Assessing Computational Thinking through the Lenses of

Functionality and Computational Fluency

Shari J. Metcalf, Joseph M. Reilly, Soobin Jeon, Annie Wang, Allyson

Pyers, Karen Brennan and Chris Dede

Harvard Graduate School of Education, Harvard University, Cambridge, USA

Shari J. Metcalf, Joseph M. Reilly, Soobin Jeon, Annie Wang, Allyson Pyers, Karen Brennan & Chris
Dede (2021) Assessing computational thinking through the lenses of functionality and computational
fluency, Computer Science Education, DOI: 10.1080/08993408.2020.1866932

Assessing Computational Thinking through the Lenses of
Functionality and Computational Fluency

Background and Context: This study looks at computational thinking (CT)
assessment of programming artifacts within the context of CT integrated with
science education through computational modeling. Objective: The goal is to
explore methodologies for assessment of student-constructed computational
models through two lenses: functionality and conceptual fluency. Method: This
study uses data from research with EcoMOD, a 3™ grade ecosystem science
curriculum in which student pairs program computational models of a beaver
building a dam. Snapshots of programs for 47 student pairs collected over time
are assessed. Findings: A functionality-based rubric provided assessment of
student task progress, but was less successful at correctly identifying CT gains in
programs that were partially correct. A rubric for conceptual fluency identified
development of fluency in CT concepts of sequencing, loops, and conditionals.
Implications: This study contributes to the literature by exploring affordances of

different rubric-based CT assessments of student programs.

Keywords: Computational Thinking; Assessment; Block-based Programming

Introduction

The importance of computational thinking (CT) (Wing, 2006) as a learning goal has
been increasingly recognized by researchers and educators (Lye & Koh, 2014; Grover
& Pea, 2018; Israel et al., 2015). CT can be generally defined as a way of thinking that
includes many of the skills and practices that are part of computer programming, such
as algorithmic thinking, logic, abstraction, generalization, decomposition, and
debugging, but are also applicable to many areas beyond programming. (Buitrago,
Florez et al., 2017).

CT is recognized as a foundational competency for problem solving in STEM
contexts (Grover & Pea, 2018; NGSS Lead States, 2013) Approaches to integrating
computational thinking and STEM education include its use for computational

modeling — using computational tools to develop models of scientific phenomena, and

promoting learning through the creation, testing, and manipulation of these models
(Sengupta et al. 2013; Weintrop et al., 2016; Aksit & Wiebe, 2020; Wagh et al, 2017).
Modeling is a fundamental practice of science (Giere, 1988; Nersessian, 2008; Lehrer,
2009), and CT aligns strongly with science learning as a means of representing
scientific phenomena through the construction of computational models (Sengupta et
al., 2013).

Assessment of CT is a growing field of research, with many forms of CT
assessment developed and tested with students at different grade levels, and based on
different CT definitions, models, and theoretical frameworks (Tang et al., 2020). A wide
range of methodologies are used for CT assessment, including multiple-choice or open-
ended tests, performance or task-based assessments, and portfolio assessments (Adams
et al., 2019). Some assessments focus on CT concepts, while others include practices as
well (Shute et al., 2017). The goal of embedding CT in STEM contexts brings
challenges about the assessment of CT as it is integrated in different subject areas, and
how those varied contexts inform the ways in which CT can be assessed (e.g., Hutchins
et al, 2019).

This paper discusses methodologies to assess students’ computational thinking
through examining their programmed computational models. For this research, we have
chosen to develop assessments of student performance on a specific task involving
computational modelling as part of a 3™ grade science curriculum. Using a curriculum
that involves students in developing computational models, we present two
complementary methodologies for assessing the code of these programs. Each
methodology acts as a distinct lens on the data and defines the understandings we are
able to measure; the strategies used to analyze the data provide different information for

assessing student learning. We share our findings about the aspects of computational

thinking that can be assessed using each type of analysis and discuss the implications of
each rubric for student assessment. The information about student errors and hurdles
that emerged from our analysis was also used to inform improvements in the curriculum
and teacher professional development materials that formed the basis of our study.

The data for this study are derived from an elementary curriculum called
EcoMOD (Dickes et al., 2019) in which students are engaged in programming
computational models of scientific phenomena. EcoMOD is an ecosystems science
curriculum that blends an immersive virtual environment with an agent-based
computational modeling tool to support growth in computational thinking and
ecosystems science for 3™ grade learners (age 8 to 9 years old). During the 14-day
curriculum unit, student pairs spent two class periods programming models of a beaver
building a dam. Logfile data collected on pairs’ programming activities included
snapshots of student code whenever they ran their programs. For this study, we
analyzed these program snapshots to assess developing fluency in computational
thinking concepts.

The rest of the paper is organized as follows. We first present related work in
CT, computational modeling, block-based programming, and CT assessment. We
describe the goals of the study, and our methods, including the design of the EcoMOD
curriculum and programming tools, the study design, the classroom research that was
conducted, and the two types of methodological analyses we performed with the study
data. We present our findings for each of the two types of analysis, and conclude with a

discussion of the findings and insights on the design of CT assessments.

Literature Review

Computational Thinking and Programming

Programming and CT are deeply intertwined; most CT research involves students
learning programming as a means to learn the concepts and skills related to
computational thinking (Lye & Koh, 2014; Israel et al., 2015). Brennan and Resnick
(2012) characterize programming as a “setting for developing capacities for
computational thinking,” and Shute, Sun, and Asbell-Clarke note that, while CT and
programming are not the same, “being able to program is one benefit of being able to
think computationally” (2017, p. 5).

Brennan and Resnick (2012) developed a CT framework in the context of the
visual block-based programming language Scratch. It involves three key dimensions:
‘computational concepts’ (sequences, loops, events, parallelism, conditionals, operators,
and data); ‘computational practices’ (experimenting and iterating, testing and
debugging, reusing and remixing, abstracting and modularizing); and ‘computational
perspectives’ (expressing, connecting, and questioning). Rich et al. (2017) derive
learning trajectories for K-8 computational thinking from the research literature,
describing trajectories for three of those computational concepts: sequence, repetition
(or looping), and conditionals. The K-8 learning goals for these three concepts can be
summarized as (Brennan & Resnick, 2012; Rich et al., 2017):

e Sequence: A task is expressed as a sequence of actions. The order in
which the actions are carried out can affect the outcome.

e Looping: Many tasks include repeated actions. Loops are a mechanism
for repeating an action or sequence of actions multiple times.

e Conditionals: Different conditional states may cause different actions to

be carried out. More advanced learning includes the use of multiple or

overlapping conditionals, and the use of conditionals with loops, e.g., to
determine when to stop a repetition.
For our research, we focus on student learning of these three core computational
concepts: sequences, loops, and conditionals, during the EcCOMOD programming

activity.

Computational Modeling for Science Learning

Recently, there has been substantial work that looks at integrating CT with K-12 science
learning (Sengupta et al., 2013; Wagh et al., 2017; Aksit & Wiebe, 2020; Lee, Martin &
Apone 2014; Weintrop, et al., 2016; Ryu, Han, & Paik, 2015), primarily in the form of
computational modeling. Computational modeling can be considered a subset of
computational thinking as applied to STEM education (Sengupta et al., 2013; Weintrop
et al., 2016). And likewise, it has long been recognized that a benefit of constructing
scientific models is this provides a meaningful way to learn programming (Papert,
1991).

