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Abstract. We consider questions that arise from the intersection between the areas of polynomial-
time approximation algorithms, subexponential-time algorithms, and fixed-parameter tractable (FPT)
algorithms. The questions, which have been asked several times, are whether there is a nontriv-
ial FPT-approzimation algorithm for the Maximum Clique (Clique) and Minimum Dominating Set
(DomSet) problems parameterized by the size of the optimal solution. In particular, letting OPT be
the optimum and N be the size of the input, is there an algorithm that runs in ¢(OPT)poly(N) time
and outputs a solution of size f(OPT) for any computable functions ¢ and f that are independent
of N (for Clique, we want f(OPT) = w(1))? In this paper, we show that both Clique and DomSet
admit no nontrivial FPT-approximation algorithm, i.e., there is no o(OPT)-FPT-approximation al-
gorithm for Clique and no f(OPT)-FPT-approximation algorithm for DomSet for any function f. In
fact, our results imply something even stronger: The best way to solve Clique and DomSet, even
approximately, is to essentially enumerate all possibilities. Our results hold under the Gap Ez-
ponential Time Hypothesis [I. Dinur. ECCC, TR16-128, 2016; P. Manurangsi and P. Raghavendra,
preprint, arXiv:1607.02986, 2016], which states that no 20(n)_time algorithm can distinguish between
a satisfiable 3 SAT formula and one which is not even (1 — ¢)-satisfiable for some constant € > 0. Be-
sides Clique and DomSet, we also rule out nontrivial FPT-approximation for the Maximum Biclique
problem, the problem of finding maximum subgraphs with hereditary properties (e.g., Maximum
Induced Planar Subgraph), and Maximum Induced Matching in bipartite graphs, and we rule out
the k°(1)_-FPT-approximation algorithm for the Densest k-Subgraph problem.
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1. Introduction. The fized-parameter tractable approximation algorithm (FPT-
approximation algorithm) is a new concept emerging from a cross fertilization between
two trends in coping with NP-hard problems: approximation algorithms and FPT al-
gorithms. Roughly speaking, an FPT-approximation algorithm is similar to an FPT
algorithm in that its running time can be of the form ¢(OPT) poly(NN) (called the
FPT time), where t is any computable function (possibly superexponentially grow-
ing), N is the input size, and OPT is the value of the optimal solution.! It is similar
to an approximation algorithm in that its output is an approximation of the opti-
mal solution; however, the approximation factor is analyzed in terms of the optimal
solution (OPT) and not the input size (V). Thus, an algorithm for a maximization
(respectively, minimization) problem is said to be an f(OPT)-FPT-approximation for
some function f if it outputs a solution of size at least OPT/f(OPT) (respectively,
at most OPT - f(OPT)). For a maximization problem, such an algorithm is nontriv-
ial if f(OPT) is o(OPT), while for a minimization problem, it is nontrivial if f is a
computable function depending only on OPT.

The notion of FPT-approximation is useful when we are interested in a small
optimal solution, and in particular its existence connects to a fundamental question
of whether there is a nontrivial approximation algorithm when the optimal solution is
small. Consider, for example, the Mazimum Clique (Clique) problem, where the goal
is to find a clique (complete subgraph) with a maximum number of vertices in an
n-vertex graph G. By outputting any single vertex, we get a trivial polynomial-time
n-approximation algorithm. The bound can be improved to O(g;;) and even to

n(loglogn)? . . .
O(W) with clever ideas [41]. Observe, however, that these bounds are quite
n(log logn)?

log3 n

guarantees such bounds. In this case, a bound such as O(

meaningless when OPT = O( ) since outputting a single vertex already

Tog 1og OPT
meaningful. Unfortunately, no approximation ratio of the form o(OPT) is known
even when FPT-time is allowed.? (Note that outputting a single vertex gives an
OPT-approximation guarantee.)

Similar questions can be asked for a minimization problem. Consider for instance,
Minimum Dominating Set (DomSet): Find the smallest set of vertices S such that
every vertex in an n-vertex input graph G has a neighbor in S. DomSet admits an
O(log n)-approximation algorithm via a basic greedy method. However, if we want
the approximation ratio to depend on OPT and not n, no f(OPT)-approximation

) would be more

ratio is known for any function f (not even 220PT).

In fact, the existence of nontrivial FPT-approximation algorithms for Clique and
DomSet has been raised several times in the literature (e.g., [73, 46, 34]). So far,
the progress towards these questions can only rule out O(1)-FPT-approximation al-
gorithms for Clique. This was shown independently by Hajiaghayi, Khandekar and
Kortsarz [49] and Bonnet et al. [15], assuming the ezponential time hypothesis (ETH),
which asserts that no subexponential time algorithm can decide whether a given 3SAT
formula is satisfiable, and that a linear-size probabilistically checkable proof (PCP)
exists. Alternatively, Khot and Shinkar [61] proved this under a rather nonstandard

IThere are many ways to parameterize a problem. In this paper we focus on the standard
parameterization which parameterizes the optimal solution.

2In fact, for maximization problems, it can be shown that a problem admits an f(OPT)-FPT-
approximation algorithm for some function f = o(OPT) if and only if it admits a polynomial-time
algorithm with approximation ratio f/(OPT) for some function f’ = o(OPT) [48, 73] (also see [74]).
So, it does not matter whether the running time is polynomial on the size of the input or depends
on OPT.
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assumption that solving quadratic equations over a finite field under a certain regime
of parameters is not in FPT; unfortunately, this assumption was later shown to be
false [56]. For DomSet, Chen and Lin [27] could rule out O(1)-FPT-approximation
algorithms assuming FPT # WIJ1]. Moreover, they improved the inapproximability
ratio to log!/ 4T¢(OPT) for any constant ¢ > 0 under ETH. Remark that ETH implies
FPT = WI1].

Our results and techniques. We show that there is no nontrivial FPT approx-
imation algorithm for both Clique and DomSet. That is, there is no o(OPT)-FPT-
approximation algorithm for Clique and no f(OPT)-FPT-approximation algorithm for
DomSet, for any computable function f. Our results hold under the Gap-ETH, which
states that distinguishing between a satisfiable 3-SAT formula and one which is not
even (1 — €)-satisfiable requires exponential time for some constant € > 0 (see section
2).

Gap-ETH, first formalized in [32, 72], is a stronger version of the aforementioned
ETH. It has recently been shown to be useful in proving fine-grained hardness of an
approximation for problems such as dense constraint satisfaction problem (CSP) with
large alphabets [72] and Densest-k-Subgraph with perfect completeness [70].

Note that Gap-ETH is implied by ETH if we additionally assume that a linear-
size PCP exists. So, our result for Clique significantly improves the results in [49, 16]
under the same (in fact, weaker) assumption. Our result for DomSet also significantly
improves the results in [27], but our assumption is stronger.

In fact, we can show even stronger results: The best way to solve Clique and
DomSet, even approximately, is to enumerate all possibilities in the following sense.
Finding a clique of size r can be trivially done in n" poly(n) time by checking whether
any among all possible (TTL) = O(n") sets of vertices forms a clique. It was known
under ETH that this is essentially the best one can do [23, 24]. We show further
that this running time is still needed, even when we know that a clique of size much
larger than r exists in the graph (e.g., OPT > 22"), assuming Gap-ETH. Similarly,
for DomSet, we can always find a dominating set of size r in n" poly(n) time. Under
Gap-ETH, we show that there is no better way even when we just want to find a
dominating set of size ¢ > r.

We now give an overview of our techniques. The main challenge in showing our
results is that we want them to hold for the case where the optimal solution is arbitrar-
ily smaller than the input size. (This is important to get the FPT-inapproximability
results.) To this end, (i) reductions cannot blow up the size of the optimal solution
by a function of the input size, and (ii) our reductions must start from problems with
a large hardness gap while having small OPT. Fortunately, property (i) holds for the
known reductions we employ.

The challenge of (ii) is that existing gap amplifying techniques (e.g., the parallel
repetition theorem [79] or the randomized graph product [11]), while amplifying the
gap to arbitrarily large, cause the input size to be too large so that existing OPT
reduction techniques (e.g., [23, 77]) cannot be applied efficiently (in particular, in
subexponential time). We circumvent this by a step that amplifies the gap and reduces
OPT at the same time. In more detail, this step takes a 3-SAT formula ¢ as an input
and produces a “label cover”? instance .J (roughly, a bipartite graph with constraints
on edges) such that for any ¢ > 0, (i) if ¢ is satisfiable, then J is satisfiable, and (ii)
if ¢ is at most 0.99 satisfiable, then less than a c-fraction of constraints of J can be

30ur problem is an optimization problem on a Label Cover instance, with a slightly different

objective from the standard Label Cover. Please refer to section 4 for more detail.
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satisfied. Moreover, our reduction allows us to “compress” either the the left-hand
side or the right-hand side vertices to be arbitrarily small. This label cover instance
is a starting point for all our problems. To derive our result for Clique, we would need
the left-hand side to be arbitrarily small while for DomSet, we would need a small
right-hand side.

The left-hand side vertex compression is similar to the randomized graph prod-
uct [11] and, in fact, the reduction itself has been studied before [85, 84] but in a
very different regime of parameters. For a more detailed discussion, please refer to
subsection 4.2.

Once the inapproximability results for label cover problems with small left-hand
side and right-hand side vertex sets are established, we can simply reduce it to Clique
and DomSet using the standard reductions from [42] and [39], respectively.

Besides the above results for Clique and DomSet, we also show that no nontrivial
FPT-approximation algorithm exists for a few other problems, including Maximum
Biclique, the problem of finding maximum subgraphs with hereditary properties (e.g.,
maximum planar induced subgraph), and Maximum Induced Matching in bipartite
graphs. Previously only the exact versions of these problems were known to be W[1]-
hard [66, 60, 75]. Additionally, we rule out the k°()_FPT-approximation algorithm
for Densest k-Subgraph although this ratio does not yet match the trivial O(k)-
approximation algorithm. Finally, we remark that, while our result for maximum
subgraphs with hereditary properties follows from a reduction from Clique, the FPT
inapproximability of other problems are shown not through the label cover problems
but instead from a modification of the hardness of approximating Densest k-Subgraph
in [70].

Previous works. Our results are based on the method of compressing (or reducing
the size of) the optimal solution, which was first introduced by Chen et al. in [22]
(the journal version appears in [23]). Assuming ETH, they showed that finding both
Clique and DomSet cannot be solved in time n°(°PT) | where n is the number of vertices
in an input graph. Later, Patrascu and Williams [77] applied similar techniques to
sharpen the running time lower bound of DomSet to n°"T—¢ for any constant £ > 0,
assuming the Strong ETH (SETH). The technique of compressing the optimal solu-
tion was also used in the hardness of approximation by Hajiaghayi, Khandekar, and
Kortsarz in [49] and by Bonnet, Lampis, and Paschos in [16]. Our techniques can be
seen as introducing gap amplification to the reductions in [23]. We emphasize that
while [23, 77, 49, 15] (and also the reductions in this paper) are all based on the tech-
nique of compressing the optimal solution, Hajiaghayi, Khandekar, and Kortsarz [49]
compress the optimal solution after reducing SAT to the designated problems, i.e.,
Clique and DomSet. The reductions in [23, 77, 15] and in our paper, on the other
hand, compress the optimal solution of SAT prior to feeding it to standard reduc-
tions (with small adjustment). While this difference does not affect the reduction for
Clique, it has a huge effect on DomSet. Specifically, compressing the optimal solution
at the postreduction step results in a huge blowup because the blowup in the first
step (i.e., from SAT to DomSet) becomes exponential after compressing the optimal
solution. Our proof for Clique and the one in [49] bear a similarity in that both apply
a graph product to amplify approximation hardness. The key difference is that we
use a randomized graph product instead of the deterministic graph product used in
[49].

Very recently, Chen and Lin [27] showed that DomSet admits no constant ap-
proximation algorithm unless FPT = W[1]. Their hardness result was derived from
the seminal result of Lin [66], which shows that the Mazimum k-Intersection problem

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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TABLE 1
The summaries of previous works on Clique and DomSet. Here t denotes any computable
function t : N — N, e denotes any constant 0 < € < 1, v denotes some constant 0 < € < 1, p
denotes some nondecreasing function p : (0,1) — (0,1), § denotes some constant § > 1. PGC and
LPCP stands for the Projection Game Conjecture [76], and the Linear-Size PCP Conjecture [15],
respectively.

Summary of works on Clique

Inapprox factor Running time lower bound Assumption References
any constant t(OPT) - n°(OPT) ETH + LPCP [15]
OPT! -« exp(OPT?()) ETH [28]
1/(1—¢) exp(exp(OPTP()))4 ETH [49]

No w(OPT) t(OPT) - n°(OPT) Gap-ETH This paper

Summary of works on DomSet

Inapprox Factor Running Time Lower Bound Assumption References
OPTI—7 exp(OPTI—P(7)) ETH [28]
(log OPT)® exp(exp((log OPT)%—1)) ETH + PGC [49]
any constant t(OPT) -n°W (ie., no FPT) WI[1] # FPT [27]

(log OPT)1/4+¢ t(OPT) - no(VOPT) ETH [27, 23]
f(OPT) t(OPT) - n°(OPT) Gap-ETH This paper

(also known as One-side Gap-Biclique) has no FPT approximation algorithm. Further-
more, they showed that, when assuming ETH, their result can be strengthened to rule
out the log'/**¢(OPT) FPT-approximation algorithm for any constant ¢ > 0. The
result of Chen and Lin follows from the W[1]-hardness of Biclique [66] and the proof
of the ETH-hardness of Clique [22]. Note that while Chen and Lin did not discuss the
size of the optimal solution in their paper, the method of compressing the optimal
solution was implicitly used there. This is due to the running time lower bound of
Clique that they quoted from [22].

Our method for proving the FPT inapproximability of DomSet is similar to that in
[77]. However, the original construction in [77] does not require a “partition system.”
This is because Patrascu and Williams’ reduction starts from SAT, which can be cast
as DomSet. In our construction, the reduction starts from an instance of the CSP that
is more general than SAT (because of the gap-amplification step) and hence requires
the construction of a partition system. (Note that the partition system has been used
in standard hardness reductions for DomSet [68, 39].)

