, where the mechanical work
in the two phases is assumed to be the same®*

The “ground truth” in the current work corresponds
to the simulation of the deformation behavior of a
representative volume element (RVE) representa-
tion of the dual-phase microstructure through the
use of finite elements. All models include isotropic
hardening that followed Ludwik’s power law.?® The
strength of the two phases was dependent on the
composition based on the assumption that only
carbon affected the martensite strength, while
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manganese and silicon affected the ferrite strength.
Further details of these models can be found in the
Electronic Supplementary Materials.

For comparison, the output of each of the low-
order models is compared with the output from the
RVE model (Fig. 1). In the optimization calcula-
tions, a surrogate model was used in place of the
true RVE model to speed up the calculations in the
framework.

Current Approach

The previous section provides details on the
methods applied in the current work. This section
explains the overall algorithmic approach used in
the current work. A schematic showing the general
flow of the framework is shown in Fig. 2.

The first step in the current approach is to define
the hyperparameter sets to be used to generate the
fused model GP. These hyperparameter sets are
constructed using Latin hypercube sampling in the
bounds of the hyperparameter space. In the current
work, this space is defined as [, € [0.01,20], and
or € [0.01,100]. The noise variance hyperparameter
was set to a constant value of 62 = 0.1. A total of 500
different hyperparameter sets were defined, and
these were kept constant throughout the optimiza-
tion process. After defining the hyperparameter

50 50 50
e RVE e RVE e RVE
404 % Isostrain & Isostress 401 @ Isowork
— —_ =
@ © ©
< 30 g 3
< o <
= = =
£ 20 £ £
= = =
= o )
10+

04 06 08
Vfr_narl

(b)

Fig. 1. Comparison of outputs of three reduced-order models and RVE finite element model: (a) isostrain, (b) isostress, and (c) isowork.
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Fig. 2. Schematic overview of method applied in current work.
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sets, we selected two random points within the
design space. These two points are queried from all
three reduced-order models and the RVE model as
initial data.

In the discussion below, the reduced-order models
are collectively referred to as the object Models.
Where each reduced-order model is indicated by an
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truth model. This ensures that, as the optimization
progresses, the process is capable of finding more
finely spaced points. The design space was limited to
contain only points with a volume fraction of
martensite less than 0.9, and a random forest (RF)
classifier was trained to remove test points that did
not meet this criterion.

Algorithm 1

Input: Models, xo5

Output: {max KG(Models, HP,X;ey ),arg max KG(Models, HP, x5 ) }

1: fori=1,2,3 do
2:  forj=1.2,..., length(xs,s ) do

3: y=Models|i]|-GP(xex| j])
4: Update Models| i | with (xies[ j ],3)
5: for k=1,2,....hp_count do
6: Estimate model Correlation (Reification)
7: Fuse Models — (X fused, Y fused )
8: Build Fused -GP(0%, 15,15, x fused ¥ fused)
9: Evaluate KG(Fused_GP(x;es))
10: end for
11:  end for
12: end for

indexintheset[1, 2, 3]. For example, Models[1] refers
to the isostrain reduced-order model. These model
objects contain the X and Y data that has been
evaluated for that particular model. Using this data,
it is possible to construct a GP for that model. These
GPs are denoted as Models[-]_GP. In the current work,
we assume that the hyperparameters defining the
GPs of these models are known a priori as their
extremely low computational cost makes their full
evaluation over the design space highly feasible.

At the start of each iteration, a set of xiest Vectors
are defined using Latin hypercube sampling of the
input space. The number of samples generated is
increased after every iteration that calls the ground-

After defining the test points to be used, Algo-
rithm 1 is used to calculate the knowledge gradient
for each combination of hyperparameters, test
point, and model. The outermost loop (line 1) runs
the full set of calculations for each of the three
reduced-order models, while the next loop (line 2)
runs the calculation for each of the xi values
defined at the beginning of the iteration. The final
loop (line 5) is used to obtain results using different
combinations of hyperparameters. This creates a
matrix of results that have the maximum knowl-
edge gradient, reduced-order model index, fused_GP
hyperparameter index, and xs index.