Studying a phenomenon by constructing a model provides a means for students
to organize and test their knowledge of science concepts by converting concepts and
relationships into computational structures that can be executed to generate model
behaviors (Sengupta et al 2013). Decomposing a phenomenon into the steps needed to
construct a model can make concepts and relationships more explicit (Hutchins, 2020),
and the real-time animations and graphs provided by computational models offer
scaffolding for interpreting and understanding the modeled phenomena, as well as a

means for model validation (Sengupta et al., 2013; Yoon et al., 2016).

Block-based Programming and Modeling

Visual programming tools and environments have made programming much more

accessible to learners, and at an earlier age (Weintrop et al., 2018). Block-based
programming languages such Scratch (Resnick et al., 2009) have been a significant
breakthrough for learning programming. Block-based languages are important for
novice learners because programming is done by dragging and dropping program blocks
together, a feature which eliminates the chance for syntax errors (Weintrop & Wilensky,
2017). Block-based interfaces engage young students in intuitive and engaging ways
with code, including a palette of blocks that display the available set of commands, as
well as visual cues (e.g., color, shape) that indicate block categories and usage. Further,
many block-based programming environments are interpreted, rather than compiled, a
feature that promotes tinkering (Maloney et al., 2010). Users can cycle between editing
and running code with immediate feedback, able to quickly move blocks in and out of a
workspace as they run and debug projects.

Similarly, the accessibility of block-based languages has made it possible to
develop computational modeling tools for STEM learning in younger grades (e.g.,
Dwyer et al., 2013; Wagh et al, 2017; Aksit & Wiebe, 2000).

Agent-based modeling is a type of modeling found to be particularly effective for
science learning (Dickes et al., 2016; Klopfer et al., 2005; Weintrop et al., 2016). An
“agent” is a computational object that is programmed with simple rules. As the agent
interacts with its environment and/or other agents, in a 2D graphical visualization,
emergent, observable effects appear over time. Again, visual block-based authoring
environments have been found to make agent-based programming more accessible. For
example, ViMap (Sengupta et al., 2015) provides an abstraction layer over NetLogo,
allowing students to focus on their modeling tasks without being overwhelmed by the
NetLogo programming language syntax (Hutchins et al., 2020). Sengupta, Kinnebrew,

Basu, Biswas, and Clark (2013) describe design strategies to make agent-based

modeling accessible to elementary learners using a visual programming interface,
including using the right level of programming primitives, providing means to step
through and visualize code execution as an aid to debugging, and making it easy to

iterate through build-test cycles.

Computational Thinking Assessment

Numerous studies have examined strategies for the assessment of CT; overviews of the
state of the field are presented in recent publications (Tang, et al., 2020; Adams et al.,
2019). The most common assessment strategies involve multiple-choice or open-ended
tests. For example, the Computational Thinking Test (CTt) for middle school learners
includes 28 items and assesses seven CT programming concepts synthesized from CT
frameworks, including sequences, loops, and conditionals (Roman-Gonzalez, Pérez-
Gonzalez, & Jiménez-Fernandez, 2017). Some assessment tests try to minimize
familiarity with specific computing platforms, such as an assessment by Chen et al.,
(2017) that includes pre-post items measuring both coding in robotics and reasoning in
everyday events. Others, like Grover and Basu (2017), use assessment items in a
specific programming language (Scratch) to measure understanding of programming
constructs.

Another strategy for assessment uses performance or portfolio assessment. In
some cases, researchers create tasks for students to complete and use a rubric to
evaluate their work products (Werner, et al., 2012; Franklin et al., 2017). In others,
students are given an assessment that is task-based, such as the Bebras tasks (Dagiene &
Stupuriene, 2016), designed for an international computer science contest, but also used
for CT assessment (Roman-Gonzalez, Moreno-Ledn, & Robles, 2017). Sometimes, the

program or portfolio produced by students is created during open-ended design

activities, which are then analyzed for evidence of CT understanding (Brennan &
Resnick, 2012).

When student artifacts are analyzed for understanding of CT, analysis can
include a determination of what level of understanding students have achieved on
specific concepts or practices. For example, the application Dr. Scratch (Moreno-Ledn
et al., 2015) performs automated portfolio analysis of Scratch projects. To assign a CT
score, Dr. Scratch infers competence on seven CT concepts based on analysis of code
blocks; for example, competence of flow control is scored as basic if the user uses
sequences of blocks, developing for use of “repeat” and “forever”, and proficient for use
of “repeat until” blocks. Franklin et al. (2017) describe analysis of student programs
through identifying milestones for student progress in demonstrating understanding of
CT concepts, the milestones representing different levels of proficiency. Artifact
analysis can also identify particular challenges or hurdles for students; for example,
Blikstein et al. (2014) used learning analytics to identify “sink-states” where students
got stuck in coding.

Some evaluations of programming artifacts also look at intermediate steps or
iterations of the program as it is being composed. The advantage of looking at student
programming in process is this can be a means to see students’ progression while
solving a problem, and to gather patterns about student learning progressions and
challenges (Villamor, 2000; Blikstein et al., 2014; Worsley & Blikstein 2013; Lane &
VanLehn, 2005). For example, Troiano et al. (2019) used Dr. Scratch on snapshots of
student programs captured over time, rather than just their final products, in order to

analyze trajectories in student CT development.

Goals of this study

As part of our research with EcoMOD, we designed a custom block-based programming

9

tool for agent-based programming, with which students construct agent-based models of
a beaver building a dam. In this paper, we describe our assessment of the agent-based
modeling programs constructed by student pairs during a study conducted using the
EcoMOD curriculum. The assessment process was design-based, and we examined
student artifacts through two lenses. First, we conducted an analysis based on their final
programming product, using a rubric-based assessment to determine the success of their
code in executing the steps for the beaver to build a dam; we considered this a measure
of functionality. We found a mismatch between the scoring and our intuition as
educators, particularly for assessment of partially successful models, in evaluating the
pairs’ level of CT understanding. We therefore developed a second analytic approach
that was more faithful to student learning, using a rubric-based assessment to capture
developing fluency in the use of CT constructs of sequences, loops, and conditionals.
We considered this a measure of conceptual fluency complementary to our measure of
functionality. Through both of these lenses, we also identified common errors and
hurdles that informed the design of our student-facing and teacher professional

development materials.

Research Questions

Our research questions for the study are as follows:

(1) What aspects of computational thinking in EcoMOD, if any, can be assessed via
a functionality rubric?

(2) What aspects of computational thinking in EcoMOD, if any, can be assessed via
a conceptual fluency rubric?

(3) How can CT assessment of program artifacts inform EcoMOD curriculum

design?

10

Methods

EcoMOD Curriculum

EcoMOD is a 14-day, inquiry-based curriculum for 3rd grade that focuses on ecosystem
interactions, science practices around modeling, and computational thinking. In
EcoMOD, students explore a forest ecosystem and learn about behaviors and causal
interactions related to a beaver building a dam. When the beaver builds a dam, it creates
a pond, with cascading effects over time on the landscape and other species.

