Approximating Spanners and Directed Steiner Forest:
Upper and Lower Bounds

EDEN CH LAMTAC, Ben Gurion University, Israel

MICHAEL DINITZ, Johns Hopkins University, USA

GUY KORTSARZ, Rutgers University-Camden, USA

BUNDIT LAEKHANUKIT, Shanghai University of Finance & Economics, China

It was recently found that there are very close connections between the existence of additive spanners (sub-
graphs where all distances are preserved up to an additive stretch), distance preservers (subgraphs in which
demand pairs have their distance preserved exactly), and pairwise spanners (subgraphs in which demand
pairs have their distance preserved up to a multiplicative or additive stretch) [Abboud-Bodwin SODA’16 &
J.ACM’17, Bodwin-Williams SODA’16]. We study these problems from an optimization point of view, where
rather than studying the existence of extremal instances, we are given an instance and are asked to find
the sparsest possible spanner/preserver. We give an O(n3/5*¢)-approximation for distance preservers and
pairwise spanners (for arbitrary constant ¢ > 0). This is the first nontrivial upper bound for either problem,
both of which are known to be as hard to approximate as Label Cover. We also prove Label Cover hard-
ness for approximating additive spanners, even for the cases of additive 1 stretch (where one might expect
a polylogarithmic approximation, since the related multiplicative 2-spanner problem admits an O(logn)-
approximation) and additive polylogarithmic stretch (where the related multiplicative spanner problem has
an O(1)-approximation).

Interestingly, the techniques we use in our approximation algorithm extend beyond distance-based problem
to pure connectivity network design problems. In particular, our techniques allow us to give an O(n3/5+¢)-
approximation for the Directed Steiner Forest problem (for arbitrary constant ¢ > 0) when all edges have
uniform costs, improving the previous best O(n?/3+¢)
holds for general edge costs).

-approximation due to Berman et al. [ICALP’11] (which

CCS Concepts: » Theory of computation — Routing and network design problems;

Additional Key Words and Phrases: Approximation algorithms, hardness of approximation, network design,
directed spanner, directed Steiner forest

The preliminary version of this article [19] was published in Proceedings of the 28th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA’17).

This work is supported by the National Science Foundation under Grant Nos. 1464239, 1535887 1218620, 1540547, and
1910565, by the Israel Science Foundation under Grant No. 1002/14 and 621/12, and Israeli Centers for Research Excellence
under Grant No. 4/11.

Authors’ addresses: E. Chlamta¢, Ben Gurion University, Department of Computer Science, P.O. Box 653, Be’er-Sheva,
84105, Israel; email: chlamtac@cs.bgu.ac.il; M. Dinitz, Johns Hopkins University, Department of Computer Science, 3400
N Charles Street, Baltimore, MD, 21218; email: mdinitz@cs.jhu.edu; G. Kortsarz, Rutgers University-Camden, Department
of Computer Science, 227 Penn Street, Camden, NJ, 08102; email: guyk@camden.rutgers.edu; B. Laekhanukit, Shanghai
University of Finance & Economics, School of Information Management & Engineering, 100 Wudong Road Yangpu District,
Shanghai, 200433, China; email: bundit@sufe.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

1549-6325/2020/06-ART33 $15.00

https://doi.org/10.1145/3381451

ACM Transactions on Algorithms, Vol. 16, No. 3, Article 33. Publication date: June 2020.

mailto:permissions@acm.org
https://doi.org/10.1145/3381451

33:2 E. Chlamtac et al.

ACM Reference format:

Eden Chlamta¢, Michael Dinitz, Guy Kortsarz, and Bundit Laekhanukit. 2020. Approximating Spanners and
Directed Steiner Forest: Upper and Lower Bounds. ACM Trans. Algorithms 16, 3, Article 33 (June 2020), 31
pages.

https://doi.org/10.1145/3381451

1 INTRODUCTION

There has been significant recent progress on problems involving graph spanners: subgraphs that
approximately preserve distances. The traditional notion of spanner has involved multiplicative
stretch, in which all distances are preserved up to a multiplicative factor known as the stretch. If
this stretch factor is k, then the subgraph is known as a k-spanner. It has been known for over
20 years that all undirected graphs admit sparse spanners if the stretch factor is at least 3, where
sparser and sparser spanners are possible as the stretch factor increases. More formally, Althofer
et al. [4] showed that for every graph G and integer k > 1, there is a (2k — 1)-spanner of G with at
most n'*1/k edges. Moreover, this is tight assuming the Erdés girth conjecture [26].

A different but synergistic question involves optimizing spanners: given an input graph G and
a stretch value k, can we algorithmically find the sparsest k-spanner of G? After all, some graphs
do have very sparse spanners (e.g., the star is a good 2-spanner of K},). If some graph does have a
sparse spanner, then we would like to find it. This is known as the Basic k-SPANNER problem [21],
and similar optimization problems can be defined for many other versions of spanners where
tradeofts do not exist, such as for directed graphs [7, 8, 22, 24], when the objective is to minimize
the maximum degree rather than the sparsity [17, 18], and so on. Many of these problems can be
thought of as standard network design problems (e.g., Steiner Tree, Steiner Forest) but where the
connectivity constraint is augmented with a distance constraint: Not only do certain nodes need
to be connected, the distance of the connecting path must be short. There has been significant
recent progress, both positive and negative, on many of these problems: In general, they tend to
be as hard to approximate as Label Cover [5] (but not always), but it is still often possible to give
nontrivial approximation algorithms.

In parallel with this work on optimizing spanners, there has been rapid progress on understand-
ing what other tradeoffs are possible. Three directions in particular have been the focus of much
of this work, and in fact have been shown to be related [1, 12]: additive spanners, distance pre-
servers, and pairwise spanners. In additive spanners, we restrict attention to unweighted graphs,
but ask for the stretch to be additive rather than multiplicative (giving us more leeway for small
distances, but less flexibility for long distances). In distance preservers and pairwise spanners, we
make an orthogonal change to the spanner definition: Instead of preserving all distances, we are
given some subset of pairs of nodes P C V X V (known as the demands) and are only required to
preserve distances between demand pairs. In a preserver, we must preserve these distances ex-
actly; while in a pairwise spanner, we again allow some stretch (multiplicative or additive) for the
demands. All three of these objects exhibit somewhat surprising behavior (see Section 1.2 for a
more detailed discussion), but have also shown to be related to each other (for example, preserver
lower bounds can imply pairwise spanner lower bounds [1, 2], and some overlapping techniques
have been useful for both preservers and additive spanners [12]).

In this article, we bring together these lines of work by studying the approximability of distance
preservers, pairwise spanners, and additive spanners. We provide the first nontrivial upper bounds
for distance preservers and pairwise spanners, while for additive spanners, we provide the first
known hardness of approximation. Our hardness of approximation in some ways mirrors recent
results on tradeoffs for additive spanners [1] in that we can provide hardness for settings where

ACM Transactions on Algorithms, Vol. 16, No. 3, Article 33. Publication date: June 2020.

https://doi.org/10.1145/3381451

Approximating Spanners and Directed Steiner Forest: Upper and Lower Bounds 33:3

the associated multiplicative problem is actually easy. Moreover, the techniques required for our
upper bounds also yield new insight into classical network design problems, giving an improved
approximation for the Directed Steiner Forest problem when all edges have the same cost.

1.1 Our Results and Techniques

We now give our results, and for each result some short intuition about the techniques used. Given
a graph G, we will let dg (u, v) be the shortest-path distance between u and v in G (note that we are
assuming unweighted graphs throughout this article, so the distance is the same as the number of
edges). If G is clear from context, then we may omit it and simply refer to d(u, v).

Definition 1.1. Given a directed graph G = (V,E) and a collection P C V X V, a subgraph H =
(V,E’) is a pairwise distance preserver if dy(u, v) = dg(u,v) for all (u,v) € P.

Definition 1.2. In the PAIRWISE DISTANCE PRESERVER problem, we are given a graph G = (V,E)
(possibly directed) and a collection P C V X V and are asked to return a pairwise distance preserver
H that minimizes |E(H)|.

Our first result is for distance preservers, where we give the first nontrivial upper bound.

THEOREM 1.3. For any constant € > 0, there is a polynomial-time O(n®/>*€)-approximation algo-
rithm for the PAIRWISE DISTANCE PRESERVER problem.

The main difficulty in proving this theorem is the fact that n is not a lower bound on the opti-
mal solution. Most approximation algorithms for spanners (e.g., References [7, 8, 22, 24]) involve
randomly sampling shortest-path trees: Since n — 1 is a lower bound on OPT for spanners, sam-
pling f trees only costs us f in the approximation ratio. But for preservers, n is no longer a lower
bound, since the optimal solution need not be connected. Hence, sampling shortest path trees is
no longer low cost, and without this step any existing algorithm for spanners we might apply has
unbounded cost.

