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We consider the aggregation problem in radio networks: find a spanning tree in a given 
graph and a conflict-free schedule of the edges so as to minimize the latency of the 
computation. While a large body of literature exists on this and related problems, we 
give the first approximation results in graphs that are not induced by unit ranges in the 
plane. We give a polynomial-time Õ(

√
dn)-approximation algorithm, where d is the average 

degree and n the number of vertices in the graph, and show that the problem is �(n1−ε)-
hard (and �((dn)1/2−ε )-hard) to approximate even on bipartite graphs, for any ε > 0, 
rendering our algorithm essentially optimal. We also obtain a O (log n)-approximation in 
interval graphs.

© 2020 Published by Elsevier B.V.

1. Introduction

Wireless sensor networks consist of autonomous sensors that typically monitor physical or environmental conditions. 
They use wireless communication to cooperatively aggregate the recorded data and forward it to a central location, the 
sink. The information desired is commonly in the form of a compressible function, such as “max” or “average”, in which 
in-network processing can be used to speed up the processing and greatly reduce transmission energy. At the same time, 
interference from simultaneous transmissions must be managed for successful reception.

In this paper, we consider the data aggregation problem in general graphs, or radio networks. The objective is to mini-
mize the latency, or the longest time it takes for any message to reach the sink. The task is two-fold:

1. Construct a directed spanning tree, i.e., an in-arborescence.
2. Form a conflict-free schedule of the transmissions (the edges) that obeys the ordering of the arborescence.

A schedule is conflict free if whenever a node is to receive a message, none of its other neighbors also transmit (causing 
interference), and a node can transmit to only one of its neighbors at a time.

This problem, which we dub Radio Aggregation Scheduling (Ras), has been widely studied under the name Minimum La-
tency Aggregation Scheduling in the wireless networking literature. Most of the existing works consider the setting where 
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Fig. 1. Left: A matching is a subset of vertex-disjoint edges. Center: The edges of the graph induced by the vertices of an induced matching are precisely 
the edges of the induced matching. Right: In a Ras-legal matching, every receiver is connected to precisely one sender.

nodes are points in the plane with a fixed transmission radius, which corresponds to the case of unit disc graphs (UDG). It is, 
however, well-known that wireless environments are always much more complicated [1,2] — unless operating in vacuum in 
outer space. One popular approach in recent years has been to switch to the SINR model of interference, which is known to 
add more realism. However, its standard form also makes strong assumptions about the geometric nature of communicabil-
ity and interference and thus ignores the unpredictability seen in practice. To go beyond these assumptions, we initiate here 
the study of aggregation in more pessimistic models, starting with general graphs. To emphasize the distinction of using 
graphs rather than planar positions, we refer to the problem as Ras.

By reversing the direction of the aggregation process, we can also view it as a broadcasting problem where:

1. [one-on-one] A node can only talk to one other node at a time.
2. [interference from neighbors] A node can hear from its neighbor only if none of its other neighbors transmit.

We refer to this communication model as the radio-unicast model. It relates closely to two other classic broadcasting prob-
lems: telephone broadcast, where (1) holds but there are no conflicts from other neighbors (in essence, modeling aggregation 
in wired networks); and radio broadcast, where (2) holds, but a node can transmit to all its neighbors in the same time slot. 
As we shall see, however, Ras is significantly harder to solve in general than either of these problems.

In the telephone model, the successful transmissions of each communication round form a (directed) matching. In the 
radio-unicast model, successful transmissions form what we call a Ras-legal matching (see Section 2 for precise definitions). 
For any two edges (s1, r1) and (s2, r2) in a Ras-legal matching connecting senders s1, s2 to receivers r1, r2, it is required that 
neither (s1, r2) nor (s2, r1) are edges contained in the input graph, thus excluding all potential interference. This is closely 
related to the notion of an induced matching. A matching is induced if the edges of the subgraph induced by the matched 
vertices are precisely the edges of the matching. A Ras-legal matching hence lies somewhere between a matching and an 
induced matching, see Fig. 1.

Previous work on RAS. All previous works on Ras consider the setting where nodes are points located in the plane with 
unit length transmission radii [3–7].2 This corresponds to the study of Ras in unit disc graphs, which has been shown to 
be NP-complete [3]. All algorithms known for unit disc graphs compute aggregation schedules of lengths �(Diam + �), 
where Diam is the diameter of the input graph and � the maximal degree. Since every aggregation schedule is of length 
at least Diam, these algorithms constitute O(�)-approximation algorithms which only give trivial approximation guarantees 
in graphs with large maximum degree (e.g. if � = �(n)). Despite the considerable effort put into the study of Ras on unit 
disc graphs, no better approximation ratios are known.

One difficulty in obtaining improved approximation ratios in unit disc graphs is to bound the length of an optimal 
aggregation schedule O P T in terms of properties of the input graph. For instance, in unit interval graphs, it is known 
that O P T = �(Diam + ω(G)), where ω(G) is the clique number (size of the largest clique) of the input graph [7]. It is also 
known how to compute an aggregation schedule of length O(Diam +ω(G)), which hence constitutes an O(1)-approximation 
algorithm (in [7], a 2-approximation is obtained). No interesting bounds on O P T are known for unit disc graphs or any other 
non-trivial graph class.

Our contributions. We initiate a systematic study of Ras, starting with general graphs. We prove that it is NP-hard to 
approximate Ras within a factor of n1−ε (Theorem 1) and (dn)1/2−ε (Corollary 1) even in bipartite graphs, for any ε > 0, 
where n is the number of vertices of the input graph and d is the average degree. On the positive side, we present a 
Õ(

√
dn)-approximation3 algorithm for sparse general graphs (Theorem 2), almost matching our lower bound.