We remark that our proof does not imply FPT-inapproximability for DomSet
under ETH whereas Chen and Lin were able to prove the inapproximability result
under ETH because their reduction can be applied directly to SAT via the result
in [23]. If ones introduced the Gap-ETH to the previous works, then the proofs in
[23, 49, 15] yield the constant FPT-inapproximability of Clique, and the proof in [23]
yields the constant FPT-inapproximability of DomSet.

The summaries of previous works on Clique and DomSet are presented in Table 1.

Follow-up works. Very recently, in the follow-up work [55] by Karthik, Laekhanukit,
and Manurangsi, the totally-FPT-inapproximability of DomSet was shown under
FPT # WJ[1]. Moreover, they are able to bypass Gap-ETH and show the same
running time lower bounds as ours under ETH. They even show stronger running
time lower bounds under SETH and the k-Sum Hypothesis. We stress here that their
results apply only to DomSet but not to Clique nor other problems in this paper (e.g.,
Biclique, Densest k-Subgraph). Their proof builds on the insights from our work; in

4Constant FPT-inapproximability of Clique under ETH is claimed in [49] (arXiv version). How-
ever, as we investigated, the Gap-ETH is assumed there.
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particular, our reduction from MaxCov (via MinLab) to DomSet (Theorem 5.4). The
contrast between our proof for DomSet and the proof in [55] is that, while we obtain
the gap of MaxCov from Gap-ETH, they take a different route and arrive at such a
gap by designing specific communication protocols for certain communication prob-
lems, generalizing connections between communication complexity and fine-grained
hardness of approximation pioneered in [2].

Other related works. All problems considered in this work are also well stud-
ied in terms of hardness of approximation beyond the aforementioned parameterized
regimes; indeed many techniques used here are borrowed from or inspired by the
nonparameterized settings.

Maximum Clique. Maximum Clique is arguably the first natural combinatorial
optimization problem studied in the context of hardness of approximation; in a seminal
work of Feige et al. (henceforth FGLSS) [42], a connection was made between interac-
tive proofs and hardness of approximating Clique. This connection paves the way for
later works on Clique and other developments in the field of hardness of approxima-
tions; indeed, the FGLSS reduction will serve as part of our proof as well. The FGLSS
reduction, together with the PCP theorem [7, 6] and gap amplification via random-
ized graph products [11], immediately implies an n® ratio inapproximability of Clique
for some constant € > 0 under the assumption that NPC BPP. Following FGLSS’s
work, there had been a long line of research on approximability of Clique [9, 43, 8, 10],
which culminated in Hastad’s work [51]. In [51], it was shown that Clique cannot be
approximated to within a factor of n'~¢ in polynomial time unless NPC ZPP; this was
later derandomized by Zuckerman [86] via an efficient construction of dispersers with
certain parameters, thus implying n!~¢ approximation hardness under P # NP. Since
then, better inapproximability ratios are known [38, 57, 59], with the best ratio being
n/Q(IOg")S/HE for every € > 0 (assuming NP¢ BPTIME(Q(IOg”)O(l))) due to Khot and

Ponnuswami [59]. We note here that the best known polynomial-time algorithm for

. . n(loglogn)? . .
Clique achieves O(W)—approxnnatlon for the problem [41].

Set Cover. Minimum Set Cover, which is equivalent to DomSet, is also among
the first problems studied in hardness of approximation. Lund and Yannakakis proved
that, unless NPC DTIl\/IE(Q(IOg")O(D)7 SetCov cannot be efficiently approximated to
within clogn factor of the optimum for some constant ¢ > 0 [68]. Not long after,
Feige [39] both improved the approximation ratio and weakened the assumption by
showing an (1 — €)lnn-ratio inapproximability for every € > 0 assuming only that
NP¢Z DTIME(nO(log log ”)). Recently, a similar inapproximability has been achieved
under the weaker NPZ P assumption [76, 33]. Since a simple greedy algorithm is
known to yield (Inn + 1)-approximation for SetCov [30], the aforementioned hardness
result is essentially tight. A common feature in all previous works on hardness of
SetCov [68, 39, 76] is that the constructions involve composing certain variants of
CSPs with partition systems. As touched upon briefly earlier, our construction will
also follow this approach; for the exact definition of CSPs and the partition system
used in our work, please refer to subsection 5.2.

Maximum subgraph with hereditary properties. The complexity of find-
ing and approximating maximum subgraph with hereditary properties have also been
studied since the 1980s [65, 67, 44]; specifically, Feige and Kogan showed that, for
every nontrivial property II (i.e., IT such that infinite many subgraphs satisfy IT and
infinitely many subgraphs do not satisfy IT), the problem is hard to approximate to
within n'=¢ factor for every € > 0 unless NPC ZPP [44]. We also note that nontrivial
approximation algorithms for the problem are known; for instance, when the prop-

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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n(log log n)?
“logn® )

erty fails for some clique or some independent set, a polynomial-time O(
approximation algorithm is known [50].

Maximum Balanced Biclique. While the Maximum Balanced Biclique prob-
lem bears a strong resemblance to the Maximum Clique Problem, inapproximabil-
ity of the latter cannot be directly translated to that of the former; in fact, de-
spite numerous attempts, not even constant factor NP-hardness of approximation
of the Maximum Balanced Biclique problem is known. Fortunately, under stronger
assumptions, hardness of approximation for the problem is known: nf-factor hard-
ness of approximation is known under Feige’s random 3SAT hypothesis [40] or NPZ
ﬂE>OBPTIME(2"5) [58], and n'~°-factor hardness of approximation is known under
strengthening of the Unique Games Conjecture [12, 71]. To the best of our knowledge,
no nontrivial approximation algorithm for the problem is known.

Densest k-Subgraph. The Densest k-Subgraph problem has received consid-
erable attention from the approximation algorithm community [63, 45, 13]; the best
known polynomial time algorithm due to Bhaskara et al. [13] achieves O(n!/4+¢)-
approximation for every € > 0. On the other hand, similarly to Biclique, NP-hardness
of approximating Densest k-Subgraph, even to some constant ratio, has so far eluded
researchers. Nevertheless, in the same works that provide the hardness results for
Biclique [40, 58], Densest k-Subgraph is shown to be hard to approximate to some
constant factor under random 3-SAT hypothesis or NPZ ﬂE>OBPTIME(2"5). Fur-

thermore, 2920108 n)_gactor inapproximability is known under the planted clique hy-
pothesis [4] and, under ETH (respectively, Gap-ETH), n!/Polyloglogn (regpectively,
n°()) factor inapproximabilities are known [70]. (See also [17] in which a constant
ratio ETH-hardness of approximating Densest k-Subgraph was shown.) In addition
to these hardness results, polynomial ratio integrality gaps for strong LP and SDP
relaxations of the problem are also known [14, 69, 29].

Maximum Induced Matching on Bipartite Graphs. The problem was
shown to be NP-hard independently by Stockmeyer and Vazirani [81] and Cameron
[18]. The approximability of the problem was first studied by Duckworth, Manlove,
and Zito [36] who showed that the problem is APX-hard, even on bipartite graphs
of degree three. Elbassioni et al. [37] then showed that the problem is hard to ap-
proximate to within n'/3=¢ factor for every ¢ > 0, unless NPC ZPP. Chalermsook,
Laekhanukit, and Nanongkai [19] later improved the ratio to n'=¢ for every ¢ > 0.

Organization. We define basic notations in section 2. In section 3, we define the
notion of inherently enumerative, which captures the fact that nothing better than
enumerating all possibilities can be done. We show that a problem admits no nontriv-
ial FPT-approximation algorithm by showing that it is inherently enumerative. In sec-
tion 4, we define and prove results about our intermediate problems on label cover in-
stances. Finally, in section 5 we derive results for Clique, DomSet, and other problems.

2. Preliminaries. We use standard terminology. For any graph G, we denote
by V(G) and E(G) the vertex and edge sets of G, respectively. For each vertex
u € V(G), we denote the set of its neighbors by Ng(v); when the graph G is clear
from the context, we sometimes drop it from the notation. A cligue of G is a complete
subgraph of G. Sometime we refer to a clique as a subset S C V(@) such that there
is an edge joining every pair of vertices in S. A biclique of G is a balanced complete
bipartite subgraph of G. A biclique such that each partition has k vertices is called
a k-biclique and is denoted by Ky ;. An independent set of G is a subset of vertices
S C V(@) such there is no edge joining any pair of vertices in S. A dominating
set of G is a subset of vertices S C V(G) such that every vertex in G is either in

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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S or has a neighbor in S. The cligue number (respectively, independent number) of
G is the size of the largest clique (respectively, independent set) in G. The biclique
number of G is the largest integer k such that G contains K} ; as a subgraph. The
domination number of G is defined similarly as the size of the smallest dominating
set in G. The clique, independent, and domination numbers of G are usually denoted
by w(G), a(G), and ~v(G), respectively. However, in this paper, we will refer to these
numbers by Clique(G), IndSet(G), DomSet(G). Additionally, we denote the biclique
number of G by Biclique(G).

2.1. FPT-approximation. Let us start by formalizing the the notation of opti-
mization problems; here we follow the notation due to Chen, Grohe, and Griiber [25].
An optimization problem II is defined by three components: (1) For each input in-
stance I of I1, a set of valid solutions of I denoted by SOL(I); (2) for each instance I
of IT and each y € SOL (1), the cost of y with respect to I is denoted by COSTr (I, y);
and (3) the goal of the problem by GOALp € {min, max} which specifies whether II
is a minimization or maximization problem. Throughout this work, we will assume
that COSTy(I,y) can be computed in time [I|°(). Finally, we denote by OPT (1)
the optimal value of each instance I, i.e., OPT(I) = GOAL COST([,y), where y is
taken over SOL (7).

We now continue on to define parameterized approximation algorithms. While
our discussion so far has been on optimization problems, we will instead work with
“gap versions” of these problems. Roughly speaking, for a maximization problem II,
the gap version of II takes in an additional input k& and the goal is to decide whether
OPTn(I) > k or OPTn(I) < k/f(k). As we will elaborate below, the gap versions
are weaker (i.e., easier) than the optimization versions and, hence, our impossibility
results for gap versions translate to those of optimization versions as well.

DEFINITION 2.1 (FPT gap approximation). For any optimization problem II
and any computable function f: N — [1,00), an algorithm A, which takes as input an
instance I of II and a positive integer k, is said to be an f-FPT gap approximation
algorithm for II if the following conditions hold on every input (I,k):

o A runs in time t(k) - |I|°M) for some computable function t : N — N.
e If GOAL[ = max, then the algorithm A outputs 1 if OPT(I) > k and outputs
0 if OPT(I) < k/f(k).
If GOALy = min, then the algorithm A outputs 1 if OPT(I) < k and outputs
0 if OPT(I) > k- f(k).
II is said to be f-FPT gap approximable if there is an f-FPT gap approximation
algorithm for I1.

Next, we formalize the concept of totally-FPT-inapproximable, which encapsu-
lates a nonexistence of nontrivial FPT approximations discussed earlier in the intro-
duction.

DEFINITION 2.2. A minimization problem Il is said to be totally-FPT-inapprox-
imable if, for every computable function f : N — [1,00), I is not f-FPT gap approx-
imable.

A mazimization problem 11 is said to be totally-FPT-inapproximable if, for every
computable function f : N — [1,00) such that f(k) = o(k) (i.e., limy_ o0 k/f(k) = 00),
II is not f-FPT gap approximable.

With the exception of Densest k-Subgraph, every problem considered in this work
will be shown to be totally-FPT-inapproximable. To this end, we remark that totally
FPT inapproximable as defined above through gap problems imply the nonexistence
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of a nontrivial FPT-approximation algorithm that was discussed in the introduction.
These implications are stated more precisely in the two propositions below; their
proofs are given in Appendix A. Note that Propositions 2.3 and 2.4 are implied by
the results due to Chen, Grohe, and Griiber [25, 26].

PROPOSITION 2.3 (see [25, Proposition 4], [26, Proposition 5]). Let II be any

minimization problem. Then (1) implies (2), where (1) and (2) are as defined below.

(1) I 4s totally FPT-inapprozimable.

(2) For all computable functions t : N — N and f : N — [1,00), there is no
algorithm that, on every instance I of T, runs in time t(OPTy(I)) - |1]°™)
and outputs a solution y € SOLn(I) such that COST(I,y) < OPT(I) -
f(OPTr(I)).

PROPOSITION 2.4 (see [26, Proposition 6]). Let II be any mazimization problem.

Then (1) implies (2) where (1) and (2) are as defined below.

(1) I 4s totally FPT-inapprozimable.

(2) For all computable functions t : N — N and f : N — [1,00) such that
f(k) = o(k) and k/f(k) is nondecreasing, there is no algorithm that, on ev-

ery instance I of T, runs in time t(OPTy (1)) - [I|°M and outputs a solution
y € SOLn (1) such that COSTr(I,y) > OPTn(I)/f(OPTn(I)).

2.2. List of problems. We will now list the problems studied in this work.
While all the problems here can be defined in terms of optimization problems as
discussed in the previous subsection, we will omit the terms SOL, COST, and GOAL
whenever they are clear from the context.

The Maximum Clique Problem (Clique). In k-Clique, we are given a graph
G together with an integer k, and the goal is to decide whether G has a clique of size
k. The maximization version of k-Clique, called Max-Clique or simply Clique, asks to
compute the maximum size of a clique in G.

The problem that is (computationally) equivalent to Clique is the mazimum in-
dependent set problem (IndSet) which asks to compute the size of the maximum in-
dependent set in G. The two problems are equivalent since any clique in G is an
independent set in the complement graph G.

The Minimum Dominating Set Problem (DomSet). In k-DomSet, we are
given a graph G together with an integer k, and the goal is to decide whether G has a
dominating set of size k. The minimization version of k-DomSet, called Min-DomSet
or simply DomSet, asks to compute the size of the minimum dominating set in G. The
problem that is equivalent to DomSet is the minimum set cover problem (SetCov):
Given a universe U of n elements and a collection S of m subsets S1,...,S5, C U,
the goal is to find the minimum number of subsets of S whose union equals U. It is a
standard fact that DomSet is equivalent to SetCov. See Appendix D for more detail.