To overcome this, we replace shortest-path trees with junction trees. Junction trees are trees that
cover “significant” demand at “little” cost. Typically they involve a root node r and a collection of
shortest paths into r and shortest paths out of r to satisfy some of the demand. Due to their simple
structure, we can usually find the densest junction tree (the tree with the best ratio of demand
covered to cost incurred) relatively efficiently, and then due to their high density these junction
trees can be combined into a global solution at low cost. They have been used extensively in
network design since their introduction by Reference [16], but this is the first time (as far as we
are aware) that they have been used for spanner problems or for any problem with a hard distance
constraint. We believe that bringing this technique into spanners is a significant contribution of
this work.

By using some of the ideas about junction trees that we developed for the PAIRWISE DISTANCE
PRESERVER problem, we can give an improved approximation algorithm for a classic network de-
sign problem: DIRECTED STEINER FOREST with uniform costs.

Definition 1.4. In the DIRECTED STEINER FOREST problem, we are given a directed graph G =
(V,E), nonnegative edge costs ¢ : E — R =% and a collection of node pairs P € V x V. If all edges
have the same cost, then we say that the edge costs are uniform. We are asked to return a subgraph
H of G that minimizes }. c(g) c(e) subject to there being a directed path from s to ¢ for all (s,) € P.

THEOREM 1.5. For any constant € > 0, there is a polynomial-time O(n®/>*€)-approximation algo-
rithm for DIRECTED STEINER FOREST with uniform edge costs.

ACM Transactions on Algorithms, Vol. 16, No. 3, Article 33. Publication date: June 2020.

33:4 E. Chlamtac et al.

The current best approximation for DIRECTED STEINER FOREsT is O(n?/?) [7] and also comes
from intuition about spanners (directed spanners rather than distance preservers). Note that while
our approximation is stronger, it is for a significantly simplified setting (uniform edge costs).

Our next result is for pairwise spanners, where we relax the exact distance requirement of pre-
servers but unlike in DIRECTED STEINER FOREST do still have a hard restriction on the length.

Definition 1.6. Given a directed graph G = (V, E), a collection P C V X V, and an integer k, a
subgraph H of G is a pairwise spanner with multiplicative stretch k if di (u, v) < k - dg(u, v) for all
(u,v) € P.If dy(u,v) < dg(u,v) + k for all (u,v) € P, then we say that H has additive stretch k.

Our approximation algorithm will actually be for a much more general problem than finding
pairwise spanners with a given stretch bound: We will allow every demand pair to have its own
stretch bound. We can instantiate these bounds to give multiplicative or additive stretch, but we
can also be more flexible.

Definition 1.7. In the PAIRWISE SPANNER problem, we are given a graph G = (V,E) (possibly
directed), a collection of vertex pairs P C V X V, and a function D : P — N. We are asked to return
a subgraph H minimizing |E(H)| subject to dg (s, t) < D(s,t) for all pairs (s,t) € P.

Note that this problem generalizes the other problems we have mentioned. When D(s, t) =
dg (s, t) for every pair (s, t) € P, this is exactly the PAIRWISE DISTANCE PRESERVER problem. When
D(s,t) = n for all pairs, this is DIRECTED STEINER FOREST with uniform edge costs. We show the
following result, which generalizes our other algorithmic results:

THEOREM 1.8. For any constant € > 0, there is a polynomial-time O(n®/>*€)

rithm for the PAIRWISE SPANNER problem.

-approximation algo-

Our algorithm must contend with the issues that come up both for PAIRWISE DISTANCE
PRESERVER and DIRECTED STEINER FOREST, though the main technical obstacle is the following:
As before, we would like to find a junction tree with a common root r through which we connect
many terminal pairs. However, because of the distance constraints, we cannot use the algorithm
of Chekuri et al. [15] for finding junction trees as a black box. If we had constraints on the
distances between each terminal and the root r, then this could be handled using a reduction that
layers the graph. However, the stretch bound for a terminal pair here translates to a bound on
the sum of distances of the two terminals in that pair to/from r. The need to coordinate these
distance pairs across many terminal pairs, when the LP of Reference [15] might spread its weight
across many possible distances for each terminal, makes it more challenging to round this LP.
This requires us to go into the details of Reference [15] and significantly change the LP and the
rounding to allow terminals to make individual distance choices but in a way that their sums still
satisfy the stretch requirements. This involves major technical challenges and forms one of the
main technical contributions of this article.

Finally, we move to lower bounds by studying additive spanners.

Definition 1.9. A subgraph H of a (possibly directed) graph G = (V,E) is a +k-spanner if
dy(u,v) < dg(u,v) + kforallu,v e V.

Definition 1.10. In the ADDITIVE k-SPANNER problem, we are given a (possibly directed) graph
G = (V,E) and an integer k > 0 and are asked to return a +k-spanner H minimizing [E(H)|.

To the best of our knowledge, ADDITIVE k-SPANNER has never been considered before this arti-
cle. There has been a large amount of work on extremal questions about the existence of additive
spanners (see Section 1.2 for a short discussion of this work), but the optimization problem seems

ACM Transactions on Algorithms, Vol. 16, No. 3, Article 33. Publication date: June 2020.

Approximating Spanners and Directed Steiner Forest: Upper and Lower Bounds 33:5

to be new. However, while not explicit in their paper, it is straightforward to see that the O(n'/?)-
approximation algorithm of Reference [7] for the multiplicative version continues to hold in the
additive setting.

THEOREM 1.11. For any constant € > 0 and any value k > 1 (not necessarily constant), there

is no polynomial-time glog"™“n /3 -approximation algorithm for ADDITIVE k-SPANNER unless NP C
DTIME (2Polylog(n)y,

Note that this theorem implies strong hardness results for both small and large extremes of k:
The problem is hard when k = 1, but is also hard when k is polylogarithmic in n. The associated
multiplicative-stretch problem, of multiplicative 2 and polylogarithmic in n, respectively, are actu-
ally both easy: There is an O(log n)-approximation for the multiplicative 2 problem [31], and the
classical tradeoff of Reference [4] implies an O(1)-approximation when the multiplicative stretch
is at least Q(log n). The +1-spanner hardness is particularly surprising, as many of the techniques
that have been used to prove hardness for multiplicative spanners in the past [18, 25, 30] break
down for this problem. In particular, essentially all previous hardness results for spanners have
been reductions from LABEL CovER [5] or MIN-REP [30] in a way where the key factor to the
hardness is the difficulty of spanning some set of crucial edges using paths of length at most the
allowed stretch. This length must be at least 3, since multiplicative 2-spanners are easier to ap-
proximate [31]. But for +1-spanners it cannot be that edges are the hard things to span, for the
same reason (multiplicative 2-spanners are easy). Instead it must be pairs at longer distance that
are hard to span. But the obvious ways of turning an edge into a longer path (e.g., subdividing)
run into something of a catch-22, since spanning the intermediate edges of such a path is itself
expensive. So, we are forced to use a much more complicated reduction that “unifies” these paths
in such a way that intermediate edges are no longer too costly, making our reduction significantly
more complex.

Once we have these ideas, we can further modify them to allow us to prove hardness for much
larger stretch values. Without using the ideas from the +1 case, it is easy to prove a theorem similar
to the hardness of BAsic k-SPANNER proved in Reference [21] of 2(log"™“ m)/k This involves starting
with an instance of MiN-Rep and subsampling the superedges to get a high girth instance, but with
this technique it is not possible to prove hardness for stretch values that are logarithmic or larger.
But if we replace the superedges with longer paths, as we did in the +1 case, we can move the
k from the exponent to a multiplicative factor, allowing hardness for much larger stretch values.
This requires even more technical work than in the +1-case, as longer paths introduce even more
troublesome complications.

1.2 Related Work

Distance preservers were introduced by Coppersmith and Elkin [20], who showed that extremely
sparse preservers exist if the number of demand pairs is not too large. The state-of-the-art is due
to Bodwin and Williams [12], who gave a more fine-grained existential analysis and also (with
Reference [1]) demonstrated some connections to additive spanners. There has been much more
work on additive spanners (see Reference [14] for a recent survey); some upper bound highlights
include a +2-spanner with O(n*/?) edges [3], a +4-spanner with O(n”/*) edges [13], and +6-spanner
with O(n*/%) edges [6, 33]. From a lower bound perspective, Woodruff [32] gave the first lower
bounds that did not depend on the Erdés girth conjecture, and recently Abboud and Bodwin [1]
showed that the 4/3 exponent is tight: Sparser spanners are not always possible even when the
allowed additive stretch is a small polynomial.

Work on optimizing spanners began over 20 years ago, with the first upper bounds provided
by Kortsarz and Peleg [31] for stretch 2 and the first lower bounds given by Kortsarz [30] and

ACM Transactions on Algorithms, Vol. 16, No. 3, Article 33. Publication date: June 2020.

33:6 E. Chlamtac et al.

by Elkin and Peleg [25] (who in particular showed hardness for pairwise spanners; hardness for
distance preservers is folklore). There has recently been a surge of progress on these problems,
including new algorithms for low stretch spanners [7, 24], for directed spanners [7, 8, 22], for low-
degree spanners [17, 18], and for fault-tolerant spanners [9-11, 22-24], as well as lower bounds
that finally provide strong hardness [21].