Next, we are interested in whether improved algorithms can be obtained for geometrically defined graph classes that 
contribute to metric-sensitive models of actual wireless environments. We focus here on interval graphs. They can be seen 
as one-dimensional projections of disc graphs that capture the aspect of different radii, and we present a highly non-trivial 
O(log n)-approximation algorithm (Theorem 3). The key part of our analysis is the identification of subgraphs that provide 
interesting lower bounds on the length of an optimal aggregation schedule.

Further related work. Aggregation problems have been extensively studied in the wireless literature; see the surveys [8,
9]. As previously mentioned, Ras has been considered in unit disc graphs [3–7] and O(�)-approximation algorithms are 

2 In [7], unit interval graphs as well as grids and tori are considered, which are all subclasses of unit disc graphs.
3 We use the notation Õ(.), which equals the usual O(.) notation where all poly-logarithmic factors are ignored.
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known. Furthermore, it has also been shown that, in unit disc graphs, if the interference radius is strictly larger than the 
transmission radius, then constant factor approximations can be obtained [5]. For unit interval graphs, which can be seen 
as unit-disc graphs in one dimension, a 2-approximation algorithm was recently given [10]. Optimal algorithms are known 
for grids and tori [10]. In trees, Ras is equivalent to the telephone broadcast problem, which has a textbook dynamic 
programming solution [11, Prob. 6.16]. This exhausts the list of previous work known on Ras.

A different setting for aggregation problems is where the nodes are located at points in the plane and can adjust their 
transmission powers which allows them to reach any other node. Kesselman and Kowalski [12] showed that aggregation 
can then be achieved in O(log n) slots. If interference and transmissions follow the geometric SINR model, Moscibroda and 
Wattenhofer [13] showed that poly-logarithmic slots suffice, which was improved to optimal O(log n) [14].

For broadcast in the radio model, Chlamtac and Weinstein [15] proved the first upper bound of O(Diam · log2 n), with 
Diam being the diameter of the graph, which was improved to O(Diam · log n + log2 n) soon afterwards by Bar-Yehuda et 
al. [16]. The best bound known on the number of rounds, O(Diam + log2 n), given by Kowalski and Pelc [17], is optimal in 
light of results of Alon et al. [18] and Elkin and Kortsarz [19].

The first approximation for telephone broadcast was an additive O(
√

n) approximation [20]. This was improved to a 
multiplicative O(log2 n)-factor by [21], and then to O(log n) in [22]. The best approximation known for the problem is 
O(log n/ log O P T ) [23], which is O(logn/ log log n), since O P T ≥ log2 n always holds. The best lower bound known is a 
factor 3 − ε , given in [24].

Outline of the paper. We give formal definitions of our problems in Sec. 2. Then, in Sec. 3, we present our hardness results 
for general graphs, and in Sec. 4, we present our algorithm for sparse general graphs. Finally, in Sec. 5, interval graphs are 
discussed.

2. Problem definition and notations

Radio aggregation scheduling. We are given as input a graph G = (V , E) and a node s ∈ V which is the sink node of the 
aggregation problem. We view G as a bidirected graph, i.e., all edges appear directed in both directions.

We seek a schedule, which is a sequence M1, M2, . . . , Mt of directed matchings in G . The union ∪i Mi of these matchings 
induces a directed spanning tree (in-arborescence) A directed toward s. Each matching Mi corresponds to a set of trans-
missions that can be successful simultaneously; namely, each matching must be Ras-legal in G: if (u, v), (w, z) ∈ Mi then 
(u, z), (w, v) /∈ E(G). Finally, the edges of A occur in the matchings in order of precedence induced by the arborescence: 
if (u, v) ∈ Mi and (v, w) ∈ M j then i < j. Namely, a node can only forward its message once it has heard from all of its 
children. Then an optimal solution to the Radio Aggregation Scheduling problem (Ras) is a schedule of minimal length.

Broadcasting in the radio-unicast model. Since reversing the slots of an aggregation schedule gives a broadcast, and vice 
versa, both viewpoints can be used to tackle Ras. In the broadcast version of the problem, node s ∈ V is the source node 
and holds a message that is to be sent to all other nodes V \ {s} in the graph. In each round, we seek a Ras legal matching 
between the informed nodes (those that know the message) and the uninformed nodes (those that don’t know the message 
yet). Initially, there is only a single informed node, the source node s. When an uninformed node receives the message, it 
joins the set of informed nodes and can serve as a sender in upcoming rounds. We denote this communication model where 
each round induces a Ras-legal matching as the radio-unicast model. An optimal solution to the broadcasting problem then 
is a broadcasting schedule that informs all nodes in the minimal number of rounds.

It turns out that the broadcasting perspective of Ras is more convenient when presenting our algorithms. All our algo-
rithms solve the broadcasting problem in the radio-unicast model.

Notation. Let G = (V , E) be the input graph. Unless stated differently, n denotes the number of vertices of G , d the average 
degree, � the maximum degree, and Diam the diameter. Those quantities may also appear as functions, e.g. �(H), d(H)

and Diam(H) denote the respective quantities of graph H .
We write distG(u, v) for the number of hops between nodes u and v in graph G . Let NG (u) denote the set of neighbors of 

vertex u in G , and for a set S of vertices, let NG (S) = (∪u∈S NG(u)) \ S . We write degG(u) the degree of u in G . Furthermore, 
for a graph G , we denote its vertex set by V (G) and its edge set by E(G). Given a subset of vertices U ⊆ V , we denote the 
subgraph of G induced by the vertices U by G[U ].

