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Abstract

Materials design calls for the (inverse) exploitation of Process-Structure-Property (PSP)
relationships to produce materials with targeted properties. Unfortunately, most materi-
als design frameworks are not optimal, given resource constraints. Bayesian Optimization
(BO)-based frameworks are increasingly used in materials design as they balance the ex-
ploration and exploitation of design spaces. Most BO-based frameworks assume that the
design space can be queried by a single information source (e.g. experiment or simulation).
Recently, we demonstrated microstructure-sensitive design of alloys with a BO framework
capable of exploiting multiple information sources. While promising, the previous frame-
work is limited as it assumes that the optimal microstructure is always feasible and considers
microstructural features as the design space. Herein, we sidestep this unwarranted assump-
tion and instead consider that chemistry and processing conditions constitute the design
space amenable to optimization. We demonstrate the efficacy of our expanded framework
by optimizing the mechanical performance of a ferritic/martensitic dual-phase material by
adjusting composition/processing parameters. The framework uses thermodynamic results
to predict microstructural attributes which are then used to predict the mechanical prop-
erties using a variety of micromechanical models and a microstructure-based finite element
model. The final stage involves implementing model reification and information fusion,
and a knowledge-gradient acquisition function to determine the next best design point and
information sources to query. A detailed discussion of the various components and demon-
stration of how the framework can be implemented under three sets of cost-based constraints
is presented.
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1. Introduction

Materials design through ICME approaches [1] calls for the integration of physics (or data
[2, 3])-based models and experiments in order to establish quantitative Process-Structure-
Property (PSP) relationships [4], which can then be exploited in order to elucidate the
mechanisms by which the (multi-scale, hierarchical) microstructure of a material responds
to external stimuli (i.e. its property), or the mechanisms by which processing/synthesis
conditions alters the way materials are (hierarchically) organized [5]. By ‘inverting’ such
relationships, it is then possible to identify the combinations of chemistry and processing
necessary to produce (multi-scale) microstructures that meet target measures of perfor-
mance. [6].

Unfortunately, fully integrated ICME frameworks with quantitative predictive accuracy
still remain out of reach, primarily due to the complex, highly coupled, multi-scale nature
of linkages along the PSP chain. This complexity makes it very difficult to computationally
emulate such PSP chains. Even if one ignores such challenges and focuses instead on much
simpler single-scale or effective models, the explicit integration of multiple tools within a sin-
gle ICME framework constitutes a major challenge [7] that has remained mostly unresolved,
although limited recent works [8, 9] have achieved some success in deploying fully integrated
PSP model chains to carry out the design/optimization of materials. Major challenges
arise when considering the considerable cost associated with querying PSP relationships.
Recently, closed-loop Bayesian Optimization (BO) approaches [10], capable of efficiently
balancing the exploration and exploitation of materials design spaces, have already been
shown to be quite effective in materials optimization tasks under resource constraints [11].

A major limitation of most approaches to date is the fact that they tend to use a single
model per linkage along PSP chains. This is an unnecessary restriction as often there
are multiple computational models or information sources to choose from when trying to
establish such quantitative linkages. A further limitation is the fact that most ‘classical’
ICME frameworks are not capable of directly integrating experimental information into the
design/optimization loop, other than for calibration, validation or verification purposes.
Potential valuable experimental information could instead be directly incorporated into the
ICME framework in a co-design scheme but this remains largely unexplored. In fact, even
state-of-the-art BO-based materials design [10, 11] tends to be limited to a single probe
(experimental or computational) to query specific linkages of the PSP chain, although other
engineering fields have developed sophisticated approaches for the integration of multiple
information sources within optimization schemes [12].

In recent work [13, 14], we have developed and demonstrated a materials design frame-
work that addresses most of the issues highlighted above. In order to avoid explicit I/O
interfaces between different models connecting microstructure to mechanical behavior—for
a demonstration problem involving microstructural design of a dual-phase material—each of
the models, including the ‘ground truth’ (in that case a microstructure-based finite element
model) were converted into a Gaussian Process (GP). Since all models used are attempting
to describe the same underlying behavior (i.e. the connection between microstructural fea-
tures and mechanical response), it is to be expected that they would exhibit some degree
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of correlation among themselves and also with the ‘ground truth’. By exploiting such sta-
tistical correlations through the so-called ‘reification’ process [15, 16], we generated fused
models that were capable of maximizing agreement with available information about the
response of the ‘ground truth’ model, while minimizing responses clearly at odds with ob-
servations. The fused model was then used to answer two questions: (i) where to sample next
in the design space, and (ii) which information source should be used to query the design
space. To answer those questions, we constructed experimental utility functions based on
the Knowledge Gradient (KG) [17]. In ref. [13], we demonstrated how this multi-information
fusion BO framework was more efficient than state-of-the-art BO approaches that used a
single (ground truth) information source. In ref. [14], we further demonstrated that explic-
itly accounting for the cost of individual information sources was essential if there are hard
constraints imposed on the budget allocated to carry out optimization.

While promising, the previous framework was admittedly limited in that the complete
PSP chains were not exploited and only a microstructure sensitive design problem was
addressed, assuming that the design space consisted of a universe of microstructures that
could in principle be accessed through suitable processing-chemistry combinations. This is
a strong and unwarranted assumption, as optimal microstructures may not necessarily be
feasible (i.e. accessible through the available chemistry and/or processing controls). It is
thus important to explore possible ways of extending our multi-information source fusion
BO framework in such a way that the design space consists of degrees of freedom that
are truly amenable to modification without concerns on whether they are feasible or not.
Such a framework would then truly realize the ICME program which relies, as mentioned
above, on the exploitation of PSP relationships in order to carry out the design of materials.
Solving such a problem is not trivial as we would have to fuse information not only in
parallel, as we have shown before (all models used connected the same microstructural input
to the same target mechanical response), but also in series, as we would have to provide
explicit connections between processing-chemistry prescriptions and properties/performance
through intermediate microstructure information.