2 AN n3/5*.APPROXIMATION FOR PAIRWISE DISTANCE PRESERVER

In this section, we prove Theorem 1.3. We begin with some definitions and previous results that
will help. For any pair (s, t) € P, let P; ; denote the collection of shortest paths from s to ¢, and
let the local graph G*' = (V5! E>") be the union of all nodes and edges in #; ;. Note that every
path from s to ¢ in G*! is a shortest path.! For any k, we say a pair (s, t) € P is k-thick if [VS!| > k
and otherwise, we call the pair k-thin. We say that an edge set F C E satisfies a pair (s, t) € P if
F contains a shortest path from s to t. Consider the following standard LP relaxation (essentially
that of Reference [22] for spanners):

min Z Xe

e€E
s.t. Z =1 Y(s,t) € P,
Peps,t
> fr<x V(s,t) € P,Ve € E,
PEPs, 1:e€P
Xe >0 Ye € E.

Let LP denote the value of the optimal solution to this relaxation. Consider the following simple
randomized rounding:

e Retain every edge e € E independently with probability min{1, x, - kInn}.
The next claim is due to Reference [7] (here, we adapt the wording for preservers).

Cramv 1 ([7]). The above rounding preserves the distance for every k-thin pair with high probabil-
ity, and the number of edges retained is at most O(k) - LP.

For thick pairs, we have a different guarantee. As noted in References [7, 8, 22], the local graphs
of thick pairs have a small hitting set. This can be proved by standard arguments: either by sam-
pling or through rounding a feasible solution for a Hitting Set LP. We omit the proof.

Claim 2. We can find in polynomial time a hitting set of size O(n/k) for the vertex sets V> of all
k-thick pairs (s, t).

We assume that we know the value OPT (this is without loss of generality, since we can just try
every possible value in [|E|] for OPT). We will give three different algorithms whose approximation
ratios depend on the value of the optimal solution. We will apply all the three algorithms and then
select the best solution. We start with the following algorithm.

Algorithm 1:
e Set k =n/VOPT.

e Run the above randomized rounding and add the edges to our current solution F repeatedly
until F preserves distances for all k-thin pairs.

IThese are shortest s, ¢-paths in the sense of directed setting. In the undirected setting, an s, ¢-path may take a detour.

ACM Transactions on Algorithms, Vol. 16, No. 3, Article 33. Publication date: June 2020.

Approximating Spanners and Directed Steiner Forest: Upper and Lower Bounds 337

e Find a hitting set X C V of cardinality O(n/k) using Claim 2 for the vertex sets V** for
k-thick pairs (s, t), and for every u € X, add to F a shortest-path tree from u and a shortest-
path tree into u.

It is easy to see that the resulting set is a preserver and that the cardinality of the set of edges
added to F in the final step is O(n?/k), and so we get the following guarantee:

Lemma 2.1. Algorithm 1 gives an approximation ratio of O(n/NOPT) for PAIRWISE DISTANCE PRE-
SERVER.

Proor. By the above observation for thick pairs, and Claim 1 for thin pairs, we get an approxi-
mation guarantee of

O(k - LP) + O(n%/k) B O(k - OPT) + O(n?/k) _ O(nVOPT) _ o
OPT - OPT ~opt “\yorT)’
as claimed. O

Remark 1. For global spanner problems (when OPT = Q(n)), a similar algorithm and analysis
in Reference [7] gives an approximation ratio of O(n/VOPT) = O(+/n). However, since we have
no lower bound on OPT for non-global spanning and connectivity problems, we cannot achieve
such a guarantee using just this algorithm.

When OPT > n*/°, the above guarantee immediately implies our desired O(n%/)-
approximation. So let us now consider the case when OPT < n*/®>. We begin by partitioning our
pairs P into log n buckets, such that in each bucket, the distances d(s, t) in that bucket are all in
the range [d*, 2d") for some value d* associated with that bucket. We run our algorithm separately
for each bucket, at the cost of an additional log n factor in our approximation guarantee (relative
to the approximation that we will state). Let us focus on one such bucket Py- for a fixed value d*.
Our next algorithm is similar to Algorithm 1 but does not add a full shortest-path tree and works
well for buckets where d* is small. For the sake of this algorithm, let us define sets of nearby
terminals for every vertex u € V:

S4. ={s | d(s,u) <2d",3t: (s,t) € P} and
T, ={t|d(u,t) <2d",3s: (s,t) € Pg-}.
Our second algorithm is as follows:

Algorithm 2:

e Setk = Vd*n.

e Run randomized rounding as in Algorithm 1 and add the edges to our current solution F
repeatedly until F preserves distances for all k-thin pairs in Py-.

e Find a hitting set X C V of cardinality O(n/k) for the vertex sets V*! for k-thick pairs
(s,t) € Pg+, and for every u € X, add to F a shortest path from u to every ¢ € T}, and from

every s € S, to u.

It is easy to see that the resulting set preserves distances for all pairs in P4+, and the cardinality
of the set of edges added to F in the final step is O(d" (maxueV(ISZ*l +1T7, [))n/k), and so we get
the following guarantee:

LEMMA 2.2. Algorithm 2 satisfies all pairs in P4 and has at most O(Nd*n - OPT) edges.

Proor. Note that every terminal must have at least one incident edge in any preserver, and so
the number of terminals is always at most O(OPT). Thus, by the above observation for thick pairs,

ACM Transactions on Algorithms, Vol. 16, No. 3, Article 33. Publication date: June 2020.

33:8 E. Chlamtac et al.

and Claim 1 for thin pairs, we get a total cost of

O(k-1P)+ 0 (d* : (max (151 + |T‘;‘*I)) : E) <O(k-OPT)+0 (d* . OPT- f) = O (Van-opT),
uev k k

proving the lemma. o

Note that for d* < n'/%, this gives us our desired O(n*°) approximation guarantee. Finally,
we focus on the remaining case when d* > n'/° (and recall that OPT < n*/°). For this regime,
we use the junction tree approach that has been used until now only for problems without
hard distance constraints [7, 15, 27]. A junction tree is a disjoint® union of an in-arborescence
and an out-arborescence with terminal leaves and a common root. In our case, the leaves of
the in-arborescence will come from the set Sy = {s | At : (s,t) € Py4+} and the leaves of the out-
arborescence will come from the set Ty = {t | ds : (s,t) € P4+}. The density of a junction tree (in
the context of preservers) is the ratio between the number of edges in the junction tree and the
number of terminal pairs in Pg- such that the junction tree contains a shortest path connecting
that pair. To find such a junction tree, we construct a pair of graphs for every node u: We let Giin* (u)
be the union of all shortest paths into u, let G;‘jt(u) be the union of all shortest paths coming out
of u. Note that every path in these two graphs is a shortest path.

Chekuri et al. [15] show that for any fixed u, a minimum density junction tree for general con-
nectivity problems can be approximated within an n® factor for any ¢ > 0. While their algorithm
only handles connectivity demands, and not distance-based demands, we can apply their algo-
rithm as a black box on the graph Gg-, which we define as the disjoint union of Gg‘ (u) and Gg‘,}t(u)
(connected through u) and the pairs Py-(u) = {(s,t) € Pg- | d(s,u) + d(u,t) = d(s,t)}. Since the
only paths connecting such terminal pairs in G4+ are shortest paths, we are guaranteed that every
pair connected by the algorithm of Reference [15] will also be distance-preserved. Thus, our third
algorithm is as follows:

Algorithm 3: As long as Py # 0, repeat the following:

e Forevery u € V, use the algorithm of Reference [15] to find an approximately optimal junc-
tion tree in graph Gg-(u) w.r.t. pairs Pg-(u), and let F* and P“ be the set of edges used and
terminals connected by this algorithm, respectively.

e Choose u* minimizing the ratio |[F¥"|/|P¥ |, add edge set F“ to F, and remove pairs P*
from Py-.

Algorithm 3 has the following approximation guarantee:
LEmMMA 2.3. Algorithm 3 satisfies all pairs in Pg+ and adds at most n® - OPT?/d* edges.

ProoF. As shown in Reference [27], the above algorithm adds at most O(« - OPT) edges (for
some « > 1) as long as we have the guarantee that we can find a junction tree with density at most
a - OPT/|P4+|.3 Thus, by our adaptation of the algorithm of Reference [15], it suffices to show that
there exists a junction tree with density at most O((OPT/d*) - OPT/|P4-|), guaranteeing that we
can find a junction tree with at most the same density up to an additional n® factor. To see that
such a junction tree exists, let F C E be some optimum solution, for every pair (s,t) € Py fix a
shortest path ps ; in F, and for every edge e € F, let Py-(e) = {(s,t) € Py~ | e € ps.+}. Thus, for the

2The two arborescences may overlap in the original graph, but we may think of them as coming from two distinct copies
of the graph.

3They showed this in the context of Directed Steiner Forest; however, the same proof applies for any terminal-pair demand
problem.

ACM Transactions on Algorithms, Vol. 16, No. 3, Article 33. Publication date: June 2020.

Approximating Spanners and Directed Steiner Forest: Upper and Lower Bounds 33:9

average edge in F, we have

1 1 1 d*|Py-|
_ P = — > —— d* = ——.
OPT ;' #O1= G 2, Pl z g), OPT

(s,2)€P+ (s,t)EPyx

Thus, there must exist an edge e with a junction tree going through it that connects at least
Q(d*|Pg4+|/OPT) pairs and uses at most OPT edges (since it is a subset of F), giving a density of at
most O(OPT/(d*|Py+|/OPT)) = O(OPT?/(d*|P4)).]