3. Approximation hardness of RAS

In this section, we prove that Ras is hard to approximate within factors n1−ε (Theorem 1) and (dn)1/2−ε (Corollary 1), 
for every ε > 0. Before giving our lower bound construction, we introduce further required notations and definitions.

Further definitions. We denote the chromatic number of a graph G with χ(G), and the independence number (size of a 
maximum independent set) with α(G). Our lower bound construction relies on semi-induced matchings and a specific graph 
product that we discuss first.

A matching is called an induced matching if there is no edge from one endpoint of an edge in the matching to an 
endpoint of another edge in the matching. The semi-induced matching has a general definition (see [25]) but we only give 
the definition for bipartite graphs that is simpler and all we need.
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Definition 1 (Semi-induced matching). Let G = (U , V , E) be a bipartite graph with a total ordering u1, . . . , un of U . A semi-
induced matching is a matching so that if (ui, a) and (u j, b) are in the matching and i < j, then there is no edge between u j
and a.

Let Im(G) be the size of the largest induced matching of G and Sim(G) the size of the largest semi-induced matching. 
Observe that Im(G) ≤ Sim(G), for any graph G .

Next, we make use of the following graph product:

Definition 2 (Inclusive graph product). The inclusive graph product of G = (V , E) and H = (V ′, E ′), denoted by G ∨ H , has ver-
tices {(xG , xH ) | xG ∈ V , xH ∈ V ′}. A pair of vertices (xG , xH ) ∈ V (G ∨ H) and (yG , yH ) ∈ V (G ∨ H) is connected iff (xG , yG) ∈ E
or (xH , yH ) ∈ E ′ .

See [25] for a discussion of several graph products. We denote Gk = G ∨ G ∨ . . . ∨ G when there are k copies of G . This 
graph has nk vertices.

The following equalities are folklore for the specific product we chose:

χ(Gk) = χ(G)k, (1)

α(Gk) = α(G)k . (2)

Intermediate problem: induced matching cover. We shall consider a problem on bipartite graphs that is closely related to
Ras. Given a bipartite graph B = (U , V , E), let ImCov(B) denote the minimum number of induced matchings that together 
contain (or cover) all the vertices of V . Suppose that nodes U are informed and nodes V are uninformed. Then, it takes 
precisely ImCov(B) rounds in order to inform V . This is summarized in Observation 1.

Observation 1. Let B = (U , V , E) be a bipartite graph. Suppose all the vertices in U know the message. Then, the minimum number 
of rounds it takes to inform V in the radio-unicast model equals ImCov(B).

Proof. Consider a Ras-legal matching that contains the edges (x, a) and (y, b), where x, y ∈ U and a, b ∈ V . Note that it 
is required that (x, b), (y, a) /∈ E and hence the Ras-legal matching is an induced matching. Conversely, given an induced 
matching, all the vertices in V in the matching receive the message as there is no interference. �
Lower bound construction. In order to prove our hardness result, we will use the construction of Feige and Kilian [26]
which shows that it is hard to determine whether a graph G on n vertices has small chromatic number χ(G) ≤ nε (“yes 
instance”) or has a small independence number α(G) ≤ nε (“no instance”), for any ε > 0.

Let G be a graph on n vertices as used in the construction of Feige and Kilian. From G , using a construction similar to 
the one in [25], we will construct a bipartite graph Be(Gk) on �(nk) vertices so that:

ImCov(Be(Gk)) ≤ χ(G), and (3)

Im(Be(Gk)) ≤ k · n + α(G)k. (4)

Suppose now that one bipartition of Be(Hk) is informed and the other one is uninformed. Then, if G is a “yes instance” (i.e. 
it has small chromatic number), the whole graph can be informed quickly using Inequality (3) and Observation 1.

Suppose now that G is a “no instance” (i.e. it has small independence number). Then, by Inequality (4), Im(Be(Gk))

is small, too. Using the obvious relationship ImCov(Be(Gk)) ≥ |V (Be(Gk))|/Im(Be(Gk)), we see that ImCov(Be(Gk)) is large 
which implies that informing the whole graph takes many rounds.

The previous gap-reduction argument is made rigorous in the following. To this end, for a graph G , we first define the 
graph Be(G).

Definition 3. Given a graph G = (V , E), the graph B(G) = (V , V̄ , E B) is a bipartite graph with a copy of V on each side. 
There is an edge (v, ̄u) ∈ E B if (v, u) ∈ E . The graph Be(G) = (V , V̄ , E ′) results from B(G) by adding the perfect matching 
M = {(v, ̄v) : v ∈ V }, i.e., E ′ = E B ∪ M , see Fig. 2.

Next, we prove Inequalities (3) and (4) in Claims 1 and 2, respectively.

Claim 1. Let G = (V , E) be a graph. Then, Be(G) = (V , V̄ , E ′) can be decomposed into χ(G) induced matchings that are pairwise 
disjoint and together contain all of V̄ , i.e., ImCov(Be(G)) ≤ χ(G).

Proof. Let C1, C2, . . . , Cχ(G) be the color classes of G . For i ≥ 1, define a matching Mi between Ci and their copies C̄i using 
the edges (v, ̄v), for each v ∈ Ci . Note that since Ci is an independent set, Mi is an induced matching. By definition, the 
matchings M1, M2, . . . , Mχ(G) are vertex disjoint and cover all the vertices. �
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Fig. 2. Construction of B(G) and Be(G).

Next, we relate the size of an induced matching in Be(Gk) to the independence number of G .

Claim 2. Let G be a graph, k an integer. Then, Im(Be(Gk)) ≤ k · n + α(G)k.

Proof. We will use the following inequalities, which appear as Lemma 5.3 and Corollary 5.1 in [25], respectively.