EcoMOD is centered on two computational tools: a 3D immersive virtual world
and a 2D modeling tool. In the 3D world (Figure 1, left), students engage with a realistic
forest ecosystem, to explore, observe, collect data, and travel in time. The 3D virtual
world also includes a point-of-view (POV) tool that gives students the opportunity to
“be” a beaver building a dam. The experience of being a beaver helps students learn the

steps involved in building a dam, as well as avoiding the predatory wolf.

B eSS E0

Figure 1: 3D immersive virtual ecosystem (left) and Beaver POV tool (right).

The 2D modeling tool supports computational modeling activities, as students
program an agent-based model of a beaver building a dam (Figure 2, left), using
domain-specific visual programming blocks. Model outcomes are visible in a 2D
sandbox that represents an abstracted version of the ecosystem (Figure 2, right). The
sandbox includes other species, such as mallards and trout. These agents are not

programmable but do respond to changes in the ecosystem. There are controls for

11

different setup options (e.g., the width of the stream, the density of the trees, whether a

wolf is present). Graphs allow students to view the emergent outcomes of their models.

@ BLOCKS @ WORKSPACE @ »piay (HRESED o™
[

DATA GRAPHS ®

POPULATION
st | bngin ' motar | margansars

Time

WATER FLOW

©

Figure 2: 2D model of a beaver building a dam (left) Data graphs in 2D tool (right)

There are four types of blocks (Figure 3): action blocks such as “move toward”
and “bite tree”, action variables used to specify an object (e.g., tree, log), conditional
blocks (“if,” “if/otherwise,” and “repeat until”), and conditional variables, i.c., Boolean
variables, to test state (e.g., “at tree,” “have log”). The workspace has an implicit
forever loop: when the program is running, the program steps through the code blocks
in the workspace in a continuous loop. For example, if the “move toward tree” block is
placed in the workspace and the play button is clicked, the beaver will take one step
toward the closest tree, and then loop, taking another step, then another, until the beaver

is at the tree and stays there.

move toward -

have log
bite tree

I

pick up log
don't have log

put down log otherwise

build lodge at water

repaat until near predator

dam finished

|

12

Figure 3: EcoMOD programming blocks

A message window at the bottom of the screen displays feedback messages for
assistance in debugging. For example, if the “bite tree” block is executed when the
beaver is not at a tree, a message from the beaver says, “I am not at a tree so I can’t bite
a tree.” Some errors prevent the program from running, for example, a conditional block
without a variable filled in, while others (like the “bite tree” example) just skip the
block’s action.

Within this constrained task and limited set of blocks, there remains a range of
possible working solutions. Three examples of working models developed by student
pairs in this study are provided in Figure 4. In the three examples, the action blocks
follow roughly the same sequence, but vary in choices of conditionals and use of nested
conditionals.

if don't have log

move toward

repeatuntll dom finished

g
if near predator

it ot tree ,,
—_r' move toward dem
bite tree

it at log at tree

wm s pick up log mc;ve toward tree

move toward tree
| —

have log
repeat until i nave log

bite tree move toward d9am
55’
pick up log
i at dom at dam
until at dam) £
npem put down log move toward < dem
move toward dam
' S~

put down log

put down log e
build lodge build lodge

dam flinished

build lodge

13

Figure 4: Three successful computational models for the beaver building a dam.

Beyond a very limited introduction to the 2D modeling tool, no formal
instruction in programming is included in the curriculum. The teacher explains the four
types of blocks, and demonstrates the interface: how the workspace works, how to drag
code blocks in and out, run the program, stop, reset, and change the speed. Students use
the 2D modeling tool on days 4 to 7 of the 14-day EcoMOD curriculum. During the first
two programming days, they work on programming a model of beaver building a dam,
following the steps they observed and enacted in the 3D world. On the beginning of the
third programming day, the teacher brings the students together to build a functional
“class model” based on suggestions from students and discussion about the
programming. Students who do not have a working model are encouraged to copy the
class model at this point, so that they can transition to using their now functional models

to explore effects of the beaver dam on the rest of the ecosystem.

Participants

This study examined data from five classes of 3rd graders (ages 8-9 years old) from
three schools in three different school districts in New England, led by four different
teachers. Permission slips were sent home with parents to approve participation in the
study. For this study, students worked in pairs on a shared computer, with occasional
exceptions when there were an odd number of students in the class or if there was a
student absence. In these cases, unpaired students worked individually. After filtering
for permission, data from 47 pairs were analyzed for this study. Teachers encouraged
students to take turns when programming. As they engaged in coding, the teacher
circulated to check in and provide support, especially for student pairs who appeared to
be struggling. Students spent an average total of 45 minutes coding over two class

periods, before a “class model” was built.

14

Data Sources

Snaphots of student programs

The primary dataset for this study was obtained from the backend log files gathered
automatically by the EcoMOD curriculum software and stored remotely on a University
server in a PostgreSQL database. These log files contain, among other events, logged
snapshots of the students’ program (as in Figure 4, above) that are automatically
generated each time the program is modified and run. To facilitate human coding, a
script created PDF documents of these saved programs, showing each program in order,
with timestamps, for each of the student pairs in the study. These program snapshots

were then analyzed for this study.

Prior Programming Experience Survey

A survey of prior experience with programming was given to the students to see what
associations prior experience might have with task performance. Students were asked
which common apps, languages, or websites they had used, including code.org, Scratch,
Minecraft (redstone, modding, or other coding), Arduino, Javascript, Gamemaker, Lego
Mindstorm, Tynker, App Creation/App Inventor, and Python, or other. Students were
also asked where they had previously learned programming or coding. Then students
were asked “Overall, how much programming or coding would you say that you’ve
done?” Students who responded with “none”, “less than a week,” or “a few weeks”
were classified as beginners, while those who selected “less than a year” or “more than
a year” were classified as experienced.

Teachers formed the pairs without taking into consideration students’ prior
programming experience. As a result, the pair combination of beginner, intermediate,

and experienced students in programming varied in each class. In this sample, 14 pairs

15

were both beginners, 19 pairs were beginner/experienced, and 13 pairs were made up of

two experienced students. Quality of programs was analyzed by prior experience level.

Rubric Design and Validation

Program analysis began by identifying each student pair’s “final” model developed
during independent programming. This was usually the last snapshot before the teacher
built a model with the class. Occasionally, however, because pairs hadn’t yet built a
working model, they may have just cleared the workspace and started over when time
was up. In those cases, beginning with the final snapshot before the class model, we
worked backwards to identify the latest model that was closest to a working solution.

This final model was then coded according to two different rubrics, as follows.