So, by applying Algorithm 2 for buckets where d* < n'/> and Algorithm 3 for buckets where
d* > n'/%, and using the fact that OPT < n*/° (or else Algorithm 1 is already sufficient), Lem-
mas 2.2 and 2.3 imply that we get an approximation ratio of at most O(Vn!/5n) + O(n®n*/> /n'/%) =
O(n®/°+¢), as claimed.

3 DIRECTED STEINER FOREST WITH UNIFORM COSTS

We now turn to DIRECTED STEINER FOREST with uniform cost edges. For this problem, we would
like to adapt our algorithm for preservers and get an n®/>*¢-approximation. This could be done
quite directly if we knew, for some optimum solution F C E, what the distance in F of every ter-
minal pair is. However, since these distances are not known (unlike for preservers), we need to be
slightly more careful.

We start with our adaptation of Algorithm 1, for the corresponding case when OPT > n
we use the standard LP relaxation presented below:.

min E Xe

4/5 and

ecE
s.t. capacities x, support a one unit s — ¢ flow f; ; Y(s,t) € P,
Xe >0 Ve € E.

Our LP finds capacities x.’s that support one unit of flow individually from s to ¢ (not simulta-
neously) for each pair s, ¢ to guarantee that we have at least one s, t-path for each pair (s, t) € P.
Here, we have no notion of local graphs independent of the LP. Instead, for every pair (s,) € P,
we define its local graph w.r.t. this LP: let V=:! be the set of vertices involved in the flow f; ;. We
can define k-thick and k-thin terminal pairs accordingly—(s,) is a k-thick pair if [V*!| > k, and
otherwise it is k-thin. The guarantee of Lemma 2.1 follows here with the same analysis. The only
difference is the justification of Claim 1 from Reference [7]. In their paper, the proof of this claim
relies entirely on showing that the number of minimal “antispanners” (edge sets whose removal
from the flow f; ; increases the distance from s to t) is bounded by |E| - |[V*{| IV**I In our case, the
proof is even simpler, since rather than bounding the number of antispanners, we need to bound
the number of minimal cuts, which is clearly at most 211 (since every minimal cut is simply a
partition).

Now suppose OPT < n*/>. As discussed in the proof of Lemma 2.3, as long as we have an
algorithm to find a junction tree (or really any edge set) with density at most a - OPT/|P|, we
can repeatedly apply such an algorithm to the set of remaining unconnected pairs, adding at
most O(a - OPT) edges overall. One way to find an edge set with good density is indeed via
junction trees or by adapting one of our other algorithms to connect a constant fraction of
pairs. Thus, we need an algorithm that finds an edge set with density at most n3/°*¢ . OPT/|P|.
Rather than using buckets as in Section 2, we use thresholding. While our approach at this point
is very similar to that of Reference [7], the actual parameters and combination of algorithmic
components is slightly different, so we give the algorithm and analysis here for completeness.
Set D =n', and define a layered graph Gp = (Vp,Ep) where Vp =V x {0,1,...,D}, and

4/5

ACM Transactions on Algorithms, Vol. 16, No. 3, Article 33. Publication date: June 2020.

33:10 E. Chlamtac et al.

Ep ={((u,j—1),(v,)) | j € [D] A (((u,v) € E) V (u=v € V))}. We start with the following LP
relaxation, where | f; ;| denotes the value of a flow f; ;:

min Z Xe

ecE
st. fsrisa(s,0) — (¢,D) flow Y(s,t) € P,
D
D fir(@ =1, @0.) < X0 ¥(u,0) € E,(s,1) € P,
j=1
Ifs.el <1 V(s,t) € P, (1)
D0 Ufarl 2 1PI/2)
(s,t)eP
Xe >0 Ve € E.

While this LP seems to increase the number of vertices by a factor of D, it is simply a compact
way of formulating a flow LP on G where the flows are restricted to paths of length at most D, and
we may think of the flows f; ; as such.

The algorithm now trades off a slight variant of Algorithm 2 and Algorithm 3 and chooses the
sparser of the two edge sets:

Algorithm 4:

e Solve the above LP relaxation (if feasible), and run Algorithm 2 on pairs P /4 := {(s,t) € P |
|fs.t| = 1/4}, where V5! is the support (in V) of flow f; ;, and distance bounds D (w.r.t. the
hitting set), and let F be the edge set found by this algorithm.

e Forevery u € V, use the algorithm of Reference [15] to find an approximately optimal junc-
tion tree in graph G and all pairs P, and let F,, and P,, be the set of edges used and terminals
connected by this algorithm, respectively.

o If the LP is infeasible, or |Fy|/|P| > min, |F,|/|P,]|, then output F,, that minimizes this ratio.
Otherwise, output Fj.

The following lemma gives the required guarantee:

LEMMA 3.1. Assuming OPT < n*/®, Algorithm 4 outputs an edge set F” that connects terminal pairs

P’ C P such that |F’|/|P’| < n3/5*¢ . OPT/|P|.

ProoF. For some optimum solution, let Pp be the set of terminal pairs in P that the solution
connects using paths of length at most D. Consider two cases:

Case 1: |Pp| > |P|/2.

In this case, the above LP is feasible and has value at most OPT. Also note that constraints (1)
and (2) imply that [P;/4| > |P|/4, and so by the same analysis as Lemma 2.2, the algorithm connects
these pairs using at most O(n*/*OPT) edges, giving a set of density O(n*/® - OPT/|P|).

Case 2: |Pp| < |P]/2.

In this case, at least |P|/2 pairs are connected by paths of length at least D, and so we find a
junction tree with density at most n¢ - OPT?/(|D||P|) < n3/5+¢ . OPT/|P| by the same analysis as
in the proof of Lemma 2.3. O

ACM Transactions on Algorithms, Vol. 16, No. 3, Article 33. Publication date: June 2020.

Approximating Spanners and Directed Steiner Forest: Upper and Lower Bounds 33:11

4 PAIRWISE SPANNERS

Much of our algorithm for PAIRWISE DISTANCE PRESERVER and/or DIRECTED STEINER FOREST can
be used for PATRWISE SPANNER with almost no change. As before, we guess OPT and run Algo-
rithm 1 if OPT > n*/°, since the guarantee of Lemma 2.1 applies here as well.

If we were concerned only with constant additive or multiplicative stretch spanners, we could
bucket on distances as in our algorithm for PATRWISE DI1STANCE PRESERVER. However, in PAIRWISE
SPANNER, we could have arbitrary distance demands, so this bucketing is not possible in general.
Instead, we use the same approach as Algorithm 4 for DIRECTED STEINER FOREST, with the same
analysis as in Lemma 3.1 plus two changes. First, we need to very slightly change our application
of Algorithm 2. As in Section 3, we define the graph Gp, = (Vp,, Ep,) for Dy = n!/> and solve a
slightly modified LP:

min E Xe

ecE
st fsrisa(s,0)-(t,min{Dy, D(s, t)}) flow Y(s,t) € P,
Dy
D Fur(@ = 1), (©,1) < X0 V(u,v) € E. (s.1) € P,
j=1
[fs,el <1 V(s 1) € P,
D0 Ufurl 2 P12
(s,t)eP
Xe 20 Ve € E.

As shown in Reference [7], the above LP together with the randomized rounding algorithm as
in Claim 1 ensures that thin pairs (s, ¢) that are settled by Algorithm 2 will be spanned by a path
of length at most D(s, t) (the general spanner version of Claim 1).

However, the step in Algorithm 4 that requires junction trees cannot work as stated. Nor can
we apply known techniques via a simple reduction as in Algorithm 3. Recall that in Algorithm
3, we constructed a graph of shortest paths through a root r (which we called u in Section 2) for
which we wanted to find a sparsest junction tree using the algorithm of Reference [15] as a black
box. This black box reduction worked, because we restricted our instance so that all paths were
shortest paths. However, there is no obvious graph we can restrict to for arbitrary distance bounds
(or even when we only allow additive or multiplicative stretch). Consider a single pair (s, t) and
all paths of distance D(s, t) that go through a proposed junction tree rooted at r. Some of these
paths could have a prefix of length D(s, t)/2 to r and a suffix of length D(s, t)/2 from r to t, while
others may have a prefix of length D(s, t)/2 — 1 to r and a suffix of length D(s,t)/2 + 1 from r to t.
Allowing the algorithm to connect s and ¢ using the edges from the union of such paths can result
in a path of length D(s, t) + 1, or even more, violating the required distance.

Thus, handling these hard distance requirements introduces significant difficulties and requires
us to modify the algorithm of Reference [15] in a non-black-box manner. At a high level, their
algorithm uses height reduction and a reduction to (undirected) GRour STEINER TREE (GST) in a
tree via a density LP. Roughly speaking, our version of their density LP has a flow fs to the root r
for every left terminal s and a flow f; from r to t for every right terminal ¢. Each flow is explicitly
decomposed into flows on specific path lengths. That is, f¥ only uses paths of length exactly k,
and so on. Our LP is roughly of the form*:

“In reality, we apply a similar LP relaxation to a graph that has undergone a series of transformations, including layering
and height reduction.