Sim(Be(G)) ≤ Sim(B(G)) + α(G), (5)

Sim(B(Gk)) ≤ k · Sim(B(G)). (6)

Applying (5) to Be(Gk), followed by Inequality (6) and Inequality (2) gives

Sim(Be(Gk)) ≤ Sim(B(Gk)) + α(Gk) ≤ k · Sim(B(G)) + α(G)k ≤ k · n + α(G)k .

The claim then follows from the relationship Im(G) ≤ Sim(G) (that holds for any graph G). �
Finally, we prove our hardness results in Theorem 1 and Corollary 1.

Theorem 1. The Ras problem is hard to approximate on bipartite graphs within a factor of N1−δ , for any δ > 0, where N is the number 
of vertices.

Proof. We use the gap reduction of Feige and Kilian [26]: for any ε > 0, it is hard to distinguish between the case (“yes” 
instance) when a graph G is nε -colorable, i.e., when χ(G) ≤ nε , and the case (“no” instance) when there is no independent 
set of size at least nε , i.e., α(G) < nε .

For some small constant δ > 0, let ε be such that 1/ε = 2
1/δ�, and let k = 1/ε . Consider Be(Gk) = (Vk, V̄k, Ek) and let 
Hk be the graph obtained by adding to Be(Gk) a complete binary tree of depth O(log |Vk|) whose set of leaves contains Vk . 
It is easy to check that Hk is bipartite, too. The binary tree allows us to inform the bipartition Vk of subgraph Be(Gk) of Hk
quickly in O(log |Vk|) rounds.

We show now that it is hard to approximate the number of rounds in an optimal Ras schedule of Hk . Suppose that 
the root of the binary tree is the source node of the broadcast problem. Let O P T denote the length of a shortest broad-
cast schedule. Observe that informing the nodes of the complete binary tree, and thus also the nodes in Vk , requires only 
O (log |Vk|) = O (log nk) = O (log n) slots. Informing V̄k after Vk has been informed takes ImCov(Be(Gk)) rounds, by Observa-
tion 1. Thus, O P T = ImCov(Be(Gk)) + O (log n).

If G is a yes-instance, χ(G) ≤ nε , so by Claim 1 and Inequality (1),

ImCov(Be(Gk)) ≤ χ(Gk) = χ(G)k ≤ nkε = n ,

and hence

O P T = ImCov(Be(Gk)) + O (log n) = O (n) .

If G is a no-instance, α(G)k ≤ nkε = n, so by Claim 2, Im(Be(Gk)) = O (n), and

O P T ≥ ImCov(Be(Gk)) ≥ |Vk|
Im(Be(Gk))

= �(nk−1) .

The ratio between the bounds for the two cases is �(nk−2). Recalling that the size of Hk is given by N = |Hk| = �(nk), 
we get that the approximation hardness is �(nk−2) = �(N/n2) = �(N1− 2

k ) = �(N1−δ). �
Corollary 1. The Ras problem is hard to approximate on bipartite graphs within a factor of (dN)

1
2 −δ , for any δ > 0, where N is the 

number of vertices.
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Proof. Consider the graph Hk from the proof of Theorem 1, and let n = |V (Hk)|. Let m = |E(Hk)|. Let Ĥd be the graph 
obtained from Hk by adding a complete binary tree with �(m/d) vertices to the graph and connect the root of the binary 
tree to the source node.

Then, N = |V (Ĥd)| = n + �(m/d) = �(m/d), while the number of edges is m + �(m/d) = �(m(1 + 1/d)). The average 
degree of Ĥd is hence �(d). Note that the introduced binary tree can be informed in �(log(m/d)) = �(log(n/d)) rounds. 
Since in any graph O P T = �(log n), the introduced binary tree hence doesn’t change the hardness of Ras and it is still 
hard to approximate it within a factor of n1−ε . Since dN = �(m) = O(n2), the problem is also hard to approximate within 
(dN)(1−ε)/2. �

Corollary 1 renders our Õ(
√

dn)-approximation algorithm that we present in the next section essentially best possible.
The graphs used in the proofs of Theorem 1 and Corollary 1 have a diameter of O(log n). By adding additional edges, 

their diameters can be reduced to 2. This shows that unlike in the radio model, broadcasting in the radio-unicast model is 
no easier in graphs of low diameter.

4. Õ(
√

dn)-approximation algorithm

We now present a Õ(
√

dn)-approximation algorithm for Ras in general graphs G = (V , E) with average degree d. We 
consider the broadcasting perspective in the radio-unicast model. Before presenting our algorithm, we discuss simulation 
results that allow us to reuse existing algorithms designed for the telephone and the radio models.

Simulation between models. We derive now (rather straightforward) bounds on Ras schedules, utilizing its relationship to 
better studied broadcast problems.

Recall that in the telephone model, there are no conflicts if two neighbors of a node both transmit. However, a node can 
only transmit to one of its neighbors in a given round. In the radio model, when a node transmits, its message goes to all of 
its neighbors. However, an uninformed neighbor receives the message only if exactly one of its neighbors is transmitting in 
that round.

Our problem shares the unicast transmission rule with the telephone model and the reception conflicts with the radio 
model. Algorithms for these models can be simulated in our models.

Lemma 1. A round in the radio model can be simulated in � rounds in the radio-unicast model, and a round in the telephone model 
can be simulated in 2� − 1 rounds in the radio-unicast model.

Proof. Suppose a set S of nodes transmits in a given round in the radio model. Assume without loss of generality that the 
neighbors of each node are ordered in an arbitrary order. We can then simulate it with � rounds, where in round i, each 
node in S forwards the message to its i-th neighbor.