In this work, we expand on our prior multi-information source fusion BO framework
to account for cases in which it is possible to establish, at least in principle, quantitative
PSP relationships. As in our previous works [13, 14], we demonstrate the framework by
attempting to optimize the performance of a dual-phase steel. In this case, however, the de-
grees of freedom, amenable for optimization, that we consider are chemistry and processing
(in this simplified case, heat treatment temperature), rather than microstructure charac-
teristics. In this way we avoid the limitations of our previous works (and that of others)
as in this case the optimum microstructure is always feasible since, it is a consequence of
chemistry and processing protocol. We represent the proposed framework in Fig. 1. This
framework optimizes the normalized strain hardening rate (1/τ) (dτ/dεpl) of a dual-phase
(ferrite-martensite) steel by adjusting the composition and heat-treatment temperature of
the material. The framework uses a surrogate model of the thermodynamic results to predict
the phase volume fraction and composition in the material microstructure after single-stage
heat-treatment (intercritical annealing followed by quenching). This data is then used to
predict the mechanical properties of the dual-phase material using a variety of micromechan-
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Figure 1: Schematic representation of the process-structure-property relationship used for the design of a
dual-phase (ferrite-martensite) steel using our multi-information source fusion Bayesian optimization frame-
work. Here, χ is the set of input variables with TIA being the intercritical annealing temperature, XC , XSi

and XMn being the carbon, silicon and manganese content, respectively, while the targeted output is the
strength normalized strain hardening rate, (1/τ) (dτ/dεpl).

ical models and a high through-put microstructure-based finite element model that utilizes a
three-dimension representative volume element (RVE) of the material microstructure. After
obtaining fused models through reification, the next point to query in the design space as
well as the information source used to query it are determined using the KG acquisition
function. What follows is a discussion of the various components of this framework and
a demonstration of how the framework can be implemented under three separate sets of
constraints, related to when queries to the ‘ground truth’ are made.

2. Methods

2.1. Connecting Chemistry and Processing to Microstructure

The current work considers a material system that contains C (0.05−1 wt%), Si (0.1−2
wt%), Mn (0.15 − 3 wt%) and Fe being the balance, and is subjected to a single-stage
intercritical annealing heat-treatment at temperatures ranging from 650-850◦C, followed by
rapid quenching to produce a dual-phase (ferrite-martensite) microstructure. The prediction
of the microstructure space is carried out through a surrogate model built from Thermo-
CalcTM predictions in the region of interest. This surrogate modeling approach was used
to ensure that the calculations can be completed quickly, as well as to ensure that it would
be possible to carry out optimization process on a computing resource without access to
Thermo-CalcTM license.

A detailed description on the construction of the surrogate model can be found in ref. [18].
Briefly, the Thermo-CalcTM model was uniformly sampled in the design space to obtain the
austenite volume fraction and composition. The volume fraction of martensite was obtained
using the Koistinen-Marburger equation [19]. This data was fit with a Gaussian Process
(GP) model. The composition and volume fraction of the ferrite phase are defined by a
mass balance. This thermodynamic surrogate model was linked to the mechanical models
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Figure 2: Schematic showing representative modeling results along the process-structure-property chain
used herein for the design of a dual-phase (ferrite-martensite) steel. (Bottom left) Evolution of the marten-
site volume fraction, fmart, and partitioning of alloying elements among the two constituent phases with
temperature. (Bottom right) Evolution of stress with plastic strain in a dual-phase material as predicted by
microstructure-based finite element model (RVE) and a variety of micromechanical models.

(described in the subsequent section) as shown in Fig. 2. As is often the case when using
machine learning models, the accuracy of the GP surrogate is ultimately limited by the
accuracy of the underlying ground truth as well as the ability of the model form itself to
reproduce the data used to train it. In general, we have found [18] that GPs are able to
model the outcome of phase equilibria calculations with reasonable accuracy.

2.2. Connecting Microstructure to Mechanical Response

In this work, we assume that we have at our disposal a set of models (or sources of
information) of varying complexity (or computational cost) and fidelity that establish quan-
titative relationships between microstructure and properties.. The models specifically take
as input the quantitative features of the dual-phase microstructure in order to predict its
mechanical response. For the purpose of demonstration, we consider a microstructure-based
finite element model as ‘ground truth’ and a variety of reduced-order and micromechanical
models as alternate cheap sources of information. All the mechanical models predict the
mechanical response of the material by explicitly incorporating the effect of both the chem-
istry and processing conditions—resulting in specific phase constitution—by utilizing the
predictions of the Thermo-CalcTM model, Fig. 2. Note that the stress-strain response of a
composite dual-phase microstructure can in theory be accurately modeled using high-fidelity
microstructure-based finite element calculations [20–22]. However, these calculations are
computationally expensive and their direct use in an iterative material optimization scheme
will be prohibitively time consuming. Reduced-order mechanical models [23–25] and more
sophisticated micromechanical models [26] are computationally cheap, but this comes at a
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price, since their many simplifications result in loss of fidelity with regards to the ‘ground
truth’—all the mechanical models are briefly described below.

2.2.1. Microstructure-based Finite Element Model (Ground truth)

The microstructure-based finite element calculations utilize a three-dimensional RVE
of the dual-phase microstructure to compute the uniaxial tensile stress-strain response of
the material [13, 14, 22]. To this end, we first generate a three-dimensional ferrite grain
structure in the RVE using a simulated annealing process [27] with brick meshing. Next,
a fixed number of martensite particles are nucleated randomly on the ferrite grain bound-
aries and then grown at a fast rate along the grain boundaries and a slow rate along other
directions. The growth of the martensite particles is terminated when the overall volume
fraction of the martensite reaches the prescribed target value. In the final RVE the crystal-
lographic orientations of individual ferrite grains and that of martensite blocks are smeared
out. This results in a composite dual-phase microstructure with two discretely modeled
phases where each phase is modeled as an isotropic elastic-plastic material with Young’s
modulus, E = 200GPa, and Poisson’s ration, ν = 0.3, and constitutive relations (relating
stress, τ , equivalent plastic strain, εpl, and composition, Xp

i , in weight fraction),

τ = τM0 + Cc(X
mart
C )1/3 +KM(εpl)n

M

(1)

for the martensite phase with τM0 = 400MPa, Cc = 105MPa, KM = 450MPa and
nM = 0.06, and

τ = τF0 + CSi(X
ferr
Si )1/2 + CMn(Xferr

Mn )1/2 +KF (εpl)n
F

(2)

for the ferrite phase with τF0 = 200MPa, CSi = 732MPa, CMn = 213MPa, KF =
2200MPa and nF = 0.5. The constitutive relations in Eqs. (1) and (2), and the choice
of the (representative) constitutive parameters are based on the assumptions that: (i) the
strength of the martensite phase depends on its carbon content and the martensite phase
doesn’t exhibit significant strain-hardening, and (ii) the ferrite phase is softer than the
martensite phase, exhibits significant strain-hardening and its strength depends on silicon
and manganese content.

