
Theoretical Computer Science 814 (2020) 74–85
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Approximation algorithms for connected maximum cut and

related problems ✩

MohammadTaghi Hajiaghayi a, Guy Kortsarz b, Robert MacDavid c,
Manish Purohit d, Kanthi Sarpatwar e,∗
a University of Maryland, College Park, MD, United States
b Rutgers University, Camden, NJ, United States
c Princeton University, Princeton, NJ, United States
d Google Research, Mountain View, CA, United States
e IBM T. J. Watson Research Center, Yorktown Heights, NY, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 3 September 2018
Received in revised form 14 October 2019
Accepted 16 January 2020
Available online 20 January 2020
Communicated by P. Krysta

Keywords:
Approximation algorithms
Connected maximum cut
Connected submodular maximization

An instance of the Connected Maximum Cut problem consists of an undirected graph G =
(V , E) and the goal is to find a subset of vertices S ⊆ V that maximizes the number of
edges in the cut δ(S) such that the induced graph G[S] is connected. We present the first
non-trivial �(1

log n) approximation algorithm for the Connected Maximum Cut problem in
general graphs using novel techniques. We then extend our algorithm to edge weighted
case and obtain a poly-logarithmic approximation algorithm. Interestingly, in contrast to
the classical Max-Cut problem that can be solved in polynomial time on planar graphs, we
show that the Connected Maximum Cut problem remains NP-hard on unweighted, planar
graphs. On the positive side, we obtain a polynomial time approximation scheme for the
Connected Maximum Cut problem on planar graphs and more generally on bounded genus
graphs.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Submodular optimization problems have, in recent years, received a considerable amount of attention [1–7] in algorith-
mic research. In a general Submodular Maximization problem, we are given a non-negative submodular1 function over the
power set of a universe U of elements, f : 2U → R+ ∪ {0} and the goal is to find a subset S ⊆ U that maximizes f (S)

so that S satisfies certain pre-specified constraints. In addition to their practical relevance, the study of submodular max-
imization problems has led to the development of several important theoretical techniques such as the continuous greedy
method and multi-linear extensions [4] and the double greedy [2] algorithm, among others.

✩ A preliminary version of this work appears in the 23rd Annual European Symposium on Algorithms (ESA 2015). This work is partially supported by the
National Science Foundation, under grant CCF-1161626, grant CCF-1218620, grant IIS-1451430, grant CCF-1217890, and NSF CAREER award 1053605. It has
also been partially supported by DARPA/AFOSR grant FA9550-12-1-0423 and a Google Faculty Research award.

* Corresponding author.
E-mail addresses: hajiagha@cs.umd.edu (M. Hajiaghayi), guyk@camden.rutgers.edu (G. Kortsarz), robertmacdavid@gmail.com (R. MacDavid),

mpurohit@google.com (M. Purohit), sarpatwa@us.ibm.com (K. Sarpatwar).
1 A function f is called submodular if f (S) + f (T) ≥ f (S ∪ T) + f (S ∩ T) for all S, T ⊆ U .
https://doi.org/10.1016/j.tcs.2020.01.016
0304-3975/© 2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.tcs.2020.01.016
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:hajiagha@cs.umd.edu
mailto:guyk@camden.rutgers.edu
mailto:robertmacdavid@gmail.com
mailto:mpurohit@google.com
mailto:sarpatwa@us.ibm.com
https://doi.org/10.1016/j.tcs.2020.01.016
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2020.01.016&domain=pdf

M. Hajiaghayi et al. / Theoretical Computer Science 814 (2020) 74–85 75
In this study, we are interested in the problem of maximizing a submodular set function over vertices of a graph, such
that the selected vertices induce a connected subgraph. Motivated by applications in coverage over wireless networks, Kuo
et al. [8] consider the problem of maximizing a monotone, submodular function f subject to connectivity and cardinality
constraints of the form |S| ≤ k and provide an �(1√

k
) approximation algorithm. For a restricted class of monotone, submod-

ular functions that includes the covering function,2 Khuller et al. [9] give a constant factor approximation to the problem of
maximizing f subject to connectivity and cardinality constraints.

In the light of these results, it is rather surprising that no non-trivial approximation algorithms are known for the case
of general (non-monotone) submodular functions. Formally, we are interested in the following problem, which we refer to
as Connected Submodular Maximization (CSM): Given a simple, undirected graph G = (V , E) and a non-negative submodular
set function f : 2V →R+ ∪ {0}, find a subset of vertices S ⊆ V that maximizes f (S) such that G[S] is connected. We take
the first but important step in this direction and study the problem in the case of one of the most important non-monotone
submodular functions, namely the Cut function. Formally, given an undirected graph G = (V , E), the goal is to find a subset
S ⊆ V , such that G[S] is connected and the number of edges that have exactly one end point in S , referred to as the cut
function δ(S), is maximized. We refer to this as the Connected Maximum Cut problem. Further, we also consider an edge
weighted variant of this problem, called the Weighted Connected Maximum Cut problem, where the function to be maximized
is the total weight of edges in the cut δ(S).

We now outline an application to the image segmentation problem that seeks to identify “objects” in an image. Graph
based approaches for image segmentation [10,11] represent each pixel as a vertex and weighted edges represent the dissim-
ilarity (or similarity depending on the application) between adjacent pixels. Given such a graph, a connected set of pixels
with a large weighted cut naturally corresponds to an object in the image. Vicente et al. [12] show that even for interactive
image segmentation, techniques that require connectivity also perform significantly better that cut based methods alone.

1.1. Related work

Max-Cut is a fundamental problem in combinatorial optimization that finds applications in diverse areas. A simple ran-
domized algorithm that adds each vertex to S independently with probability 1/2 gives a 0.5-approximate solution in
expectation. In a breakthrough result, Goemans and Williamson [13] gave a 0.878-approximation algorithm using semidef-
inite programming and randomized rounding. Further, Khot et al. [14] showed that this factor is optimal assuming the
Unique Games Conjecture. Interestingly, the Max-Cut problem can be optimally solved in polynomial time in planar graphs
by a curious connection to the matching problem in the dual graph [15]. To the best of our knowledge, the Connected Max-
imum Cut problem has not been considered before our work. Haglin and Venkatesan [16] showed that a related problem,
where we require both sides of the cut, namely S and V \ S , to be connected, is NP-hard in planar graphs.

We note that the well studied Maximum Leaf Spanning Tree (MLST) problem (e.g. see [17]) is a special case of the
Connected Submodular Maximization problem. To see this, consider maximizing the submodular function f (S) = |{v | v ∈
N(S) \ S}| where N(S) is the set of vertices that have a neighbor in S . Now, it is easy to observe that there is a tree with L
leaves if and only if there is a connected set S such that f (S) = L. Further, we show that without loss of generality for any
solution S to Connected Submodular Maximization problem, we have that S ∪N(S) = V and hence the corresponding tree
is spanning. Suppose S is a feasible solution and V �= S ∪N(S), then there must exist an edge (u, v) such that u ∈N(S) \ S
and v /∈ S ∪N(S). Now S ′ = S ∪ {u} is also a feasible solution and f (S) = f (S ′).

We also note that recent work on graph connectivity under vertex sampling leads to a simple constant approximation
to the Connected Submodular Maximization for highly connected graphs, i.e., for graphs with �(log n) vertex connectivity. Let
S ⊆ V be a random set of vertices such that every vertex v is chosen in S independently with probability 1

2 . As shown by
Feige et al. [6], E[f (S)] ≥ (1

4) f (O P T) where the f (O P T) is the maximum value of f . Further, as shown by Censor-Hillel et
al. [18] if the graph G has �(log n) vertex connectivity, the set S obtained above is connected with high probability. Hence,
S is a 1

4 approximate solution to the Connected Submodular Maximization problem.
We conclude this section by noting that connected variants of many classical combinatorial problems have been exten-

sively studied in the literature and have been found to be useful. The best example for this is the Connected Dominating Set
problem. Following the seminal work of Guha and Khuller [19], the problem has found extensive applications (with more
than a thousand citations) in the domain of wireless ad hoc networks as a virtual backbone (e.g. see [20,21]). A few other
examples of connected variants of classic optimization problems include Group Steiner Tree [22] (which can be seen as a
generalization of a connected variant of Set Cover), Connected Domatic Partition [18,23], Connected Facility Location [24,25],
and Connected Vertex Cover [26].