Consider a directed matching M that corresponds to the transmissions of a round in the telephone model. Every edge of 
uv ∈ M is adjacent to at most (degG(u) − 1) + (degG(v) − 1) ≤ 2(� − 1) edges, which in turn may touch at most 2(� − 1)

other edges of M . We can thus color the edges in M “first-fit” using 2� − 1 colors so that each color class induces a
Ras-legal matching. �

Simulating the algorithm of Kowalski and Pelc for radio broadcast [17], and using Lemma 1, we obtain the following 
corollary.

Corollary 2. There is a polynomial-time algorithm for Ras that computes an aggregation schedule of length O(�(Diam + log2 n)) and 
thus constitutes a O(� + � log2(n)/Diam)-approximation algorithm.

In the previous corollary, We used here the fact that Diam is a trivial lower bound on the length of an optimal schedule. 
In light of the hardness results in Sec. 3, this approximation bound is close to best possible. Complete q-ary trees show that 
the �Diam term in the absolute bound can be necessary.

Center selection. Our algorithm uses as subroutine solutions to a classic facility location problem. In Center Selection, we 
are given a graph G = (V , E), a set X ⊆ V of possible sites for centers, a set C ⊆ V of clients, and a parameter k. We wish 
to find a set S ⊆ X of k centers, such that the maximum distance from a client to the nearest center is minimized. For a set 
of centers S ⊆ X , let ρ(G, S, C) := maxv∈C distG(v, S) be the covering radius of S in G . The objective of Center Selection is 
to find an S ⊆ X of cardinality k which minimizes ρ(G, S, C).

A greedy algorithm, which we denote by Greedy-CS(G, X, C, k), gives a 3-approximation to this problem. This result 
is certainly well-known, but since we are not aware of a reference for this particular version, we include a proof in the 
appendix for completeness. It is well known that many center selection problems in which the set of potential sites for 
centers is restricted such as ours cannot be approximated within a factor smaller than 3.

Easy to see that an approximation factor of 3 is best possible for most

Lemma 2. Greedy-CS is a 3-approximation algorithm for Center Selection.
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RAS scheme. In Algorithm 1, we present an algorithm for the broadcast problem in the radio-unicast model. We assume 
that the optimal value O P T (length of a shortest broadcast scheme) is known by the algorithm. This can be ensured e.g. 
by running the algorithm multiple times trying the different values {log n, . . . , n} for O P T and returning the best solution 
(logn is an obvious lower bound).

Let s ∈ V be the source node. To keep the presentation simple, we assume that degG(s) ≥ √
dn. If this is not the case, 

then we first inform an arbitrary node s′ of degree at least 
√

dn in at most O P T rounds which then takes the role of s. 
Clearly, the length of a minimum length schedule of the modified instance with source s′ is at most by O P T longer than 
the length of a minimum length schedule with source node s. Hence, by solving the instance with source node s′ , we may 
lose an additive 2 · O P T term. However, since our obtained approximation factor is polynomial, this factor is negligible. Last, 
if no node of degree at least 

√
dn exists, then we simply apply the simulation result of Corollary 2, and we immediately 

obtain an Õ(
√

dn)-approximation algorithm.

Algorithm 1 Broadcast in the radio-unicast model for sparse general graphs.

Require: G = (V , E) input graph, let K = √
dn; s source node of degree at least K

1: Let L ← {v : degG (v) ≥ K }, C = V \ L, and X = N(L) ∩ C
2: Inform the nodes in L sequentially along shortest paths from s
3: Let S ← Greedy-CS(G[C], X, C, K · O P T )

4: Inform all nodes in S using single hops from L
5: Simulate the radio broadcast algorithm of [17] on G[C] until all nodes are informed

First, our algorithm, Algorithm 1, informs the large-degree nodes, i.e., nodes L of degree at least K = √
dn. The number 

of large degree nodes is bounded by |L| ≤ K , as otherwise the degree sum of the graph would be greater than K 2 = dn =
2|E(G)|. Thus, by transmitting serially on shortest paths (with no transmissions occurring simultaneously), the nodes in L
can be informed in time O(K · O P T ). In order to inform the small-degree nodes V \ L, we simulate the radio-broadcast 
algorithm of [17] on the subgraph G[C], where C = V \ L. To make this work in the desired number of rounds, we have to 
ensure that for each node in C , there is an informed node within distance O(O P T ) in G[C]. To this end, we employ our 
greedy center selection algorithm in Line 3 and obtain centers S such that every node of C is within distance 3 · O P T of 
some node in S (see Lemma 3). Furthermore, S is contained in the neighborhood of L, which allows us to inform S quickly. 
This property is then used in the proof of the main theorem of this section, Theorem 2.

Lemma 3. Each node in C is within distance at most 3 · O P T from a node in S in the induced subgraph G[C], i.e., ρ(G[C], S, C) ≤
3 · O P T .

Proof. Let Q be the set of nodes in C that are informed (directly) by nodes in L in the optimal broadcasting scheme. At 
most |L| of them can be informed in a single round, so |Q | ≤ |L| · O P T ≤ K · O P T . The nodes v ∈ C \ Q must then all satisfy 
distG[C](v, Q ) ≤ O P T and thus ρ(G[C], Q , C) ≤ O P T . The center selection algorithm Greedy-SC positions K · O P T ≥ |Q |
nodes, that by Lemma 2 yields a 3-approximation of the covering radius, giving ρ(G[C], S, C) ≤ 3 · ρ(G[C], Q , C) ≤ 3 ·
O P T . �
Theorem 2. There is a polynomial time randomized approximation algorithm for Ras with approximation factor Õ(

√
dn).