Maximum Induced Subgraph with Hereditary Properties. A property I1
is simply a subset of all graphs. We say that II is a hereditary property if whenever
G € 1II, all induced subgraphs of G are in II. The Maximum Induced Subgraph
problem with Property II asks for a maximum cardinality set S C V(G) such that
G[S] € II. Here G[S] denotes the subgraph of G induced on S. Notice that both
Clique and IndSet belong to this class of problems. For more discussions on problems
that belong to this class, see Appendix D.

Maximum Induced Matching on Bipartite Graphs. An induced matching
M of a graph G = (V, E) is a subset of edges {(u1,v1),..., (ujrq),V)aq)} such that
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there is no cross edge, i.e., (u;,u;), (vi,v;), (s, v;) ¢ E for all ¢ # j. The induced
matching number IM(G) of graph G is simply the maximum value of | M| among
all induced matchings M’s of G. In this work, we will be interested in the problem
of approximating IM(G) in bipartite graphs; this is because, for general graphs, the
problem is as hard to approximate as Clique. (See Appendix D for more details.)

Maximum Balanced Biclique (Biclique). In k-Biclique, we are given a bipartite
graph G together with an integer k. The goal is to decide whether G contains a
complete bipartite subgraph (biclique) with k vertices on each side. In other words,
we are asked to decide whether G contains K, ; as a subgraph. The maximization
version of Biclique, called Maximum Balanced Biclique, asks to compute the maximum
size of a balanced biclique in G.

Densest k-Subgraph. In the Densest k-Subgraph problem, we are given an
integer k and a graph G = (V, E). The goal is to find a subset S C V of k vertices
that induces a maximum number of edges. For convenience, we define density of an
induced subgraph G[S] to be Den(G[S]) = EE%[@D € [0,1] and we define the optimal

density of Densest k-Subgraph to be Deny(G) = maxgcy, /=, Den(S).

2.3. Gap-ETH. Our results are based on the Gap-ETH. Before we state the
hypothesis, let us recall the definition of 3-SAT. In ¢-SAT, we are given a CNF
formula ¢ in which each clause consists of at most ¢ literals, and the goal is to decide
whether ¢ is satisfiable.

Max ¢-SAT is a maximization version of ¢-SAT which asks to compute the max-
imum number of clauses in ¢ that can be simultaneously satisfied. We will abuse
g-SAT to mean Max ¢-SAT, and for a formula ¢, we use SAT(¢) to denote the maxi-
mum number of clauses satisfied by any assignment.

The Gap-ETH can now be stated in terms of SAT as follows.

Congecture 2.5 ((randomized) Gap-ETH [32, 72]). For some constant d,e¢ > 0,
no algorithm can, given a 3-SAT formula ¢ on n variables and m = O(n) clauses,
distinguish between the following cases correctly with probability > 2/3 in O(2°7)
time:

e SAT(¢) =m and
o SAT(¢) < (1 —¢e)m.

The bound m = O(n) is obtained by a random sparsification of a gap instance of
3-SAT, which allows us to bound m to be at most (2/(1 —¢€)) - n.

Note that the case where e = 1/m (that is, the algorithm only needs to distin-
guish between the cases that SAT(¢) = m and SAT(¢) < m) is known as ETH [54].
Another related conjecture is the strengthened version of ETH is called SETH [53]:
for any € > 0, there is an integer k > 3 such that there is no 2(!=9"_time algorithm
for k-SAT. Gap-ETH of course implies ETH but, to the best of our knowledge, no
formal relationship is known between Gap-ETH and SETH. While Gap-ETH may
seem strong due to the gap between the two cases, there are evidences suggesting
that it may indeed be true or, at the very least, refuting it is beyond the reach of our
current techniques. We discuss some of this evidence in Appendix F.

While Gap-ETH as stated above rules out not only deterministic but also ran-
domized algorithms, the deterministic version of Gap-ETH suffices for some of our
results, including inapproximability of Clique and DomSet. The reduction for DomSet
as stated below will already be deterministic, but the reduction for Clique will be ran-
domized. However, it can be easily derandomized and we sketch the idea behind this
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in in subsection 4.2.1. Note that, on the other hand, we do not know how to deran-
domize some of our other results, including those of Biclique and Densest k-Subgraph.

3. FPT inapproximability via the Concept of Inherently Enumerative.
Throughout the paper, we will prove FPT inapproximability through the concept of
inherently enumerative problems, which will be formalized shortly.

To motivate the concept, note that all problems II considered in this paper admit
an exact algorithm that runs in time® O*(|I|°FPTu(1)). For instance, to find a clique of
size k in G, one can enumerate all (‘V(kc)l) = |V(G)|°® possibilities.® For many W[1]-
hard problems (e.g., Clique), this running time is nearly the best possible assuming
ETH: Any algorithm that finds a k-clique in time |V (G)|°*) would break ETH. In
the light of such a result, it is natural to ask the following question. Assume that
Clique(G) > 22", can we find a clique of size k in time |V (G)[°*)?

In other words, can we exploit a prior knowledge that there is a clique of size
much larger than & to help us find a k-clique faster? Roughly speaking, we will show
later that, assuming Gap-ETH, the answer of this question is also negative, even when
22" g replaced by a much larger constant independent of k. This is encapsulated in
the concept of inherently enumerative as defined below.

DEFINITION 3.1 (inherently enumerative). A problem II is said to be inherently
enumerative if there exist constants 6,19 > 0 such that, for any integers q > r > 1o,
no algorithm can decide, on every input instance I of I, whether (i) OPT(I) < r or
(ii) OPT (1) > q in time™ Oy (|1|°7).

While we will show that Clique and DomSet are inherently enumerative, we cannot
do the same for some of the other problems, such as Biclique. Even for the exact
version of Biclique, the best running time lower bound known is only |V (G)|2(V%) [66]
assuming ETH. In order to succinctly categorize such lower bounds, we define a similar
but weaker notation of weakly inherently enumerative:

DEFINITION 3.2 (weakly inherently enumerative). For any function § = w(1)
(i.e., lim, o B(r) = 00), a problem 11 is said to be S-weakly inherently enumerative if
there exists a constant ro > 0 such that, for any integers ¢ > r > ro, no algorithm can
decide, on every input instance I of I, whether (i) OPT(I) < r or (ii) OPT(I) > ¢
in time Oy ,.(|I%)).

IT is said to be weakly inherently enumerative if it is S-weakly inherently enumer-
ative for some B = w(1).

It follows from the definitions that any inherently enumerative problem is also
weakly inherently enumerative. As stated earlier, we will prove total FPT inapprox-
imability through it being inherently enumerative; the proposition below formally
establishes a connection between the two.

ProposiTION 3.3. If II is weakly inherently enumerative, then II is totally FPT-
inapproximable.

Proof. We first consider maximization problems. We will prove the contraposi-
tive of the statement. Assume that a maximization problem II is not totally FPT-
inapproximable, i.e., II admits an f-FPT gap approximation algorithm A for some

5Recall that O*(-) hides terms that are polynomial in the input size.

6A faster algorithm that runs in time |V (G)|“*/3 can be done by a reduction to matrix multi-
plication.
7Og,r(-) here and in Definition 3.2 hides any multiplicative term that is a function of ¢ and 7.
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computable function f such that limg_o k/f(k) = co. Suppose that the running
time of A on every input (I,k) is t(k) - |I|” for some constant D and some function
t. We will show that II is not weakly inherently enumerative.

Let rg > 0 be any constant and let S : N — RT be any function such that
B = w(1). Let r be the smallest integer such that r > ¢ and S(r) > D and let ¢ be the
smallest integer such that ¢/f(q) > r. Note that r and ¢ exist since lim,_,, B(r) = 00
and limg_, g/ f(q) = oo.

Given any instance I of II, from the definition of f-FPT gap approximation
algorithms (Definition 2.1) and from the fact that ¢/f(q) > r, A on the input (I, q)
can distinguish between OPTy(I) > ¢ and OPTy (1) < 7 in t(q)-|I|P < t(q)-|I1|P") =
O, (II1°™) time. Hence, IT is not weakly inherently enumerative, concluding our
proof for maximization problems.

For any minimization problem II, assume again that II is not totally FPT-
inapproximable, i.e., I admits an f-FPT gap approximation algorithm A for some
computable function f. Suppose that the running time of A on every input (I, k) is
t(k) - |I|P for some constant D.

Let 79 > 0 be any constant and let § : N — RT be any function such that
B = w(1l). Let r be the smallest integer such that r > ro and S(r) > D and let
g=TIr- 1]

Given any instance I of II. From the definition of f-FPT gap approximation
algorithms and from ¢ > r - f(r), A on the input (I,r) can distinguish between
OPTy(I) > q and OPTy(I) < r in t(r) - [I|P < t(r) - |I|PM) = O, (|I|°™) time.
Hence, II is not weakly inherently enumerative. 0

An important tool in almost any branch of complexity theory, including parame-
terized complexity, is a notion of reductions. For the purpose of facilitating proofs of
totally FPT inapproximability, we define the following reduction, which we call FPT
gap reductions.

DEFINITION 3.4 (FPT gap reduction). For any functions f,g = w(1), a problem
Iy is said to be (f, g)-FPT gap reducible to a problem 11y if there exists an algorithm
A which takes an instance Iy of Ily and integers q,r and then produces an instance
I of Iy such that the following conditions hold.
o A runs in time t(q,r) - |[Io|°M) for some computable function t : N x N — N.
e For every positive integer q, if OPTr, (lo) > q, then OPTr, (I1) > f(q).
e For every positive integer r, if OPTr, (lo) < g(r), then OPTr, (I1) < r.

It is not hard to see that FPT gap reduction indeed preserves totally FPT inap-
proximability, as formalized in Proposition 3.5 below. The proof of the proposition
can be found in Appendix B.

PROPOSITION 3.5. If a problem g is (i) (f,9)-FPT gap reducible to Iy for some
computable nondecreasing functions f,g = w(1), and (ii) totally FPT-inapprozimable,
then 11y s also totally FPT-inapprozimable.

As stated earlier, we mainly work with inherently enumerative concepts instead
of working directly with totally FPT inapproximability; indeed, we will never use
the above proposition and we alternatively use FPT gap reductions to prove that
problems are weakly inherently enumerative. For this purpose, we will need the
following proposition.

PROPOSITION 3.6. If a problem Iy is (i) (f, g)-FPT gap reducible to 11y and (ii)
B-weakly inherently enumerative for some f,g,8 = w(1), then Iy is Q(B o g)-weakly
inherently enumerative.
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Proof. We assume that (i) holds, and will show that if the “then” part does not
hold, then (ii) also does not hold. Recall from Definition 3.4 that (i) implies that
there exist C, D > 0 such that the reduction from Iy (with parameters ¢ and r) to II;
takes O, (|Ip|“) time and always output an instance I of size at most O,..(|Io|”) on
every input instance Iy. Now assume that the then part does not hold, in particular,
IT; is not (S8 o g)/D-weakly inherently enumerative. We will show the following claim
which says that (ii) does not hold (by Definition 3.2).

CLAIM 3.7. For every ro > 0, there exists ¢ > r > ro and an O, (|Io]?™)-
time algorithm B that can, on every input instance Iy of Iy, distinguish between
OPTr,(lo) > q and OPTy, (Ip) < 7.

We now prove the claim. Consider any rg. Since 3, g = w(1), there exists r{, such
that g(r') > ro and B(r') > C for all ¥ > r{,. From the assumption that II; is not
(B o g)/D-weakly inherently enumerative, there exist ¢’ > r/ > r{ such that there is
an Oq/,rz(|I1|5(9(Tl))/D)—time algorithm A that can, on every input instance I; of IIy,
distinguish between OPTyy, (I7) > ¢/ and OPTyy, (1) < 7.

Let r = g(r'), and let ¢ be the smallest integer such that f(¢) > ¢’ and ¢ > r.
Note that ¢ exists since limgy,o f(g) = oo, and that r > ro. We use A and the
reduction to build an algorithm B as follows. On input Iy, the algorithm B runs the
reduction on Iy and the previously defined g, r. Let us call the output of the reduction
I. The algorithm B then runs A on the input (I, ¢’,7’) and outputs accordingly, i.e.,
if A says that OPTy, (I1) > ¢/, then B outputs OPTr,(Ip) > ¢ and, otherwise, if A
says that OPTyy, (I1) < 7/, then B outputs OPTy, (1) < 7.

Now we show that the algorithm B can distinguish whether OPTy, (Ip) > ¢ or
OPTr, (I1) < r as desired by the claim: From our choice of ¢, if OPTy, (Ip) > ¢, then
OPTp, (I1) > f(q) > ¢'. Similarly, from our choice of r = g(r'), if OPTy,(Ip) < r,
then OPTyy, (I7) < 7. Since A can distinguish between the two cases, B can distinguish
between the two cases as well.

The total running time of B is Oy ,.(|1o|C) + Oy (|11 [P0 D/PY (the first term is
for running the reduction). Since I is of size at most Oy, (|Io|?), B(r) > C, and ¢
and 7’ depend only on g and 7, the running time can be bounded by qur(|fo|ﬁ(r)) as
desired. ]

4. Covering problems on label cover instances. In this section, we give in-
termediate results for the lower bounds on the running time of approximating variants
of the label cover problem, which will be the source of our inapproximability results
for Clique and DomSet.

4.1. Problems and results. First, we define a label cover instance.
Label cover instance: A label cover instance I" consists of (G, Xy, Xy, IT), where
e G = (U,V,E) is a bipartite graph between vertex sets U and V and an edge
set F;
e Yy and Xy are sets of alphabets to be assigned to vertices in U and V,
respectively; and
o I ={Il.}cck is a set of constraints I, C Xy x Ty
We say that II (or I') has the projection property if for every edge uv € E (where
uw € U and V € v) and every a € Yy, there is exactly one f € Xy such that
(v, B) € M.
We will define two combinatorial optimization problems on an instance of the
label cover problem. These two problems are defined on the same instance as the
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standard label cover problem. We will briefly discuss how our problems differ from
the standard one.