1.2. Contribution and techniques

Our key results can be summarized as follows.

2 In this context, a covering function is defined as f (S) = ∑
v∈N+(S) weight(v) where N+(S) is the closed neighborhood of the set of vertices S and

weight(v) is a non-negative weight function on the vertices.

76 M. Hajiaghayi et al. / Theoretical Computer Science 814 (2020) 74–85
1. We obtain the first �(1
log n) approximation algorithm for the Connected Maximum Cut (CMC) problem in general graphs.

Often, for basic connectivity problems on graphs, one can obtain simple O (log n) approximation algorithms using a proba-
bilistic embedding into trees with O (log n) stretch [27]. Similarly, using the cut-based decompositions given by Räcke [28],
one can obtain O (log n) approximation algorithms for cut problems (e.g. Minimum Bisection). Interestingly, since the CMC
problem has the flavors of both cut and connectivity problems simultaneously, neither of these approaches are applicable.
Our novel approach is to look for α-thick trees, which are basically sub-trees such that leaves of the tree have a large degree
in the original graph.

2. For the Weighted Connected Maximum Cut problem, we obtain an �(1
log2 n

) approximation algorithm. The basic idea is
to group the edges into logarithmic number of weight classes and show that the problem on each weight class boils down
to the special case where the weight of every edge is either 0 or 1.

3. We obtain a polynomial time approximation scheme for the unweighted CMC problem in planar graphs and more
generally in bounded genus graphs. This requires the application of a stronger form of the edge contraction theorem by
Demaine, Hajiaghayi and Kawarabayashi [29] that may be of independent interest.

4. We show that the CMC problem remains NP-hard even on unweighted, planar graphs. This is in stark contrast with
the regular Max-Cut problem that can be solved optimally in planar graphs in polynomial time. We obtain a polynomial
time reduction from a special case of 3-SAT called the Planar Monotone 3-SAT (PM-3SAT), to the CMC problem in planar
graphs. This entails a delicate construction, exploiting the so called “rectilinear representation” of a PM-3SAT instance, to
maintain planarity of the resulting CMC instance.

2. Approximation algorithms for general graphs

In this section, we consider the Connected Maximum Cut problem in general graphs. In fact, we provide an �(1
log n)

approximation algorithm for the more general problem in which edges can have weight 0 or 1 and the objective is to
maximize the number of edges of weight 1 in the cut. This generalization will be useful later in obtaining a poly-logarithmic
approximation algorithm for arbitrary weighted graphs.

We denote the cut of a subset of vertices S in a graph G , i.e., the set of edges in G that are incident on exactly one
vertex of S by δG(S) or when G is clear from context, just δ(S). Further, for two disjoint subsets of vertices S1 and S2 in
G , we denote the set of edges that have one end point in each of S1 and S2, by δG(S1, S2) or simply δ(S1, S2). The formal
problem definition follows:

Problem Definition. {0,1}-Connected Maximum Cut (b-CMC): Given a graph G = (V , E) and a weight function w : E → {0, 1},
find a set S ⊂ V that maximizes

∑
e∈δ(S) w(e) such that G[S] induces a connected subgraph.

We call an edge of weight 0, a 0-edge and that of weight 1, a 1-edge. Further, let w(δ(S)) = ∑
e∈δ(S) w(e) denote the

weight of the cut, i.e., the number of 1-edges in the cut. We first start with a simple reduction rule that ensures that every
vertex v ∈ V has at least one 1-edge incident on it.

Claim 1. Given a graph G = (V , E), we can construct a graph G̃ = (Ṽ , Ẽ) in polynomial time, such that every v ∈ Ṽ has at least one
1-edge incident on it and G̃ has a b-CMC solution S̃ of weight at least ψ if and only if G has a b-CMC solution S of weight at least
ψ .

Proof. Let v ∈ V be a vertex in G that has only 0-edges incident on it and let {v1, v2, . . . , vl} denote the set of its neighbors.
Consider the graph G ′ obtained from G by deleting v along with all its incident edges and adding 0-edges between every
pair of its neighbors {vi, v j} such that {vi, v j} /∈ E . Let S denote a feasible solution of weight ψ in G . If v /∈ S , then clearly
S ′ = S is the required solution in G ′ . If v ∈ S , we set S ′ = S \ {v} and we claim that G ′[S ′] is connected if G[S] is connected
and

∑
e∈δG′ (S ′) w(e) = ∑

e∈δG (S) w(e). The latter part of the claim is true since all the edges that we delete and add are
0-edges. To prove the former part, notice that if v is not a cut vertex in G[S] then G[S ′] must be connected. On the other
hand, even if v is a cut vertex, the new edges added among all pairs of v ’s neighbors ensure that G[S ′] is connected. Finally,
to prove the other direction, suppose we have a feasible solution S ′ of weight ψ in G ′ . Now, if G[S ′] is connected, then
S = S ′ is a feasible solution in G of weight ψ . Otherwise, set S = S ′ ∪ {v}. Since v creates a path between all pairs of its
neighbors, G[S] is connected if G ′[S ′] is connected and is thus a feasible solution of the same weight. The proof of the
claim follows by repeating this process until we obtain a graph G̃ such that every vertex has at least one 1-edge incident
on it. �

From now on, we will assume, without loss of generality, that every vertex of G has at least one 1-edge incident on it.
We now introduce some new definitions that would help us to present the main algorithmic ideas. We denote by W G (v)

the total weight of edges incident on a vertex v in G , i.e., W G(v) = ∑
e:v∈e w(e). In other words, W G (v) is the total number

of 1-edges incident on v . Further let η be the total number of 1-edges in the graph. The following notion of an α-thick tree
is a crucial component of our algorithm.

M. Hajiaghayi et al. / Theoretical Computer Science 814 (2020) 74–85 77
Definition 1 (α-Thick tree). Let G = (V , E) be a graph with n vertices and η 1-edges. A subtree T ⊆ G (not necessarily
spanning), with leaf set L, is said to be α-thick if

∑
v∈L W G(v) ≥ αη.

The following lemma shows that this notion of an α-thick tree is intimately connected with the b-CMC problem.

Lemma 1. For any α > 0, given a polynomial time algorithm A that computes an α-thick tree T of a graph G, we can obtain an
α
4 -approximation algorithm for the b-CMC problem on G.

Proof. Given a graph G = (V , E) and weight function w : E → {0, 1}, we use Algorithm A to compute an α-thick tree T ,
with leaf set L. Let mL denote the number of 1-edges in G[L], the subgraph induced by L in the graph G . We now partition
L into two disjoint sets L1 and L2 such that the number of 1-edges in δ(L1, L2) ≥ mL

2 . This can be done by applying standard
algorithms for Max-Cut (e.g. see [30]) on G[L] after deleting all the 0-edges. Now, consider the two connected subgraphs
T \ L1 and T \ L2. We first claim that every 1-edge in δ(L) belongs to either δ(T \ L1) or δ(T \ L2). Indeed, any 1-edge e
in δ(L), belongs to one of the four possible sets, namely δ(L2, T \ L), δ(L1, V \ T), δ(L1, T \ L) and δ(L2, V \ T). In the first
two cases, e belongs to δ(T \ L2) while in the last two cases, e belongs δ(T \ L1), hence the claim. Further, every 1-edge in
δ(L1, L2) belongs to both δ(T \ L1) and δ(T \ L2). Hence, we have∑

e∈δ(T \L1)

w(e) +
∑

e∈δ(T \L2)

w(e) =
∑

e∈δ(L)

w(e) + 2
∑

e∈δ(L1,L2)

w(e) (1)

≥
∑

e∈δ(L)

w(e) + mL ≥ 1

2

∑
v∈L

W G(v) ≥ αη

2
(2)

Hence, the better of the two solutions T \ L1 or T \ L2 is guaranteed to have a cut of weight at least αη
4 , where η is the

total number of 1-edges in G . To complete the proof we note that for any optimal solution O P T , w(δ(O P T)) ≤ η. �
Thus, if we have an algorithm to compute α-thick trees, Lemma 1 provides an �(α)-approximation algorithm for the

b-CMC problem. Unfortunately, there exist graphs that do not contain α-thick trees for any non-trivial value of α. For
example, let G be a path graph with n vertices and m = n − 1 1-edges. It is easy to see that for any subtree T , the sum of
degrees of the leaves is at most 4. In spite of this setback, we show that the notion of α-thick trees is still useful in obtaining
a good approximation algorithm for the b-CMC problem. In particular, Lemma 3 and Theorem 1 show that path graph is
essentially the only bad case, i.e., if the graph G does not have a long induced path, then one can find an �(1

log n)-thick tree.
Lemma 2 shows that we can assume without loss of generality that the b-CMC instance does not have such a long induced
path.