Functionality Rubric

We first developed a functionality rubric to score how well the final model
achieved the programming task: to build a dam and lodge while avoiding a predator.
The rubric was based on the steps required of the beaver to complete the activity, as

follows:

(1) Moving to a tree

(2) Biting tree until it became a log

(3) Picking up a log

(4) Bringing a log to dam and putting it down

(5) Finishing the dam (repeating the above sequence until the dam is finished)
(6) Building a lodge (executing the “build lodge” block once the dam is finished)

(7) Avoiding the predator (using the “near predator” conditional appropriately)

The task is strongly ordered, so that a program that achieves a step of the rubric must

16

have also been able to do all the previous tasks. The final model was therefore given a
score of 0-7, based on the highest-numbered step the program was able to accomplish.
The main goal of the task given to the students is building a lodge, for a score of 6, but
pairs who were able to build a lodge were challenged to add predator-avoidance
behavior to their models as well. Models that do so successfully are given a score of 7.
The first two working models in Figure 4 (above) score 6, and the third scores 7
because it also checks for a predator nearby. But when this rubric was applied to
partially built models, we found that it was less accurate at evaluating how close
students were to a correct solution. For example, a very simple sequence of three blocks
might score 3, as in Figure 5a (below), because the workspace loops automatically, so
eventually the beaver will reach a tree, bite it enough times, and pick up the resulting
log. Other models in which the pair shows a developing understanding of loops and
conditionals, as in Figure 5b, score 0 since the program doesn’t work at all. It fails
because the beaver will take one step toward the tree, but then as the program executes
the “otherwise” actions, the beaver will take one step toward the dam. This forward-

and-back “dance” was a challenging hurdle for many pairs.

17

w“ dam finished

move toward ree

bite tree

e

dick up log

at dam

move toward = tree
put down log

bi(é tree

pick up log
move toward
put down log
build lodge

—

Figure 5. Examples of partially built models.

Conceptual Fluency Rubric

We then developed a conceptual fluency rubric that was more closely tied to student
development of fluency in CT concepts. According to this rubric, the score is positively
correlated with increasing complexity in the use of sequences, loops, and conditionals.
The scores in this rubric represent milestones, similar to those in Franklin et al. (2017),

as follows:

(1) Sequence: putting steps in order
(2) Loops (beginning) recognizing the need to repeat instructions, evidenced one of
three ways:
(a) Using the same block multiple times to repeat an action.
(b) Using one block at a time in the workspace, to take advantage of built-in

looping.

18

(c) Putting the whole sequence inside a “repeat until dam finished” block.
(3) Loops & Conditionals (basic: completing one subtask (e.g., move toward tree)
using conditional blocks.
(4) Loops & Conditionals (developing): attempt to use multiple or nested
conditional blocks.
(5) Loops & Conditionals (proficient): program almost successful, one error.
(6) Loops & Conditionals (advanced): Successful: fully working program.

(7) Advanced, with additional use of “predator nearby” conditional.

A score of 1, representing an understanding of sequence, involves simply putting
the action blocks in the correct order, without any conditional blocks. A score of 2,
beginning use of loops, includes three early strategies: (a) “step-by-step” repetition
busing the same block multiple times in sequence (as in Figure 6a); (b) repetition “by
hand,” through an interface quirk in which code can be edited without resetting the
environment: Place a single “move toward tree” block in the workspace, click play and
wait until the beaver reaches a tree, then remove it and place the new block “bite tree.”
Then click play again, and since the beaver is already at the tree and it bites the tree, and
so on, until the dam is complete; (c) placing the sequence of blocks inside a “repeat
until dam finished” block (Figure 6b).

Scores of 3 through 6 represent stages of proficiency in the use of loops and
conditionals, labeled as basic, developing, proficient, and advanced. Figure 6c¢ is an
example of model scoring 3, basic proficiency. Figure 5b, above, would score 4,

developing proficiency.

19

move toward

- dam finished]
move toward ’

move toward tree
move toward

St bite tree
move toward

e
bite tree

pick up log

move toward dam

bite tree

pi;c up log

pika up log move toward = dam

ut down |
move toward P °9

) pl\.l_t"dOWf\ log

put down log

Figure 6. More examples of partially built models.

Rubric Validation

Two raters, both members of the research team, applied the functionality rubric to all 47
pairs. The raters had prior familiarity with the software and programming task, and
helped develop and refine the rubrics. Initial inter-rater reliability calculations resulted
in a Cohen’s Kappa of 0.631 (69% agreement). After meeting to discuss results, it was
discovered that each coder had different interpretations of how to select the final
program pairs used prior to being given the class model. After resolving the program
selection procedure, the raters re-coded the programs with the functionality rubric with
100% agreement. Subsequently, the conceptual fluency rubric was applied in a similar

fashion. Inter-rater reliability calculations for this rubric resulted in a Cohen’s Kappa of

0.86 (90% agreement).

Case Study Comparison

In order to understand the differences found between scores using functionality and
conceptual fluency rubrics, we selected two pairs to examine in-depth as a case study.
One of these pairs was selected randomly from those that scored a 0 on their final

20

functionality rubric evaluation, but had previously run programs that made more
progress. The second pair was randomly chosen from those that scored a 6 on the
functionality rubric. In order to explore how their programs evolve over time, both
rubrics were applied to all program snapshots of the two pairs, in contrast with the
original analyses that considered only a final model from each pair. The two pairs were
from two different schools involved in this study and thus had different teachers. Pair #1
was a beginner/experienced pair; pair #2 was made up of two beginners. While more
examples would be beneficial for an in-depth analysis, the development of the current
rubrics for use on final student programs is the focus of the work and deploying them

reliably across all programs for all students was prohibitively time-consuming.

Results

Functionality Rubric

Results from applying the functionality rubric are shown in Figure 7. Scores were
clustered at several points as follows. The most common score was 0, or “no tree”,
meaning that the program does not achieve even the basic objective of the beaver
moving to a tree. The next most common stopping points were at 3, picking up a log,
and at 6, completing the task by building a lodge successfully. Note that pairs scored at
“avoid predator” were also able to successfully build the lodge, so 15 of the 47 pairs, or

32%, were fully successful, and 64% received a score of 3 or better.

21

12

11
10 10
10
5
4 4
2
l 1
0 } } } . - : } }

Notree Moveto Bitetree Pickuplog Logto Finishdam Build Avoid
tree dam lodge Predator

of Pairs
I oy 0

[\

Score

Figure 7. Count of all final functionality scores.

The 11 models that scored a 0 were those in which one or more errors kept even
their “best” program from working at all. Due to the continuously looping nature of the
programming tool, a single “move to tree” block is enough to get the beaver to move to
a tree and thus a score of 1. Once at a tree, the addition of a “bite tree” and a “pick up
log” block will rapidly get pairs to the next observed plateau at a score of 3. To bring
the log back to the dam, however, represents a major increase in difficulty of the task,
because of the forward-and-back dance of moving toward tree and toward dam. To
identify which direction to move, conditional logic using multiple conditional
statements must be used to successfully move on to the next scoring tier. Once that has
been achieved, however, there are no new major conceptual barriers required to
complete the task. Pairs that finished at “finish dam” instead of “build lodge” simply
omitted a single block that actually built the lodge after the dam was complete.

No combination of prior programming experience (beginner/beginner,
beginner/experienced, experienced/experienced) performed significantly better or worse

on the functionality rubric based on an ANOVA model and confirmed with a Tukey’s

22

honest significant difference test. Likewise, no classes performed significantly better or
worse according to this scoring, and no use of specific conditionals (if, if/otherwise,
etc.) was significantly associated with higher or lower functionality rubric scores. These

findings will be explicated in the discussion.