A typical finite element mesh of the RVE of the dual-phase microstructure employs 27,000
C3D8 brick elements from the ABAQUS/standard element library [28]. In the calculations,
fully periodic boundary conditions are imposed on all six faces of the RVE. Next, to simulate
uniaxial tensile deformation, the RVE is subjected to a monotonically increasing tensile
strain along one of the axis, while maintaining zero resultant forces on the faces normal to
the other two axes as in ref. [21]. Note that since the martensite particles are nucleated
at random, different realization of the same microstructure (i.e. the same overall phase
constitution) in the RVE is different. Thus, the mechanical response predicted by different
realizations of the same microstructure in the RVE is also slightly different as demonstrated
in ref. [14].
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2.2.2. Reduced-order and micromechanical models (Information sources)

As in refs. [13, 29], low-fidelity models are used as information sources to link material
microstructure to overall mechanical response. The reduced-order mechanical models used
here are based on three assumptions on how the work, stress, and strain partition among
the constituent phases: (i) an isostrain model is built on the assumption that both the con-
stituent phases undergo the same amount of strain under deformation [23]; (ii) an isostress
model is constructed following the assumption of equal partitioning of stresses among both
the phases [24]; and (iii) an isowork model, that assumes that both the phases undergo the
same amount of work of deformation upon the deformation of the dual-phase microstructure
[25]. In addition, we employ two slightly more sophisticated micromechanical models link-
ing material microstructure to overall mechanical response. These models are constructed
based on the homogenization schemes proposed in ref. [26]. We refer to the first microme-
chanical model as the ‘secant method’, where the prediction of overall mechanical response
is based on Hill’s weakening constraint power in a plastically-deforming matrix. The sec-
ond micromechanical model is referred to as the ‘elastic constraint’ model, which is based
on Kröner’s treatment of the matrix-inclusion system under elastic constraints [26]. All
these reduced-order and micromechanical models use the same constitutive relations given
in Eqs. (1) and (2) for the two constituent phases.

2.3. Material Design Framework

An optimization problem can be written as

x* = arg max
x∈X

f(x), (3)

where f is the objective function and x* is the optimal design vector in the feasible
input space X . Oftentimes, the analytical form of the objective function f is unknown or is
very expensive to evaluate through either physical experiments or high fidelity simulations.
Indeed, resource constraints—i.e. the total budget available to the design campaign—place
strong limits on the number of times the objective function can be queried. In many cases,
however, it is likely that there exist cheaper information sources that can potentially be used
to estimate the response of the much more expensive information source, at varying degrees
of fidelity and cost. Such information sources could be models constructed with simplifying
assumptions or evaluated at much lower resolution than the ‘ground truth’. In cases in
which the ‘ground truth’ is an experiment, the cheap sources could be (physics-based or
machine learning) models, or could be other experiments that are much faster/cheaper to
carry out but that are correlated to the more expensive ‘ground truth’.

Here, we propose a multi-fidelity approach to seek the solution to Eq. (3). Assuming
that every source contains some useful information about the quantity of interest—different
sources may approximate the ‘ground truth’ better than others in some regions of the design
space—, we aim to efficiently fuse all these sources in order to estimate the objective quantity
of interest as accurately as possible. Following our previous work [13, 29], we employ a
multi-information source optimization framework. In this approach, the first step is to
construct intermediate surrogates for each of the sources according to the prior knowledge
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about the connection between the design space and their response. Here we use GPs as
surrogates given their mathematical properties, including their ability to predict not only
the mean value, but also the variance of the quantity of interest in the design space, and the
straightforward manner in which the causal correlation between points in the design space
can be modeled, among others [30]. Using a reification-based information fusion approach
developed in ref. [15, 16], a fused model is built from all the information sources by exploiting
the degree to which they are correlated with each other and with the ‘ground truth’. The
fused model is then used to determine the next design vector and information source to query.
Here, we use the Knowledge Gradient (KG) acquisition function as the utility function to
rank the next best design point to explore, and the best information source to query it,
taking into account the cost of evaluating said information source as well as the uncertainty
associated to the model predictions. This policy balances the exploration of the input space
and exploitation of the current state of knowledge about the objective function, while also
accounting for the impact of such exploration/exploitation on the available resources.

By fitting GPs to data from previous evaluations of the individual information sources,
the prior GP distribution for each information source is represented as

fGP,i(x) ∼ GP (mi(x), ki(x,x
′)) , (4)

where ki(x,x
′) is a real-valued kernel function over the input space and mi(x) defines the

mean function. Here, we employ the squared exponential covariance function—note that
other kernels may be used depending on our knowledge of the properties of the design
space—as the kernel function specified as

ki(x,x
′) = σ2

s exp

(
−

d∑

h=1

(xh − x′h)2
2l2h

)
, (5)

where variables d, σ2
s , and lh are the dimension of the input space, signal variance, and

characteristic length-scale. The latter controls the degree to which two points in the input
space, separated by a specific distance, are correlated. The behavior of the GP surrogate is
controlled by these hyperparameters and it is necessary to tune them based on the available
data. Here, we optimize the hyperparameters by maximizing the log marginal likelihood.

AssumingNi evaluations of information source i are available and indicated by {XNi
,yNi
},

where XNi
= (x1,i, . . . ,xNi,i) is the Ni input samples to information source i and yNi

=
(fi(x1,i), . . . , fi(xNi,i)) represents the outputs from information source i relatively, the pos-
terior GP distribution of information source i at a design point x is given as

fGP,i(x) | XNi
,yNi

∼ N
(
µi(x), σ2

GP,i(x)
)
, (6)

where
µi(x) = Ki(XNi

,x)T [Ki(XNi
,XNi

) + σ2
n,iI]−1yNi

, (7)

σ2
GP,i(x) = ki(x,x)−Ki(XNi

,x)T [Ki(XNi
,XNi

) + σ2
n,iI]−1Ki(XNi

,x), (8)

and for information source i, Ki(XNi
,XNi

) is a Ni × Ni matrix with (m,n) entry as
ki(xm,i,xn,i), and Ki(XNi

,x) is the Ni × 1 vector whose mth entry is ki(xm,i,x). Here, the
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term σ2
n,i is used to model observation error for information source i found by experimental

data.
We then quantify the discrepancy corresponding to each information source surrogate

with respect to the ‘ground truth’ (i.e. the RVE model) as

σ2
i (x) = σ2

GP,i(x) + σ2
f,i(x), (9)

where σ2
f,i(x) is the variance related to the fidelity of information source i, which is added

to the uncertainty associated with the corresponding GP to find the total uncertainty of the
information source surrogate i.