2.1. Shrinking thin paths

A natural idea to handle the above “bad” case is to get rid of such long paths that contain only vertices of degree two
by contracting the edges. We refer to a path that only contains vertices of degree two as a d-2 path. Further, we define the
length of a d-2 path as the number of vertices (of degree two) that it contains. The following lemma shows that we can
assume without loss of generality that the graph G contains no “long” d-2 paths.

Lemma 2. Given a graph G, we can construct, in polynomial time, a graph G ′ with no d-2 paths of length ≥ 3 such that G ′ has a b-CMC
solution S ′ of cut weight (w(δ(S ′))) at least ψ if and only if G has a b-CMC solution S of cut weight at least ψ . Further, given the
solution S ′ of G ′ , we can recover S in polynomial time.

Proof. We may assume that G is connected, because otherwise we can handle each component separately. We further
assume that G is not a simple cycle, otherwise it is trivial to solve such an instance. If G does not have a d-2 path of length
≥ 3, then trivially we have G ′ = G . Otherwise, let ℘ = [v0, e0, v1, e1, v2, e2, v3] be a path in G such that v1, v2 and v3
have degree two and deg(v0) �= 2. Note that such a path ℘ must exist as G is not a simple cycle. We now perform the
following operation on G to obtain a new graph Gnew : Delete these elements {e0, v1, e1, v2, e2}. Add a new vertex vnew and
edges e′

0 = (v0, vnew) and e′
1 = (vnew , v3). Since deg(v0) �= 2 and deg(v3) = 2, we are guaranteed that v0 �= v3 and hence

we do not introduce any multi-edges. The weights on the new edges are determined as follows: Let n℘ denote the number
of 1-edges in E℘ = {e0, e1, e2}. If n℘ ≥ 2, we set w(e′

0) = w(e′
1) = 1. If n℘ = 1, then we set w(e′

0) = 0 and w(e′
1) = 1.

Otherwise, we set w(e′
0) = w(e′

1) = 0. We claim that Gnew has a b-CMC solution S ′ of cut weight at least ψ if and only if
G has a solution S of cut weight at least ψ .

Let us first assume that there is a set S in G that is a solution to the b-CMC problem with cut weight ψ . We now show
that there exists a S ′ in Gnew that is a solution to the b-CMC problem with cut weight at least ψ . The proof in this direction
is done for three possible cases, based on the cardinality of δ(S) ∩ E℘ . We note that |δ(S) ∩ E℘ | is ≤ 2, since G[S] must be
connected.

78 M. Hajiaghayi et al. / Theoretical Computer Science 814 (2020) 74–85
Case 1. |δG(S) ∩ E℘ | = 2. Note that since S is connected, we must have either (i) S ⊆ {v1, v2} or (ii) {v0, v3} ⊆ S . In
the former case, we set S ′ = {vnew} and the claim follows by the definition of w(e′

0) and w(e′
1). In the latter case, we set

S ′ = S \ {v1, v2}. Since v1 and v2 are vertices of degree two, Gnew [S ′] is connected. Further, every edge e ∈ δG(S) \ E℘ also
belongs to δGnew (S ′). The claim follows once we observe that both e′

0 and e′
1 are in δGnew (S ′).

Case 2. |δG(S) ∩ E℘ | = 1. In this case, we must have either v0 ∈ S or v3 ∈ S but not both. Let us first assume v0 ∈ S .
We set S ′ = (S ∪ {vnew}) \ {v1, v2}. It is clear that if G[S] is connected, so is Gnew [S ′]. Due to the removal of v1 and
v2, we have δG(S) \ δGnew (S ′) = {ei} for some edge ei ∈ E℘ . On the other hand, due to the addition of vnew , we have
δGnew (S ′) \ δG(S) = {e′

1} and the claim follows since w(e′
1) ≥ w(ei) for any ei ∈ E℘ . Now assume that v3 ∈ S . In this case, we

set S ′ = S \ {v1, v2}. Since vnew /∈ S ′ , we again have e′
1 ∈ δGnew (S ′) and the proof follows as above.

Case 3. |δG(S) ∩ E℘ | = 0. In this case, one of the following holds, either (i) {v0, v1, v2, v3} ⊆ S or (ii) {v0, v1, v2, v3} ∩ S =
∅. If the latter is true, the proof is trivial by setting S ′ = S . In the former case, we set S ′ = S \ {v1, v2} ∪ {vnew}. The
addition of vnew maintains connectivity between v0 and v3 and hence since S is connected, so is S ′ . Further, we have
δG(S) = δGnew (S ′) since no edge in δG (S) in incident on v1 or v2.

In order to prove the other direction, we assume that S ′ is a solution to the b-CMC problem on Gnew with a cut weight
of ψ . We now construct a set S that is a solution to b-CMC on G of weight at least ψ . The proof proceeds in three cases
similarly.

Case 1. Both e′
0 ∈ δGnew (S ′) and e′

1 ∈ δGnew (S ′). One of the following holds: (i) S ′ = {vnew} or (ii) {v0, v3} ⊆ S ′ . In the
former case, let S be the subset of {v1, v2} having the largest weight cut. By construction, we have that weight of the cut
δ(S) is at least the sum of weights of e′

0 and e′
1. For the latter, let S to be the best among S ′, S ′ ∪ {v1}, and S ′ ∪ {v2} and

the proof follows as above.
Case 2. Either e′

0 ∈ δGnew (S ′) or e′
1 ∈ δGnew (S ′) but not both. Let emax be an edge of maximum weight in E℘ . The edge

emax splits the path ℘ into two connected components one containing v0, call it ℘0 and the other containing v3, call it ℘3.
Now to construct S , we delete vnew from S ′ (if it contains it) and add the component ℘0 if v0 ∈ S ′ or the component ℘3
if v3 ∈ S ′ . Again connectivity is clearly preserved. We now argue that the cut weight is also preserved. Indeed, this is true
since we have that w(emax) ≥ max(we′

0
, we′

1
) and the rest of the cut edges in S ′ remain as they are in S .

Case 3. None of e′
0, e

′
1 belong to δGnew (S ′). In this case, if vnew /∈ S ′ , then trivially S = S ′ works. Otherwise, we set

S = S ′ ∪ {v1, v2}. It is easy to observe that both connectivity and all the cut edges are preserved in this case.
Now, to construct G ′ , we repeatedly apply the above contraction as long as possible. This will clearly take polynomial

time as in each iteration, we reduce the number of degree-2 vertices by 1. Hence we have the claim. �
2.2. Spanning tree with many leaves

Assuming that the graph has no long d-2 paths, the following lemma shows that we can find a spanning tree T that has
�(n) leaves. Note that Claim 1 now guarantees that there are �(n) 1-edges incident on the leaves of T .

Lemma 3. Given a graph G = (V , E) with no d-2 paths of length ≥ 3, we can obtain, in polynomial time, a spanning tree T = (V , E T)

with at least n
14 leaves.