Conceptual Fluency Rubric

Results of coding using the conceptual fluency rubric are shown in Figure 8. 19 pairs
(40%) were scored as 4, developing understanding of loops and conditionals, having
recognized the need for and attempted implementation of multiple conditionals. An
additional four pairs scored as proficient, with one error away from success (e.g.,
omitting the “build lodge” block). Scores of 6 and 7 are the same for both rubrics: ten
pairs showed advanced use of loops and conditionals, with fully successful models, and
five pairs additionally showed an emerging understanding of events by checking for

predators while also completing other tasks.

20 19
18
16
14
12

10

of Pairs

S e

4
3
: . I
O»J: : : : : :

Sequence Loops L&C (basic) L&C (dev) L&C (prof) L&C (adv) Events
Score

Figure 8. Count of all final conceptual fluency scores.

23

Similar to the functionality rubric results, no combination of prior programming
experience performed significantly better or worse based on an ANOVA model and

confirmed with a Tukey’s honest significant difference test.

Case Study

For each of the two pairs selected for the in-depth case study (as described in the
Methods section), we examined all program snapshots during the process of their
programming activities over the two class periods. Each snapshot was coded with both
rubrics. Plots of how their scores change over time are provided, as well as a narrative
description of how their programs changed over time. In addition to applying the
rubrics, the analysis also attends to process over time by identifying the transitions
between program snapshots, e.g., adding to existing programs, revising/debugging
existing code, or erasing their program and starting from scratch.

Figure 9 shows a graph of the coding of the snapshots for Pair #1. This pair had
26 program snapshots, and plotlines show the change in rubric score using both the

functionality (in blue) and conceptual fluency (in red) rubrics.

—_

1 23 45 6 7 8 910111213 141516 17 18 19 20 21 22 23 24 25 26

e Functionality = === Conceptual Fluency

Figure 9. All functionality and conceptual fluency scores for Pair #1.

24

Pair #1 began by first running a program consisting solely of “move towards
tree” then added the blocks to “bite tree” and “pick up log” in the next iteration. This
second program easily accomplished the progress required for a 3 on the functionality
rubric without any additional looping or conditionals. Once a log could be picked up,
this pair then tried adding “move toward dam.” This additional movement block in
program 3 then hindered the beaver’s ability to initially get to the tree, thus reducing the
functionality score to 0 again. Pair #1 then tried several iterations of starting a new
program and adding new blocks to in different orders during programs 3-9 to address
this loss of functionality.

By program 10, this pair realized that “repeat until” blocks could solve this
movement-related issue for both aspects of the task, thus raising their conceptual
fluency score dramatically and regaining their prior functionality score. Programs 11-14
represent revisions to this program to fix mistakes (i.e., moving to “water” instead of
“dam”) and to try to implement the “put down log” behavior to the model. At program
13, the pair attempted to restructure their code to include more blocks inside “repeat
until” conditions, but some errors in implementation reduced their functionality score
again. Program 15 represented an attempt to start from scratch on a new day, this time
utilizing “if-otherwise” blocks to achieve their desired behavior. Programs 16 through
20 represent their attempts at revising this alternate method with varying levels of
success. Program 21 abandons this work in favor of a new program that attempts to
include all blocks in a “repeat until dam finished” conditional. In subsequent programs,
multiple “repeat until” and “if” statements are nested inside this conditional during a
series of revision and adding moves, but the pair never achieved the level of

functionality score they achieved with a simpler program.

25

Pair #2, in contrast, largely achieved all functionality and conceptual fluency
goals for the curriculum (Figure 11). Programs 1 and 2 established the basic sequence
needed to move and bite but were missing the “tree” portion of “move toward tree.” In
program 3, a “repeat until at tree” conditional was added, and program 4 added behavior
so that the beaver could successfully chop down a tree and pick up a log. In program 6,
a second “repeat until” conditional was used to move the beaver back to the dam with a
log. Program 7 showed the addition of a “put down log” command, and revisions made
by program 9 allowed the beaver to successfully build the dam. This program was
missing a “build lodge” command, thus limiting it from achieving a rating of 6 on the
functionality rubric. After some small-scale revisions, Program 12 includes the entire
program in a “repeat until dam finished” block. With the addition of a “build lodge”
command after this loop in program 14, the program is thus able to successfully
complete the task. An erroneously placed “move to tree” block was added in program

15 that hampered performance but was removed in the next iteration.

j N

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

e Functionality =~ === Conceptual Fluency

Figure 11. All functionality and conceptual fluency scores for Pair #2.

26

Discussion

Overview

With no prior instruction, fifteen of the 47 pairs were able to construct a fully functional
computational model of the beaver over approximately 45 minutes spread over two
class periods, and an additional four pairs were able to complete the task except the
final step of building a lodge. Using the functionality rubric, we found that pairs had an
average score of 3.38, with significant hurdles moving to multiple conditionals and
loops that often resulted in a score of 0 for partially complete models.

Assessment using the conceptual fluency rubric found that pairs that were not
able to finish in the limited amount of time allotted still demonstrated learning of CT
concepts such as sequence, loops and conditionals. All pairs showed an understanding
of sequence, and almost all pairs were able to at least engage in use of multiple or
nested conditionals, even when some encountered hurdles in getting them to work
together correctly.

Results from both rubrics revealed no significant differences between
beginner/beginner, beginner/experienced, and experienced/experienced pairs. This was
a surprising finding, possibly explained by having a rather small sample, but we can
also posit other possible explanations. The information on experience level was self-
reported by these young students in the pre-survey, so it is possible that some
misestimated the amount of time they spent programming in the past. It also seems
possible that time spent in coding activities may not be the most relevant criterion,
particularly considering the different types of previous experience (e.g., Minecraft
redstone versus Scratch). These coding activities may have different impacts on
students’ abilities to generate scientific models in this curriculum, as the task might

have been different enough from their prior experiences that the transfer was quite low.

27

The case study showed that both pairs’ scores largely increased over time
according to the conceptual fluency rubric as pairs grew in their use of loops and
conditionals. The functionality score for pair #1, however, repeatedly rose and fell as
pair #1 attempted different strategies with conditionals and wasn’t able to get their code
to work.

While not a focus of this research, looking at the longitudinal record of
programs over time in this way also offers the opportunity to look at use of CT practices
such as experimenting and iterating, testing and debugging (Brennan & Resnick, 2012).
As noted in the literature, these strategies distinguish experts from novices, but are also
the kinds of strategies that lead to novices becoming more effective in learning
programming (Robins et al., 2003). Case study pair #1 exhibited a pattern of throwing
out code that wasn’t working and starting from scratch, while pair #2 iteratively added
to, tested, and revised their model. Pair #2, then, could be said to be more effective in
their use of CT practices, though, as noted above, pair #1 was a beginner-experienced

pair and pair #2 were both beginners according to the programming pre-survey.