Since all information sources are estimating the same quantity of interest, they are ex-
pected to be correlated to the ‘ground truth’ to varying degrees. Every information source
is assumed to have some useful information about the true objective function. In the pro-
posed approach of refs. [13, 29], and contrary to conventional multi-fidelity approaches, it is
not required to determine the hierarchy of fidelity according to agreement with the ‘ground
truth’, rather all information sources are brought together into a single fused model. Here,
we follow the same approach. Specifically, for fusion of normally distributed data—which is
the case here since the information sources are represented by GPs—the method presented
by ref. [31] is followed. This leads to fused mean and fused variance estimates at a given
design point x as:

E[f̂(x)] =
eTΣ̃(x)−1µ(x)

eTΣ̃(x)−1e
, (10)

Var
(
f̂(x)

)
=

1

eTΣ̃(x)−1e
, (11)

where e = [1, . . . , 1]T, µ(x) = [µ1(x), . . . , µS(x)]T are the mean values of S sources, and
Σ̃(x)−1 is the inverse of the covariance matrix between the information sources. For example,
in the presence of two information sources, Eq. (10) is defined as

E[f̂(x)] =
(σ2

2 − ρσ1σ2)µ1 + (σ2
1 − ρσ1σ2)µ2

σ2
1 + σ2

2 − 2ρσ1σ2
, (12)

where σ2
1 and σ2

2 are the total variances of sources 1 and 2 respectively and the coefficient ρ
shows the correlation between the information sources at a specific point x. To estimate the
correlations between the errors of two information sources i and j, we use reification [15, 16].
First, information source i is reified and the correlation coefficient is computed as

ρij(x) =
σ2
i (x)

σi(x)σj(x)
=

σi(x)√
(µi(x)− µj(x))2 + σ2

i (x)
. (13)

Then, information source j is reified to estimate ρji(x). Finally, the variance-weighted
average of the two estimated correlation coefficients is computed to estimate the correlation
between the models as

ρ̄ij(x) =
σ2
j (x)

σ2
i (x) + σ2

j (x)
ρij(x) +

σ2
i (x)

σ2
i (x) + σ2

j (x)
ρji(x). (14)

10



The average correlations are used in Eqs. (10) and (11) to estimate the fused mean and
variance.

We use the fused means and variances to construct the fused model. Assuming Nf

samples from the design space X are available, the fused mean vector and the diagonal
matrix of fused variances are µWink(x1:Nf

) and
∑

(x1:Nf
) = diag (σ2

Wink(x1), ..., σ
2
Wink(xn))

respectively. The posterior predictive distribution of the fused model is specified as

f̂ fused(x) ∼ N (µfused(x),Σfused(x)). (15)

Next, the fused GP, which is considered as our best predictive model containing all current
knowledge about the ‘ground truth’, is used to determine the next design point and infor-
mation source to query. This is done by employing a utility function that considers the cost
and the value of such a query relative to the optimization of the objective function in hand.

The value-gradient utility, which is a cost-aware KG utility, is used to evaluate different
information sources to compare the amount of knowledge gained about the objective func-
tion’s maximum and the cost to determine which model and design point adds the most
value regarding Eq. (3). The utility function searches for immediate improvement to the
knowledge state of the system in one step and at the same time looks for the expected
improvement in two steps where it has the highest gradient in knowledge. Using the fused
GP and its maximum mean function value, the immediate expected improvement can be
defined.

At a design point x, defining information sources by (i1:N ,x1:N , y1:N) with design points
and corresponding objective values for the first N queries and taking f̂ as the posterior
distribution of the fused model, the expected improvement is given as

EI(x) = E
[
max
x′∈X

E[f̂(x′)|i1:N ,x1:N ,xN+1 = x, y1:N ]−max
x′∈X

E[f̂(x′)|i1:N ,x1:N , y1:N ]

]

= E
[
max
x′∈X

E[f̂(x′)|i1:N ,x1:N ,xN+1 = x, y1:N ]

]
−max

x′∈X
E[f̂(x′)|i1:N ,x1:N , y1:N ],

(16)

where the last expression can be removed from the expectation operator since it is known
when conditioned on the first N queries. Next, we use KG policy [17, 32, 33] to maximize
this expectation. Defining the value of being at the knowledge state HN as V N(HN) =
maxx∈X HN , where the knowledge state itself is presented by HN = E[f̂(x′)|i1:N ,x1:N , y1:N ],
the KG as a measure of expected improvement is

νKG(x) = E[V N+1(HN+1(x))− V N(HN)|HN ], (17)

where the design point chosen is the point that maximizes νKG(x). To consider the imme-
diate and expected improvement, we use the value-gradient utility given as

U = µ∗fused + max
x∈X

νKG(x). (18)

Considering Eq. (18), the value-gradient policy chooses the next point to query such that
value-gradient utility is maximized.
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Searching for the next point to query begins by generating Latin hypercube samples
(LHS) from the input space as alternative points. When an alternative point is queried from
the GPi, based on Eq. (4), the output is presented as a normal distribution with a mean
and variance. Then, Nq independent samples are drawn out of this normal distribution

f qi (x) ∼ N (µi(x), σ2
GP,i(x)) for q = 1, . . . , Nq, (19)

with f qi (x) as the sample q for alternate point x and information source i. To calculate
the value-gradient utility for each alternate point, we augment GPi with a sample drawn from
GPi to build the GPtemp,i. This approach assumes that the alternate point and the predicted
sample value are part of the system’s knowledge and a new fused model is created. Using
Eq. (18), the value-gradient utility is measured. The process is repeated for all samples drawn
from the GPi for the same alternative point. For every alternative point and information
source, the expected value-gradient utility is calculated by

EUx,i =
1

Nq

Nq∑

q=1

U q
x,i. (20)

To consider the cost of querying information sources, the expected utility function can be
found per unit cost. Finally, the alternative point with the highest expected value gradient
utility per unit cost and the information source to which that alternative point was added
is chosen for the next query. This process is repeated and the fused GP is updated until the
budget is exhausted or convergence requirements are fulfilled. Then, by searching the fused
GP’s mean function, the optimum solution of Eq. (3) is estimated.