Proof. Let T be any spanning tree of G . We note that although G does not have d-2 paths of length ≥ 3, such a guarantee
does not hold for paths in T . Suppose that there is a d-2 path ℘ of length 7 in T . Let the vertices of this path be numbered
v1, v2, . . . , v7 and consider the vertices v3, v4, v5. Since G does not have any d-2 path of length 3, there is a vertex vi, i ∈
{3, 4, 5} such that degG(vi) ≥ 3. We now add an edge e = {vi, w} in G \ T to the tree T . The cycle C that is created as a
result must contain either the edge {v1, v2} or the edge {v6, v7}. We delete this edge to obtain a new spanning tree T ′ . It is
easy to observe that the number of vertices of degree two in T ′ is strictly less than that in T . This is because, although the
new edge {vi, w} can cause w to have degree two in T ′ , we are guaranteed that the vertex vi will have degree three and
vertices v1 and v2 (or v6 and v7) will have degree one. Hence, as long as there are d-2 paths of length 7 in T , the number
of vertices of degree two can be strictly decreased. Thus this process must terminate in at most n steps and the final tree
T (1) obtained does not have any d-2 paths of length ≥ 7.

We now show that the tree T (1) contains �(n) leaves by a simple charging argument. Let the tree T (1) be rooted at
an arbitrary vertex. We assign each vertex of T (1) a token and redistribute them in the following way : Every vertex v of
degree two in T (1) gives its token to its first non degree two descendant, breaking ties arbitrarily. Since there is no d-2 path
of length ≥ 7, each non degree two vertex collects at most 7 tokens. Hence, the number of vertices not having degree two
in T (1) is at least n

7 . Further, since the average degree of all vertices in a tree is at most 2, a simple averaging argument
shows that T (1) must contain at least n

14 vertices of degree one, i.e., n
14 leaves. �

2.3. Obtaining an �(1
log n) approximation

We now have all the ingredients required to obtain the �(1
log n) approximation algorithm. We observe that if the graph

G is sparse, i.e. η ≤ cn log n (for a suitable constant c), then the tree obtained by using Lemma 3 is an �(1)-thick tree
log n

M. Hajiaghayi et al. / Theoretical Computer Science 814 (2020) 74–85 79
Input: Graph G = (V , E)

Output: A subset S ⊆ V , such that G[S] is connected
1 Set G1(V 1, E1) = G , n1 = |V 1|
2 Let η ← Number of 1-edges in G
3 Use Lemma 3 to obtain a spanning tree T1 of G1 with leaf set L1

4 if η ≤ cn logn then
5 Use Lemma 1 on T1 to obtain a connected set S
6 return S
7 end
8 i = 1
9 while Gi �= ∅ do

10 Ei+1 ← Ei \ (E[Li] ∪ δ(Li))

11 V i+1 ← V i \ Li , ni+1 = |V i+1|
12 Contract degree-2 vertices in Gi+1
13 Use Lemma 3 to obtain a spanning tree Ti+1 of Gi+1 with leaf set Li+1
14 i = i + 1
15 end
16 Choose j = arg maxi(

∑
v∈Li

degG (v))

17 Use Lemma 1 on T j to obtain a connected set S
18 return S

Algorithm 1: Finding α-thick trees.

and thus we obtain the required approximate solution in this case. On the other hand, if the graph G is not sparse, then we
use Lemma 3 to obtain a spanning tree, delete the leaves of this tree, and then repeat this process until we have no more
vertices left. Since, we delete a constant fraction of vertices in each iteration, the total number of iterations is O (log n).
We then choose the “best” tree out of the O (log n) trees so obtained and show that it must be an α-thick tree, with
α = �(1

log n). Finally, using Lemma 1, we obtain an �(1
log n) approximate solution as desired. We refer to Algorithm 1 for

the detailed algorithm.

Theorem 1. Algorithm 1 gives an �(1
log n) approximate solution for the b-CMC problem.

Proof. Let us assume that η ≤ cn log n (for some constant c). Now, Lemma 3 and Claim 1 together imply that ∑
v∈L1

W G(v) = �(n). Further, since we have w(δ(O P T)) ≤ η ≤ cn log n, T is an α-thick tree for some α = �(1
log n). Hence,

we obtain an �(1
log n) approximate solution using Lemma 1.

On the other hand, if η > cn log n, we show that at least one of the trees Ti obtained by the repeated applications of the
Lemma 3 is an α-thick tree T of G for α = �(1

log n). We first observe that the While loop in line 9 of the algorithm runs for
at most O (log n) iterations. This is because we delete �(ni) leaves in each iteration and hence after k = O (log n) iterations,
we get Gk = ∅. We now count the number of 1-edges “lost” in each iteration. We recall that W G(v) is the total number of
1-edges incident on v in a graph G . In an iteration i, the number of 1-edges lost at line 10 is at most

∑
v∈Li

W Gi (v). In
addition, we may lose a total of at most 2n ≤ 2η

c log n edges due to the contraction of degree two vertices in line 12 of the
algorithm. Suppose for the sake of contradiction that

∑
v∈Li

W G(v) < η
d log n , ∀1 ≤ i ≤ k where d is a suitable constant. Then

the total number of 1-edges lost in k = O (log n) iterations is at most

k∑
i=1

(
∑
v∈Li

W Gi (v)) + 2η

c log n
<

k∑
i=1

η

d log n
+ 2η

c log n
= η

d̂
+ η

c log n
< η

The equality follows for a suitable constant d̂ as k = O (log n). The final inequality holds for a suitable choice of the constants
c and d. But this is a contradiction since we have Gk = ∅.

Since we choose j to be the best iteration, we have
∑

v∈L j
W G(v) ≥ η

d log n for some constant d. Hence the tree T j is an
α-thick tree of G for α = 1

d log n and the theorem follows by Lemma 1. �
2.4. General weighted graphs

We now consider the Weighted Connected Maximum Cut (WCMC) problem. Formally, we are given a graph G = (V , E)

and a weight function w : E → R+ ∪ {0}. The goal is to find a subset S of vertices that induces a connected subgraph and
maximizes the quantity

∑
e∈δ(S) w(e). We obtain a �(1

log2 n
) approximation algorithm for this problem. Our basic strategy

is to group edges having nearly the same weight into a class and thus create O (log n) classes. We then solve the b-CMC
problem for each class independently and return the best solution.

Theorem 2. Algorithm 2 gives a �(1
log2 n

) approximation guarantee for the Weighted Connected Maximum Cut problem.

80 M. Hajiaghayi et al. / Theoretical Computer Science 814 (2020) 74–85
Input: Connected graph G = (V , E) with |V | = n and |E| = m; Weight function, w : E →R+ ∪ 0 ; ε > 0
Output: A subset S ⊆ V , such that G[S] is connected

1 Let wmax be the maximum weight over any edge of the graph;

2 Define, w0 = εwmax
m and wi = w0(1 + ε)i , for i ∈ [log1+ε

m
ε];

3 for i ∈ [0, log1+ε
m
ε] do

4 for e ∈ E do
5 if wi ≤ w(e) < wi+1 then
6 w ′

i(e) = 1;
7 end
8 else
9 w ′

i(e) = 0;
10 end
11 Using Theorem 1, solve for the connected subset Si ;
12 end
13 end

14 return Sbest , such that best = arg max
i∈[0,log n

ε]

∑
e∈δ(Si)

w(e);

Algorithm 2: Algorithm for the Weighted Connected Maximum Cut problem.

Proof. Let O P T be an optimal solution for a given instance of the problem and let ψ = ∑
e∈δ(O P T) w(e). Also, let ε ∈ (0, 1].

Since we have that ψ ≥ wmax , we can reset the weights of those edges with weight < εwmax
m to 0 and assume that wmin ≥

εwmax
m where wmin denotes the weight of the minimum (non zero) weight edge. Let Ei be the set of edges e such that

wi ≤ w(e) < wi+1 and finally let O P Ti = δ(O P T) ∩ Ei . We will show that
∑

e∈O P Ti
w(e) = O ((1 + ε) log n

∑
e∈δ(Si)

w(e)).

This immediately gives us that
∑

e∈δ(Sbest)
w(e) = �(

∑
e∈O P T w(e)

(1+ε) log n log1+ε
m
ε
) = �(1

log2 n
)(

∑
e∈O P T w(e)).