Assessment via functionality rubric

The first research question for this study asks what aspects of computational thinking
can be assessed with a functionality rubric. This type of rubric had several advantages,
namely that it provided a quick overview of student progress to see what curricular
milestone pairs reached. This style of rubric is easier to understand and apply as it does
not require in-depth knowledge of CT principles or learning progressions. Since the
elementary teachers using this curriculum are not necessarily familiar with CT or
computer science education, the scoring levels of this rubric are more easily understood

by our target users.

28

The functionality rubric is more linked with the curricular goal of scientific
modeling, and the rubric is constrained in a similar fashion to the programming tool
itself. There was only one possible series of steps by which the beaver could build the
dam, though there were a range of programming variations to implement those steps. A
functionality rubric would be more useful to assess the scientific accuracy of the model
if the code blocks were more flexible. The beaver is seen in the 3D virtual world acting
a certain way and students are shown videos of real beaver behavior. These
observations form the ground truth of what a beaver functionally can and cannot do, and
students are instructed to mimic these behaviors in their model. If pairs could change
the beaver to carry multiple logs, leap to a tree in one step, or attack the wolf, a rubric
like this could assess how closely the computational model aligns with the ground truth
seen in the 3D virtual world.

The results of this rubric could also inform the design of curriculum and suggest
new ways of supporting learners engaged in computational modeling. By seeing when
certain roadblocks happen (i.e., getting stuck trying to get the log to the dam), more
supports could be added for teachers to deal with these common issues. These findings
could also suggest when the class model should be introduced so that the teacher can
provide support when most pairs are at a similar stage. Conversely, this rubric had the
notable disadvantage of over-assigning pairs a score of 0. Even small errors in a mature
program may have meant a final score of 0, thus failing to consider progress made to
that point. Other very simple models resulted in higher scores since a score of 3 on the

rubric could be achieved with a few simple blocks and no conditionals.

Assessment via a conceptual fluency rubric

The second research question likewise asked what aspects of computational thinking

can be assessed with a conceptual fluency rubric. Unlike the functionality rubric, this

29

rubric provides more nuanced information about student progress towards
understanding CT. Students whose final model scored a 0 in the functionality rubric
often scored higher here as they had made progress towards using conditionals and
understood sequence at a basic level. We are able to see where they got stuck by
looking at this rubric, and could identify the common hurdle of the jump to needing
multiple conditional statements. Even if errors prevent programs from being fully
successful, this rubric is a much better assessment of CT with a focus on learning
sequences, loops, and conditionals.

This method of scoring programs can also drive curriculum development and
teacher-facing support. Modeling how to properly use multiple conditionals to achieve a
goal in the programming tool may help teachers see the types of errors students are
making and help them understand how to intervene. Eventually, automated supports
could also be included in the software depending on what error messages are being

triggered.

Ramifications for the curriculum

The third research question asked how this assessment can inform curriculum design.
The stages of program development exhibited by student pairs, as identified in the
conceptual fluency rubric, were used to inform revisions to the design of the curriculum
and professional development materials.

The computational modeling curriculum lessons were revised to address a
number of issues identified through this analysis. First, a discussion of the programming
blocks in the lesson plan was added to address student misconceptions. For example,
some students didn’t use “build lodge” because they didn’t understand it, so “lodge”
was introduced as a vocabulary word, as the home that beavers build in the middle of

the pond once it is formed by the dam. Also added was a discussion of differences

30

between similar blocks, e.g, What does it mean for the beaver to “have log” vs being “at
log?” What is the difference between “move toward water” and “move toward dam,”
and when would you use each one?

Lessons during student programming were also modified to support CT
processes. Recommendations were added for the teacher to model debugging strategies
with the class, including using the step function to see how each block in the code is
enacted, and looking at error messages to see how they can be used to debug (e.g., “I'm
not at a tree so I can’t bite a tree” suggests that the “bite tree” block should only be
executed when the beaver is at the tree). The lesson time was extended so that students
would have a chance to share their models with each other or the class — especially
including opportunities to share a place where they got stuck, in order to get feedback
from other students as well as the teacher.

Recommendations and tips for programming were also integrated into the
teacher-facing materials, to help teachers understand and explain to students about
sequences, looping, and conditionals, and to recognize common errors made by
students. For each common error, the materials provide ways to identify the error, why
it is an error, and ways to guide students in solving it. For example, one common error
addressed in the teacher professional development materials relates to students
repeating blocks instead of using a conditional (Figure 12). The “how you can help”
section includes questions teachers can ask students to provide hints and encouragement
for the student to figure out the next step. The step-by-step procedure will allow
teachers without much programming experience to be able to support students with

more confidence.

31

Common Error #3: Using the same block many times in order to
simulate a repeated action.

move toward Notice that:

move toward ® The student realizes that the beaver needs to repeat actions.
® The student doesn’t recognize how to use conditionals to make that happen.
move toward

Why it won’t work:

move toward

® |t may work sometimes, but it won’t work if the nearest tree is more than 5 steps away.

move toward
How you can help:

bite tree

® Prompt the student to open the error screen to see what it says is going wrong.
bite tree ® Turn the speed down and run the program. Pause after the first error message pops up “I'm

not at a tree, so | can’t bite a tree.”

bite tree ® Ask student why the beaver can’t bite the tree yet. (The beaver is not at the tree yet)

® Prompt: “When should the beaver bite the tree?”
bite tree ® Connect idea: “Beaver should only bite the tree if he is at a tree.”

® Help the student realize that you can use conditional statements to tell the beaver when to do
pick up log things.

Figure 12: Example page for Teachers’ Guide on helping learners during programming

activity.

Limitations and Future Work

This study assesses student use of computational concepts like sequence, loops and
conditionals, but it is not a direct measure of how well they understood these concepts.
Further exploration of student learning in EcoMOD via triangulation with traditional CT
assessment tests or structured interviews would help explore the extent of student CT
understanding. This activity also only involves a single programming task with a
specific goal. Now that the educational value of EcCOMOD has been established (Dickes,
et al., 2019; Jeon et al., 2020), a broader curriculum with increased opportunities for
modeling other types of creatures and systems may give students a chance to showcase
more CT learning. Furthermore, we note that human coding of program snapshots is
laborious, especially when examining partially built models that may contain errors.
While necessary for eventual automation, these scoring procedures introduce a

significant barrier to this type of assessment.

32

In addition to lowering the sample size, the use of pairs sharing one device lead
to issues of not knowing how equal contributions were within pairs. The resultant pair-
level scores left us unable to evaluate CT fluency by individual students within pairs.
Additionally, conversations within and between pairs were common as students sat in
clusters. These informal discussions are not captured and may have led to groups
learning from each other. Similarly, we are unable to tell when or if teachers intervened
or suggested a modification, versus pairs deciding on a new direction independently.
Future work can examine classroom video to explore these interactions, to see what
informal conversations looked like during the programming activity, as well as examine
teacher variation in implementation.

One important area for future research would be to consider how teachers might
be able to use these rubrics themselves, or to develop similar rubrics for different
contexts. For this study, the research team both developed and applied the rubrics to
student programs. The functionality rubric is relatively straightforward to apply; one
can determine how well the program achieves the task by running it. The conceptual
fluency rubric, however, requires more familiarity with coding in order to identify
milestones in fluency with CT concepts, so its use by teachers would likely involve
significant preparation and support.