2.4. Case studies

There are many ways to approach an optimization problem based on how the search
policy is employed and how the problem is constrained. In our work, three approaches are
considered. The first two approaches are cost-controlled, but with different triggers to call
the RVE model (or ground truth) and which components of the calculation are considered
in the cost. The third approach has no cost consideration in executing different information
sources. For every particular case-study, five realizations of the entire process are obtained
and the results presented are the averaged values over these five realizations. The three
different approaches are described in the following subsections.

2.4.1. Cost Consideration - Iteration Controlled ‘Ground Truth’ Query (CC-IC)

When querying information sources while limited resources are available for the design
process, it is important to compute the value that each query adds to the system, while
also considering the resources needed to execute the query. For our cost consideration -
iteration controlled (CC-IC) approach, at each step, we select an alternative point and an
information source to query that adds the highest value per unit cost to the system’s state
of knowledge. Considering the cost of queries influence the decision making process with
exploitation of the design space being favored over its exploration. The decision-maker in
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this case acts conservatively in order to avoid the risk of wasting the (constrained) resources
on highly uncertain queries unless it can expect a very good ‘return on the investment’
of querying that source. To update the model discrepancies, the ‘ground truth’—i.e. the
RVE—is queried once after every ten evaluations of the information sources. In Table 1, the
costs assigned to each information source are shown based on their computation time [14].

Table 1: Computational cost of various information sources.

Information source Cost (Seconds) Normalized cost
Isostrain 2.3× 10−4 1
Isostress 1.0× 10−3 4.4
Isowork 4.7× 10−1 2.0× 103

Secant method 8.4× 101 3.7× 105

Elastic constraint 3.6× 101 1.6× 105

RVE 7.2× 103 3.1× 107

2.4.2. Cost Consideration - Cost Controlled ‘Ground Truth’ Query (CC-CC)

We also study a case in which the cost of the entire process is considered. This is referred
to here as the cost consideration - cost controlled (CC-CC) approach. While querying
information sources is costly, so too are constructing GP surrogates and calculating the
fused model and utility function, especially as the number of data points increases over
time. We call this the modeling cost and measure it by calculating the time required for (i)
generating alternative points and samples, (ii) building temporary GPs, (iii) performing the
reification process, information fusion, and building the fused GP, (iv) evaluating the utility
function, and (v) deciding on the next point to query. The measurement of the modeling
cost, including the computational cost of the individual sources and the cost of generating
points to sample and selecting the sources to query, is completed on each iteration and
subtracted from the budget.

Additionally, we define a cost-controlled criterion to query the ‘ground truth’ model.
Basically, instead of querying the ‘ground truth’ after a specific number of queries of the
(cheaper) information sources, a query is made when a specific amount of the budget is
spent. This strategy allows the decision-maker to use the cheaper information sources before
querying the expensive ‘ground truth’ model, as long as it is finding value in querying the
cheap information sources. This policy is in a sense the closest analogue to a realistic
materials design campaign, where the budget available greatly determines the querying (i.e.
experimentation or simulation) protocol.

Considering the modeling cost prevents the framework from querying a very large number
of points from the cheaper information sources before querying the ‘ground truth’. For in-
stance, thousands of queries are needed to pass any defined amount of budget if the isostrain
information source is chosen each time. This has the potential of significantly increasing the
overall cost. By considering the modeling cost, fewer calls to the cheaper models are made,
which helps to moderate the increase in the modeling cost.
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2.4.3. No Cost Consideration (NCC)

When the cost of evaluating information sources is not considered as part of the decision
making process, the system always chooses the alternative point and the information source
to query with the highest expected value gradient utility, no matter how expensive the
query is. In other words, there is no constraint on the decision making process concerning
costs. In this approach, which we refer to as no cost consideration (NCC), the ‘ground
truth’ is queried after every ten information source evaluations in the step to update the
model discrepancy terms. This strategy leads to increased exploration of the design space,
thus adding the maximum knowledge from the evaluation to the system after each update.
Although this approach is not considered practical in real-world optimization problems, it
is used as a comparison with the cost-controlled approaches in the current work.

3. Results

We now present the results of applying our material design framework to optimize the nor-
malized strain hardening rate, (1/τ)(dτ/dεpl) at a plastic strain level of 0.9%, of a dual-phase
(ferrite-martensite) steel by adjusting the composition and heat-treatment temperature of
the material. The design problem follows the three decision-making policies described in
Section 2.4. To compare these decision-making policies, we consider how quickly each case
reaches what is considered as the maximum mechanical property region of the design space.
In our previous work ref. [14], for a fixed material chemistry, the maximum objective value
was found to be 30.5, with a certain level of uncertainty due to stochastic nature of the
process—related to the different test points arising from Latin hypercube sampling. In the
current work, we seek to find an objective value as good as the best in ref. [14] or better.
Accordingly, a normalized strain hardening rate ([1/τ ][dσ/dε]) greater than 30.5 is consid-
ered as the target objective value to reach and this is shown by the shaded area in Figs. 3
and 4.

To quantify the uncertainty in the current design process, five realizations of the design
process were generated. Each realization utilized the same initial data and was allowed to
run to completion. Through this approach we were able to quantify the combined effect
of several sources of uncertainty in the optimization process. The first is that the RVE
calculations rely on a stochastic approach to generate the dual-phase microstructure. As a
result, the prediction from RVE calculation can be different even for the exact same inputs
that include volume fraction and composition of the constituent phases. The next source of
uncertainty that needs to be accounted for is the determination of the points at which the
KG is evaluated. This is done by Latin Hypercube sampling and as a result will vary for
each realization of the framework. The final source of uncertainty arises while calculating
the KG, since a set of alternate points are sampled randomly from the normal distribution
defined by the GP at the chosen test point. The KG is calculated for all these alternate
points and then averaged. This average KG value is then used when calculating the test
point with the maximum KG. Given the considerable computational cost of the scheme it
is not feasible, at this time, to deconvolute these uncertainty sources, and we are thus only
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estimating the total uncertainty and depicting it as shaded uncertainty bounds in Figs. 3
and 4.