Mazx-Cover problem: A labeling of the graph is a pair of mappings oy : U — Xy
and oy : V — Xy We say that a labeling (oy, ov) covers edge uv if (oy (u),ov (v)) €
II,,,. We say that a labeling covers a vertex u if it covers every edge incident to u. For
any label cover instance T', let MaxCov(T") denote the maximum number of vertices in
U that can be covered by a labeling; i.e.,

MaxCov(T') := max Hu € U | (ou,ov) covers u}|.

UU:U*)ZU, thV%EV

The goal of the Max-Cover problem is to compute MaxCov(I"). We remark that
the standard label cover problem (e.g., [83]) would try to maximize the number of
covered edges, as opposed to our Max-Cover problem, which seeks to maximize the
number of covered vertices.

Min-Label Problem: A multilabeling of the graph, is a pair of mappings oy : U —
Yy and 6y : V. — 2%V, We say that (oy,dy) covers an edge uv if there exists
B € 6v(v) such that (o(u),3) € II,,. For any label cover instance T, let MinLab(T")
denote the minimum number of labels needed to assign to vertices in V in order to
cover all vertices in U, i.e.,

MinLab(') := min Y |6y (v)],
ev

(ou,6v)
v

where the minimization is over multilabelings (o1, 6y) that cover every edge in G.

It is worth noting that, in MinLab, we are allowed to assign multiple labels to
vertices in V' whereas each vertex in U must be assigned a unique label. This makes
MinLab different from the problem known in the literature as MinRep (see, e.g., [21])
since, in MinRep, we are allowed to assign multiple labels to all nodes, including those
in U.

Results. First, note that checking whether MaxCov(T') < r or not, for any r > 1,
can be done by the following algorithms.

1. It can be done® in O*((lg‘)(\EUDT) = O*((JU]"|Zu|)") time: First, enumerate

all (IE{\) possible subsets U’ of U and all |§]U||U/| possible labelings on vertices
in U’. Once we fix the labeling on U’, we only need polynomial time to check
whether we can label other vertices so that all vertices in U’ are covered.

2. Tt can be done in O*(|Zy |IV1) time: Enumerate all O*(|Sy |IV'1) possible label-
ings oy on V. After oy is fixed, we can find labeling oy on U that maximizes
the number of vertices covered in U in polynomial time.

ETH can be restated as that these algorithms are the best possible when |U| =
o(V]), |Zul,|Zv| = O(1), and II has the projection property. Gap-ETH asserts
further that this is the case even to distinguish between MaxCov(I') = |U| and
MaxCov(T") < (1 —¢)|U]|.

THEOREM 4.1. Gap-ETH (Conjecture 2.5) is equivalent to the following state-
ment. There exist constants €, > 0 such that no algorithm can take a label cover
instance I' and can distinguish between the following cases in 0(25‘U|) time:

e MaxCov(T') = |U| and
e MaxCov(T') < (1 —¢)|U]|.

8Recall that we use O*(-) to hide factors of the polynomial in the input size.
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This holds only when |Zy|,|Zv| = O(1), |U| = ©(|V]|), and II has the projection
property.

The proof of Theorem 4.1 is standard. To avoid distracting the readers, we provide
the sketch of the proof in Appendix E.

We will show that Theorem 4.1 can be extended to several cases, which will be
useful later. First, consider when the first (O*((|U]| - |2¢|)")-time) algorithm is faster
than the second one. We show that, in this case, the first algorithm is essentially the
best even for r = O(1), and this holds even when we know that MaxCov(T") = |U|.

For convenience, in the statements of Theorems 4.2 to 4.4 below, we will use
the notation |I'| to denote the size of the label cover instance; in particular, |T'| =
|Xu| + |2v| + |U| + |V]|. Furthermore, recall that the notation Oy () denotes any
multiplicative factor that depends only on k and r.

THEOREM 4.2 (MaxCov with small |U|). Assuming Gap-ETH, there exist con-
stants 0, p > 0 such that, for any positive integers k > r > p, no algorithm can take
a label cover instance T' with |U| = k and distinguish between the following cases in
O.(IT°") time:

e MaxCov(T') =k and
o MaxCov(T') < 7.
This holds even when |Xyv| = O(1) and I has the projection property.

We emphasize that it is important for applications in later sections that r = O(1).
In fact, the main challenge in proving the theorem above is to prove it is true for r
that is arbitrarily small compared to |U|.

Second, consider when the second (O*(|Zy|IV!)-time) algorithm is faster, i.e.,
when |V| < |U|. In this case, we cannot make the soundness (i.e., the parameter r in
Theorem 4.2) be arbitrarily small. (Roughly speaking, the first algorithm can become
faster otherwise.) Instead, we will show that the second algorithm is essentially the
best possible for soundness as small as v|U| for any constant v > 0. More importantly,
this holds for |V| = O(1) (thus independent from the input size). This is the key
property of this theorem that we will need later.

THEOREM 4.3 (MaxCov with small |V]). Assuming Gap-ETH, there exist con-
stants §,p > 0 such that, for any positive integer ¢ > p and any 1 > v > 0, no
algorithm can take a label cover instance T' with |V| = q and distinguish between the
following cases in Oy~ (|T|°7) time:

e MaxCov(T') = |U| and
e MaxCov(T") < ~|U]|.
This holds even when |Sy| < (1/4)°W).

We remark that the above label cover instance does not have the projection
property.

In our final result, we turn to computing MinLab(T"). Since MaxCov(T") = |U] if
and only if MinLab(T") = |V|, a statement similar to Theorem 4.1 intuitively holds for
distinguishing between MinLab(I") < |V| and MinLab(T') > (1 + ¢)|V], i.e., we need
O*(|1Zv|V1) time. In the following theorem, we show that this gap can be substantially
amplified while maintaining the property that |V| = O(1) (thus independent from the
input size).

THEOREM 4.4 (MinLab hardness). Assuming Gap-ETH, there exist constants
d,p > 0 such that, for any positive integers r > q > p, no algorithm can take a

label cover instance T with |V| = ¢ and distinguish between the following cases in
Oy (IT[°9) time:
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e MinLab(T") = ¢ and
e MinLab(T") > r.
This holds even when |Sy| = (r/q)°@.

The rest of this section is devoted to proving Theorems 4.2 to 4.4.

4.2. Proof of Theorem 4.2. The proof proceeds by compressing the left vertex
set U of a label cover instance from Theorem 4.1. More specifically, each new left
vertex will be a subset of left vertices in the original instance. In the construction
below, these subsets will just be random subsets of the original vertex set of a certain
size; however, the only property of random subsets we will need is that they form
a disperser. To clarify our proof, let us start by stating the definition of dispersers
here. Note that, even though dispersers are often described in terms of graphs or
distributions in literature (see, e.g., [82]), it is more convenient for us to describe it
in terms of subsets.

DEFINITION 4.5. For any positive integers m,k,l,v € N and any constant € €
(0,1), an (m,k,£,r,e)-disperser is a collection T of k subsets I,...,I; C [m] each
of size £ such that the union of any r different subsets from the collection has size at
least (1—e)m. In other words, for any 1 < iy < --- < i, <k, we have |I;; U---UIl; | >
(1 —¢)m.

The idea of using dispersers to amplify the gap in hardness of approximation
bears a strong resemblance to the classical randomized graph product technique [11].
Indeed, similar approaches have been used before, both implicitly (e.g., [8]) and ex-
plicitly (e.g., [85, 84, 86]). In fact, even the reduction we use below has been studied
before by Zuckerman [85, 84]!

What differentiates our proof from previous works is the setting of parameters.
Since the reduction size (specifically, the left alphabet size |X;|) blows up exponen-
tially in ¢ and previous results aim to prove NP-hardness of approximating Clique, the
¢ are chosen to be small (i.e., O(logm)). On the other hand, we will choose our ¢ to
be O, (m/r) since we would like to only prove a running time lower bound of the form
D, |Q(T). Interestingly, dispersers for our regime of parameters are easier to construct
deterministically and we will sketch the construction in subsection 4.2.1. Note that
this construction immediately implies derandomization of our reduction.

The exact dependency of parameters can be found in the claim below, which
also states that random subsets will be a disperser for such a choice of parameters
with high probability. Here and throughout the proof, k£ and r should be thought of
as constants where k > r; these are the same k,r as the ones in the statement of
Theorem 4.2.

CLAIM 4.6. For any positive integers m,k,r € N and any constant ¢ € (0,1), let
¢ =max{m, [3m/(er)]} and let I, ..., I} be L-element subsets of [m] drawn uniformly
independently at random. If lnk < m/r, then T = {I1,..., I} is an (m,k,{,r€)-
disperser with probability at least 1 —e™ ™.

Proof. When ¢ = m, the statement is obviously true; thus, we assume without
loss of generality (w.l.o.g.) that £ = [3m/(er)]. Consider any indices iy, ..., %, such
that 1 <i; < --- <i, < k. We will first compute the probability that |I;, U---Ul; | <
(1 — )m and then take the union bound over all such (i1, ...,%,)’s.

Observe that |I;; U---UI; | < (1 —¢)m if and only if there exists a set S C [m] of
size less than (1 — &)m such that I;,,...,I;  C S. For a fixed set S C [m] of size less
than (1 — €)m, since I;,,...,I; are independently drawn random ¢-element subsets
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of [m], we have

Pr(l;,,....I;, € S]= [[ Pr[f; € S] = <((Z|))><(|i>z

JElr]
< (1 _ E)ér < e—eh < e—3m.

Taking the union bound over all such S’s, we have

Pr{|;; U---UL | < (1—¢g)m] < Z eI L QML M £ oM
SC[m],|S|<(1—e)m
Finally, taking the union bound over all (i1, ...,4,)’s gives us the desired probabilistic
bound:

Pr[Z is not an (m, k, £, r, &)-disperser| < Z eI KT eI < o™
1<y < <ip <k

where the last inequality comes from our assumption that Ink < m/r. 0

With the definition of dispersers and the above claim ready, we move on to prove
Theorem 4.2.

Proof of Theorem 4.2. First, we take a label cover instance, namely,

f = (é = (ﬁﬂ ‘77‘5‘)72[7721711:1)7

as in Theorem 4.1. We may assume that |Yz/,|Ey| = O(1), and U| = (|V|)
Moreover, let m = |U| and n = |V|; for convenience, we rename the vertices in U and
V so that U = [m] and V = [n]. Note that it might be useful for the readers to think

of ' as a 3-SAT instance, where U is the set of clauses and V is the set of variables.
We recall the parameter € from Theorem 4.1 and the parameters k,r from the
statement of Theorem 4.2. We introduce a new parameter ¢ = [3m/(er)].
The new label cover (MaxCov) instance I' = (G = (U, V, E), Zy, v, II) is defined
as follows. _

e The right vertices and right alphabet set remain unchanged, i.e., V =V and
Yy =3g.

e There will be k vertices in U, where each vertex is a random set of £ vertices
of U. More specifically, we define U = {I, ..., I}, where each I, is a random
l-element subsets of [m] drawn independently of each other.

e The left alphabet set Y is E%. For each I € U, we view each label o € Xy

as a tuple (o )uer € (X)7; this is a partial assignment to all vertices u € I
in the original instance L.

e We create an edge between I € U and v € V in FE if and only if there exists
u € I such that uv € E. More formally, E = {Iv: I N Ng(v) # 0}.

e Finally, we define the constraint Ilr, for each Iv € E. As stated above, we
view each o € ¥y as a partial assignment (v, )yer for I C U. The constraint
IT;, then contains all («, 8) such that («,,3) satisfies the constraint IL,, for
every u € I that has an edge to v in . More precisely,

Hr, = {(o, B) = ((w)uer, B) : Vu € IN Ng(v), (o, B) € ﬁuv}

Readers who prefer the 3-SAT/CSP viewpoint of label cover may think of each I;
as a collection of clauses in the 3-SAT instance that are joined by an operator AND,
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i.e., the assignment must satisfy all the clauses in I; simultaneously in order to satisfy
I;.

We remark that, if IT has the projection property, then IT also has the projection
property.

Completeness. Suppose there is a labeling (o, 0y ) of [ that covers all |[7| left
vertices. We take oy = oy and construct oy by setting oy (1) = (07 (u))uer for each

I €U. Since (0,07) covers all the vertices of U, (ou,0v) also covers all the vertices
of U. Therefore, MaxCov(I") = |U].

Soundness. To analyze the soundness of the reduction, first recall Claim 4.6
that {I1,...,I;} is an (m, k, £,r, e)-disperser with high probability. Conditioned on
this event happening, we will prove the soundness property, i.e., that if MaxCov(f) <
(1 —¢)|U], then MaxCov(T') < 7.

We will prove this by the contrapositive. Assume that there is a labeling (o, o)
that covers at least r left vertices I;,,...,I; € U. We construct a labeling (og,0)
as follows. First, oy is simply set to oy. Moreover, for each u € I;; U---U; , let
o5 (u) = (ou(Ii;))u, where j € [r] is an index such that u € I;; if there are multiple
such j’s, then we may pick an arbitrary one. Finally, for u € U\ (I;; U---UI; ), we
set o5 (u) arbitrarily.

We claim that every w € I;, U--- U I;_is covered by (o7,0p) in the original
instance I'. To see that this is the case, recall that og(u) = (ou(li;))u for some
J € [r] such that u € I;;,. For every v € V, if uv € E, then, from how the constraint

Iy, o is defined, we have (o5 (u), o0 ()) = (ou(L;)u,ov(v)) € Il,,. In other words,
u is indeed covered by (o, 0).

Hence, (07,0) covers at least |[;; U---UI; | > (1 — &)m, where the inequal-
ity comes from the definition of dispersers. As a result, MaxCov(I') > (1 — &)|U],
completing the soundness proof.