Another interesting extension of this work could also include adapting these
rubrics into automated scoring tools similar to programs like Dr. Scratch (Moreno-Ledn
et al., 2015). Further, coding of pairs’ entire sequence of programs, as done for the two
case study pairs in this research, might be automated and analyzed for data about
student CT practices. Automated analyses might be used to identify sequences that
demonstrate more mastery in practices such as iteration, testing, and debugging, and

perhaps inform the design of scaffolding to guide students in these practices.

33

Conclusion

This study addresses CT assessment of programming artifacts constructed by student
pairs to achieve a specific agent-based modeling task. We first developed a rubric based
on functionality, and then, having identified limitations of this perspective, a second
rubric based on identifying evidence of conceptual fluency. We found that each
methodology provided a different lens on the data. The functionality rubric assessed
how well the program achieved the task, but was less successful at correctly identifying
CT progress in programs that were partially correct. A rubric for conceptual fluency, in
contrast, was more able to recognize stages of development in use of CT concepts.

The assessment of student CT understanding with EcoMOD found that, with no
direct instruction on programming, 3™ grade student pairs with minimal prior
programming experience were able to make progress in using computational concepts
of sequencing, loops, and conditionals. In related papers, and in our ongoing research,
we examine how the design of the intervention, using a visual, block-based interface
and a small set of custom, domain-specific building blocks, made the task more
accessible, as did the embodiment activities in the 3D world in which students could
take on the role of the beaver building the dam. (Dickes et al., 2019).

This research represents an exploration of CT assessment applied to a specific
context: agent-based computational models for 3™ grade ecosystem science learning.
The assessment rubrics described in the paper are based on two methodologies,
functionality and computational fluency, which we suggest can be applied broadly to
CT-based tasks beyond this context, to other age levels, and in different contexts.
Functionality assessment focuses attention on progress towards a programming goal,
while computational fluency assessment supports evaluation of milestones in use of CT

concepts. It is our hope that the findings related to these two assessment strategies may

34

inform future research and development of assessment of student programming artifacts
beyond this context, and may encourage future research that considers the affordances
of different dimensions of rubric-based CT assessment. We have added to the future
directions section a suggestion that future work might look into how teachers

might be able to use rubrics.

Acknowledgements

The authors would like to express our appreciation to Amanda Dickes for her intellectual
contributions to this work. This material is based upon work supported by the National Science
Foundation under grant No. DRL-1639545. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the authors and do not necessarily

reflect the views of the National Science Foundation.

References

Adams, C., Cutumisu, M., & Lu, C. (2019, March). Measuring K-12 computational
thinking concepts, practices and perspectives: An examination of current CT
assessments. In Society for Information Technology & Teacher Education
International Conference (pp. 275-285). Association for the Advancement of
Computing in Education (AACE).

Aksit, O., Wiebe, E.N. (2020). Exploring Force and Motion Concepts in Middle Grades
Using Computational Modeling: A Classroom Intervention Study. J Sci Educ
Technol 29, 65-82

Blikstein, P., Worsley, M., Piech, C., Sahami, M., Cooper, S., & Koller, D. (2014).
Programming pluralism: Using learning analytics to detect patterns in the
learning of computer programming. Journal of the Learning Sciences, 23(4),
561-599.

Brennan, K., & Resnick, M. (2012, April). New frameworks for studying and assessing
the development of computational thinking. In Proceedings of the 2012 annual
meeting of the American educational research association, Vancouver, Canada
(Vol. 1, p. 25).

Buitrago Florez, F., Casallas, R., Hernandez, M., Reyes, A., Restrepo, S., & Danies, G.
(2017). Changing a generation’s way of thinking: Teaching computational

35

thinking through programming. Review of Educational Research, 87(4), 834-
860.

Chen, G., Shen, J., Barth-Cohen, L., Jiang, S., Huang, X., & Eltoukhy, M. (2017).
Assessing elementary students’ computational thinking in everyday reasoning
and robotics programming. Computers & Education, 109, 162-175.

Dagiene, V., & Stupuriene, G. (2016). Bebras--A Sustainable Community Building
Model for the Concept Based Learning of Informatics and Computational
Thinking. Informatics in education, 15(1), 25-44.

Dickes, A.C., Kamarainen, A., Metcalf, S.J., Gun-Yildiz, S., Brennan, K., Grotzer, T.,
& Dede, C. (2019) Scaffolding Ecosystems Science Practice by Blending
Immersive Environments and Computational Modeling, British Journal of
Educational Technology.

Dickes, A. C., Sengupta, P., Farris, A. V., & Basu, S. (2016). Development of
mechanistic reasoning and multilevel explanations of ecology in third grade
using agent-based models. Science Education, 100(4), 734-776.

Dwyer, H., Boe, B., Hill, C., Franklin, D., & Harlow, D. (2013). Computational
thinking for physics : Programming models of physics phenomenon in
elementary school. Physics Education Research Conference, 133-136.
doi:10.1119/perc.2013.pr.021

Franklin, D., Skifstad, G., Rolock, R., Mehrotra, 1., Ding, V., Hansen, A., Weintrop, D.
& Harlow, D. (2017, March). Using upper-elementary student performance to
understand conceptual sequencing in a blocks-based curriculum. In Proceedings
of the 2017 ACM SIGCSE Technical Symposium on Computer Science
Education (pp. 231-236). ACM.

Giere, R.N. (1988). Explaining science: A cognitive approach. Chicago, IL: University
of Chicago Press.

Grover, S., & Basu, S. (2017, March). Measuring student learning in introductory
block-based programming: Examining misconceptions of loops, variables, and
boolean logic. In Proceedings of the 2017 ACM SIGCSE technical symposium
on computer science education (pp. 267-272).

Grover, S., & Pea, R. (2018). Computational Thinking: A competency whose time has
come. Computer science education: Perspectives on teaching and learning in

school, 19.

36

Hutchins, N.M., Biswas, G., Mar6ti, M., Lédeczi, A., Grover, S., Wolf, R., Blair, K.P.,
Chin, D., Conlin, L., Basu, S. & McElhaney, K. (2020). C2STEM: a System for
Synergistic Learning of Physics and Computational Thinking. Journal of
Science Education and Technology, 29(1), pp.83-100.

Israel, M., Pearson, J. N., Tapia, T., Wherfel, Q. M., & Reese, G. (2015). Supporting all
learners in school-wide computational thinking: A cross-case qualitative
analysis. Computers & Education, 82, 263-279.

Jeon, S., Metcalf, S., Dickes, A. & Dede, C. (2020). Elementary teacher perspectives on
a blended computational modeling and ecosystem science curriculum. In D.
Schmidt-Crawford (Ed.), Proceedings of Society for Information Technology &
Teacher Education International Conference (pp. 46-55).

Klopfer, E., Yoon, S., & Um, T. (2005). Teaching complex dynamic systems to young
students with StarLogo. Journal of Computers in Mathematics and Science
Teaching, 24(2), 157-178.