As a preliminary step to set up the design problem, it is important to study how the
prior belief about the ‘ground truth’ result provided to the system can affect the final results.
This prior information is defined as the number of initial RVE evaluations (or ‘ground truth’
information) used to train the intermediate GP for the RVE information source. The goal is
to use an initial training set size that sufficiently adds information while avoiding any extra
expense on generating unnecessarily large initial training data sets.

The results of the parametric study conducted to address this question are presented in
Table 2. Specifically, the effect of different initial training set sizes of the RVE on iterations
and cost required to reach the initial ‘guess’ maximum objective value is investigated. The
parametric study was carried out using the NCC decision-making policy, where during the
optimization, the RVE is queried every ten iterations or queries to the cheaper information
sources. The cost shown is divided into cost of generating the initial training set and the
cost incurred during the optimization process. The final objective value reached for all the
cases is the maximum normalized strain hardening rate found after reaching 300 iterations.
We observe that from an initial training set size of 20 to 40, the iterations needed to reach
the ‘guess’ maximum objective value decreases by half. However, as we increase the size
of the initial training set from 40 to 70, we observe no significant change in the number of
iterations required to reach the objective value and it is thus a waste of resources to generate
training sets greater than 40. Similarly, we do not see any major improvement in the final
objective value reached at the end of the optimization by increasing the initial training set
from 40 to 70. A similar effect is observed when a training set size of 100 is considered.
Therefore, to balance the cost of training and optimization, for all calculations presented
hereafter, we use an initial training set size of 40 RVE points.

Table 2: Comparing the number of iterations and cost incurred to find the initial ‘guess’ maximum objective
value of 30.5 for various initial training set sizes i.e. RVE results. The parametric study was carried out
using the NCC decision-making policy. The final objective values obtained after reaching 300 iterations are
also presented.

RVEs used to train Iterations to exceed
known max

Cost (ks) Final objective
value reachedInitial Optimization Initial Optimization

10 14 141 72 110.811 31.6071
20 17 171 144 137.106 31.3176
40 8 81 288 60.921 32.6166
70 8 81 504 60.921 32.7012
100 5 51 720 37.326 32.0356

Figure 3 compares the performance of three decision-making policies described in Sec-
tion 2.4. To this end, the maximum objective value found by each optimization process at
end of an iteration is plotted. As seen in Fig. 3, after about 50 iterations, all approaches
come up with better design points resulting in higher objective values. Basically, after a
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certain number of evaluations from lower fidelity models, the system is learning about the
location of the maximum of the ‘ground truth’ model and evolves toward more and more
optimal design points.

We note from this figure that the performance of both the NCC and CC-IC policies is
similar. Out of all three policies, the NCC policy explores more since it is the least conserva-
tive. The CC-IC policy, on the other hand, prefers to exploit the current system knowledge
rather than to explore highly uncertain regions. The CC-CC policy, which considers the
calculation of the full modeling cost in addition to the information source cost, affects the
decision making process in that it shows slower convergence to the target properties. This
is likely due to the variable number of iterations between RVE calls, which influences how
extensively the framework is exploring the design space. Additionally, by defining the cost-
controlled calls to the RVE model, we let the system exhaust the cheap information sources
before each call, allowing for more exploration of the design space. However, we balance
the number of queries from the cheap information sources by considering the modeling cost
as well in this policy. Note that for a fixed number of iterations, the CC-CC policy is not
calling the RVE as much as the other policies. Thus, due to the fewer calls to the RVE, it
makes sense that the CC-CC policy does not reach high objective values as fast as the NCC
and CC-IC policies.

Figure 3: Comparing the maximum objective value found through the optimization process as a function
of number of iterations for different decision-making policies: No Cost Consideration (NCC), Cost Consid-
eration - Iteration Controlled (CC-IC) and Cost Consideration - Cost Controlled (CC-CC) ‘ground truth’
query.

Since the number of calls to the RVE and the number of information sources queried
in each policy are different, every policy obtains an optimal solution (with respect to our
target) at different overall cost. A comparison is done between all policies, Fig. 4, in order
to show the objective value obtained as a function of the cost. The cost is calculated based
on the time required to complete the defined number of iterations in kiloseconds (ks). As
shown in Fig. 4, the CC-CC policy is suggesting significantly better design points than NCC
and CC-IC policies at the same cost. As stated before, the advantage of the CC-CC policy
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is that it favors the extraction of the most information out of a cheap source before querying
the RVE. The CC-CC policy is thus the most cost-effective one, which is important in cases
in which there are hard constraints the budget available to carry out the design. These cases
are the norm rather than the exception in the context of materials design.

Figure 4: Comparing the maximum objective value found through the optimization process as a function
of total cost for different decision-making policies: No Cost Consideration (NCC), Cost Consideration -
Iteration Controlled (CC-IC) and Cost Consideration - Cost Controlled (CC-CC) ‘ground truth’ query.

To study the results in more detail, we investigate how each policy proceeds to an estima-
tion of the optimal design point. Knowing that our framework employs multiple information
sources to estimate the quantity of interest, the resource constraints on the decision-making
process can have a large impact on how information sources are queried. By tracking the
calls to different information sources during the optimization procedure, we can understand
when and which information source had the highest value for Eq. (3) subject to the resource
constraints of the given approach (CC-IC, CC-CC, and NCC). These results are shown in
Fig. 5.