Proof. Suppose that O P T is known to the algorithm. Recall from above that |L| ≤ K . As any node can be informed in O P T
time along a shortest path, the set L is informed in time O P T · K (Line 2). The center selection algorithm Greedy-SC chooses 
K · O P T centers S that are adjacent to L in G . Informing those in Line 4 takes time at most K · O P T , since each requires 
only a single transmission from a node in L.

Consider now the graph G[C]. By construction, the maximum degree in G[C] is at most K . As shown in Lemma 3, the 
distance in G[C] from an arbitrary node to an informed node (a node in S) is at most 3 · O P T . Suppose we form the graph 
H consisting of G[C] along with a new node s′ that is adjacent to all the nodes in S . By the above argument, the diameter 
of H is O(O P T ), so the radio broadcast algorithm of [17] uses O(Diam(H) + log2 |V (H)|) = O(O P T + log2 n) rounds to 
broadcast information from s′ . Running the algorithm on H when all the nodes in S have been informed will certainly not 
take more time. Thus, we can apply our radio broadcast simulation of Lemma 1 to obtain a Ras broadcast on G[C] in time 
O((O P T + log2 n)K ) = Õ(O P T · K ). �
5. Interval graphs

Let V = {I1, . . . , In} with I j = [a j, b j] be a set of intervals on the line, where a j, b j are real numbers such that a j < b j . 
Let G be the corresponding interval graph, i.e., it has vertex set V , and two vertices I j, Ik ∈ V are adjacent if and only if 
I j and Ik intersect (I j ∩ Ik �= ∅). For an interval v ∈ V , denote by l(v) and r(v) its left and right boundaries. For x, y ∈ R, 
let G[x, y] denote the subgraph of G induced by the intervals that are entirely contained in [x, y], that is, V (G[x, y]) = {v ∈
V : l(v) ≥ x and r(v) ≤ y}. Furthermore, denote by len(v) the length of interval v . We write lmax for the length of a longest 
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interval in G . W.l.o.g., we assume that all interval boundaries are integers in {1, 2, . . . , 2n}, and all interval boundaries are 
distinct (it is well-known that every interval graph has such a representation).

Before presenting our algorithm, we show that the clique number of an interval graph G (the size of a largest clique in 
G) provides a lower bound for the length of an optimal schedule. This lemma is similar to Lemmas 2 and 3 of [10].

Lemma 4. Let G be an interval graph. Then: O P T ≥ ω(G)/2.

Proof. Let C be a largest clique of size ω(G) and let x ∈ R be such that for every u ∈ C : l(u) ≤ x ≤ r(u), that is, every 
interval of the clique intersects x. Suppose for the sake of a contradiction that three intervals of C are informed in the same 
round, that is, there are distinct informed intervals u1, u2, u3 ∈ V and distinct uninformed intervals v1, v2, v3 ∈ C such that, 
for i ∈ {1, 2, 3}, ui informs vi , or, in other words, the matching M = {u1 v1, u2 v2, u3 v3} is Ras-legal.

Let vl ∈ {v1, v2, v3} be the interval with smallest left boundary, vr ∈ {v1, v2, v3} the interval with largest right boundary 
(vl and vr are not necessarily disjoint), and let vc ∈ {v1, v2, v3} \ {vl, vr}. Then interval vc is entirely contained in vl ∪ vr . 
Thus, the interval uc that informs vc is also adjacent to vl or vr , a contradiction to M being Ras-legal. �

Next, our algorithm relies on the subroutine Diam-path(G) that, given a connected interval graph G , returns a shortest-
distance path that dominates all vertices of G .

DIAM-PATH(G ). Let u1 ∈ V (G) be the interval with smallest left boundary, and let u2 ∈ V (G) be the interval with largest 
right boundary. Let V p ⊆ V (G) be the subset of proper intervals, that is, the set of intervals v ∈ V (G) that are not contained 
in another interval. In other words, v ∈ V p if, and only if, there is no v ′ ∈ V (G) with l(v ′) < l(v) < r(v) < r(v ′). Since all 
interval boundaries are distinct, both u1 and u2 are proper intervals and hence in V p . Diam-path(G) returns a shortest path 
from u1 to u2 in the graph G[V p]. This “diameter path” has length at most Diam(G).

Algorithm. Similar to our algorithm for sparse general graphs, we assume that the value of O P T is known. Furthermore, 
we assume that the input graph G is connected, since otherwise there is no solution to Ras. We will decompose G hier-
archically as follows. Let G1 = G and let P1 = Diam-path(G1). Furthermore, for integers i ≥ 1, let Ui ⊆ V be the subset of 
intervals whose lengths are contained in (( 1

2 )ilmax, ( 1
2 )i−1lmax]. Then, we define the subgraph H1 = G[V (P1) ∪ U1] consist-

ing of intervals of the largest length class plus a diameter path, where V (P1) denotes the intervals contained in path P1. 
As P1 is a diameter path, V (P1) can be informed in Diam(G) time. In Lemma 5, we will argue that the subgraph H1 is 
4-claw-free,4 and, using this property, we will show in Lemma 6 that U1 can be informed in O(O P T ) rounds. Thus, overall 
in O(O P T ) rounds, the nodes V (H1) are informed.