Algorithm 2

def: Xinir
s cale: y=Models(Xini)
calc: y = RVE (Xinit)
fori=1,2,..., Niter dO
[vKG arg(vKG), Model] := Algorithm 1

if Iteration/budget > Limit then
calc: y= RVE(xmedoids)
update RVE GP

10:  else

11: calc . y = Models(Xpedoids)

12: update Model GPs

13:  endif

14: end for

R A O ol

Xmedoids = K-Medoids Clustering [vKC, arg(vKY), Model)
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Algorithm 2 shows the entire iteration process,
and as shown in line 6, the next stage in the process
is to cluster the output from Algorithm 1. The
clustering is done in three-dimensional space
defined by the knowledge gradient value, the model
index, and the index of the xi. value. This is done
to increase the distance between the points to be
queried as much as possible and to reduce the
likelihood that the process will only select a single
model at every iteration. The final stage of the
iteration involves calling the models. At this stage, a
decision is made on whether to call the RVE model
or not. If the conditions for calling the RVE model
are not met, the medoids are used to query the
reduced-order models. Since each medoid contains a
reduced-order model index and an xi; index, these
are used to query the corresponding model and test
point. If the conditions for calling the RVE model
have been met, then all x5t points contained in the
medoids are queried from the RVE model.

Each model has an individual cost (measured in
computer clock units) associated with doing a single
calculation, and for the current work, the cost of
querying a larger batch size is considered to be the
cumulative time of completing that number of
calculations from that model. In other words, the
current work does not consider any discount for
using larger batch sizes. In many experimental or
computational situations, it would be likely that
there would be a discount for using a larger batch
size, so this assumption is potentially a conservative
one.

In addition to the model calculation costs, there is
an iteration cost (again calculated as the computer
clock time) associated with calculating and updating
the Gaussian processes, as well as calculating the
knowledge gradient. This cost and the individual
model costs are used to calculate the total cost of the
process. In contrast to the multiplication of the cost
of model calculations, the time for the calculations is
considered to be constant, no matter what the batch
size. The justification behind this is that all the
calculations are done in parallel. In the event of
multiple models being called in a single iteration,
the calculation time is considered to be the time cost
of the longest-running model.

One of the challenges of using this kind of
approach is that there is no single fused model to
use for the predictions of the maximum normalized
strain-hardening rate. Therefore, the maximum
value predicted by the optimization is taken as the
maximum normalized strain-hardening rate found
from calculations of the RVE model.

Optimization Case Studies

We considered three optimization case studies in
the present work. These case studies change the
utility function used and the conditions under which
the ground truth is called, as well as provide
different termination criteria for the optimization
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process. As already mentioned, in these optimiza-
tion case studies, the cost is considered to be the
computation clock time of the models:

e No-cost-constraint (NCC) optimization: The no-
cost optimization used the knowledge gradient
as the acquisition function with no adjustments
and all queries to the RVE model were iteration
based. After 25 iterations of updating the low-
order models, the next iteration would update
the RVE model. This iteration limit was chosen
arbitrarily, and should not be taken as an
optimum setting. Finally, the optimization pro-
cess was terminated after 200 iterations.

e Cost-constrained and iteration-controlled
ground-truth query (CC-IC) optimization: In this
optimization scenario, the cost (computational
clock time) of the low-order models is considered
when calculating the acquisition function. The
cost-adjusted acquisition function is defined as

KG yiG (26)
Yeost = odelcost’
where vKC is the knowledge gradient value and

modelcost is the cost of the model in question.
Additionally, a cost-based termination criterion
is also included. This will stop the process from
continuing once a total budget has been
exceeded. This is to emulate a scenario where a
project has a budget limit. The costs that con-
tribute to this limit are both the cost of running
the models as well as the cost (computational
clock time) of calculating the next best points to
query. This approach also queries the RVE after
25 iterations of updating the low-order models.
Additionally, this approach was also run with
iteration limits of 10 and 50 for the calling of the
RVE. In total, 15 of the calculations were com-
pleted for this comparison.