From Fig. 5a, it seems that the NCC policy favors the querying of the design space
through the isostress reduced order model at the beginning of the optimization process. We
note that this is not the cheapest source. Over time, the amount of knowledge gained from
querying this source reaches a stage of diminishing returns. At this stage, the framework
begins querying the isowork model—still not the cheapest source. As the optimization
progresses, the NCC policy ends up encouraging the querying of the design space through
all the available information sources. This is an expected result since there are no cost
constraints and there is thus no penalty based on the information source queried. This
behavior also reinforced the idea that this policy results in a more exploratory behavior, as
the framework can utilize information from all sources more consistently. We note, however,
that since the more expensive information sources are queried more compared to CC-IC and
CC-CC policies, this approach will be considerably more expensive than the cost-constrained
policies. A final observation to make is that, despite the fact that the micro-mechanical
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Figure 5: The progression of calls to different information sources as a function of the number of iterations
for (a) No Cost Constraint (NCC), (b) Cost Constrained - Iteration Controlled (CC-IC) and (c) Cost
Constrained - Cost Controlled (CC-CC) optimization procedures.

models (i.e. ‘secant method’ and ‘elastic constraint’) are more sophisticated than the simpler
isostress approximation, the framework favors, by far, querying from this cheaper source,
perhaps because the system has ‘discovered’ that it can make very useful inferences about
the ‘ground truth’ by querying this cheap, and perhaps less accurate, source.

In a similar fashion to the NCC policy (Fig. 5a), the CC-IC (Fig. 5b) and CC-CC
(Fig. 5c) policies favor querying the isostress information source first, followed by the isos-
train approximation—these are the cheapest information sources available. Although the
isostress approximation is more expensive than the isostrain model, the system initially finds
more value in querying the former. After some iterations, however, the value—i,e, the ra-
tio of information gained per cost—of the isostrain information source increases relative to
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the isostress approximation. We note that when the framework follows the CC-CC policy
(Fig. 5c), the transition in favor of the isostrain approximation (cheaper than the isostress
model by a factor of ∼4) happens faster, as this is the most effective strategy to follow under
hard resource constraints.

Considering the cost difference between the cheapest and most expensive information
sources, the value of the information obtained from the more expensive information sources
must be considerably higher to have a higher cost adjusted value in comparison to the cheaper
information sources. As such, the framework is expected to exhaust all the information from
the cheaper sources before moving on to the more expensive sources. In fact, it can be seen
that none of the micro-mechanical models is queried at all under CC-IC and CC-CC and
the isowork information source is only queried under CC-IC at the very last stages of the
process.

Figure 6: Evolution of the Wasserstein Metric for the full four-dimensional input space and each of the
individual dimensions, temperature (TIA), carbon (C), manganese (Mn) and silicon (Si) as a function of
the number of iterations for No Cost Constraint (NCC), Cost Constrained - Cost Controlled (CC-CC) and
Cost Constrained - Iteration Controlled (CC-IC) optimization procedures.

A major challenge of any optimization framework is to detect when convergence has been
reached. In this very specific case, the problem is even more challenging, as the evaluation
of the ‘ground truth’ has a degree of noise arising from the stochastic nature of the process.
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The framework is thus expected to converge into a region, rather than a single point, in the
design space. One possible approach to observe how the framework is able to approach
the optimal point (or region) in the design space is to utilize the Wasserstein metric, also
referred to as the Earth mover’s distance. The Wasserstein metric can be understood as
a distance function between two probability distribution functions in a given metric space.
A more complete description of the theory and properties of the Wasserstein metric can
be found in ref. [34]. This metric has been used in many applications, such as comparing
the color distribution in images [35, 36], measuring the mixing and convergence of Markov
Chains [37, 38] and as the loss function for the training of Generative Adversarial Neural
Networks [39].

In this work we compute the Wasserstein metric between multiple one-dimensional dis-
tributions to understand how the framework approaches the optimal point or region in the
multi-dimensional design space. To this end, we first compute the Euclidean distance be-
tween the current best point (that corresponds to the maximum of the fused GP) and a
reference point. The reference point is taken to be χ0 = [0.3, 0.3, 0.3, 0.3] in the unit hy-
percube design space. As the optimization progresses, the evolving distance between the
current best point and the reference point form a distribution. We use the distribution of
the distance in the four-dimensional space as well as the distributions of its projection along
the individual dimensions to compute the Wasserstein metric. Specifically, starting from
iteration 20, we take the 20 distance measurements prior to the iteration, split them into
two sets of 10 each, and then compare the two sets using the Wasserstein metric. As the
process converges, the Wasserstein metric is expected to approach zero, provided the sample
size is large enough. In our case, having 10 samples per distribution means that the metric
will be noisy even close to convergence. Here, we consider that a measure of convergence
corresponds to a condition in which the Wasserstein metric maintains an almost constant
value over multiple iterations.

As can be seen in Fig. 6, the Wasserstein metric computed from the distribution of the
distance in the full four-dimensional input space show that the three different optimization
policies have similar convergence (or lack thereof) patterns. However, the evolution of
the Wasserstein metric computed from the distributions of the projections of the distance
along the individual dimensions does provide a better understanding of the optimization
process. These show quite clearly that all three methods converge rapidly in the temperature
‘dimension’. In other words, the framework finds the optimal temperature very quickly. The
next design input to reach convergence is the amount of carbon in the steel, followed by the
manganese concentration. We note, however, that the silicon signal is very noisy and there is
no indication of convergence. The slower convergence of manganese and non-convergence in
silicon is somewhat expected since both elements do not play a significant role in controlling
the normalized strain hardening rate of the material.

Finally, after all the evaluations are done and the system has built the final fused mod-
els, the fused models mean functions are searched to find the highest objective value they
suggest. However, the predicted objective value is not important in itself, but rather, the
corresponding design point is more valuable. The optimal design point suggested by all three
approaches is compared with the predictions of a single PSP chain involving thermodynamic
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calculations coupled with microstructure-based finite element calculations (RVE) in Fig. 7.
In the figure, the contour plots show the variation of the maximum objective value where the
maximum is taken over two (hidden) design variables, χ3 and χ4, for a given set of values of
the remaining two (displayed) design variables, χ1 and χ2, i.e. max [fχ1,χ2 (χ3, χ4)], with χ1

and χ2, as obtained from the predictions of the aforementioned single PSP chain. Similarly,
two out of four optimal design variables suggested by all three approaches are plotted at a
time in Fig. 7. As expected, the CC-CC policy still makes predictions slightly different than
the NCC and CC-IC policies. This may be because with a fewer number of queries from the
RVE, the system has made less corrections to the fused model prediction compared to NCC
and CC-IC policies. On the other hand, both the NCC and CC-IC policies are predicting
the optimal design point very closely to the ‘true’ optimal design point. Furthermore, from
the chemistry/processing (design) space exploration plots in Fig. 7 it can be noted that
the true optimal solution is not unique. For example, in Fig. 7a, we see that an objective
value of (1/τ) (dτ/dεpl) ≈ 32 has multiple solution in temperature and carbon space, i.e.
the optimal solution is a region in the temperature and carbon space. Similarly, in Figs. 7b
and 7c we see that the solution in temperature and manganese space, and temperature and
silicon space, respectively, is also not unique.