We now prove the claim. Consider solving the b-CMC instance with weight function w ′
i . Clearly O P T is a feasible

solution to this instance and we have
∑

e∈δ(O P T) w ′
i(e) = ∑

e∈O P Ti
w ′

i(e) ≤ O (log n
∑

e∈δ(Si)
w ′

i(e)). The previous inequal-

ity holds as Si is guaranteed to be an �(1
log n)-approximate solution by Theorem 1. Now, we have

∑
e∈O P Ti

w(e) ≤
(1 + ε)wi

∑
e∈O P Ti

w ′
i(e) ≤ O ((1 + ε)wi log n

∑
e∈δ(Si)

w ′
i(e)) ≤ O ((1 + ε) log n

∑
e∈δ(Si)

w(e)). Hence, the claim. �
3. CMC in planar and bounded genus graphs

In this section, we consider the unweighted CMC problem in planar graphs and more generally, in graphs with genus
bounded by a constant. We show that the CMC problem has a PTAS in bounded genus graphs.

3.1. PTAS for bounded genus graphs

We use the following (paraphrased) contraction decomposition theorem by Demaine, Hajiaghayi and Kawarabayashi [29].

Theorem 3. (Theorem 5 in [29]) For a bounded-genus graph G and an integer k, the edges of G can be partitioned into k color classes
such that contracting all the edges in any color class leads to a graph with treewidth O (k). Further, the color classes are obtained by a
radial coloring and have the following property: If edge e = (u, v) is in class i, then every edge e′ such that e′ ∩ e �= ∅ is in class i − 1
or i or i + 1.

Given a graph G of constant genus, we use Theorem 3 appropriately to obtain a graph H with constant treewidth. We
now show that one can solve the CMC problem optimally in polynomial time on graphs with constant treewidth.

3.1.1. Dynamic program for constant treewidth graphs
The notion of tree decomposition and treewidth was first introduced by Robertson and Seymour [31]. Given a graph G =

(V , E), its tree decomposition is a tree representation T = (B, E), where each b ∈ B (called as a bag) is associated with a
subset Bb ⊆ V such that the following properties hold:

1.
⋃

b∈B Bb = V .
2. For every edge u, v ∈ E , there is a bag b ∈ B, such that u, v ∈ Bb .
3. For every u ∈ V , the subgraph Tu of T , induced by bags that contain u, is connected.

The width of a decomposition is defined as the size of the largest bag b ∈ B minus one. Treewidth of a graph is the
minimum width over all the possible tree decompositions. In this section, we show that the CMC problem can be solved
optimally in polynomial time on graphs with constant treewidth t .

Notation. We denote the tree decomposition of a graph G = (V , E) by T = (B, E). For a given bag of the decomposition
b ∈ B, let Bb denote the set of vertices of G contained in b and Vb denote the set of vertices in the subtree of T rooted at
b. As shown by Kloks [32], we may assume that T is nice tree decomposition, that has the following additional properties.

M. Hajiaghayi et al. / Theoretical Computer Science 814 (2020) 74–85 81
1. Any node of the tree has at most 2 children.
2. A node b with no children is called a leaf node and has |Bb| = 1.
3. A node b with two children c1 and c2 is called a join node. For such a node, we have Bb = Bc1 = Bc2 .
4. A node b with exactly one child c is either a forget node or an introduce node. If b is a forget node then Bb = Bc \ {v}

for some v ∈ Bc . On the other hand, if b is an introduce node then Bb = Bc ∪ {v} for v /∈ Bc .

We now describe a dynamic program to obtain the optimal solution for the CMC problem. Let O P T denote the optimal
solution. We first prove the following simple claim that helps us define the dynamic program variable.

Claim 2. For any bag b ∈ B, the number of components induced by O P T ∩ Vb in G is at most t.

Proof. Consider the induced subgraph G[O P T ∩ Vb] and let C be one of its components. If C is the only component of
G[O P T ∩ Vb], then the claim is trivially true, so we assume otherwise. We observe that C has at least one vertex in Bb , i.e.,
C ∩ Bb �= ∅. Assume this is not true and C ∩ Bb = ∅. Now consider an edge e = (u, v) such that u ∈ C and v ∈ O P T \ C . Such
an edge is guaranteed to exist owing to the connectivity of G[O P T]. By our assumptions, v /∈ Vb . This implies there is some
bag b′ not in the subtree of T rooted at b, that contains both u and v . But this in turn implies u ∈ Bb , a contradiction to
the assumption C ∩ Bb = ∅. Now, since each vertex in Bb belongs to at most one component, there can be at most |Bb| ≤ t
components in G[O P T ∩ Vb]. Hence, the claim. �
Dynamic programming variables For a given bag b ∈ B, consider any set Sb ⊆ Bb . Further, let Pb = (C1, C2, . . . , Ct) be a
partition of size t of the vertices in Sb (some of the Ci ’s can be empty), i.e.

⋃t
i=1 Ci = Sb and Ci ∩ C j = φ for all i �= j. We

now define the variable of the dynamic program Mb(Pb, Sb) in the following way: Consider the subgraph induced by Vb in
G and let S be a subset of Vb with maximum cut δG[Vb](S), such that every Ci ∈ Pb is completely contained in a distinct
component of G[S]. We set Mb(Pb, Sb) = |δG[Vb](S)|. In other words, Mb(Pb, Sb) is the size of the largest cut in the induced
graph G[Vb] such that each subset Ci ∈ Pb is constrained to be in the same connected component. From this definition, it
follows that the optimal solution can be obtained by computing Mr(Pr = (S, ∅, ∅, . . . , ∅), S), for every subset S of Br , where
r is the root bag of the tree T and picking the best possible solution.

For each bag b, there are 2t potential sets Sb ⊆ Bb , and for each such set Sb there are O (tt) possible partitions Pb . Since
there are O (n) bags in a tree decomposition, the total number of dynamic programming variables is O (ntt).

Dynamic program We now describe the dynamic program to compute the above variable Mb(Pb, Sb) for a given bag b.

Case 1: Node b ∈ T is a leaf node. In this case, Bb = Vb = {v}, for some vertex v . We can compute Mb(Pb, Sb) easily as
follows.

Mb(({v},∅, . . .∅), {v}) = 0

Mb((∅,∅, . . .∅),∅) = 0

Case 2: Node b ∈ T is an introduce node. In this case, b has exactly one child node c and Bb = Bc ∪ {v}, for some vertex v .
We now show how to compute Mb(Pb, Sb) for all Sb, Pb given the values Mc(·, ·). Consider any set Sb ⊆ Bb , and a partition
Pb = (C1, C2, . . . , Ct) of Sb . If v /∈ Sb , then

Mb(Pb, Sb) = Mc(Pb, Sb) + |δG[Bb](v, Sb)|
If v ∈ Ci and v is adjacent to some vertex in Ci \ {vi} but not to any vertex in C j, j �= i, then

Mb(Pb, Sb) = Mc((C1, C2, . . . , Ci \ {v}, . . . , Ct), Sb \ {v}) + |δG[Bb](v, Bb \ Sb)|
In all other cases, we set

Mb(Pb, Sb) = −∞
We now argue about the correctness of this case. First let us consider the condition that v /∈ Sb . Since v is the only vertex

in Vb that is not in V c , the total cut size increases due to edges between v and the optimal cut found by Mc(Pb, Sb). Let
S ⊆ V C be the set of vertices chosen to be in the solution corresponding to Mc(Pb, Sb) (note that S ∩ Bb = S ∩ Bc = Sb). Then
the total cut size increases by |δG (v, S)|. However, the tree decomposition guarantees that v does not have any neighbors
in V c \ Bc , and hence |δG(v, S)| = |δG[Bb](v, Sb)| as desired.