Next, given the subgraph Gi , we define inductively Gi+1 ⊆ Gi to be the subgraph induced by the set of yet uninformed 
intervals, that is, Gi+1 = G[V (Gi) \ V (Hi)]. Let Pi+1 be a collection of diameter paths of the connected components of 
Gi+1 as computed by Diam-path, and let Hi+1 = Gi+1[V (Pi+1) ∪ (Ui+1 ∩ V (Gi+1))] consisting of yet uninformed intervals 
of length class i + 1 and a collection of diameter paths, where V (Pi+1) denotes the intervals contained in the diameter 
paths Pi+1. Similar as before, once V (Pi+1) has been informed, by Lemma 6, we can inform V (Hi+1) in O(O P T ) time. The 
key part of our argument is that V (Pi+1) can be informed by V (Pi) in O(O P T ) time, which is proved in Lemma 7. Our 
argument shows that given an interval v ∈ V (Pi), there are at most O(O P T 2) intervals in V (Pi+1) that intersect with v , 
and we prove that they can be informed in O(O P T ) time. Thus, for every i, the nodes V (Hi) can be informed in O(O P T )

rounds.
As lmax ≤ 2n and every interval is of length at least 1, there are O(log n) length classes. Hence, in O(log(n) · O P T ) rounds, 

all nodes V (G) can be informed.

Analysis. We are going to prove the following theorem:

Theorem 3. There is a polynomial-time algorithm for Ras in interval graphs with approximation factor O(logn).

The theorem follows from the previous description of the algorithm together with the main Lemmas, Lemma 6 and 
Lemma 7. In Lemma 6, we show that nodes V (Hi) can be informed in O(O P T ) rounds if nodes V (Pi) are informed, and in 
Lemma 7, we show that nodes V (Pi) can be informed in O(O P T ) rounds if V (Pi−1) are informed.

We first state simple observations about the employed quantities in our algorithm.

Observation 2. All intervals in subgraph Gi are of length at most ( 1
2 )i−1lmax.

Observation 3. No interval in V (Hi) \ V (Pi) contains an interval of Pi , that is, for every v ∈ V (Hi) \ V (Pi) there is no u ∈ V (Pi)

such that l(v) < l(u) < r(u) < r(v).

Observation 3 follows by construction of Pi . The path Pi is constructed via algorithm Diam-path which only chooses 
proper intervals.

4 A graph is 4−claw-free, if it doesn’t contain the complete bipartite graph K1,4 as an induced subgraph.
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Next, we show that the graphs Hi do not contain K1,4 as an induced subgraph.

Lemma 5. For any i, the subgraph Hi is 4-claw-free.

Proof. V (Hi) consists of the intervals of the diameter path Pi , and a subset of Ui . As the lengths of intervals in Ui differ at 
most by a factor of 2, the subgraph of Hi induced by the vertices V (Hi) ∩Ui cannot induce a 4-claw. Next, by Observation 3, 
no interval of Pi is contained in any interval of Ui . Thus, a 4-claw in Hi could potentially only exist if an interval v ∈ Pi had 
four independent neighbors in V (Hi) ∩ Ui . This, however, implies that len(v) ≥ 2 · min{len(u) : u ∈ V (Hi) ∩ Ui} + 2, since 
two of the four intervals have to be fully contained in v and the other two have to overlap. The bound can be bounded 
from below by 2 · ( 1

2 )ilmax + 2 = ( 1
2 )i−1lmax + 2, a contradiction to Observation 2. Hence, Hi is 4-claw-free. �

Last, we prove the main lemmas, Lemma 6 and Lemma 7, that show that the subtasks of our algorithm can all be 
performed in O(O P T ) rounds.

Lemma 6. Suppose that the vertices of Pi have been informed. Then, V (Hi) can be informed in O(O P T ) rounds.

Proof. We color the vertices of Pi alternately with four colors, where each color is used on every fourth vertex. Since Pi is a 
collection of diameter paths in the connected components of Gi , nodes with the same color have disjoint neighborhoods in 
Gi . Processing the colors in sequence, the nodes of each color inform their Ui neighbors in parallel. Since Hi is 4-claw-free, 
the Ui -neighborhood of each node p ∈ Pi can be partitioned into three cliques: Nodes that intersect the left boundary of 
p, nodes that intersect the right boundary p, and nodes that are fully contained in p. Informing those nodes sequentially 
one-by-one requires 3ω(Hi) ≤ 3ω(G) rounds, which is bounded by 6 · O P T , by Lemma 4, which proves the lemma. �
Lemma 7. Nodes Pi+1 can be informed by nodes Pi in O(O P T ) rounds.

Proof. Let φi+1 : Pi+1 → Pi be a mapping so that φi+1(v) = u ⇒ u ∈ N(v). Next, produce a 4-coloring of Pi with color 
classes P 1

i , . . . , P 4
i , as in the proof of Lemma 6. Iterate now through the color classes P j

i . In each iteration, all nodes u ∈ P j
i

inform the nodes φ−1
i+1(u) simultaneously as follows: Let C1 . . . Ck denote the connected components of G[φ−1

i+1(u)]. Node u
informs every O P T -th interval of every connected component C j . If |C j| < O P T then an arbitrary interval of C j is informed. 
Thus, u requires O(k + |φ−1

i+1(u)|/O P T ) rounds. In Claim 3, we will prove that k = O(O P T ) and |φ−1
i+1(u)| = O(O P T 2).

Claim 3. |φ−1
i+1(u)| = O(O P T 2) and the number of components of G[φ−1(u)] is O(O P T ).

Thus, the previous step requires O(O P T ) rounds. Next, the informed nodes of φ−1
i+1(u) inform the uninformed nodes of 

φ−1
i+1(u). Since φ−1

i+1(u) is a collection of paths, and since for every uninformed node of φ−1
i+1(u) there is an informed node 

within distance O P T , this step can also be done in O(O P T ) rounds. It remains to prove Claim 3, which then completes the 
proof of this Lemma.

Proof of Claim 3. Let u1, . . . , uq denote the intervals of φ−1
i+1(u) ordered from left to right. Since u3 does not intersect with 

u1 and u1 intersects with u, u3 is entirely contained in u. By a similar argument, uq−2 is entirely contained in u. Hence, all 
intervals u3, . . . , uq−2 are entirely contained in u.