Running Time Lower Bound. Our construction gives a MaxCov instance I’
with U] = k and |Sy| = [S5/¢ = 200/ whereas |V| and |Sy | remain n and O(1),
respectively. Assume that Gap-ETH holds and let §p be the constant in the running
time lower bound in Theorem 4.1. Let ¢ be any constant such that 0 < & < doe/c,
where c is the constant such that |Sg| < 20m/(e7),

Suppose for the sake of contradiction that, for some k > r > p, there is an al-
gorithm that distinguishes whether MaxCov(I") = k or MaxCov(T') < 7 in Oy .(|T|°")
time. Observe that, in our reduction, U], |[V],|Sy| = |Zy|°™). Hence, the running
time of the algorithm on input I is at most Oy, ,.(|Sg |71 +0()) < Oy ,.(|Sy|%e7/¢) <
O(2%™), where the first inequality comes from our choice of § and the second comes
from |y < 2¢/(¥7), Thanks to the completeness and soundness of the reduc-
tion, this algorithm can also distinguish whether MaxCov(I') = |U| or MaxCov(I') <
(1 —¢)|U] in time O(2%™). From Theorem 4.1, this is indeed a contradiction. |

4.2.1. Derandomization. While the reduction in the proof of Theorem 4.2 is
a randomized reduction, it can be derandomized quite easily. We sketch the ideas
behind the derandomization below.

Ones may notice that the only property we need from the random /¢-element
subsets Iy, ..., I} is that it forms an (m, k, ¢, r,e)-disperser. Hence, to derandomize
the reduction, it suffices to deterministically construct such a disperser in 2°(") time.

To do so, let us first note that Claim 4.6 implies that an (m/, k, ¢, r, e)-disperser
exists, where m’ = rlnk and ¢/ = 3m//(er). For convenience, we assume w.l.o.g.
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that m/, ¢ are integers and that m’ divides m. Since m’ is now small, we can find
such a disperser by just enumerating over every possible collection of k subsets of
[m] each of size ¢’ and checking whether it has the desired property; this takes only
(27 Yk (k)" poly(m/) = 20(rk1o8k) time, which is acceptable for us since r and k are
both constants. Let the (m/, k, ¢/, r, ¢)-disperser that we find be {I7,...,I;}. Finally,
to get from here to the intended (m, k, ¢, r,e)-disperser, we only need to view [m] as
[m/m'] x [m'] and let Iy = [m/m/] x I{, ..., Iy = [m/m’] x I},. It is not hard to check
that {I1,..., Iy} is indeed an (m,k, ¢, r, €)-disperser, which concludes our sketch.

4.3. Proof of Theorem 4.3. The proof proceeds by compressing the right ver-
tex set V of a label cover instance from Theorem 4.1 plus amplifying the hardness
gap. The gap amplification step is similar to that in the proof of Theorem 4.2 except
that, since here MaxCov(T") is not required to be constant in the soundness case, we
can simply take all subsets of appropriate sizes instead of random subsets as in the
previous proof; this also means that our reduction is deterministic and thus requires
no derandomization.

_ Proof of Theorem 4.3. First, we take a label cover instance, namely, r =
(G =(U,V,E),%5,5¢,10), as in Theorem 4.1. We may assume that |Y|, |S¢| =
O(1) and |U| = ©(|V|). For convenience, we assume w.lo.g. that U = [m] and
V= [n ] Again, it might be useful for the readers to think of I' as a 3-SAT instance,
where U are the set of clauses and V are the set of variables.

Recall the parameter € from Theorem 4.1 and the parameters ¢,y from Theo-
rem 4.3. Let ¢ = In(1/v)/e. We assume w.l.o.g. that ¢ is an integer and that n is
divisible by ¢. The new label cover (MaxCov) instance I' = (G = (U, V, E), Xy, 3y, II)
is defined as follows. B

e First, we partition V' = [n] into ¢ parts Ji, ..., J,, each of size n/q. We then

let V.= {Ji,...,J;}. In other words, we merge n/q vertices of V into a single
vertex in V. _
e Let U be (["f]) the collection of all ¢-element subsets of [m] = U.

e The left alphabet set Xy is Z . For each I € U, we view each label a € ¥y
as a tuple (o )uer € (55)%; thls is a partial assignment to all vertices u € I
in the original instance f

e Our graph G is simply a complete bipartite graph, i.e., for every I € U and
JeV, 1J € E(G).

e The label set of V is Xy = E%/q, and the label set of U is Yy = E%. For
cach I € U, we view each label a € Sy as a tuple (o, )uer € (35)7; this is
simply a partial assignment to all vertices u € I in the original instance L.
Similarly, for each J € V, we view each label 8 € Sy as (8)ves € (5g)7.

e Finally, we define Il;; for each IJ € E. The constraint II;; contains all
(c, B) such that (aw,B,) satisfies the constraint II,, for every u € I,v € J
such that uv € E. More precisely, 1y = {(a,8) = ((aw)uer, (Bv)ves) : Vu €
I,v € J such that uv € E (w, Bo) € Huv}

We remark that II may not have the projection property even when IT has the
property.

Completeness. Suppose that there is a labeling (o5, o) of I that covers all |U]
left vertices. We construct (oy,ov) by setting oy (I) = (07 (u))uecr for each I € U

and oy (J) = (03 (v))ves for each J € V. It is easy to see that (oy, ov) covers all the
vertices of U. Therefore, MaxCov(I") = |U].
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Soundness. Suppose that MaxCov(I') < (1 — ¢)|U|. Consider any labeling
(ou,ov) of T'; we will show that (oy, oy ) covers less than |U| left vertices.

Let Iy,...,I; € U be the vertices covered by (oy,oy ). Analogously to the proof
of Theorem 4.2, we define a labeling (0, o) as follows. First, oy is naturally defined
from oy by oy = oy (J)y, where J is the partition that contains v. Moreover, for
each u € I;, U---U; , let o5(u) = (ou(li;))u, where j € [r] is an index such that
u€ lj;forue U\ (I; U---UI; ), we set o5 (u) arbitrarily.

Similarly to the proof of Theorem 4.2, it is not hard to see that every vertex
in I U---UI; is covered by (o5,0) in T'. Since MaxCov(I') < (1 — ¢)|U|, we can
conclude that [I; U---UL;| < (1 —¢)|U|. Since each I; is simply an f-size subset of
I U---U I, we can conclude that

t< <(1 _5)|U|> <(1- E)é<[2|) =1 - |U| < e #YU| = 4|U|.

Hence, (o, o) covers less than v|U| left vertices as desired.

Running Time Lower Bound. Our construction gives a MaxCov instance I'
with |[V]| = ¢ and |Sy| = [S5|"/7 = 29(/9); note also that |U| = m’ and |Sy| =
1S54 = (1/7)°M. Assume that Gap-ETH holds and let § be the constant from
Theorem 4.1. Moreover, let § be any positive constant such that § < dg/c, where c is
the constant such that || < 27/4,

Suppose for the sake of contradiction that, for some ¢ > p and 1 > v > 0, there
is an algorithm that distinguishes whether MaxCov(T") = |U| or MaxCov(I") < 4|U| in
O, (IT[°9) time. Observe that, in our reduction, |U|, |V, |Zy| = |Zv[°™). Hence, the
running time of the algorithm on input T is O, - (|Zy|%9( (1)) < O, . (|8y|%09/¢) <
O(2%™), where the first inequality comes from our choice of § and the second comes
from |2y| < 2¢7/4. Thanks to the completeness and soundness of the reduction, this
algorithm can also distinguish whether MaxCov(I') = |U| or MaxCov(I') < (1 — ¢)|U]
in time O(2%™). From Theorem 4.1, this is a contradiction. 0

4.4. Proof of Theorem 4.4. We conclude this section with the proof of The-
orem 4.4. The proof proceeds simply by showing that if an algorithm can distinguish
between the two cases in the statement of Theorem 4.4, it can also distinguish between
the two cases in Theorem 4.3 (with an appropriate value of 7).

Proof of Theorem 4.4. Consider the label cover instance given by Theorem 4.3,
namely, I' = (G = (U,V, E), Xy, Xy, ), when v = (r/¢q)~9. Let us assume w.l.o.g.
that there is no isolated vertex in G.

Completeness. If MaxCov(I') = |U|, then there is a labeling oy : U — Xy and
oy : V. — Xy that covers every edge; this also induces a multilabeling that covers
every edge. Hence, MinLab(T") = |V|.

Soundness. We will prove this by the contrapositive. Suppose that MinLab(T") <
r. This implies that there exists a multilabeling oy : U — £y and oy : V. — 2%V
such that ) |ov(v)| < r and every vertex is covered. Since there is no isolated
vertex in G, oy (v) # () for all v € V.

Consider 012" : V' — %y, sampled randomly, for each v € V, by independently
picking a random element of oy (v) and letting oi2%d(v) be this element. Let us

consider the expected number of u € U that are covered by the labeling (o, cf{}’md).
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From linearity of expectation, we can write this as

E {ueU| (ou,08") covers u}| = Z Pr. [(ou, o) covers u]
rand ran

v uelU VvV

=" I Prl(ov(w),o() € ]

u€U vEN (u)

>3 1 lov)l ™

u€U veEN (u)

> T lov@)l™

uelU veV

—q
1
(From AM-GM inequality) > Z < Z |Uv(’U)|>
uelU veV

> (r/g)°

uelU
=9|U],

where the first inequality comes from the fact that there exists 5 € oy (v) such that
(ov(u), B) € I,. This implies MaxCov(I") > ~|U|, which concludes our proof. d

5. Hardness for combinatorial problems.

5.1. Maximum clique. Recall that, for any graph G, Clique(G) denotes the
maximum size of any clique in G. Observe that we can check if there is a clique of
size r by checking if any subset of r vertices forms a clique, and there are (‘V(TG”) =
O(|V(G)|") possible such subsets. We show that this is essentially the best we can do
even when we are given a promise that a clique of size ¢ > r exists.

THEOREM 5.1. Assuming Gap-ETH, there exist constants 6,79 > 0 such that, for
any positive integers q > r > 19, no algorithm can take a graph G and distinguish
between the following cases in O, (|[V(G)|°") time:

o Clique(G) > q and
e Clique(G) < r.

The above theorem simply follows from plugging the FGLSS reduction below into
Theorem 4.2.

THEOREM 5.2 (see [42]). Given a label cover instance with projection property,
namely, ' = (G = (U,V, E), Xy, 2v, 1), as in section 4, there is a reduction that
produces a graph Hr such that |V (Hr)| = |U||Zy| and Clique(Hr) = MaxCov(T"). The
reduction takes O(|V (Hr))|?|V]) time.

For clarity, we would like to note that, while the original graph defined in [42] is
for multiprover interactive proof, analogous graphs can be constructed for CSPs and
label cover instances as well. In particular, in our case, the graph can be defined as
follows:

e The vertex set V(Hr) is simply U X Xy.

e There is an edge between two vertices (u, ), (v/, ') € V(Hr) if and only if
Iy () = Iy (') (iee., recall that we have a projection constraint, so we
can represent the constraint I, as a function II,, : Xy — 3y).

Proof of Theorem 5.1. Assume that Gap-ETH holds and let 6, p be the constants
from Theorem 4.2. Let rg = max{p,2/d}. Suppose for the sake of contradiction that
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for some g > r > rg, there is an algorithm A that distinguishes between Clique(G) > ¢
and Clique(G) < 7 in Oy ,.([V(G)|°") time.

Given a label cover instance I" with projection property, we can use A to dis-
tinguish whether MaxCov(I') > ¢ or MaxCov(I') < r as follows. First, we run the
FGLSS reduction to produce a graph Hr, and we then use A to decide whether
Clique(Hr) > ¢ or Clique(Hr) < r. From Clique(Hr) = MaxCov(T"), this indeed
correctly distinguishes between MaxCov(I') > ¢ and MaxCov(I") < r; moreover, the
running time of the algorithm is O, ,(|V (Hr)[°") + O(|V (Hr))2|V]) < O,.(IT°"),
where the term O(|V (Hr))|?|V|) comes from the running time used to produce Hr.
From Theorem 4.2, this is a contradiction, which concludes our proof. 0

As a corollary of Theorem 5.1, we immediately arrive at FPT inapproximability
of Clique and IndSet.

COROLLARY 5.3 (clique is inherently enumerative). Assuming Gap-ETH, the Maz-
imum Clique and Mazximum Independent Set problems are inherently enumerative and
thus FPT-inapprorimable.

5.2. Set cover, dominating set, and hitting set. For convenience, we will be
working with the Set Cover problem, which is computationally equivalent to DomSet
(see Appendix D).

Let U be a ground set (or a universe). A set system S over U is a collection of
subsets S = {S1,...,Sm}, where S; C U for all i € [m]. We say that S’ C S is a
feasible set cover of (U,S) if (Jxcg X = U. In the Set Cover problem (SetCov), we
are given a set system (U,S) and we are interested in finding a set cover S’ with
minimum cardinality |S’|. Let SetCov(U/, S) denote the value of the optimal set cover
for (U,S). SetCov has an alternative formulation called Hitting Set (HitSet), where
the goal is to find a collection of elements with minimum cardinality that hits every
subset, i.e., each subset must contain at least one chosen element. It is not hard to
see that one may interchange the role of elements and subsets to get an instance of
HitSet from that of SetCov and vice versa.

Note that for any set cover instance (U, S), checking whether there is a set cover
of size at most ¢ can be done in O*(|S|?) time by enumerating all (|S\> subsets of S of
size ¢. We show that this is more or less the best we can do: Even when the algorithm
is promised the existence of a set cover of size ¢ (for some constant ¢), it cannot find
a set cover of size f(q) for any computable function f in time O, (|S|{U)%? for some
constant d > 0 independent of ¢ and f.

5.2.1. Results. Our main technical contribution in this section is summarized
in the following theorem.

THEOREM 5.4. There is a reduction that on input T = (G = (U, V, E), Xy, Xy, 1)
of MinLab instance, produces a set cover instance (U,S) such that
e MinLab(T") = SetCov(U, S);
o [Ul=U|IV[FUl and |S| = |V||Zv|;
o the reductions runs in time poly(|U|,|S]).
We defer the proof of this theorem to subsection 5.2.2. For now, let us demonstrate

that, by combining Theorems 4.3 and 5.4, we can derive hardness of approximating
SetCov:

THEOREM 5.5. Assuming Gap-ETH, there exist universal constants d,qg > 0 such
that, for any positive integers v > q > qg, no algorithm can take a set cover instance
U,S), and distinguish between the following cases in O ((|S|[U[)%9) time:
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e SetCov(U,S) <gq.
o SetCov(U,S) > r.