Lane, H. C., & VanLehn, K. (2005). Intention-based scoring: an approach to measuring
success at solving the composition problem. In ACM SIGCSE Bulletin (Vol. 37,
No. 1, pp. 373-377). ACM.

Lee, I., Martin, F., & Apone, K. (2014). Integrating computational thinking across the
K--8 curriculum. ACM Inroads, 5(4), 64-71.

Lehrer, R. (2009). Designing to develop disciplinary dispositions: Modeling natural
systems. American Psychologist, 64(8), 759.

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational
thinking through programming: What is next for K-12?. Computers in Human
Behavior, 41, 51-61.

Maloney, J., Resnick, M., Rusk, N., Silverman, B., & Eastmond, E. (2010). The scratch
programming language and environment. ACM Transactions on Computing
Education (TOCE), 10(4), 1-15.

Moreno-Leon, J., Robles, G., & Roman-Gonzalez, M. (2015). Dr. Scratch: Automatic
analysis of scratch projects to assess and foster computational thinking. RED.
Revista de Educacion a Distancia, (46), 1-23.

Nersessian, N. (2008). Model-based reasoning in scientific practice. In Teaching
scientific inquiry (pp. 57-79). Brill Sense.

NGSS Lead States (2013). Next Generation Science Standards: For States, By States.
Washington DC. The National Academies Press.

37

Papert, S., & Harel, I. (1991). Situating constructionism. Constructionism, 36(2), 1-11.

Resnick, M., Maloney, J., Monroy-Hernandez, A., Rusk, N., Eastmond, E., Brennan, K.,
Millner, A., Rosenbaum, E., Silver, J., Silverman, B. and Kafai, Y. (2009).
Scratch: programming for all. Communications of the ACM, 52(11), pp.60-67.

Rich, K. M., Strickland, C., Binkowski, T. A., Moran, C., & Franklin, D. (2017,
August). K-8 learning trajectories derived from research literature: Sequence,
repetition, conditionals. In Proceedings of the 2017 ACM Conference on
International Computing Education Research (pp. 182-190). ACM.

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and Teaching Programming:
A Review and Discussion. Computer Science Education, 13(2), 137-172.
doi:10.1076/csed.13.2.137.14200

Roman-Gonzilez, M., Moreno-Leodn, J., & Robles, G. (2017, July). Complementary
tools for computational thinking assessment. In Proceedings of International
Conference on Computational Thinking Education (CTE 2017), S. C Kong, J
Sheldon, and K. Y Li (Eds.). The Education University of Hong Kong (pp. 154-
159).

Roman-Gonzalez, M., Pérez-Gonzalez, J. C., & Jiménez-Fernandez, C. (2017). Which
cognitive abilities underlie computational thinking? Criterion validity of the
Computational Thinking Test. Computers in Human Behavior, 72, 678-691.

Ryu, S., Han, Y., & Paik, S. H. (2015). Understanding co-development of conceptual
and epistemic understanding through modeling practices with mobile internet.
Journal of Science Education and Technology, 24(2-3), 330-355.

Sengupta, P., Dickes, A., Farris, A. V., Karan, A., Martin, D., & Wright, M. (2015).
Programming in K-12 science classrooms. Communications of the ACM,
58(11), 33-35.

Sengupta, P., Kinnebrew, J. S., Basu, S., Biswas, G., & Clark, D. (2013). Integrating
computational thinking with K-12 science education using agent-based
computation: A theoretical framework. Education and Information
Technologies, 18(2), 351-380.

Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking.
Educational Research Review, 22, 142-158.

Tang, X., Yin, Y., Lin, Q., Hadad, R., & Zhai, X. (2020). Assessing computational
thinking: A systematic review of empirical studies. Computers & Education,

103798.

38

Troiano, G. M., Snodgrass, S., Argimak, E., Robles, G., Smith, G., Cassidy, M.,
Tucker-Raymond, E., Puttick, G., & Harteveld, C. (2019). Is my game OK Dr.
Scratch?: Exploring programming and computational thinking development via
metrics in student-designed serious games for STEM. In Proceedings of the 18th
ACM International Conference on Interaction Design and Children (pp. 208-
219). ACM.

Villamor, M. M. (2020). A review on process-oriented approaches for analyzing novice
solutions to programming problems. Research and Practice in Technology
Enhanced Learning, 15(1), 1-23.

Wagh, A., Cook-Whitt, K., & Wilensky, U. (2017). Bridging inquiry-based science and
constructionism: Exploring the alignment between students tinkering with code
of computational models and goals of inquiry. Journal of Research in Science
Teaching, 54(5), 615-641.

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U.
(2016). Defining computational thinking for mathematics and science
classrooms. Journal of Science Education and Technology, 25(1), 127-147.

Weintrop, D., Hansen, A. K., Harlow, D. B., & Franklin, D. (2018, August). Starting
from Scratch: Outcomes of early computer science learning experiences and
implications for what comes next. In Proceedings of the 2018 ACM Conference
on International Computing Education Research (pp. 142-150).

Weintrop, D., & Wilensky, U. (2017). Comparing block-based and text-based
programming in high school computer science classrooms. ACM Transactions
on Computing Education (TOCE), 18(1), 1-25.

Werner, L., Denner, J., Campe, S., & Kawamoto, D. C. (2012, February). The fairy
performance assessment: measuring computational thinking in middle school. In
Proceedings of the 43rd ACM technical symposium on Computer Science
Education (pp. 215-220).

Wing, J.M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-
35.

Worsley, M., & Blikstein, P. (2013, July). Programming pathways: A technique for
analyzing novice programmers’ learning trajectories. In International
Conference on Artificial Intelligence in Education (pp. 844-847). Springer,
Berlin, Heidelberg.

39

Yoon, S. A., Anderson, E., Koehler-Yom, J., Klopfer, E., Sheldon, J., Wendel, D.,
Schoenfeld, 1., Scheintaub, H., Oztok, M., & Evans, C. (2015). Design Features
for Computer-Supported Complex Systems Learning and Teaching in High
School Science Classrooms In Lindwall, O., Hakkinen, P., Koschman, T.
Tchounikine, P. Ludvigsen, S. (Eds.) (2015). Exploring the Material Conditions
of Learning: The Computer Supported Collaborative Learning (CSCL)
Conference 2015, Volume 1. Gothenburg, Sweden: The International Society of

the Learning Sciences.

40

	Introduction
	Literature Review
	Computational Thinking and Programming
	Computational Modeling for Science Learning
	Block-based Programming and Modeling
	Computational Thinking Assessment

	Goals of this study
	Research Questions

	Methods
	EcoMOD Curriculum
	Participants
	Data Sources
	Snaphots of student programs
	Prior Programming Experience Survey

	Rubric Design and Validation
	Functionality Rubric
	Conceptual Fluency Rubric
	Rubric Validation

	Case Study Comparison

	Results
	Functionality Rubric
	Conceptual Fluency Rubric
	Case Study

	Discussion
	Overview
	Assessment via functionality rubric
	Assessment via a conceptual fluency rubric
	Ramifications for the curriculum
	Limitations and Future Work

	Conclusion
	Acknowledgements
	References