ACM Transactions on Algorithms, Vol. 16, No. 3, Article 33. Publication date: June 2020.

33:12 E. Chlamtac et al.

min Z Xe

ecE

s.t. capacities x, support s —r,r —t flows f;, f; ¥ terminals s, ¢,
k,l
ys,t =1
(s,0)€P k+(<D(s,1)
D(s,t)-k
k.t
Z yel < Iff Y(s,t) € P,
=0
D(s,t)-C
k.t 4
PR V(s.t) € P,
k=0
Xe 20 Ve € E,
yel >0 V(s,t) € Pk, € [n - 1].

To apply the technique of Reference [15], we need to make the choices of distances for left and
right terminals independent. In other words, we need to restrict every left or right terminal u to a
fixed set of distances A(u) such that for every pair (s, t) € P, we have k + ¢ < D(s, t) for every pair
of distances (k, £) € A(s) X A(t) while still preserving a large (1/polylog(n)) fraction of the total
flow. It turns out that this can be achieved by retaining, for every terminal, all distances up to its
median distance, weighted by the y variables. Since this part of our algorithm is somewhat more
complex and involves a non-black-box use of previous junction tree algorithms, we present our
junction tree algorithm separately in Section 5.

5 JUNCTION TREE ALGORITHM FOR PAIRWISE SPANNER
In this section, we present our algorithm for approximating the Minimum Density Junction Tree

for the PATRWISE SPANNER problem, which we then use as part of Algorithm 4 in Section 4 (replac-
ing Algorithm 3 from Section 2). Formally, we prove the following theorem:

THEOREM 5.1. For any constant ¢ > 0, there is a polynomial time algorithm that, given an un-
weighted directed n vertex graph G = (V, E), terminal pairs P C V X V, and distance bounds D : P —
N (where D(s, t) > d(s, t) for every pair (s, t) € P), approximates the following problem to within an
O(n®) factor:

e Find a non-empty set of edges F C E minimizing the ratio
min IF]
rev [{(s,t) € P | dp,r(s,t) < D(s,)}I’

where dr (s, t) is the length of the shortest path using edges in F that connects s to t while
going through r (if such a path exists).

Before we describe our algorithm and analysis, let us first mention two tools on which our
algorithm relies.

5.1 Useful Lemmas from Previous Work

The following lemma describes part of junction tree algorithm of Reference [15]. Since it is not
explicitly mentioned as a separate result in their paper, we give a proof sketch in Appendix A for
completeness.

LEMMA 5.2 (HEIGHT REDUCTION). Let G = (V,E) be an edge-weighted directed graph with edge
weights w : E — R=% let r € V be a source vertex of G, and let o > 0 be some parameter. Then, we

ACM Transactions on Algorithms, Vol. 16, No. 3, Article 33. Publication date: June 2020.

Approximating Spanners and Directed Steiner Forest: Upper and Lower Bounds 33:13

can efficiently construct an edge-weighted undirected tree T, rooted at ¥ of height o and size |V|°(®)
together with edge weights w : E(T,) — Ry and a vertex mapping ¥ : V(1) — V(G), such that

e Forany arborescence] C G rooted at r, and terminal set S C], there exists a tree] C T, rooted
at # such that letting L(J) and L(J) be the set of leaves of] and J, respectively, we have
L()) = ¥(L(]))- Moreover, w()) < 0(a] L) - ().

e Given any tree | C T, rooted at ¥, we can efficiently find an arborescence] C G rooted at r
such that, for leaf sets L(J) and L(J) as above, we have L(J) = ¥(L(J)), and moreover,
w(J) < w(J).

The following lemma is from Reference [28] (Theorem 4.1, Corollary 6.1) and was also used in
Reference [15]. Given a set X, we will use (X) and 2X interchangeably to denote the power set
of X.

LEMMA 5.3 (GST ROUNDING IN A TREE). Given an edge-weighted undirected tree T rooted at r,
with edge weights w : E(T) — R>°, a collection of vertex sets S € P(V(T)), and a solution to the
following LP:

min Z w(e)xe

e€E
s.t. capacities {x.} support one unit of flow fromr to S Vs eS,
Xe 20 Ye € E.

Then, we can efficiently find a subtree T’ C T rooted at r such that for every S € S at least one vertex
of S participates in the tree T', and w(T’) < O(lognlog S| - Y eer w(e)x.).

5.2 Our Junction Tree Algorithm

Although we solve the same Minimum Density Junction Tree problem as in PAIRWISE DISTANCE
PRESERVER and DIRECTED STEINER FOREST, there are key technical difficulties we run into when
trying to find junction trees for PATRWISE SPANNER. In DIRECTED STEINER FOREST, we do not have
to concern ourselves with the length of the paths. In PAIRWISE DISTANCE PRESERVER, we are able
to restrict the graph to use only shortest paths. Here, we have many choices of source-to-root
and root-to-sink paths with various distances, and we have to pick a pair of paths with the right
distances. Thus, it is not possible to use the algorithm of Reference [15] for the Minimum Density
Junction Tree problem as a black box. While our algorithm follows the same overall structure as
theirs, key parts of the algorithm need to be applied in conjunction with a reduction, while others
need to be replaced.

In fact, we have two technical issues. First, a standard technique that reduces the Minimum
Density Junction Tree problem to a tree instance of the density version of the GROUP STEINER
ForesT problem (GSF) does not work for us, as it does not keep track of distances. Secondly, the
approach of Reference [15] is to bucket an LP relaxation for Density GSF, giving a relaxation
for GSF itself, which can then be rounded directly using the algorithm of Reference [28]. Here,
again, we cannot apply their technique directly, because the bucketing needs to prune the possible
distances for different terminals so they can be picked independently while still respecting the
total distance bound between terminal pairs.

As usual, we will try all possibilities for a root r € V and approximate a minimum density junc-
tion tree rooted at r. For every such choice of r, we start by reducing our problem to an instance
of the following problem:

ACM Transactions on Algorithms, Vol. 16, No. 3, Article 33. Publication date: June 2020.

33:14 E. Chlamtac et al.

Definition 5.4. In the MiNIMUM DENSITY STEINER LABEL COVER problem, we are given a di-
rected graph G = (V, E), nonnegative edge costs w : E — R 2% two collections of disjoint vertex
sets 8,7 C P(V), a collection of set pairs P C S X 7, and for each pair (S,T) € P, a relation
R(S,T) € S X T. The goal is to find a set of edges F C E minimizing the ratio

w(F)
{(S,T) € P|A(s,t) € R(S,T) : Fhasan s ~ t path}|’

Our reduction allows us to use the first part of Reference [15] by turning our distance prob-
lem into a connectivity problem, albeit a considerably more complicated one. The reduction is as
follows: construct a layered directed graph with vertices

Vo = ((V\r)x U {—i,i}) U{(r,0)}

i€[n-1]

and edges
E, = {((u,i), (v,i + 1)) | (w,i), (v,i+1) € V., (u,v) € E}.

Set all edge weights for e € E, to w(e) = 1. Now for every terminal pair (s,t) € P with distance
bound D(s, t), add new vertices (s’, —i) and (¢°, j) for all i, j > 0 such that (s, —i), (¢, j) € V,, and for
all such i and j add zero-weight edges ((s?, —i), (s, —i)) and ((¢, j), (¢%, j)). Denote this final graph
by G,. Finally, for every terminal pair (s, t), define terminal sets Ss,; = {(s’, —i)|i > 0} N V(G,) and
Ts.r = {(t5,))lj = 0} N V(G,) and relation Ry ; = {((s*, —i), (t°,])) € Ss.+ X Ts.; | i +j < D(s, t)}.

Note that for every terminal pair (s, t) € P and label i, there is a bijection between paths of length
i from s to r in G, and paths from (s’, —i) to (r,0) in G,, and similarly a bijection between paths
of length i from r to t in G, and paths from (r,0) to (¢°,i). This reduces the problem of “keeping
track” of path lengths in G to connecting appropriately labeled terminal pairs in G,. It also creates
disjoint terminal pairs by creating a separate copy s’ of s for every terminal pair (s,) € P that s
participates in (and similarly for terminals ¢). This will simplify our later algorithm and analysis.

To use our construction, we need one more, much simpler graph: Let G” be a graph composed
of two graphs G, and G_ that are copies of G intersecting only in vertex r. For every node u € V,
denote by u,, u_ the copies of u in G, G_, respectively. The following lemma follows directly from
our construction:

LEMMA 5.5. For any f > 0 and set of terminal pairs P’ C P, there exists an edge set F C E(G’) of
size |F| < f containing a path of length < D(s, t) from s_ to t,. for every (s,t) € P’ iff there exists a
Junction tree] C E(G,) of weight w(J) < f such that for every terminal pair (s,t) € P’,] contains
leaves (s*, —i), (t°, j) such that ((s*, —i), (t°,])) € Rs,;. Moreover, given such a junction tree], we can
efficiently find a corresponding edge set F.