Let x be the left boundary of u3, and let y be the right boundary of uq−2. Then, y − x ≤ len(u) ≤ ( 1
2 )i−1lmax , where the 

second inequality is due to Observation 2.
Consider now the graph G[x, y]. Note that as y − x ≤ len(u) ≤ ( 1

2 )i−1lmax , none of the nodes of 
⋃

j≤i−1 U j are contained 
in V (G[x, y]). Furthermore, as for every j, P j consists of proper intervals in G j , none of the intervals 

⋃
j≤i P j are included 

in u and hence in V (G[x, y]). Thus, the only nodes outside V (Gi+1) that could potentially be contained in G[x, y] are nodes 
of Ui . Let V ′ = V (G[x, y]) ∩ Ui .

Let C1, . . . , Ck be the components of G[x, y] − V ′ . Those components have to be informed by the nodes N(V (G[x, y]) −
V ′). Note that for every w ∈ N(V (G[x, y]) − V ′), either w ∈ V ′ , w intersects x, w intersects y, or w intersects both x and 
y. The key of our argument is that at most four5 intervals of N(V (G[x, y]) − V ′) can inform intervals of V (G[x, y] − V ′)
simultaneously in one round. To see this, observe first that it is impossible that two intervals that both intersect x (or y) 
simultaneously inform two intervals of V (G[x, y] − V ′) (see left side of Fig. 3). Then, since every interval of V ′ is of length 
at least ( 1

2 )ilmax and hence at least of length 1
2 (y − x), at most 2 intervals of V ′ may inform intervals of V (G[x, y] − V ′)

simultaneously (see right side of Fig. 3).

5 By a more precise argument, three can also be argued. Any constant is enough for our purposes.
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Fig. 3. Left: Illustration of the fact that two intervals a, b intersecting x cannot inform two intervals u, v of G[x, y] simultaneously since either u or v is 
adjacent to both a and b (in the illustration, u is adjacent to a, b). Right: No three intervals a, b, c of G[x, y] of sizes at least 1

2 (y − x) can inform three 
intervals u, v, w of G[x, y] simultaneously (in the illustration, v is adjacent to both a and b).

Thus, in O P T rounds, at most 4 · O P T intervals of V (G[x, y] − V ′) can be informed. This immediately proves the second 
part of the lemma, that is, the number of components of G[φ−1

i+1(u)] is O(O P T ).

To prove the first part, for the sake of a contradiction, suppose that |φ−1
i+1(u)| > C · O P T 2 for a large enough C . Since 

G[φ−1
i+1(u)] is a collection of paths and the fact that at most 4 · O P T intervals of φ−1

i+1(u) have been informed by nodes 
outside V (G[x, y] − V ′), there exists a node v ∈ φ−1

i+1(u) that has not been informed by V \ φ−1
i+1(u) and is at distance at 

least C · O P T 2/(4 · O P T ) = C · O P T /4 from an informed node. As C is chosen large enough, this implies that more than 
O P T rounds are required to inform v , a contradiction. Hence, we have φ−1

i+1(u) = O(O P T 2). � �
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Appendix A. Center selection algorithm

We believe that the following algorithm together with Lemma 2 are well-known. However, since we are not aware of a 
reference for this particular version, the algorithm and its analysis are presented here for completeness.

Algorithm 2 Center Selection algorithm Greedy-CS(G, X, C, k).
Require: Graph G = (V , E), potential sites for centers X ⊆ V , clients C ⊆ V , number of centers to be placed k
1: S ← {an arbitrary node in C }
2: for i = 1 . . .k − 1 do
3: c ← arg maxc′∈C dist(c′, S)

4: x ← arg minx′∈X dist(x′, c)
5: S ← S ∪ {x}, X ← X \ {x}
6: end for
7: return S

Lemma 2. Greedy-CS is a 3-approximation algorithm for Center Selection.

Proof. Let r = ρ(G, S, C) be the covering radius of the set S as computed by Greedy-SC. Let S∗ denote an optimal solution 
and let r∗ = ρ(G, S∗, C) be its covering radius.

First, suppose that there are two centers x1, x2 ∈ S with dist(x1, x2) ≤ 2
3 r. W.l.o.g. suppose that x1 was inserted into S

before x2. Consider the iteration when x2 was inserted and denote by c the client that was chosen in this iteration in Line 3. 
Since c was chosen, we have dist(c, x1) ≥ r. Using this fact and the assumption dist(x1, x2) ≤ 2

3 r, by the triangle inequality, 
we obtain dist(x2, c) ≥ 1

3 r. Note that x2 is the node that minimizes the distance to c, and thus we have r∗ ≥ dist(x2, c)
which implies r∗ ≥ 1

3 r and proves the lemma for this case.
Assume now that for every two centers x1, x2 ∈ S , we have dist(x1, x2) ≥ 2

3 r. Let x ∈ S be any node and denote by c
the selected client when x was inserted into S . Then, dist(x, c) ≤ r∗ . As c is covered in S∗ within distance r∗ , there exists 
an x′ ∈ S∗ s.t. dist(x, x′) ≤ 2r∗ . Suppose that r > 3r∗ . Under this assumption and using the fact that two centers x1, x2 ∈ S
are at least a distance 2

3 r apart, there exists an injective mapping φ : S → S∗ so that dist(x, φ(x∗)) ≤ 2r∗ . As |S| = |S∗|, this 
mapping is a bijection. This, however, implies that r ≤ 3r∗ , a contradiction. Hence, the assumption that r > 3r∗ was wrong 
and we deduce that r ≤ 3r∗ which proves the lemma. �
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