Now assume that v ∈ Sb , more specifically, let v ∈ Ci , for some i. From the above argument there are no edges between
v and vertices in S \ Sb . Since we must have all vertices in Ci in a single component of G[Vb] and all edges incident on
v in G[Vb] have the other end in Bb , v must have an edge to some vertex in Ci \ {v}. Further, since any Ci and C j must
belong to distinct components, they must not share any neighboring vertices. Thus, if v either has no edges to Ci \ {v} or

82 M. Hajiaghayi et al. / Theoretical Computer Science 814 (2020) 74–85
has an edge to some C j , there is no feasible solution and we assign −∞ to this variable. On the other hand if both these
conditions are satisfied, our solution is valid and the increase in the cut size is |δG[Vb](v, Bb \ Sb)|.
Case 3: Node b ∈ T is a forget node. In this case, again, b has exactly one child node c with Bb = Bc \ {v}. Let Pb =
(C1, C2 . . . Ct). It is easy to see that:

Mb(Pb, Sb) = max

{
Mc(Pb, Sb)

Mc((C1, C2, . . . , Ci ∪ {v}, . . . , Ct), Sb ∪ {v}), ∀i ∈ [t]
Case 4: Node b ∈ T is a join node. In this case, b has two children c1, c2 with Bb = Bc1 = Bc2 . Let Pc1 = (C1

1, C1
2 . . . C1

t) and
Pc2 = (C2

1, C2
2 . . . C2

t) be partitions of Sc1 = Sb and Sc2 = Sb respectively. Consider the construction of following auxiliary
graph, that we refer to as “merge graph”, denoted by M . For every C1

i and C2
i , we have a corresponding vertex v(C1

i) and
v(C2

i) respectively in M . Further if two sets C1
i and C2

j intersect, i.e., C1
i ∩C2

j �= ∅, then we add an edge between v(C1
i), v(C2

j)

in M . It is easy to observe that for a given component C of M , the union of all subsets of vertices corresponding to the
vertices of C must belong to the same connected component of the optimal solution computed by Mb(Pb, Sb). Thus in turn
implies that there is a one to one correspondence between Ci ∈ Pb and the components of M .

For a given partition Pb of Sb , we call two partitions Pc1 and Pc2 of Sc1 and Sc2 as “valid” if there is a one to one
correspondence between Ci ∈ Pb and the components of M , as described above. We now prove the following simple claim.

Claim 3. For any S ⊆ Vb, δG[Vb](S, Vb \ S) = δG[Vc1](S1, V c1 \ S1) + δG[Vc2](S2, V c2 \ S2) − δG[Vb](Sb, Bb \ Sb), where S1 = S ∩ V c1 ,
and S2 = S ∩ V c2 , and Sb = S ∩ Bb.

Proof. From the properties of tree decomposition, it follows that for any two vertices u ∈ V c1 \ Bb and w ∈ V c2 \ Bb ,
{u, w} /∈ E . Further all the edges in δ(V c1 \ Bb) and δ(V c2 \ Bb) are incident on the vertices in Bb . Thus we have the
following equation,

δG[Vb](S, Vb \ S) =δG[Vc1](S1 \ Bb, V c1 \ S1) + δG[Vc2](S2 \ Bb, V c2 \ S2) + δG[Vb](Sb, Bb \ Sb)

=(δG[Vc1](S1 \ Bb, V c1 \ S1) + δG[Vb](Sb, Bb \ Sb))

+ (δG[Vc1](S2 \ Bb, V c2 \ S2) + δG[Vb](Sb, Bb \ Sb)) − δG[Vb](Sb, Bb \ Sb)

=δG[Vc1](S1, V c1 \ S1) + δG[Vc2](S2, V c2 \ S2) − δG[Vb](Sb, Bb \ Sb) �
We can now compute the dynamic program variable, in this case, as follows.

Mb(Pb, Sb) = max
(Pc1 , Pc2) are valid
with respect to Pb

Mc1(Pc1 , Sb) + Mc2(Pc2 , Sb) − |δG[Vb](Sb, Bb \ Sb)|

Theorem 4. If the CMC problem can be solved optimally on graphs of constant treewidth, then there exists a polynomial time (1 − ε)

approximation algorithm for the CMC problem on bounded genus graphs (and hence on planar graphs).

Proof. Let G = (V , E) be the graph of genus bounded by a constant and let S denote the optimal CMC of G and ψ = |δ(S)|
be its size. Using Theorem 3 with k = 3

ε , we obtain a partition of the edges E into 3
ε color classes namely C1, C2, . . . , C 3

ε
. We

further group three consecutive color classes into 1
ε groups G1, . . . , G 1

ε
where G j = C3 j−2 ∪ C3 j−1 ∪ C3 j . Let G j∗ denote the

group that intersects the least with the optimal connected max cut of G , i.e., j∗ = arg min j(|G j ∩ δ(S)|).3 As the 1
ε disjoint

groups partition the edges, we have |G j∗ ∩ δ(S)| ≤ εψ . Let i = 3 j∗ − 1, so that G j∗ = Ci−1 ∪ Ci ∪ Ci+1. Let H = (V H , E H)

denote the graph of treewidth O (1
ε) obtained by contracting all edges of color Ci .

We first show that H has a CMC of size at least (1 − ε)ψ . For a vertex v ∈ V H , let μ(v) ⊆ V denote the set of vertices of
G that have merged together to form v due to the contraction. We define a subset S ′ ⊂ V H as S ′ = {v ∈ V H | μ(v) ∩ S �= ∅}.
Note that because we contract edges (and not delete them), S ′ remains connected. We claim that |δ(S ′)| ≥ (1 − ε)ψ . Let
e = (u, v) be an edge in δ(S). Now e /∈ δ(S ′) implies that at least one edge e′ such that e′ ∩ e �= ∅ has been contracted. By
the property guaranteed by Theorem 3, we have that e ∈ G j∗ . Hence we have, |δ(S ′)| ≥ |δ(S) \ G j∗ | = |δ(S)| − |G j∗ ∩ δ(S)| ≥
(1 − ε)ψ .

Finally, given a connected max cut of size ψ in H , we can recover a connected max cut of size at least ψ in G by
simply un-contracting all the contracted edges. Hence, by solving the CMC problem on H optimally, we obtain a (1 − ε)

approximate solution in G . �
3 We “guess” j∗ by trying out all the 1

ε possibilities.

M. Hajiaghayi et al. / Theoretical Computer Science 814 (2020) 74–85 83
Fig. 1. Monotone rectilinear representation of the formula (x1 ∨ x2 ∨ x5) ∧ (x2 ∨ x3 ∨ x4) ∧ (x̄1 ∨ x̄2 ∨ x̄3) ∧ (x̄3 ∨ x̄4 ∨ x̄5) ∧ (x̄1 ∨ x̄3 ∨ x̄5).

Fig. 2. Reduction from PM-3SAT to an instance of Planar CMC.

3.2. NP-hardness in planar graphs

We now describe a non-trivial polynomial time reduction of a 3-SAT variant known as Planar Monotone 3-SAT (PM-3SAT)
to the CMC problem on a planar graph, thereby proving that the latter is NP-hard. The following reduction is interesting
as the classical Max-Cut problem can be solved optimally in polynomial time on planar graphs using duality. In fact, it was
earlier claimed (without proof) that even CMC can be solved similarly [16].

An instance of PM-3SAT is a 3-CNF boolean formula ∅ such that:

a) A clause contains either all positive literals or all negative literals.
b) The associated bipartite graph G∅4 is planar.
c) Furthermore, G∅ has a monotone, rectilinear representation. We refer the reader to de Berg and Khosravi [33] for a

complete description. Fig. 1 illustrates the rectilinear representation by a simple example.

Given such an instance, the PM-3SAT problem is to decide whether the boolean formula is satisfiable or not. De Berg
and Khosravi [33] show that the PM-3SAT problem is NP-complete.