Thus, to prove Theorem 5.1, it is sufficient to show that we can achieve an O(n®)-approximation
for the MiNIMUM DENSITY STEINER LABEL COVER instance (G,, w, {Ss.+, Is.+, Rs.¢ | (s,t) € P}) ob-
tained from our reduction. We are now ready to apply the first part of the junction tree algo-
rithm of Reference [15]. We apply the algorithm of Lemma 5.2 to our weighted graph (G,, w)
with parameter (constant) ¢ > 1/¢ and obtain a shallow tree T, with weights w and mapping
¥ : V(T,) = V(G,). All terminals (s*, —i), (¢°,j) in G, are now represented by sets of terminals
¥1((s*, —i)) and W1 (%, j), respectively, in V(T}).> We can extend the relation R, ; in the natural
way to IAQS,, ={(5,1) € ¥71(Ss.r) Xx Y"N(T;.,) | (¥(3),¥(£)) € Ry,;}. Therefore, by Lemma 5.5 and
Lemma 5.2, it suffices to show the following:

5Note that ¥ is, in fact, not a bijection. We abuse ¥~!(v) to mean {2 € V(1) | ¥(2) = v}.

ACM Transactions on Algorithms, Vol. 16, No. 3, Article 33. Publication date: June 2020.

Approximating Spanners and Directed Steiner Forest: Upper and Lower Bounds 33:15

LEmMA 5.6. There exists a polynomial time algorithm that, in the above setting, gives an O(log” n)
approximation for the following problem:
e Find atree T C T, minimizing the ratio
w(E(T))
l{(s,t) € P | A(5,1) € Rs; : T has an'§ ~> t path}]|

The rest of this section is devoted to proving Lemma 5.6. In the original junction tree algorithm
of Reference [15], with no distance constraints, the application of Lemma 5.2 gave a MiNIMuM DEN-
SITY GROUP STEINER FOREST instance for which they formulated and rounded an LP relaxation.
However, our reduction yields a connectivity problem of a much more subtle nature, in which it is
not enough to choose representatives of various sets of terminals, but to also choose them in a way
that satisfies the relations ﬁ(s, t). Fortunately, the relations R(s, t) have a very specific structure,
which still allows us to obtain a polylogarithmic approximation (whereas for more general rela-
tions the problem would be considerably harder). Nevertheless, these non-cross-product relations
require both a new LP relaxation and a more subtle rounding. We use a natural LP relaxation for
the problem described in Lemma 5.6:

min Z w(e)xe

ecE(T))

s.t. Z Z y; ;=1 (3)

(s,)€P (3,F)eRs,

> i<z V(s,t) €P,S€¥(Ss,), (4)
B(5,D)eRs.,

> wi<z V(s.t) e P,ie ¥ N(T,,), (5
§:(5,1) R,
capacities x, support z; flowfrom § to # V(s,t) € P,§ € ¥71(Ss.), (6)
capacities x, support z; flowfrom 7 to V(s,t) € P,i € ¥ (Ty,,), (7)
y§,iL 2 0 v(s7 t) €P7 (§7 f) Efzs,t,
Xe >0 Ve € E(T}).

This is easily seen to be a relaxation, by considering, for any tree T C T}, the following solution: Let
Pr ={(s,t) e P |35, 1) e IAQSJ : T contains an § ~» f path}.® Let x, = 1/|Pr| for every e € E(T),
and x, = 0 otherwise. Then clearly the objective function gives ZeEE(f}) w(e)x. = w(T)/|Pr| as
required. Next, for every (s, t) € Pr, let (§,1) € Rs’ + be a pair of representatives that are connected
by T, and set zs = z; = y; ; = 1/|Pr|, and set all other y and z variables to 0. It is easy to check that
all constraints are satisfied by this solution.

Given an optimum solution to the above LP relaxation, our goal is to transform such a solution
to an LP relaxation for GROUP STEINER TREE (on the tree T,), which can then be rounded using
known algorithms without losing too much in the LP value. In particular, for pairs (s,t) € P, we
need to prune the sets of representatives ¥~'(Ss,;) and ¥~!(T; ;) so we can choose such repre-
sentatives independently while still respecting the problem structure. Formally, we need to find
representative sets §s,t C ¥1(Ss,;) and f’s,t C ¥ (Ty,;) such that Sis,t X f},t - Rs,t (so there is no

6We describe the paths and LP flows as directed for convenience, but recall that the tree Tr is undirected, so there is no
particular meaning to the direction of the flows and paths other than the implicit connection to the original, directed graph.

ACM Transactions on Algorithms, Vol. 16, No. 3, Article 33. Publication date: June 2020.

33:16 E. Chlamtac et al.

chance that we will pick a pair of representatives corresponding to a path of total length greater
than D(s, t)), but also make sure that these representative sets still cover a large LP value. This rep-
resentative set pruning is accomplished by sorting the representatives of each terminal and taking
all representatives of a terminal up to the median representative. The formal pruning procedure is
as follows:

e For all terminal pairs (s, t) € P, define ys; := X5 jcp, , Ys.i-
e For every terminal pair (s,t) € P, sort the representative sets ¥71(S; ;) and ¥~(Ty, ;) by
non-decreasing order of distance labels:
- Sort ¥7'(Ss,¢) = {51, 82, ..} so that for any i, ', if ¥(§y) = (s*, —i) and ¥($;) = (s", —j)
for some i < j, then i’ < j’.
- Sort ¥™}(Ts,;) = {1, 13, ...} so that for any i/, j, if ¥(iy) = (¢°,i) and ¥(i;) = (¢°,)) for
some i < j, theni’ < j’.
e Choose median prefix sets for all terminals: For every terminal pair (s,t) € P, define

k
u(s’) := min { k Z Z Ysit = Vstl2 s
=1 {:(3;,F)€Rs,

and

k
p(t°) = min { k Z Z Ysi 2 Vstl2 (s

=1 §:(3,#;)€Rs.

and S, := {8 | i € [p(s")]}, T, e o= {F; | i € [u(t*)]}.

Note that our pruning is somewhat simplified by the fact that the terminal representative sets
P1(Ss.+) and ¥~ !(Ty,;) are disjoint from the representative sets for all other pairs, so we do not
need to prune the representatives of a single terminal s w.r.t. a number of terminals ¢ simultane-
ously (or vice versa). As we shall see, the choice of median representative prefix sets automatically
guarantees that at least half the LP value is preserved. However, we need to verify that these sets
do not contain any pairs that are disallowed by the spanner constraints (formally, by the terminal
relations R s.t):

LEMMA 5.7. In the above algorithm, for every terminal pair (s, t) € P, we have S ; X Ty, C Ry ;.

Proor. Fix some terminal pair (s, t) € P. For the purpose of this proof, let us also define the
suffix set U = {8; | i € {u(s"),...,[¥71(Ss,+)|}}. By our choice of p(s*) and definition of ys, ,, we
have that

u(sh)-1

Z Z Ys,i = Vst — Z Z Ys.t

$€U f(s,F)eRs, =1 3:(3;,0)€Rs, s
> Vs,t — Ys,t/z = }/s,t/2~
Now, let £ be such that ¥(3,51)) = (s*,—0), and note by our sorted ordering that for every § € U,
we have ¥(5) = (s;, —¢’) for some ¢’ > {. Therefore, for any representative § € U, for any rep-

resentative € Ty ; such that (§,f) € R ;, we must have ¥(f) = (¢*, j) for some j < D(s,t) — £’ <
D(s,t) — . Thus, letting k = max{k’ | ¥({x/) = (t°, D(s, t) — £)}, again by our sorted ordering, we

ACM Transactions on Algorithms, Vol. 16, No. 3, Article 33. Publication date: June 2020.

Approximating Spanners and Directed Steiner Forest: Upper and Lower Bounds 33:17

have that for any § € U and k' > 0, if (3, fy/) € ﬁs,t, then k” € [k]. This gives
k k

Z Ys.i = Z Z Ys.i;
=1

5:(§a2i)€Rs,t i=1 §€UA
(8, t:)€Rs, 1

=D D, Wiy

SeU #:(3,t)eRs,

1

This immediately implies that k > ;(t*). Moreover, for any § € S, ; and f € Ty ;(C {1, ..., f)),
we have ¥(5) = (s’, —¢’) and ¥(£) = (s’,j’) such that ’ < £and j’ < k = D(s, t) — £, and therefore
U’ +j’ < D(s,t), implying that (§,7) € R;,;, thus proving the lemma. O

With this pruning in place, we can run the remaining part of the classical junction tree algorithm.
By the definition of y, ; and constraint (3), we get that 3 (s ;)ep s, = 1. We now bucket the pairs
P by their y values. That is, for all i € {0,1,. .., [log |P|1}, define

Pi = {(S, t) ep | YS,! € (2_i_192_i]}'

By a standard argument, there exists some i* such that 3 /)ep,. V5.t = m, and so |Py| >
27" /O(log n). Moreover, for every pair (s, t) € P;+, we have
Z zs > Z Z Ys i by constraint (4)
seSs; $eS,., 1:(3.F)eRs,;
> yse/2 227072
and similarly ¥; 5 z; > 270 2.