4. Discussion

In this work, we expanded on our prior work [13, 14] on multi-information source fusion
BO framework to account for the material design space that are truly amenable to modifi-
cations without concerns on whether they are feasible or not. Note that while promising, a
microstructure discovered by only considering material microstructure as design space can
be optimal in principle but may not be accessible in practice. We have demonstrated our
framework by optimizing the performance of a material with material chemistry and pro-
cessing conditions as the design space, thus truly realizing the ICME paradigm. Specifically,
we have utilized our material design framework to optimize the strength normalized strain
hardening rate (a single metric that provides an indication of the ductility and formabil-
ity ) of a dual-phase (ferrite-martensite) material by adjusting the composition and heat-
treatment temperature of the material. The framework utilized a surrogate model of the
thermodynamic results to predict the phase volume fraction and composition in the ma-
terial microstructure post single-stage heat-treatment (intercritical annealing followed by
quenching), which was then used to predict the mechanical properties of the dual-phase
material using a variety of micromechanical models (as cheap information sources) and a
high throughput microstructure-based finite element model (as expensive ‘ground truth’).

The material design framework developed herein was tested under three different con-
ditions. These conditions were shown to affect how quickly the framework attained a suf-
ficiently high value of the objective function and the information sources that were used
to achieve that solution. For example, it was seen that when comparing the NCC (no
cost considetation) to the CC-IC (cost consideration-iteration controlled) or CC-CC (cost
consideration-cost controlled) policies, the NCC policy was able to utilize all the information
sources while the other policies only favored queries from the cheaper models. The results
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Figure 7: The optimal design point corresponding to the maximum objective value found by the three
optimization processes, No Cost Constraint (NCC), Cost Constrained - Cost Controlled (CC-CC) and Cost
Constrained - Iteration Controlled (CC-IC), are overlaid on the contour plots of the normalized strain
hardening rate (objective) in the design space (temperature, carbon, manganese and silicon) generated by
extensively exploring the ‘ground truth’ process-structure-property modeling chain involving thermodynamic
calculations coupled with microstructure-based finite element calculations (RVE).

indicate that querying extensively from all models leads to an increased exploration of the
design space. This, however, may not be desired for real life design problems where it is often
necessary to obtain an optimum material composition within a tight budget constraint. In
this regard, it is worth mentioning that when studying different policies by comparing the
amount of cost they have incurred and the objective values they have obtained, the CC-CC
policy showed significantly better performance by using less resources compared to the other
two policies. This highlights the value in extensively extracting information out of cheaper
information sources.

One big challenge in the optimization of an unknown design space is how to ascertain
that the solution obtained from the optimization framework has converged. To address
this challenge, we utilized the distance of the suggested optimal design point to a fixed
reference point at every iteration in order to track the convergence of the framework. This
convergence is strongly tied to the influence that a given dimension(s) in the input space
has on the final objective function. For example, in problem at hand, temperature and
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carbon have the biggest influence on the objective function and it is to be expected that the
solution subspace corresponding to these to input variables converges relatively fast. On the
other hand, silicon and manganese only have a weak influence on the objective, thus it is
expected that a rather broad range of their values can lead to similar values of the objective
function—the design space is almost degenerate with respect to silicon and manganese, once
an optimal region within the temperature-carbon ‘slice’ has been identified. This makes the
optimization of those two parameters extremely challenging, and highly ‘oscillatory’.

The fact that not all the dimensions in the problem are equally influential (recall Fig. 6)
points to a possible strategy to make this framework even faster and more efficient: find
and follow directions (i.e. subspaces) in the design space along which the objective function
changes the most. This approach, known as the active subspace method [40], decomposes the
design space in such a way that at any time only the most ‘influential’ or ‘active’ subspaces
are considered when trying to find the optimum in a multi-dimensional space. Effectively,
this approach would reduce the dimension of the problem, accelerating the rate at which
the solution is approached. As hinted above, in this problem we would expect that such an
active subspace search would hone in on the temperature-carbon subspace prior to refining
the optimization by exploiting the manganese and/or silicon coordinates. As of this writing,
the authors of the present work are developing and testing a multi-information source fusion
BO framework with active subspace search, to be presented in a forthcoming work.

5. Concluding remarks

We have presented a materials design framework for optimizing the mechanical prop-
erties of a dual-phase material using a multi-information source fusion approach. This
framework utilized a thermodynamic model in order to predict the phase constitution (a
stand-in for microstructure information) of a dual phase steel, and then used a variety of
micro-mechanical models with varying degrees of fidelity and cost, to predict its mechanical
behavior under tensile loading. The method was shown to be robust when subjected to
various resource constraints that imposed restrictions on how the framework would query
the expensive high-fidelity ‘ground truth’. It was found that these constraints played an
important role on how different information sources were queried by the framework. The
results demonstrate that in the case where we do not consider the actual computational cost
of each information source and do not impose any budgetary constraint, the framework has
a tendency to exhaustively explore the available information sources. On the other hand,
when we impose tight budget constraints, the framework extensively extracts the informa-
tion out of cheaper information sources and is still able to provide a reasonable prediction
of the optimum design space.

While the proposed materials design framework has been demonstrated to be extremely
robust in realizing the ICME paradigm, this work instigates several possible future direc-
tions. For example, the current work employs a simple single information source along
the chemistry/process - structure chain. An obvious next step will be to also incorpo-
rate more sophisticated thermodynamics/kinetics-based modeling schemes (perhaps imple-
mented through phase-field simulations [41]) to not only predict the phase volume fraction
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and composition in the material microstructure but also grain size and morphology of the
constituent phases. Another possible future research direction will be to incorporate the
active subspace method [40] in order to take advantage of the fact that in most materi-
als design problems—and engineering design problems in general—the objective function is
more sensitive to some input variables compared to others. Exploiting such information can
lead to even faster and more efficient materials optimization schemes.
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