Proof. Assume that Gap-ETH holds and let §,p be the constants from Theo-
rem 4.4. Let ¢o = max{p,c/d}, where c is the constant such that the running time
of the reduction in Theorem 5.4 is O((|U||S])¢). Suppose for the sake of contradic-
tion that, for some r > ¢ > qg, there is an algorithm A that distinguishes between
SetCov(U,S) < q and SetCov(U,S) > r in O,,-((|S||U])°9) time.

Given a label cover instance I', where |V, |Xy| = Oy, (1), we can use A to distin-
guish whether MinLab(T") < ¢q or MinLab(T") > r as follows. First, we run the reduction
from Theorem 5.4 to produce a SetCov instance (U, S), and we then use A to decide
whether SetCov(U,S) < q or SetCov(U,S) > r. From SetCov(U,S) = MinLab(T"), this
indeed correctly distinguishes between MinLab(I") < ¢ and MinLab(I") > r; moreover,
the running time of the algorithm is O,..((|U||S])°?) + O((|U||S|)¢) < Oy (IT[%9),
where the term O((|||S])¢) comes from the running time used to produce (U,S).
From Theorem 4.4, this is a contradiction, which concludes our proof. ]

As a corollary of Theorem 5.5, we immediately arrive at FPT inapproximability
of SetCov, HitSet, and DomSet.

COROLLARY 5.6. Assuming Gap-ETH, Set cover, Dominating set, and Hitting
set are inherently enumerative and thus FPT-inapproximable.

5.2.2. Proof of Theorem 5.4. Our construction is based on a standard hy-
percube set system, as used by Feige [39] in proving the hardness of the k-Mazimum
Coverage problem. We explain it here for completeness.

Hypercube set system: Let z,k € N be parameters. The hypercube set system
H(z,k) is a set system (U,S) with the ground set & = [z]¥. We view each element
of U as a length-k vector #, where each coordinate assumes a value in [z]. There is a
collection of canonical sets S = {X; 4 }ic[2],ac[k) defined as

Xi,a = {.7_;" : LZ"a = Z}

In other words, each set X; , contains the vectors whose ath coordinate is 7. A nice
property of this set system is that it can only be covered completely if all canonical
sets corresponding to some ath coordinate are chosen.

PROPOSITION 5.7. Consider any subcollection 8" C S. We have | JS' =U if and
only if there is a value a € [k] for which X1 4, X2.4,...,X20 €S-

Proof. The if part is obvious. For the “only if” part, assume that for each a € [k],
there is a value i, € [z] for which X, , is not in &’. Define the vector Z by T, = 4.
Notice that & does not belong to any set in §’. (By definition, if X,/ ,» contains Z,
then it must be the case that Z,» =4’ =i4.) 1]

The construction: Our reduction starts from the MinLab instance, namely, I' =
(G, Xy, Zy,II). We will create the set system Z = (U,S). We make |U| different
copies of the hypercube set system: For each vertex u € U, we have the hypercube
set system (U, S*) = H(Ng(u), Xy ), ie., the ground set U is a copy of Ng(u)*v
and S* contains |Ng(u)||Ey| “virtual” sets that we call {S}!,}veng (u),acsy, Where
each such set corresponds to a canonical set of the hypercube. We remark that these
virtual sets are not the eligible sets in our instance Z. For each vertex v € V, for each
label b € Xy, we define a set

Syp = U SY,.

uENG(v),(a,b)€llyy
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The set system (4, S) in our instance is simply

U=|Ju" and S={S,:veVbery}.
uelU

Notice that the number of sets is |V||Zy|, and the number of elements in the ground
set is [U| = |U||V|*v]. This completes the description of our instance.

Analysis: We argue that the optimal value of I" is equal to the optimal of (U, S).

First, we will show that MinLab(T") < SetCov(U,S). Let (oy,dv) be a feasible
MinLab cover for T' (recall that 6y is a multilabeling, while oy is a labeling.) For
each v € V, the SetCov solution chooses the set S, for all b € 6y (v). Denote this
solution by &’ € S. The total number of sets chosen is exactly »_ [6(v)|, exactly
matching the cost of MinLab(I"). We argue that this is a feasible set cover: For each
u, the fact that u is covered by (oy,dv) implies that, for all v € Ng(u), there is a
label b, € &y (v) such that (oy(u),b,) € I,,. Notice that Sg,au(u) C Syp, €8 for
every v € Ng(u), so we have

Us2 U S22 U Sow=u"

Ses’ vENgG(u) vENG(u)

where the last equality comes from Proposition 5.7. In other words, &’ covers all
elements in U*. Hence, S’ is indeed a valid SetCov solution for (U, S).

To prove the converse, consider a collection of sets {Sv,b}(v,g)e A that covers the
whole universe ¢. We define the (multi)labeling 6y : V. — 2>V, where 6y (v) =
{b: (v,b) € A} for each v € V. Clearly, > i |0v(v)| = |A[, so the cost of 6y as
a solution for MinLab is exactly the cost of SetCov. We verify that all left vertices
u € U of T are covered (and along the way will define Xy (u) for all u € U). Consider
each vertex u € U. The fact that the ground elements in " are covered implies that
(from Proposition 5.7) there is a label a,, € Xy where all virtual sets {S} , }oeng(u)
are included in the solution. Therefore, for each v € N¢(u), there must be a label
b, € 6y (v) such that a,b, € II,,. We simply define oy (u) = a,. Therefore, the
vertex w is covered by the assignment (oy, 6y ).

5.3. Maximum induced subgraph with hereditary properties. In this
section, we prove the hardness of maximum induced subgraphs with hereditary prop-
erty. Let II be a graph property. We say that a subset S C V(G) has property II if
G[S] € 1I. Denote by Ap(G) the maximum cardinality of a set S that has property
II.

Khot and Raman [60] proved a dichotomy theorem for the problem: If II con-
tains all independent sets but not all cliques or if II contains all cliques but not all
independent sets, then the problem is W[1]-hard. For all other II’s, the problem is in
FPT. We will show that Khot and Raman’s dichotomy theorem holds even for FPT
approximation as stated more precisely below.

THEOREM 5.8. Let Il be any hereditary property.

e If1II contains all independent sets but not all cliques or vice versa, then com-
puting A (G) is weakly inherently enumerative (and therefore totally FPT-
inapproximable).

e Otherwise, Ani(G) can be computed exactly in FPT.

Surprisingly, the fact that there is a gap in the optimum of our starting point
helps make our reduction simpler than that of Khot and Raman. For convenience,
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let us focus only on the properties II’s which contain all independent sets but not
all cliques. The other case can be proved analogously. The main technical result is
summarized in the following lemma.

THEOREM 5.9. Let II be any graph property that contains all independent sets but
not all cliques. Then there is a function g = w(1l) such that the following hold:
e IfIndSet(G) > q, then An(G) > q.
o If An(G) > r, then IndSet(G) > gn(r).

Proof. Since II contains all independent sets, when IndSet(G) > ¢, we always have
An(G) = q.

Now, to prove the converse, let gr(r) denote maxgcr, v (m) = IndSet(H). If
An(G) = r, then there exists a subset S C V(G) of size r that has property II;
from the definition of gy, IndSet(H) > gni(r), which implies that IndSet(G) > gni(r)
as well. Hence, we are only left to show that g = w(1).

To show that this is the case, recall the Ramsey theorem.

THEOREM 5.10 (Ramsey’s theorem). For any s,t > 1, there is an integer R(s,t)
such that every graph on R(s,t) vertices contains either an s-clique or a t-independent

set. Moreover, R(s,t) < (:FEIQ)

Recall that, from our assumption of II, there exists a fixed integer sy such
that II does not contain an sp-clique. Hence, from Ramsey’s theorem, gr(r) >
max{t | R(sm,t) < r}. In particular, this implies that gr(r) > Q. (r'/(1-1)). Hence,
lim, gr1(r) = 0o (i-e., gn = w(1)) as desired. |

In other words, the identical transformation G — G is a (¢, gr(r))-FPT gap
reduction from Clique to Maximum Induced Subgraph with property II. Hence, by
applying Proposition 3.6, we immediately arrive at the following corollary.

COROLLARY 5.11. Assuming Gap-ETH, for any property 11 that contains all in-
dependent sets but not all cliques (or vice versa), Mazimum Induced Subgraph with
property I1 is Q(gm)-weakly inherently enumerative, where g is the function from
Theorem 5.9.

We remark here that, for some properties, gr; can be much larger than the bound
given by Ramsey’s theorem; for instance, if II is planarity, then Ramsey’s theorem
only gives gr1(r) = Q(r'/®) but it is easy to see that, for planar graphs, there always
exist an independent set of linear size and gri(r) is hence as large as Q(r).

5.4. Maximum Balanced Biclique, Maximum Induced Matching on Bi-
partite Graphs, and Densest k-Subgraph. We next prove FPT inapproximabil-
ity for the Maximum Balanced Biclique, Maximum Induced Matching on Bipartite
Graphs, and Densest k-Subgraph. Unlike the previous proofs, we will not reduce
from any label cover problem. The starting point for the results in this section will
instead be a recent construction of Manurangsi for the ETH-hardness of Densest k-
Subgraph [70]. By interpreting this construction in a different perspective, we can
modify it in such a way that we arrive at a stronger form of inherently enumerative
hardness for Clique. More specifically, the main theorem of this section is the following
theorem, which is a stronger form of Theorem 5.1 in that the soundness not only rules
out cliques, but also rules out bicliques as well.

THEOREM 5.12. Assuming Gap-ETH, there exist constants §,p > 0 such that,
for any positive integers q > r > p, no algorithm can take a graph G and distinguish
between the following cases in Oy .(|V(G)°V") time:
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e Clique(G) > q.
e Biclique(G) < r.

The weakly inherently enumerativeness (and therefore totally FPT inapproxima-
bility) of Maximum Balanced Biclique and Maximum Induced Matching on Bipartite
Graphs follows easily from Theorem 5.12. We will show these results in the subsequent
subsections; for now, let us turn our attention to the proof of the theorem.

The main theorem of this section can be stated as follows.

THEOREM 5.13. For any d,e > 0, there is a constant v = ~(d,e) > 0 such
that there exists a (randomized) reduction that takes in a parameter r and a 3-SAT
instance ¢ with n variables and m clauses where each variable appears in at most d
constraints and produces a graph Gy, = (Vg r, Egr) such that, for any sufficiently
large r (depending only on d,e but not n), the following properties hold with high
probability:

o (Size) N :=|V,,| < 20ac(n/v7),
o (Completeness) if SAT(¢) = m, then Clique(Gy.,.) > NY/V7,
e (Soundness) if SAT(¢) < (1 — e)m, then Biclique(Gy,) <.

It is not hard to see that, in the Gap-ETH assumption, we can, w.l.o.g., assume
that each variable appears in only a bounded number of clauses (see [72, p. 21]).
Hence, Theorem 5.13 together with Gap-ETH implies Theorem 5.12.

As mentioned earlier, our result builds upon an intermediate lemma used in prov-
ing the hardness of approximating Densest k-Subgraph in [70]. Due to this, it will be
easier to describe our reduction in terms of the reduction from [70]; In this regard,
our reduction can be viewed as vertex subsampling (with appropriate Probability) of
the graph produced by the reduction from [70]. The reduction is described formally
in Figure 1. Note that the two parameters ¢ and p will be chosen as ©4(n//r) and
294’5“2/")/(?), respectively, where the constants in ©4.(-) will be selected based on
the parameters from the intermediate lemma in [70].

The main lemma of [70] is stated below. Roughly speaking, when SAT(¢) <
(1 — e)m, the lemma gives an upper bound on the number of occurrences of K, for
every t > 0. When p and t are chosen appropriately, this implies that with high
probability (w.h.p.) there is no t-biclique in our subsampled graph. Note that the
size and completeness properties are obvious from the construction while the exact
statement of the soundness can be found in the proof of Theorem 8 in [70].

LEMMA 5.14 (see [70]). Let d,e,p,n,m, £ be as in Theorem 5.13 and Figure 1.
There is a constant §, A > 0 depending only on d,e such that, for any sufficiently large
n, the graph Gy o = (Vg i, Eg ) described in Figure 1 has the following properties:

o (Size) Vol = ()2".

o (Completeness) If SAT(¢) = m, then the graph é(ﬂ contains an (})-clique.

e (Soundness) If SAT(¢) < (1 — e)m, then the graph G4, contains at most
24n (-2 /n ()" occurrences® of Ky for any t > 0.

Theorem 5.13 follows rather easily from the above lemma by choosing appropriate
£ and p.

9We say that S, T C Vg,¢ is an occurrence of Ky if |[S| = [T| = ¢, SNT = 0, and, for every

s € S,t € T, there is an edge between s and ¢ in G ,. The number of occurrences of K+ of Gy ¢ is
simply the number of such pairs (S, T)’s.
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Input: a 3-SAT instance ¢ and parameters p € (0,1) and ¢ € N such that ¢ < n.
Output: a graph Gy ep = Vs ep, Egtp)-
The graph Gy ¢, is generated as follows.
o First, we create a graph G¢ (= (V¢ ¢ E¢ ¢) as constructed in [70]. More
specifically, the vertex set V¢, ¢ and the edge set E¢, ¢ are defined as follows.
— The vertex set Vdné consists of all partial assignments of £ variables,
e, Vyoi={0:8—={0,1}| S e (f)}, where X is the set of all
variables in ¢.
— There exists an edge between two vertices o1 : S1 — {0,1} and
2182 = {0,1} € ‘7¢7g if and only if (1) they are consistent (i.e.,
01(51NS2) = 02(51NS2)) and (2) the partial assignment induced by
01,09 does not violate any constraint (i.e., every constraint that lies
entirely inside S; U S5 is satisfied by the partial assignment induced
by o1, 03).
e Ourgraph Gy ¢p = (Vyep, Eg e p) can then be easily generated as follows.
— Let V4 ¢, be a random subset of V¢ ¢ such that each vertex v € V¢ ¢
is included independently and randomly in Vj ¢, with probability
p.
— We connect u,v € V4, if and only if (u,v) € E,M.

FiG. 1. The reduction from Gap-3-SAT to Mazimum Balanced Biclique.