The Reduction. Given a PM-3SAT formula ∅, with a rectilinear representation, we obtain a polynomial time reduction to a
Planar CMC instance, there by showing that the latter is NP-hard. Let {xi}n

i=1 denote the variables of the PM-3SAT instance
and {C j}m

j=1 denote the clauses. We construct a planar graph H∅ as follows. For every variable xi , we construct the following
gadget: We create two vertices v(xi) and v(x̄i) corresponding to the literals xi and x̄i . Additionally, we have K “helper”
vertices, hi

1, h
i
2, . . . , h

i
K for K sufficiently large such that each hi

k is adjacent to both xi and x̄i . Further, for every hi
k we add

a set Li
k of K new vertices that are adjacent only to hi

k . Now, in the rectilinear representation of the PM-3SAT, we replace
each variable rectangle by the above gadget. For two adjacent variable rectangles in the rectilinear representation, say xi
and xi+1, we connect the helpers hi

K and hi+1
1 . For every clause C j , H∅ has a corresponding vertex v(C j) with edges to the

three literals in the clause. Finally, for each vertex v(C j), we add a set L j of
√

K new vertices adjacent only to v(C j). It is
easy to observe that the reduction maintains the planarity of the graph. Fig. 2 illustrates the reduction by an example.

4 G∅ has a vertex for each clause and each variable and an edge between a clause and the variables that it contains.

84 M. Hajiaghayi et al. / Theoretical Computer Science 814 (2020) 74–85
We show the following theorem that proves the Planar Connected Maximum Cut problem is NP-hard.

Theorem 5. Let H∅ denote an instance of the planar CMC problem corresponding to an instance ∅ of PM-3SAT obtained as per the
reduction above. Then, the formula ∅ is satisfiable if and only if there is a solution S to the CMC problem on H∅ with |δH∅(S)| ≥
m

√
K + nK + nK 2 .

Proof. For brevity, we denote δH∅ (S) as δ(S) in the rest of the proof.
Forward direction. Assume that ∅ is satisfiable under an assignment A. We now show that we can construct a set S

with the required properties. Let {li}i∈[n] be the set of literals that are true in A. We define S = {v(li)}i∈[n] ∪ {C j} j∈[m] ∪
{hi

k}i∈[n],k∈[K] , i.e., the set of vertices corresponding to the true literals, all the clauses and all the helper vertices. By con-
struction, the set of all helper vertices and one literal of each variable induces a connected subgraph. Further, since in a
satisfying assignment every clause has at least one true literal, the constructed set S is connected. We now show that
|δ(S)| ≥ m

√
K + nK + nK 2. Indeed, δ(S) contains all the edges corresponding to the one degree vertices incident on clauses

and all the helpers. This contributes a profit of m
√

K +nK 2. Also, since no vertex corresponding to a false literal is included
in S but all helpers are in S , we get an additional profit of K for each variable. Hence, we have the claim.

Reverse direction. Assume that S is a subset of vertices in H∅ such that H∅[S] is connected and |δ(S)| ≥ m
√

K + nK +
nK 2. We now show that ∅ is satisfiable. We may assume that S is an optimal solution (since an optimal solution will
satisfy these properties, if any solution does). We first observe that at least one of the (two) literals for each variable must
be chosen into S . Indeed, if this is not the case for some variable, for H∅[S] to be remain connected, at most two of the
helper vertices corresponding to that variable can be chosen. By construction, the total number of edges in the graph equals
nK 2 +m

√
K +3m +2nK + (n −1). This implies that the maximum possible value for |δ(S)| ≤ nK 2 +m

√
K +3m +2nK + (n −

1) − (K −2)K = (n −1)K 2 +m
√

K +3m +2(n +1)K + (n −1) < nK 2 (since K > m2) < m
√

K +nK +nK 2, a contradiction. We
now show that every helper vertex must be included in S . Assume that this is not true and let hi

k be some helper vertex
not added to S . We note that none of the K degree one vertices in Li

k can be in S because H∅[S] must be connected. Now,
consider the solution S ′ formed by adding hi

k to S . Since at least one vertices v(xi) or v(x̄i) is in S , if H∅[S] is connected,
so is H∅[S ′]. Further, the total number of edges in the cut increases by at least K − 2. This is a contradiction to the fact that
S is an optimal solution. Hence, every helper vertex hi

k belongs to the solution S . We now show that, no two literals of the
same variable are chosen into S . Assume the contrary and let v(xi), v(x̄i) both be chosen into S . We claim that removing
one of these two literals will strictly improve the solution. Indeed, consider removing v(xi) from S . Clearly, we gain all the
edges from v(xi) to all the helper vertices corresponding to this variable. Thus we gain at least K edges. We now bound
the loss incurred. In the worst case, removing v(xi) from S might force the removal of all the clause vertices due to the
connectivity restriction. But this would lead to a loss of at most m

√
K + 3m < K . Hence, we arrive at a contradiction that

S is an optimal solution. Therefore, exactly one literal vertex corresponding to each variable is included in S . Finally, we
observe that all the clauses must be included in S . Assume this is not true and that m′ < m clause vertices are in S . Now
the total cut is nK + nK 2 + m′√K < nK + nK 2 + m

√
K , which is again a contradiction. Now, the optimal solution S gives a

natural assignment to the PM-3SAT instance: a literal is set to TRUE if its corresponding vertex is included in S . Since, every
clause vertex belongs to S , which in turn is connected, it must contain a TRUE literal and hence the assignment satisfies
∅. �
Declaration of competing interest

None, to the best of our knowledge.

References

[1] A. Badanidiyuru, J. Vondrák, Fast algorithms for maximizing submodular functions, in: SODA, 2014, pp. 1497–1514.
[2] N. Buchbinder, M. Feldman, J. Naor, R. Schwartz, A tight linear time (1/2)-approximation for unconstrained submodular maximization, in: FOCS, 2012,

pp. 649–658.
[3] N. Buchbinder, M. Feldman, J. Naor, R. Schwartz, Submodular maximization with cardinality constraints, in: SODA, 2014, pp. 1433–1452.
[4] G. Calinescu, C. Chekuri, M. Pál, J. Vondrák, Maximizing a submodular set function subject to a matroid constraint, in: IPCO, 2007, pp. 182–196.
[5] C. Chekuri, A. Ene, Submodular cost allocation problem and applications, in: ICALP, 2011, pp. 354–366.
[6] U. Feige, V.S. Mirrokni, J. Vondrak, Maximizing non-monotone submodular functions, SIAM J. Comput. 40 (4) (2011) 1133–1153.
[7] G.L. Nemhauser, L.A. Wolsey, M.L. Fisher, An analysis of approximations for maximizing submodular set functions-I, Math. Program. 14 (1) (1978)

265–294.
[8] T.-W. Kuo, K.C.-J. Lin, M.-J. Tsai, Maximizing submodular set function with connectivity constraint: theory and application to networks, in: INFOCOM,

2013, pp. 1977–1985.
[9] S. Khuller, M. Purohit, K.K. Sarpatwar, Analyzing the optimal neighborhood: algorithms for budgeted and partial connected dominating set problems,

in: SODA, 2014, pp. 1702–1713.
[10] P.F. Felzenszwalb, D.P. Huttenlocher, Efficient graph-based image segmentation, Int. J. Comput. Vis. 59 (2) (2004) 167–181.
[11] S. Petrov, Image segmentation with maximum cuts.
[12] S. Vicente, V. Kolmogorov, C. Rother, Graph cut based image segmentation with connectivity priors, in: CVPR, 2008, pp. 1–8.
[13] M.X. Goemans, D.P. Williamson, Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming, J.