e Cost-constrained and cost-controlled ground-
truth query (CC-CC) optimization: The final
approach uses the cost-adjusted acquisition func-
tion but considers two budget constraints. The
first is that, when the cost of iterations exceeds
the RVE budget amount, the RVE model will be
called. After the RVE model is called, the RVE
budget is replenished. The second constraint is
that the process is terminated if the total cost
exceeds the total budget. In both cases, the
model and process costs are considered when
calculating the cost of an iteration. Again, all
costs are assumed to be the computational clock
time.

e Sequential Bayesian optimization A conven-
tional sequential Bayesian optimization of the
RVE surrogate model only was conducted to
enable an assessment of whether the framework
in the current work is performing better. This
optimization was done by initializing a GP using
the same initial RVE data as used for the Batch
optimization approach and then using the
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knowledge gradient evaluated at 500 samples
from the design space to determine the next best
point to evaluate. The samples were obtained by
Latin hypercube sampling, and the number of
samples was incremented by 1 with each itera-
tion. This calculation was completed for all the
initial datasets that were used for the batch
optimization, and the results were averaged.

RESULTS AND DISCUSSION

The current work aims to maximize the normal-
ized strain-hardening rate of a dual-phase steel.
This was done by optimizing the carbon content
(wt.%) and intercritical annealing temperature. For
the analysis of the results, a normalized strain-
hardening rate of 30 or greater is considered an
optimum result. The results show the maximum
normalized strain-hardening rate found from the
RVE model compared against the number of itera-
tions, computational cost, and time for the opti-
mization. The shaded regions of the plots indicate
the 95% confidence interval calculated from the
results of 20 optimization calculations for each
batch size. All the batch optimization results are
compared with the sequential Bayesian optimiza-
tion of the RVE surrogate model only.

The first result shows the maximum normalized
strain-hardening rate found from the RVE model
against the number of iterations of the optimization
routine (Fig. 3). In all three cases, it can be seen
that the larger batch sizes (batch sizes 5 and 7) led
to faster optimization of the normalized strain-
hardening rate. In both cost-constrained cases,
these large batch sizes ended quickly since the
increased number of calls to the ground-truth
function exhausted the available budget quicker.
However, when considering the comparison with
the sequential optimization of the RVE surrogate
model, only the batch size of 7 performed as well as
the sequential optimization of the RVE. While these
results show a benefit for using larger batch sizes,
the number of iterations for the optimization is not
necessarily the most useful comparison that can be
used.

When the maximum value of the RVE calcula-
tions is compared with the total cost of the opti-
mization (Fig. 4), the downside of using the large
batch sizes can be observed. In these figures, we can
see that, at the beginning of the optimization, the
larger batch sizes resulted in a much larger cost
much more quickly, and that the lower batch sizes
started optimizing at lower costs. However, consid-
ering the results after all approaches have called
the RVE model at least once, the larger batch sizes
were still able to achieve higher normalized strain-
hardening rates at a lower computational cost. This
is particularly true when comparing the results
with the sequential optimization of the RVE only.
This shows that, while there may be an advantage
to using sequential optimization in terms of the

number of iterations required, the cost of the
optimization can be decreased by using the frame-
work developed in this work.

The final consideration was how the maximum
RVE value found changed with the time taken for
the optimization (Fig. 5). Here we can see that the
large batch sizes managed to attain higher values
significantly faster in real time. This was the case,
especially in the cost-constrained approaches. This
could be due to the cost-constrained acquisition
function favoring the cheaper (faster) models. The
comparison with the sequential model shows the
real significant advantage of the current approach,
as it can obtain an optimum value significantly
faster than the sequential optimization.