Now, scaling our LP solution up to x} := min{1, 2" *? - x,}, from the above bounds together with
constraints (6) and (7), we get a (possibly suboptimal) solution to the following LP:

min Z w(e)x,

ecE

s.t. capacities {x}} support one unit of flow from 7 to 55,, Y(s,t) € Pj,
capacities {x}} support one unit of flow from 7 to T, Y(s,t) € Py,
X, 20 Ye € E.

By Lemma 5.3, we can round this LP solution and obtain a tree T’ C T} of weight

w(T’) = O(log2 n- Z w(e)x:) <2 .0|log?n- Z w(e)x,)

eGE(Tr) eEE(fr)

such that for every pair (s, t) € P;~ at least one vertex § € 53, ; and at least one vertex { € TS, ; are
connected through 7 in the tree T’. Recalling by Lemma 5.7 that such (3,) pairs also belong to

Rs.;, we have the following bound on the “density” of the tree T

w(T’) _w) _

~ ~ — < =0[log*n- w(e)xe |,
I{(s,t) € P| A(5,t) € Ry, : T’ contains an § ~» { path}| | P & eeg(;) ‘

thus rounding our original LP, and proving Lemma 5.6 and in turn Theorem 5.1.

ACM Transactions on Algorithms, Vol. 16, No. 3, Article 33. Publication date: June 2020.

33:18 E. Chlamtac et al.

6 HARDNESS FOR +1-SPANNERS

In this section, we show hardness for the ADDITIVE 1-SPANNER Problem. In Section 7, we will
extend these ideas to handle ADDITIVE k-SPANNER, proving Theorem 1.11.

6.1 Preliminaries

In all of our reductions, we will start from the MiN-REP problem, which was first introduced by
Reference [30]. In MIN-REP, we are given a bipartite graph G = (A, B, E) where A is partitioned into
groups Ay, Az, . .., A, and B is partitioned into groups By, By, . . ., B, with the additional property
that every set A; and every set B; has the same size (which we will call |Z| due to its connection to
the alphabet of a 1-round 2-prover proof system). This graph and partition induces a new bipartite
graph G’ called the supergraph in which there is a vertex a; for each group A; and similarly a vertex
b; for each group B;. There is an edge between a; and b; in G’ if there is an edge in G between
some node in A; and some node in B;. A node in G’ is called a supernode, and similarly an edge
in G’ is called a superedge.

A REP-cover is a set C C A U B with the property that for all superedges {a;, b;} there are nodes
a€A;NC and b € B; N C where {a,b} € E. We say that {a, b} covers the superedge {a;, b;}. The
goal is to construct a REP-cover of minimum size.

We say that an instance of MIN-REP is a YES instance if OPT = 2r (i.e., a single node is chosen
from each group) and is a NO instance if OPT > 2log" “np The following theorem, which is the
starting point of our reductions, is due to Kortsarz [30]:

THEOREM 6.1. UnlessNP C DTIME(2P°YI°e(™) | for any constant e > 0 there is no polynomial-time
algorithm that can distinguish between YES and NO instances of MIN-REp. This is true even when the
graph and the supergraph are regular and both the supergraph degree and |X| are polynomial in
olog'™* n

6.2 Overview

In the basic reduction framework, due to References [25, 30], we start with a MIN-REP instance, and
then for every group, we add a vertex (corresponding to the supernode) that is connected to vertices
in the group by “connection” edges. We then add an edge between any two supernodes that have
a superedge in the supergraph. So, there is an “outer” graph corresponding to the supergraph, as
well as an “inner” graph that is just the Min-Rep graph itself, and they are connected by connection
edges. The basic idea is that if we want multiplicative stretch 3, the only way to span a superedge
is to use a path of length 3 that goes through the MIN-REP instance, in which case the MIN-REP
edge that is in this path corresponds to nodes in a valid REP-cover. So, if we create many copies of
the outer nodes (i.e., of the supergraph), then in a YES instance each copy can be covered relatively
cheaply by using 3-paths corresponding to the small REP-cover, while in a NO instance every copy
requires many edges simply to (multiplicatively) 3-span the superedges. This can be generalized to
larger stretch values by changing the connection edges into paths of length approximately k/2.

Slightly more formally, suppose that we make x copies of the outer nodes. Then in the basic
reduction, in a YES instance, we can find a 3-spanner that has total size of approximately x - 2r,
while in a NO instance every 3-spanner has size at least x - olog"™“ny.

This reduction strongly depends on having canonical paths of length at least 3: Since there is an
O(log n)-approximation for multiplicative stretch 2 spanners [31], no similar reduction can exist.
So, if we want to prove hardness for +1-spanners, we need to make the true distance between
supernodes at least 2, rather than 1. The obvious way to do this would be to subdivide each su-
peredge into a path of length 2. But, now consider these new vertices: In the optimal solution they

ACM Transactions on Algorithms, Vol. 16, No. 3, Article 33. Publication date: June 2020.

Approximating Spanners and Directed Steiner Forest: Upper and Lower Bounds 33:19

must have degree at least one, and thus even in a YES instance the sparsest spanner must have
size at least x - |[E(G")| ~ x - 208" nr S0, we have lost the hardness!

The intuitive solution is to subdivide superedges as before, except we use the same middle vertex
for all of the x copies. Thus, we have to add only |E(G’)| extra nodes rather than x - |[E(G’)|, and so
the fact that these nodes must have degree at least 1 in the optimal solution is no longer a problem.
Of course, now we have other problems: How do we span all of the new edges we added? To do
this, we have to add yet another dummy node and paths of length 2 from each outer node to each
of the middle superedge nodes, so it does not seem like we have much progress. This seems like a
catch-22: Every time we add new vertices or edges to span other pairs, it becomes too expensive
to span what we have added. But, now by carefully hooking these nodes up together, it turns out
that we can use the same extra dummy node for each of the x copies, so the total extra cost ends
up being only O(rx), which is still small enough that we maintain the hardness gap.

6.3 The Reduction
Suppose we are given a MIN-REp instance G = (A, B, E) with associated supergraph G’ = (U, V, E’).
For any vertex w € U U V, we let I'(w) denote its group. So, I'(u) € Aforu € U, and I'(v) C B for
v € V. We will assume without loss of generality that G’ is regular with degree ds and G is regular
with degree dz. Let x € N be a parameter that we will set later.

Our +1-spanner instance will have several kinds of vertices. We first define the following vertex
sets:

VoLut - U X [x]’ Vo}ftt = V X [x]v
S={sy:yeUUV} M = {my, : {u,v} € E'}.
In other words, the V,,,; vertices are just x copies of the nodes in the supergraph, S consists of one

additional “special” node for each node in the supergraph, and M has a vertex for each superedge
(these are the “middle” nodes). Let Vg = VL UVR U AUBUS UM be the “main” vertex set. For

out out
technical reasons these vertices will not quite be enough, so we will also define a single special

node t and a set of nodes T = {t, : y € Vg}. The final vertex set of our instance will be
Vo =VrU{t}UT
=vE UVR UAUBUSUMU{tjUT.
Now that our vertices are defined, we need to define edges. We first add inner edges, which will
just be a copy of the Min-Rep instance G. Formally, since A, B C Vi, we just let E;, = E. We will
next connect the outer nodes to the inner nodes using connection edges:

Econ = {(u,i),al :ueUUV AaeT(u) Aie[x]}.

The next set of edges (the outer edges) form length-2 paths for each superedge:
Eour = {(u,i),myo} :u e UNi€[x]A{u,v}eEY,
U{{(v,j),muv} cveVAje[x]A{u,v} € E}

We next connect nodes in S using three edge sets: one that connects S to the outer nodes, one
that connects S to the inner nodes, and one that connects S to the middle nodes M:

={{(u,i),s,} :ucUUV Aie€[x]},
{a,sy}:uceUUV AaeT(u)},
{Su>Muw) :u € U A{u,v} € E'},
{

U (S, Mup) : 0 €V A {u,v) € E'}.

—{
m = {

ACM Transactions on Algorithms, Vol. 16, No. 3, Article 33. Publication date: June 2020.

33:20 E. Chlamtac et al.

We next add group edges to form a clique inside each group: Eg,oup = {{a, b} : I'a) =T71(b)}.

Finally, we will add “star” edges to make the entire graph have diameter 4 by going through the
special node t: Eg;qr = {{t, ty} : y € VR} Ul{ty, y} : y € VR

Our final edge set Eg is the union of all of these sets: Eg = Ej, U Econ U Egyp U Ego U Eg; U Egpy U
Egroup U Estar-

6.4 Analysis

6.4.1 Soundness. We first analyze the soundness of this reduction: We want to show that the
size any +1-spanner is lower bounded by OPTjr (the optimal solution of the Min-Rep instance
G). Let H be an arbitrary +1-spanner of G = (Vg, Eg).

Definition 6.2. A path between outer nodes (u, i) and (v, j) is called canonical if it has the form
(u,i) > a = b — (v,j), where a € T'(u) and b € I'(v). In other words, it is a length 3 path whose
first and last edges are from E.,, and whose middle edge is from E;,,.