ACM 42 (6) (1995) 1115–1145.

http://refhub.elsevier.com/S0304-3975(20)30043-8/bib626164616E696469797572753230313466617374s1
http://refhub.elsevier.com/S0304-3975(20)30043-8/bib6275636862696E646572323031327469676874s1
http://refhub.elsevier.com/S0304-3975(20)30043-8/bib6275636862696E646572323031327469676874s1
http://refhub.elsevier.com/S0304-3975(20)30043-8/bib6275636862696E646572323031347375626D6F64756C6172s1
http://refhub.elsevier.com/S0304-3975(20)30043-8/bib63616C696E65736375323030376D6178696D697A696E67s1
http://refhub.elsevier.com/S0304-3975(20)30043-8/bib6368656B757269323031317375626D6F64756C6172s1
http://refhub.elsevier.com/S0304-3975(20)30043-8/bib6665696765323031316D6178696D697A696E67s1
http://refhub.elsevier.com/S0304-3975(20)30043-8/bib6E656D68617573657231393738616E616C79736973s1
http://refhub.elsevier.com/S0304-3975(20)30043-8/bib6E656D68617573657231393738616E616C79736973s1
http://refhub.elsevier.com/S0304-3975(20)30043-8/bib6B756F323031336D6178696D697A696E67s1
http://refhub.elsevier.com/S0304-3975(20)30043-8/bib6B756F323031336D6178696D697A696E67s1
http://refhub.elsevier.com/S0304-3975(20)30043-8/bib6B68756C6C657232303134616E616C797A696E67s1
http://refhub.elsevier.com/S0304-3975(20)30043-8/bib6B68756C6C657232303134616E616C797A696E67s1
http://refhub.elsevier.com/S0304-3975(20)30043-8/bib66656C7A656E737A77616C6232303034656666696369656E74s1
http://refhub.elsevier.com/S0304-3975(20)30043-8/bib766963656E7465323030386772617068s1
http://refhub.elsevier.com/S0304-3975(20)30043-8/bib676F656D616E7331393935696D70726F766564s1
http://refhub.elsevier.com/S0304-3975(20)30043-8/bib676F656D616E7331393935696D70726F766564s1

M. Hajiaghayi et al. / Theoretical Computer Science 814 (2020) 74–85 85
[14] S. Khot, G. Kindler, E. Mossel, R. O’Donnell, Optimal inapproximability results for MAX-CUT and other 2-variable CSPs?, SIAM J. Comput. 37 (1) (2007)
319–357.

[15] F. Hadlock, Finding a maximum cut of a planar graph in polynomial time, SIAM J. Comput. 4 (3) (1975) 221–225.
[16] D.J. Haglin, S.M. Venkatesan, Approximation and intractability results for the maximum cut problem and its variants, IEEE Trans. Comput. 40 (1) (1991)

110–113.
[17] R. Solis-Oba, 2-Approximation algorithm for finding a spanning tree with maximum number of leaves, in: ESA, 1998, pp. 441–452.
[18] K. Censor-Hillel, M. Ghaffari, G. Giakkoupis, B. Haeupler, F. Kuhn, Tight bounds on vertex connectivity under vertex sampling, in: SODA, 2015.
[19] S. Guha, S. Khuller, Approximation algorithms for connected dominating sets, Algorithmica 20 (4) (1998) 374–387.
[20] B. Das, V. Bharghavan, Routing in ad-hoc networks using minimum connected dominating sets, in: ICC, vol. 1, 1997, pp. 376–380.
[21] D. Du, P. Wan, Connected Dominating Set: Theory and Applications, Springer Optimization and Its Applications, 2013.
[22] N. Garg, G. Konjevod, R. Ravi, A polylogarithmic approximation algorithm for the group Steiner tree problem, in: SODA, 1998, pp. 253–259.
[23] K. Censor-Hillel, M. Ghaffari, F. Kuhn, A new perspective on vertex connectivity, in: SODA, 2014, pp. 546–561.
[24] F. Eisenbrand, F. Grandoni, T. Rothvoß, G. Schäfer, Approximating connected facility location problems via random facility sampling and core detouring,

in: SODA, 2008, pp. 1174–1183.
[25] C. Swamy, A. Kumar, Primal–dual algorithms for connected facility location problems, Algorithmica 40 (4) (2004) 245–269.
[26] M. Cygan, Deterministic parameterized connected vertex cover, in: SWAT, 2012, pp. 95–106.
[27] J. Fakcharoenphol, S. Rao, K. Talwar, A tight bound on approximating arbitrary metrics by tree metrics, in: STOC, 2003, pp. 448–455.
[28] H. Räcke, Optimal hierarchical decompositions for congestion minimization in networks, in: STOC, 2008, pp. 255–264.
[29] E.D. Demaine, M. Hajiaghayi, K.-i. Kawarabayashi, Contraction decomposition in H-minor-free graphs and algorithmic applications, in: STOC, 2011,

pp. 441–450.
[30] R. Motwani, P. Raghavan, Randomized Algorithms, Cambridge University Press, 1995.
[31] N. Robertson, P.D. Seymour, Graph minors. III. Planar tree-width, J. Comb. Theory, Ser. B 36 (1) (1984) 49–64.
[32] T. Kloks, Treewidth: Computations and Approximations, vol. 842, 1994.
[33] M. de Berg, A. Khosravi, Finding perfect auto-partitions is NP-hard, in: EuroCG 2008, 2008, pp. 255–258.

http://refhub.elsevier.com/S0304-3975(20)30043-8/bib6B686F74323030376F7074696D616Cs1
http://refhub.elsevier.com/S0304-3975(20)30043-8/bib6B686F74323030376F7074696D616Cs1
http://refhub.elsevier.com/S0304-3975(20)30043-8/bib6861646C6F636B3139373566696E64696E67s1
http://refhub.elsevier.com/S0304-3975(20)30043-8/bib6861676C696E31393931617070726F78696D6174696F6Es1
http://refhub.elsevier.com/S0304-3975(20)30043-8/bib6861676C696E31393931617070726F78696D6174696F6Es1
http://refhub.elsevier.com/S0304-3975(20)30043-8/bib736F6C69733139393832s1
http://refhub.elsevier.com/S0304-3975(20)30043-8/bib63656E736F72323031357469676874s1
http://refhub.elsevier.com/S0304-3975(20)30043-8/bib6775686131393938617070726F78696D6174696F6Es1
http://refhub.elsevier.com/S0304-3975(20)30043-8/bib64617331393937726F7574696E67s1
http://refhub.elsevier.com/S0304-3975(20)30043-8/bib647532303133636F6E6E6563746564s1
http://refhub.elsevier.com/S0304-3975(20)30043-8/bib6761726731393938706F6C796C6F6761726974686D6963s1
http://refhub.elsevier.com/S0304-3975(20)30043-8/bib63656E736F72323031346E6577s1
http://refhub.elsevier.com/S0304-3975(20)30043-8/bib656973656E6272616E6432303038617070726F78696D6174696E67s1
http://refhub.elsevier.com/S0304-3975(20)30043-8/bib656973656E6272616E6432303038617070726F78696D6174696E67s1
http://refhub.elsevier.com/S0304-3975(20)30043-8/bib7377616D79323030347072696D616Cs1
http://refhub.elsevier.com/S0304-3975(20)30043-8/bib637967616E3230313264657465726D696E6973746963s1
http://refhub.elsevier.com/S0304-3975(20)30043-8/bib66616B636861726F656E70686F6C323030337469676874s1
http://refhub.elsevier.com/S0304-3975(20)30043-8/bib7261636B65323030386F7074696D616Cs1
http://refhub.elsevier.com/S0304-3975(20)30043-8/bib64656D61696E6532303131636F6E7472616374696F6Es1
http://refhub.elsevier.com/S0304-3975(20)30043-8/bib64656D61696E6532303131636F6E7472616374696F6Es1
http://refhub.elsevier.com/S0304-3975(20)30043-8/bib6D6F7477616E693139393572616E646F6D697A6564s1
http://refhub.elsevier.com/S0304-3975(20)30043-8/bib726F62657274736F6E313938346772617068s1
http://refhub.elsevier.com/S0304-3975(20)30043-8/bib6B6C6F6B7331393934747265657769647468s1
http://refhub.elsevier.com/S0304-3975(20)30043-8/bib64653230303866696E64696E67s1

	Approximation algorithms for connected maximum cut and related problems
	1 Introduction
	1.1 Related work
	1.2 Contribution and techniques

	2 Approximation algorithms for general graphs
	2.1 Shrinking thin paths
	2.2 Spanning tree with many leaves
	2.3 Obtaining an Ω(1/n) approximation
	2.4 General weighted graphs

	3 CMC in planar and bounded genus graphs
	3.1 PTAS for bounded genus graphs
	3.1.1 Dynamic program for constant treewidth graphs
	Dynamic programming variables
	Dynamic program

	3.2 NP-hardness in planar graphs

	References