Proof of Theorem 5.13. We let G¢>,r = G¢¢,p from the reduction in Figure 1 with

parameters { = j—% and p = 2%2% eC /(Z) For convenience, we assume w.l.o.g. that
A<l

Size. Since each vertex in Vj, is included that Vj ¢, independently with prob-
ability p, we have E[|Vsepl] = plVorl = 9l+3 < 22¢. Hence, from the Chernoff
bound, |V g,,| < 21 = 294.:(?/V7) w h.p.

Completeness. Suppose that ¢ is satisfiable. Let C be the clique of size (’;)
in é(M, which is guaranteed to exist by Lemma 5.14. From how Gy, is defined,
C NV, p induces a clique in Gy ¢,p,. Moreover, E[|C N Vy,|] = p|C| = 237 . Again,
from Chernoff bound, Clique(Gg ) > 2% w.h.p. Combined with the above bound
on N, Clique(Gy.rp) > NY/V7 w.h.p. when v := v/1/20 = Oy (1).

Soundness. Suppose that SAT(¢) < (1 — e)m. Consider any subsets S, T C ‘N/Wg

that are an occurrence of K., in Gy ¢. From how G4 ¢, is defined, Biclique(Gg¢p) > 7
if and only if, for at least one such pair (S,T), SUT C V¢ ,. The probability of this
event is bounded above by

2r
Z PI‘[S, T g Vd),[,p] S 24n (2)\@2/71 (Z')) . p2’r‘

s,Tgf/@e
S,T is an occurrence of Kp. r in é¢,z
2\ 27
pV
= 9in (2_ 2n )
= o(1),
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where the first inequality comes from the bound in the soundness of Lemma 5.14 and
the fact that the sampling of each vertex is done independently.
As a result, the subsampled graph G ¢, is K, ,-free w.h.p. as desired. ]

5.4.1. Maximum Balanced Biclique. We now give a simple reduction from
the “Clique versus Biclique” problem (from Theorem 5.12) to the Maximum Balanced
Biclique problem, which yields FPT inapproximability of the latter.

LEMMA 5.15. For any graph G = (V,E), let B.[G] = (V,1a]; EB.[c)) be the
bipartite graph whose vertex set is Vg (g := V x [2] and two vertices (u,1), (v,]) are
connected by an edge if and only if (u,v) € E oru =v, and ¢ # j. Then the following
properties hold for any graph G.

e Biclique(B.[G]) > Clique(G).
e Biclique(B.[G]) < 2Biclique(G) + 1.

Proof. Tt is easy to see that Biclique(B.[G]) > Clique(G) since, for any C C V
that induces a clique in G, C' x [2] C V| induces a |C|-biclique in B[G].

To see that Biclique(B.[G]) < 2Biclique(G) + 1, consider any S C Vp (g that
induces a k-biclique in B.[G]. Note that S can be partitioned into S; = SN (V x {1})
and S = SN (V x {2}).

Now consider the projections of S and S into V(G), i.e., T = {v: (v,1) € S}
and To = {v: (v,2) € S}. Note that |T1| = |Tz| = k. Since S; U S5 induces a biclique
in B.[G], we have, for every u € T} and v € T, either v = v or (u,v) € E. Observe
that if there were no former case (i.e., 71 N Ty = ), then we would have a k-biclique
in G. Even if T) N Ty # 0, we can still get back a |k/2]-biclique in G by uncrossing
the sets 71 and 75 in a natural way by assigning half of the intersection to 77 and the
other half to T5. To be formal, we partition 77 N T into roughly equal sets U; and
Us (ie., ||U1] — |Uz2]| € 1), and we then define new sets T] and Ty by

Tl/ = (Tl \Tg) @] Ul and TQ/ = (TQ\Tl) U UQ.

It is not hard to see that G has an edge between every pair of vertices between T7, Ty
and that |T7],|T5| > |k/2]. Thus, Biclique(G) > |k/2] > (k — 1)/2. Therefore,
Biclique(B.[G]) < 2Biclique(G) + 1 as desired. |

Thanks to the above lemma, we can conclude that the reduction G — B.[G]
is a (2¢,(r + 1)/2)-FPT gap reduction from the Clique versus Biclique problem to
Maximum Balanced Biclique, although the former is not a well-defined optimization
problem. Nevertheless, it is easy to check that a proof along the line of Proposition 3.6
still works and it gives the following result.

COROLLARY 5.16. Assuming Gap-ETH, Maximum Balanced Biclique are Q(+/r)-
weakly inherently enumerative and thus FPT-inapproximable.

It is worth noting that the Maximum Edge Biclique problem, a well-studied vari-
ant of the Maximum Balanced Biclique problem where the goal is to find a (not
necessarily balanced) complete bipartite subgraph of a given bipartite graph that
contains as many edges as possible, is in FPT. This is because the optimum is at least
the maximum degree, but when the degree is bounded above by r, all bicliques can
be enumerated in 2°(") poly(n) time.

5.4.2. Maximum induced matching on bipartite graphs. Next, we prove
the FPT hardness of approximation for the Maximum Induced Matching problem on
bipartite graphs. Again, the proof will be a simple reduction from Theorem 5.12. The

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 01/16/21 to 74.102.79.115. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

800 CHALERMSOOK ET AL.

argument below is similar to that used in Lemma IV .4 of [20]. We include it here for
completeness.

E), let BE[G] = (VBe[G]7EBe[G]) be the
V x [2] and two vertices (u,i),(v,j) are
¢ E oru=wv, and i # j. Then, the

LEMMA 5.17. For any graph G = (V,
bipartite graph whose vertex is Vp (g =
connected by an edge if and only if (u,v)
following properties hold for any graph G.

* IM(B.[G]) = Clique(G).

e IM(B,[G]) < 2Biclique(G) + 1.
Proof. Consider any S C V that induces a clique in G. It is obvious that S x [2] C

Vg, 6] induces a matching in B [G].

Next, consider any induced matching {(u1,v1),. .., (Um,vUm)} of size m. Assume
w.lo.g. that uy,...,uy, € Vx{1} and v1,...,v,, € V x{2}. Define m : Vx[2] = V
to be a projection operator that projects on to the first coordinate.

Let S1 = m1({u1, - -+ U mys2) }) and Sz = 71 ({Vrm/2141, - - - Um }). From the defini-
tion of B.[G] and from the fact that there is no edge between (S7 x {1}) and (S2 x{2}),
it is easy to check that S; NSy = (0 and, for every uw € S; and v € Sy, (u,v) € E.
In other words, (S1,S52) is an occurrence of |m/2] in G. Hence, we conclude that
IM(B,[G]) < 2Biclique(G) + 1. 0

Similarly to Biclique, it is easy to see that the above reduction implies the fol-
lowing running time lower bound and FPT inapproximability for Maximum Induced

Matching on Bipartite Graphs.

COROLLARY 5.18. Assuming Gap-ETH, Maximum Induced Matching on Bipar-
tite Graphs are Q(y/r)-weakly inherently enumerative and thus FPT-inapprozimable.

5.4.3. Densest k-subgraph. Finally, we will show the FPT inapproximability
result for Densest k-Subgraph. Alas, we are not able to show an o(k)-ratio FPT
inapproximability, which would have been optimal since the trivial algorithm gives an
O(k)-approximation for the problem. Nonetheless, we will show a k°()-factor FPT
inapproximability for the problem. We note that below we will state the result as if
k is the parameter. This is the same as using the optimum as the parameter since (in
the nontrivial case) the optimum is always between |k/2] and (g) (inclusive).

To derive our result, we resort to a well-known result in extremal combinatorics
called the K6vari-Sés—Turan (KST) theorem, which basically states that if a graph
contains no small bicliques, then it is sparse. The KST theorem is stated formally
below.

THEOREM 5.19 (KST theorem [62]). For every positive integer n and t < n, every
K, i-free graph on n vertices has at most O(n*=/t) edges (i.e., density O(n='/t)).

We remark that a generalization of the KST theorem was also a crucial ingre-
dient in the proof of ETH-hardness of approximating Densest k-Subgraph in [70].
The situation is simpler for us here since we can simply apply the KST theorem to
Theorem 5.12, which yields the following theorem.

THEOREM 5.20. Assuming Gap-ETH, there exist a constant § > 0 and an integer
p > 0 such that, for any integer ¢ > r > p, no algorithm can take a graph G = (V, E)
and distinguish between the following cases in Og.(|V|°V7") time:
e Den,(G)=1.
e Den,(G) < O(g7 /).
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From the above theorem, it is easy to show the k°()-factor FPT inapproximability
of Densest k-Subgraph as formalized below. We note here that our result applies to
a special case of Densest k-Subgraph in which the input graph is promised to contain
a k-clique; this problem is sometimes referred to as Densest k-Subgraph with perfect
completeness [17, 70].

LEMMA 5.21. Assuming Gap-ETH, for every function f = o(1) and every func-
tion t, there is no t(k) - n®W-time algorithm such that, given an integer k and any
graph G = (V, E) on n wvertices that contains at least one k-clique, always outputs
S CV of size k such that Den(S) > k—f )

Proof. Suppose for the sake of contradiction that there is a t(k) - |V|P-time algo-
rithm A that, given an integer k and any graph G = (V, E) that contains a k-clique,
always outputs S C V of size k such that Den(S) > k=) for some function f = o(1),
some function t, and some constant D > 0.

Let r = max{[p], [(D/d)?]}, where p is the constant from Theorem 5.20. Note
that O(q~ /") = ¢OW/lega=1/r " Now, since lim, o f(q) + O(1)/logq = 0, there
exists a sufficiently large ¢ such that the term O(q_l/’“) is less than ¢~ /(@ In other
words, A can distinguish between the two cases in Theorem 5.20 in time ¢(q) - n” =
O,.-([V]°Y7), which would break Gap-ETH. 0

6. Conclusion and discussions. In this paper, we prove that Clique and DomSet
are totally FPT-inapproximable under Gap-ETH. In fact, we show a stronger prop-
erty that they are inherently enumerative, i.e., the best way to approximate both
problems is to essentially enumerate all possibilities. Since Clique and DomSet are
complete problems for the class W[1] and WI[2], respectively, it might be possible
that these two problems can be sources of FPT-inapproximabilities for many other
problems that admit no FPT algorithms.

We would like to also mention that there are some problems that are known to be
totally FPT-inapproximable under weaker assumptions. Examples of such problems
are independent dominating set and induced path. The former has been shown to be
FPT-inapproximable under the assumption FPT # W[2] in [35]. For the induced path
problem, we show in Appendix C that it is FPT-inapproximable under the assumption
FPT # WI[1]. It would be interesting to understand whether it is possible to also base
the total FPT-inapproximabilities of Clique and DomSet under assumptions that are
weaker than Gap-ETH, such as FPT # W[1], FPT # W[2] or ETH. As discussed in the
introduction, it was recently shown in [55] that DomSet is totally FPT-inapproximable
under FPT # W[1], and the more refined running time lower bounds were also shown
under ETH and SETH. Nevertheless, we are not aware of any FPT inapproximability
result for Clique under an assumption weaker than Gap-ETH.

Another interesting further research direction is to study the trade-off between
the running time and the approximation ratio of problems that are known to be FPT-
approximable or admit FPT (exact) algorithms. The exploration of such a trade-off
may be useful in both theory and practice.

Appendix A. Gap problems versus approximation algorithms. In this
section, we establish the connections between gap problems and the FPT approxi-
mation algorithm by proving Propositions 2.3 and 2.4. Proposition 2.3 is, in fact,
implied by a result due to Chen, Grohe, and Griiber [25, Proposition 4], and Proposi-
tion 2.4 appears in the ECCC version [26, Proposition 6]. We provide the proof here
for completeness.
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Proof of Proposition 2.3. We prove this by the contrapositive. Suppose that (2) is
false, i.e., there exist computable functions ¢ : N — N, f : N — [1, c0) and an algorithm
B such that, for every instance I of II, the algorithm B runs in time ¢t(OPTy(I))- |[I|”
on the input I for some constant D > 0 and outputs y € SOLp () of cost at most
OPTu(1) - f(OPTx(1).

Let t' : N — N and f/ : N — [1,00) be functions that are defined by t'(k) =
max;=1, ., t(¢) and f'(k) = max;—1,__j f(¢). Since t and f are computable, ¢ and f’
are also computable.

Let A be an algorithm that takes an instance I of IT and a positive integer k and
then works as follows. The algorithm A simulates an execution of B on I step-by-step.
If B(I) does not finish within (k) - |I|P time steps, then A terminates the execution
and returns 0. Otherwise, let y be the output of B(I). Then algorithm A computes
COSTr (I, y) and then returns 1 if this value is at most k- f/(k); otherwise, A returns 0.

We claim that A is an f/-FPT gap approximation algorithm of II. To see that
this is the case, first notice that the running time of A is O(#' (k) - |I|P + |[I|°M),
where |[I|°() denotes the time used to compute the solution cost. Moreover, if
OPTn(I) > k- f'(k), then it is obvious to see that A always outputs 0. Finally,
if OPT(I) < k, then, by our assumption on B and the definitions of ¢’ and f’, B([)
finishes in time ¢t(OPTr (1)) - |[I|P < ¢/(k) - [I|P and the output solution y has cost at
most OPTr(I) - f(OPTn(I)) < k- f'(k). Hence, A always outputs 1 in this case.

As a result, A is an f'-FPT gap approximation algorithm for IT, which concludes
our proof. 0

Proof of the Proposition 2.4. We again prove this by the contrapositive. Suppose
that (2) is false, i.e., there exist computable functions ¢t : N — N, f : N — [1, 00) such
that k/f (k) is nondecreasing and limy_, k/f (k) = oo, and an algorithm B such that,
for every instance I of II, B runs in time ¢t(OPT (1)) - |I|” on the input I for some
constant D > 0 and outputs y € SOLp(I) of cost at least OPT(I)/f(OPTr(1)).

Let t' : N — N be a function defined by t'(k) = max;—1, . t(i). Then clearly, ¢/
is computable.

Let A be an algorithm that takes an instance I of IT and a positive integer k and
then works as follows. The algorithm A simulates an execution of B on I step-by-step.
If B(I) does not finish within #'(k) - |I|P time steps, then A terminates the execution
and returns 1. Otherwise, let y be the output of B(I). A computes COST(I,y). The
algorithm A then returns 1 if this value is at least k/f(k); otherwise, A returns 0.