It is of interest to compare the performance of our
proposed BBO approach with that of a conventional
BO, carried out by exclusively querying the ground
truth, i.e., the RVE-based finite element simula-
tions. This is shown in Fig. 6, which compares a
sequential approach without model fusion to our
model-fusion-based approach with batch sizes of 1
and 7. As in other cases, we included the uncer-
tainty bounds resulting from running the optimiza-
tion framework over the design space, multiple
times. One noticeable aspect of this figure is the
extremely large variance in the performance of the
sequential BO approach, even at the latest stages of
the optimization approach. This implies that there
is considerable risk in employing such an approach
as it seems to be highly dependent on the initial
conditions, i.e., data, of the optimization process.
The figure also shows that our BBO approach, with
a batch size of 7, results in a dramatic decrease of an
order of magnitude in the time necessary to find the
global optimum, with much lower levels of variance.
This latter result is significant as BBO appears to be
considerably less dependent on initial conditions,
providing strong performance guarantees at much
faster rates.

As an example of the potentially complex inter-
play between all the parameters of the framework,
we consider the results of using different iteration
limits for calling the RVE model in the CC-IC
approach. The full results for all batch sizes are
contained in the Electronic Supplementary Materi-
als, but presented here is a comparison of the
maximum RVE values found at the termination of
the optimization procedure (Fig. 7). To obtain these
results, the CC-IC approach was calculated for 15
unique initial datasets. This was repeated for each
of the three iteration limits. The data in the plot
shows the mean and 95% confidence interval calcu-
lated for these 15 calculations for each iteration
limit.

The first trend that can be noticed is the general
increase in the maximum value of the normalized
strain-hardening rate correlated to the increase in
batch size. This happens with all iteration limits.
When we consider the final iteration number in
Fig. 7a, we can see that, in general, as the batch size
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was increased, the final iteration number decreased.
This is a result observed previously and is linked to
the increased cost of the larger batch size. What we
can also observe by looking at each of the five groups
is that the final iteration number is negatively
correlated with the iteration limit. This result
makes intuitive sense since a lower iteration limit
will mean more RVE calculations, which will result
in a higher cost. Thus, the budget limit will be
reached faster.

However, if we consider the total cost effects in
Fig. 7b, the cost of using the lower iteration limit
remains fairly consistent. However, the difference
between the costs of the optimizations with different
iteration limits decreased as the batch size was
increased. If we couple this observation with the
results in Fig. 7c, we can observe that, while the cost
remained fairly constant for the 10-iteration limit
case, the time taken for the optimization decreased
rapidly as the batch size was increased. The
decrease in the time taken for the optimization is
not as evident in the 25- and 50-iteration limit
cases, but this could be due to the 200-iteration limit
placed on the optimization.
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All these results indicate that there is a fairly
complex correlation between the batch size and the
optimum iteration limit for calling the RVE model.
However, as has been noted, it is not likely that the
optimum combination can be determined when
considering more costly functions, but the correla-
tion appears to be that, for larger batch sizes,
smaller iteration limits for calling the “ground
truth” decrease the time taken for the optimization
process. In addition, while the smaller iteration
limit does increase the cost compared with a larger
iteration limit, this difference decreases with batch
size.

The assumption that the cost of BBO scales
linearly with the batch size, relative to an exclu-
sively sequential approach, is the most conservative
one that can be made. This cost scaling is likely to
operate mostly when a design space is being
explored wusing exclusively computer simula-
tions—the cost (in computer time) depends linearly
on the number of parallel simulations. However, in
real-world experimental approaches, high-through-
put, or parallel, processing often has a reduced cost
per experiment compared with sequential counter-
parts. These economies of scale arise from the
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sample, the more samples are simultaneously
melted in a single run, with the ultimate cost per
synthesized specimen being lower.