We claim that A is an f-FPT gap approximation algorithm of II. To see that this is
the case, first notice that the running time of A is O(t'(k)-|I|P +|I|°™M), where |I|O()
denotes the time used to compute the solution cost. Moreover, if OPT(I) < k/ f'(k),
then the running time of B(I) is at most t(OPTy(1))- |[I|P < ¢ (k)-|I|P, which implies
that A returns 0.

Suppose, on the other hand, that OPTy(I) > k. If B([) finishes in time ¢/ (k)-|I|7,
then, from the guarantee of B, it must output y € SOLy([) with COSTn(1,y) >
OPTn(I)/f(OPTn(I)), which is at least k/f(k) since k/f(k) is nondecreasing. Fur-
thermore, if B(I) does not finish in the specified time, then A also returns 1 as desired.

As a result, A is an f-FPT gap approximation algorithm for II, which concludes
our proof. ]

,,,,,

Appendix B. Totally FPT inapproximable through FPT gap reductions
(proof of Proposition 3.5). We will only show the proof when both Iy and II;
are maximization problems. Other cases can be proved analogously and therefore
omitted.
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We assume that (i) holds and will show that if the then part does not hold,
then (ii) also does not hold. Recall from Definition 3.4 that (i) implies that there
exist C, D > 0 such that the reduction from IIy (with parameters ¢ and r) to IIy
takes Oy (]Io|”) time and always outputs an instance I; of size at most O,.,.(|Io|”)
on every input instance Iy. Now assume that the then part does not hold, i.e., Il
admits a (t(k)|I1|")-time h-FPT gap approximation algorithm A for some function
h(k) = o(k) and constant F. We will show the following claim which says that (ii)
does not hold (by Definition 2.1).

CramM B.1. There exists a function k > ¢'(k) = w(1) and an algorithm B that
takes any input instance Iy of the problem Ily and an integer k, and in Ok(‘lo|o(1))
time can distinguish between OPTy, (Ip) > k and OPTy, (Lp) < ¢'(k).

We now prove the claim by constructing an algorithm B that performs the fol-
lowing steps. Given Iy and k, B applies the reduction on the instance Iy with the

parameters k and r = h(f f((kk))). Denote by I; the instance of II; produced by the re-

duction, so we have that |I;| = O (|Io|]°"). The following properties are immediate
from the definitions of the FPT gap reductions (Definition 3.4).
o If OPTy, (Ip) > k, then we have OPTyy, (I1) > f(k).
o 1f OPTy, (fo) < ¢'(k) := g(5L;)s then we have OPTy, (1) < r = 3£\,
Since A is an h-FPT gap approximation algorithm, running A on (I3, f(k)) can
distinguish between the above two cases. Consequently, one can also invoke A to
distinguish between the cases that OPTr, (Ip) > k and that OPTr,(ly) < ¢'(k) =

g(75E55) in time Ok (|11]7) = Ox(|1o|PT) = Ox(|1o|°M). Notice also that

h(f(k))
70 =g () < alrw) < &

where the first inequality is because f(k)/h(f(k)) < f(k) (rvecall that h(f(k)) > 1 by
Definition 2.1) and because ¢ is nondecreasing, and the second inequality is by the
claim below.

CLamM B.2. For any totally-FPT-inapproximable problem Iy and any functions g
and f that satisfy conditions in Definition 3.4, it holds for any integer x that g(f(x)) <
x.

Proof. For any integer x, consider an instance Iy such that OPTy, (Ip) > « (such
Iy exists because OPTr, = w(1); otherwise, Iy is not totally-FPT-inapproximable
(e.g., we can always output 1 if IIp is a maximization problem)). By the second
condition in Definition 3.4, OPTy, (I1) > f(x). Applying the contrapositive of the
third condition with r = f(z) (thus, OPTy, (I1) > r), we have OPTy, (o) > g(r) =
g(f(x)). Thus, z > OPTp,(ly) > g(f(x)) as claimed. |

To complete the proof, one only needs to argue that g(%) = w(1), and this

simply follows from the fact that f(k) = w(1), g(k) = w(1), and that k/h(k) = w(1).

Appendix C. FTP-inapproximability under W[1]-hardness. = Here we
show an example of problems whose totally FPT-inapproximable holds under W[1] #
FPT, namely the mazimum induced path problem (InducedPath).

In InducedPath, we are given a graph G, and the goal is to find a maximum size
subset of vertices S C V(@) such that S induces a path in G. We will show that
InducedPath has no FPT-approximation algorithm. Implicit in our reduction is a
reduction from k-Clique to the multicolored clique problem.
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THEOREM C.1. Unless W[1]=FPT, for any positive integers q : 1 < q < n*=% for
any § < 0, given a graph G on n vertices and for any function t : R — R, there is no
t(k) poly(n)-time algorithm that distinguishes between the following two cases:

e InducedPath(G) > 2¢ - k.
e InducedPath(G) < 4(k —1).

Proof. The reduction is as follows. Take a graph H of a k-Clique instance. Then
we construct a graph G as follows. First, we create intermediate graphs Z,,...,Z,.
Each graph Z; for i € [g] is created by making k copies of V(H), namely, V; 1,..., Vi
and forming a clique on V; ; for each j € [k]. So, now, we have k disjoint cliques. For
each vertex v € V(H), we pick a copy of v, one from each V; ;, say v; j, and we form
a clique on {v;1,...,v; 1 }. Next, for each edge uv ¢ E(H), we add edges u; jv; j for
all j,j" € [k], where u; ; and v; j are the copy of w in V; ; and the copy of v in V; j,
respectively. Next, we add a dummy vertex w; ; for each V; ; and add edges joining
x;; to every vertex of V;; and to every vertex of V; ;_; if j > 2. Finally, we join
the graph Z; for all i € [¢] to be of the form (Z, Zs, ..., Zx). To be precise, for each
graph Z; with ¢ > 2, we join the vertex x; 1 (which belongs to Z;) to every vertex of
Vi—1,¢ (which belongs to Z;11).

Completeness. Suppose that Clique(H) > k. We will show that InducedPath(G) >
2q-k. We take a subset of vertices S C V(H) that induces a clique on H. Let us name
vertices in S by vl,... v*. For each j € [k], we pick the copies v} ; of v’ from V; ; for
all ¢ € [g]. We then pick all the vertices z; ; for i € [k] and j € [¢]. We denote this set
of vertices by S'. It is not hard to see that for any distinct vertices vi, 07" € S, their
copies vj . and v i are not adjacent, and each vertex z; ; has exactly two neighbors:
Uij and u~ e ' (orub ). Therefore, S” induces a path in G of size 2qk.

Soundness. Suppose that Clique(H) < k, i.e., H has no clique of size k. We
will show that InducedPath(G) < 4(k — 1). To see this, let S” C V(G) be a subset of
vertices that induces a path G[S’] in G. Observe that, for i € [¢], G[S’] N Z; must be

a path of the form (xzva,vm, ey Ty U] b) Moreover, vgé and vl o are not adjacent
in G for any £ # {', meaning that UM and UM, are not copies of the same vertex in H,
while the set {v*},</s<p induces a clique in H. Thus, a —b+1 < k and G[S']N Z; can
have at most 2(k—1) vertices. It follows that any induced path G[S’] of G can contain
vertices from at most two subgraphs, say Z; and Z;,1. Therefore, we conclude that
|S7] < 4(k—1). d
The FPT-inapproximable of InducedPath follows directly from Theorem C.1.

COROLLARY C.2. Unless W[1] = FPT, there is no f(k)-approzimation algorithm
for InducedPath that runs in t(k)poly(n)-time for any functions f and t depending
only on k.

Appendix D. Known connections between problems. In this section, we
discuss known equivalences between problems in more detail.

Dominating Set and Set Cover: It is easy to see that DomSet is a special case of
SetCov, and the reduction from SetCov to DomSet is by phrasing U/ and S as vertices,
thereby forming a clique on S, and there is an edge joining a subset S; € S and
element u; € U if and only if u; is an element in S;.

Induced Matching and Independent Set: We show that Induced Matching is at
least as hard to approximate as Independent Set. Let G be an input graph of Inde-
pendent Set. We create a graph G’, for each vertex v € V(G), by creating a vertex v’
and an edge vv’. Notice that any independent set S of G corresponds to an induced
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matching in G’: For each v € S, we have an edge vv’ in the set M. Conversely, for
any induced matching M of G’, we may assume that the matching only chooses edges
of the form vv'.

More hereditary properties: We discuss some more natural problems in this class.
If we define II to be a set of all planar graphs, this is hereditary. The corresponding
optimization problem is that of computing a maximum induced planar graph. If we
define II to be a set of all forests, this is also hereditary, and it gives the problem of
computing a maximum induced forest.

Appendix E. Proof sketch of Theorem 4.1. We will sketch the proof of
Theorem 4.1.

In the forward direction, we use a standard reduction, which is sometimes referred
to as the clause-variable game [1]. Specifically, we transform a 3-SAT instance 1
on n variables z1,...,x, and m clauses C,...,C,, into a label cover instance I' =
(G=(U,V,E), Xy, Xy, ) by transforming clauses into left vertices in U and variables
into right vertices in V, and there is an edge joining a pair of vertices C; and x; if
x; appears in C;. We take partial assignments as the label sets ¥y and Xy, and a
constraint on each edge asks for a pair (a, 8) of labels that are consistent, i.e., they
assign the same value to the same variable (e.g., & = (21 : 1,22 : 0,23 : 1) and
B = (x1 : 1) are consistent whereas « is not consistent with 8’ = (x5 : 1)), and «
causes C; to evaluate to true (i.e., some of the literal in C; is assigned to true by «).
We denote the evaluation of a clause C; on a partial assignment « by C;(«).

To be precise, we have

U={C1,....Cn}, V=A{x1,...,z,},

E = {C;xj : x; appears in the clause C;},

Yr ={0,1}3, Xy =1{0,1},

He,e; = {(o, B) : a and 3 are consistent A Cj(a) = true}.

It can be seen that MaxCov(I') = SAT(¢) since the only way to cover each node
C; € U is to pick assignments to all vertices adjacent to C; so that they are all
consistent with the assignment o = oy (C;) (and that C;(a) = true).

The converse direction is not straightforward. We apply Hastad [52] reduction!®
to reduce an instance I' of MaxCov to a 3-SAT instance of size f(|Zy| + |Zv]) -
O(JU| + |V]) with a hardness gap 1 — ¢ for some constant ¢ > 0 (the hardness gap
is different from the original MaxCov instance). Note that f in Hastad’s construction
is a doubly exponential function. The equivalence between MaxCov and 3-SAT holds
only when |Xy| + |Ey| is constant (or at most loglog(|V| + |U])).

Appendix F. On Gap-ETH. While Gap-ETH may sound like a very strong
assumption, as pointed out in [32, 72], there are few pieces of evidence suggesting that
the conjecture may indeed be true:

e In a simplified and slightly inaccurate manner, the PCP theorem [7, 6] can
be viewed as a polynomial-time reduction that takes a 3-CNF formula ¢ and
then produces another 3-CNF formula @ such that, if ® is satisfiable, then
@’ is satisfiable, and, if ® is unsatisfiable, ®’ is not only unsatisfiable but
also not even 0.99-satisfiable. To date, it is known that the size of ®’ can be
made as small as n polylog(n) where n is the size of ® [31]. This means that,

10Here we apply only Hastad’s reduction from label cover to 3-SAT, without parallel repetition.
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assuming ETH, Gap-3SAT cannot be solved in 200"/ Polylogn) time  which is
only a factor of polylogn away from what we need in Gap-ETH. Indeed, as
stated earlier, if a linear-size PCP exists (which implies that the size of ®’
can be made linear in n), then Gap-ETH would follow from ETH.

e No subexponential-time algorithm is known even for the following (easier)
problem, which is sometimes referred to as refutation of random 3-SAT: for
a constant density parameter A, given a 3-CNF formula & with n variables
and m = An clauses, devise an algorithm that outputs either SAT or UNSAT
such that the following two conditions are satisfied:

— If @ is satisfiable, then the algorithm always outputs SAT.

— Over all possible 3-CNF formulas ¢ with n clauses and m variables, the

algorithm outputs UNSAT on at least 0.5 fraction of them.

Note that, when A is a sufficiently large constant (say 1000), a random 3-
CNF formula is, w.h.p., not only unsatisfiable but also not even 0.9-satisfiable.
Hence, if Gap-ETH fails, then the algorithm that refutes Gap-ETH will also
be a subexponential time algorithm for refutation of random 3-SAT with
density A.
Refutation of random 3-SAT and, more generally, random CSPs, is an impor-
tant question that has connections to many other fields, including hardness of
approximation, proof complexity, cryptography and learning theory. We refer
the readers to [3] for a more comprehensive survey on the problem and its ap-
plications in various areas. Despite being intensively studied for almost three
decades, no subexponential-time algorithm is known for the above regime of
parameters. In fact, it is known that the sum-of-squares hierarchies cannot
refute random 3-SAT with constant density in subexponential time [47, 80].
Given how powerful SDP [78] and, more specifically, sum-of-squares [64],
are for solving (and approximating) CSPs, this suggests that refutation of
random 3-SAT with constant density and, hence, Gap-3SAT, may indeed be
exponentially hard or, at the very least, beyond our current techniques.

e Dinur speculated that Gap-ETH might follow as a consequence of some cryp-
tographic assumption [32]. This was recently confirmed by Applebaum [5]
who showed that Gap-ETH follows from an existence of any exponentially
hard locally computable one-way function. In fact, he proved an even stronger
result that Gap-ETH follows from ETH for some CSPs that satisfy certain
“smoothness” properties.

Last, we note that the assumption m = O(n) made in the conjecture can be made
without loss of generality. As pointed out in both [32] and [72], this follows from the
fact that, given a 3-SAT formula ¢ with m clauses and n variables, if we create another
3-SAT formula ¢’ by randomly selected m’ = An clauses, then, with high probability,
[SAT(6)/m — SAT(&')/m'| < O(1/A),
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