From the results shown above, the fact that the

simplification of ancillary activities associated with
batch experimental operations—there are many
activities for which the cost is the same, regardless
of the batch size; For example, we can consider the

case of combinatorial synthesis through batch arc
melting, in which it is necessary to load the
feedstock, evacuate the chamber before melting,
and wait for the samples to cool down before
removal. Each of those steps will be shorter per

framework is capable of achieving better results at a
lower cost under the conservative cost model that
assumes no economies of scale indicates that this
approach could have significant effects on the
process cost for developing new materials or
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optimizing existing materials. The benefits of such
batch BO frameworks may indeed be much more
evident in experimental settings than in computa-
tional ones. A benefit that is perhaps more difficult
to quantify but that can potentially be even more
significant is the beneficial impact on the net
present value of any materials development cam-
paign: the faster that one arrives at a potential
optimal materials solution, the greater the value
that one can extract from such a development effort.
To reiterate this point: even if the total cost of a
BBO-based materials development campaign were
the same as that of a sequential approach, arriving
at the optimal solution in much shorter times is
extremely beneficial. Coupling a design framework
such as that developed in the current work with
high-throughput experiments has the possibility of
further reducing the time and cost of materials
development.

We note that, in this work, we tuned the hyper-
parameters for the GPs used to emulate the
reduced-order models a priori. The cost of evaluat-
ing these models is orders of magnitude® lower than
that of evaluating the RVE, and it is thus practical
to exhaustively explore the input space of these
models before the model fusion BBO is carried out.
In cases where the cost of querying even the “cheap”
information sources is nonnegligible, it may be
necessary to modify our proposed framework. For
example, we could implement the BBO routine in
two stages: one (perhaps at much larger batch sizes)
for fitting the reduced-order models themselves,
followed by a second application of BBO for the
fused model.

SUMMARY AND CONCLUDING REMARKS

The results from the current work show signifi-
cant promise in the use of batch Bayesian optimiza-
tion frameworks within an ICME methodology for
materials design. Most notably, the results showed
that using larger batch sizes resulted in the quan-
tity of interest being optimized in a shorter time and
at a lower cost than when using smaller batch sizes.
This confirms an intuitive understanding that, by
adding more information on each iteration, we can
gain better knowledge of the system under opti-
mization in much shorter times.

Here, we implemented a model-fusion-based BBO
approach and applied it successfully to the opti-
mization—through linked computational PSPP
relationships—of the “formability” of dual-phase
steels by tailoring the chemistry and processing
conditions. The results indicate that using batch
optimization can greatly decrease the time and cost
of the process while simultaneously reducing the
uncertainty of the predictions. This has important
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implications for ICME-enabled design of materials
as well as for exclusively experimental materials
discovery and design.

We provided further arguments for the benefits of
this approach by pointing out that arriving at the
answer faster than when wusing sequential
approaches may supersede any consideration of
the cost associated with the (computational or
experimental) querying of the materials space. The
reduction in time necessary to complete the alloy
development process would have a very positive
impact on the net present value (NPV) of the
development effort, minimizing risks while maxi-
mizing the potential future benefits of deploying a
material in a specific technology.

We note that there is still much work that can be
done to improve the framework, particularly to
make it more applicable when the hyperparameters
of the reduced-order model and the fused model GPs
are not known. The authors do acknowledge that
the current results might not be generalizable to all
applications of the framework. Therefore, work is
being conducted to test the framework using stan-
dardized test functions. This will allow for full
benchmarking of the results from this framework.
In addition, while we have demonstrated the effect
of changing the iteration limit, there are numerous
other framework parameters (for example, the
acquisition function, GP hyperparameter ranges,
and covariance function) that have not yet been
tested to ascertain their effect on the optimization
process.

In fact, while in this work we have carried BBO
over the hyperparameter space with a fixed covari-
ance structure (i.e., Matérn kernel) and acquisition
function (i.e., knowledge gradient), it may be possi-
ble to extend this approach over the model as well as
the acquisition function space. This would follow the
spirit of the current BBO approach, following the
premise that, at the beginning of an optimization, it
is not certain what type of covariance structure or
even what type of policy is most effective for a given
problem space.
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