Note that if {u, v} is a superedge, then (u, i) and (v, j) are at distance 2 in G because of the outer
edges. Thus, in H they must be at distance 2 or 3. The intuition is that if {u, v} is a superedge, then
H should contain a canonical path from (u, i) to (v, j) for all i, j € [x]. Such a path exists, since it
corresponds to choosing nodes in a REP-cover to satisfy the {u, v} superedge. Unfortunately, this
is not quite true, but it is “true enough”—with only a small loss, we can guarantee that there are
enough pairs i, j in which a canonical path from (u, i) to (v, j) exists.

For the purposes of lower bounding |E(H)|, it will turn out to be easier to only consider the
case of j = i. Note that (u, i) and (v, j) are also at distance 2 when j # i, but for the purpose of the
analysis, we will only care about j = i. Thus, we will not try to make all possible paths canonical,
but rather only when j = i.

Definition 6.3. A +1-spanner H’ of G is canonical if for all outer nodes (u, i) and (v, i) where
{u,v} € E" and i € [x], there is a canonical path between (u, i) and (v, i).

LEMMA 6.4. There is a canonical +1-spanner H' of G with |E(H')| < 4|E(H)|.

Proor. For each superedge {u,v} € E’, let a,,, € T'(u) and b,,,, € T'(v) be arbitrary inner nodes
so that {aye, byo) € E, ie., so that there is a canonical path (u,i) — ayy — by, — (v,J) for all
i,j € [x]. We create a new graph H’ by starting with H, and then for each ((u, i), (v, i)) pair of
outer nodes where {u, v} € E’ and i € [x] but where there is no canonical path from (u, i) to (v, i),
we add the connection edges {(u, i), ay.} and {(v, i), b, } and the inner edge {ay, byo} (if these
edges do not already exist). Since H' contains H, we know that H’ is also a +1-spanner, and it is
canonical by construction.

So, it remains to prove the size bound. How many edges did we add to H to get H’? Suppose we
added (at most 3) edges to canonically span the pair ((u, i), (v, i)). Then in H the path between (u, i)
and (v, i) already had length at most 3 but was not a canonical path. Since it was not a canonical
path but had length 3, it must have one of the following forms:

(1) (u, l) - Myy — ('U, i), or
(2) (u’ l) - Myy — Sy — (U, i), or
(3) (u,i) = sy, = My, — (v,1).

This classification is easy to see by inspection. The unique path of type 1 is clearly the only path
of length 2. And the only nodes reachable in 2 hops from (u, i) are inner nodes, outer nodes of the
form (u, j), su, My (Where v’ is not necessarily equal to v), s, t(4 i), and t. If a 2-hop path to an

ACM Transactions on Algorithms, Vol. 16, No. 3, Article 33. Publication date: June 2020.

Approximating Spanners and Directed Steiner Forest: Upper and Lower Bounds 33:21

inner node can be extended in one hop to (v, i), then we have a canonical path, so, by assumption,
no such path exists. Of the other nodes reachable in two hops, the only ones adjacent to (v, i) are
my, and s,,. Hence, no paths other than paths 2 and 3 exist of length 3.

This classification implies that either {(u, i), my,} or {(v, i), mgp} (or both) is an edge in E(H).
Let e,,; be one of these edges (if both exist, choose one arbitrarily). When creating H’, we added
up to three edges to add a canonical path between (u, i) and (v, i). We will charge those edges to
Cuvi-

When we do this for all {u,v} € E" and i € [x], it is clear that we have charged a different edge
for each such (superedge, value) pair. Since each charge involves at most three new edges, and
every existing edge is charged at most once, we immediately get the lemma. O

THEOREM 6.5. Any +1-spanner H of G has |E(H)| > x - OPTpr/4.

PrROOF. By Lemma 6.4, we just need to show that |E(H’)| > x - OPTyr.

For i € [x], let C; € AU B be the set of inner nodes that in H’ are adjacent to the associated
outer node, i.e., C; = {a € AUB : {(I'"¥(a),i),a} € E(H’)}. We first claim that C; is a REP-cover of
G for all i € [x]. To see this, fix i € [x] and a superedge {u, v} € E’. Since H’ is canonical, there is
a canonical path (u,i) = a = b — (v,i) in H'. Thus, a and b are both in C;, and since the middle
edge of the canonical path is an edge in E, we know that C; covers the superedge {u, v}. Hence, C;
is a valid REP-cover for all i € [x], and thus |C;| > OPTyg.

Notice that by definition, every node a € C; is incident on an edge {a, (I'"*(a), i)}. Since this edge
is different for alli € [x] and a € C;, we immediately get that |[E(H')| > Y7, IC;| = x - OPTjg. O

6.4.2 Completeness. We now show completeness: that there is a +1-spanner of G that does not
cost too much more than OPTyr in the YES case. Recall that in a YES instance there is a valid
REP-cover of size |U| + |V| where for each supernode, we choose exactly one representative. Let C
be such a REP-cover, for each u € U let a,, be the unique element of C N T'(u), and for eachv € V
let b, be the unique element of C N T'(v).

The subgraph H of G we analyze will include E;,, U Es, U Eg; U Eg U Egtqr. It will also include
connection edges {(u, i), a,} foralli € [x] and u € U and connection edges {(v, i), b, } foralli € [x]
and v € V. Finally, it will include a star of group edges in each group, with the representative from
C as the center. More formally, for each u € U, we will include the group edges {{a,, a} : a € T'(u)},
and for each v € V, we will include the group edges {{b,, b} : b € I'(v)}.

We first analyze the size of H and then later will prove that it is a +1-spanner of G. Recall that
dg is the degree of the supergraph G’ (which is regular). Let n” be the number of nodes in the

supergraph, and let |X| denote the size of each group in G.
THEOREM 6.6. H has at most 8n’dg/|2|? + 4n’x edges when G is a YES instance.

Proor. Clearly E;, = E has at most n’ds|%|? edges, Es, has at most n’x edges, E; has at most
n’|Z| edges, Esy, has at most n’dg edges, and Es; 4, has at most 2|Vg| = 2(n’x + n’ + n’dg/) edges.
The number of group edges added is clearly at most n’|2|, and the number of connection edges is
at most n’x. Putting this together, we get that

E(H)| < n'da |22 +n'x + 0|2+ n'dg + 2(n’x + 0’ + n’dg) +n'|2] + n'x
< 8n'dg |Z|? + 4n'x
as claimed. |

THEOREM 6.7. H is a +1-spanner of G.

ACM Transactions on Algorithms, Vol. 16, No. 3, Article 33. Publication date: June 2020.

33:22 E. Chlamtac et al.

Proor. Since H includes all star edges, it has diameter at most 4, and hence any two vertices
that were originally at distance 3 or 4 are spanned by H. Thus, we only need to analyze pairs that
were at distance 1 or 2 in G.

We begin by analyzing pairs that were at distance 1 in G, i.e., edges of G. If some edge is also
in H, then it is trivially spanned. The only edges of G not in H are the outer edges, some group
edges, and some connection edges. Each outer edge has a length 2 path spanning it by using one
edge of E;, and one edge of Es,,. Each group edge has a length 2 path spanning it using the star
inside every group that is included in H. Similarly, each connection edge has a 2-path spanning
it using the included connection edge and an included star edge. Slightly more formally, consider
a connection edge {(u, i), a}. Then H includes the connection edge {(u, i), a, } and the group edge
{ay, a}. The same analysis holds for connection edges on the other side.

We now consider pairs that were at distance 2 in G and prove that they are at distance at most 3
in H. To do this, first note that if the 2-path connecting two nodes in G has both edges in H, then it
is trivially still spanned in H; and if one of the two edges are in H, then it still has distance at most
3 in H (since by the previous analysis all missing edges are replaced by a path of length 2). So, we
only need to worry about pairs of vertices at distance 2 in G where both edges on the 2-path in G
are not in H.

This leaves only a few cases, based on the types of the two edges in the path. We consider them
each.

(1) Two outer edges. From an outer node (u,i) € V% , any path involving two outer edges
must end at either an outer node (v, j) where {u,v} € E’ or at a node (u, j) with j # i. For
the first of these, we know by construction that there is a length-3 canonical path from
(u, i) to (v,j). For the second, there is still a 2-path by going through s, and using two
edges from Es,. The same analysis holds for paths from outer nodes (v,j) € VX ,. The
only other type of 2-path involving only outer edges are path between two middle nodes,
i.e., 2-paths from my,, to m, . For such a path to exist, either 4’ = u or v’ = v, and hence
H still has a 2-path of the form m, — s, = my or of the form my, — s, = my.

(2) Two connection edges. Any 2-path involving two missing connection edges must be either
between outer nodes (u,i) and (u,j) with i # j, or between two inner nodes a, b with
I!(a) = T1(b). In the first case there is still a 2-path between the nodes by using edges
in E,,, and in the second case there is still a 2-path by using the remaining edges of Eg oy
inT (T (a)).

(3) Two group edges. This is trivial, since any pair of nodes connected by such a 2-path are
also connected by a single group edge, so the analysis for a single edge holds.

(4) Outer edge and connection edge. Any such path is from a middle node m,,, to an inner
node a € T'(u) UT'(b). A 2-path between these nodes exists in H by using an edge in E,,
and an edge in Eg;.

(5) Outer edge and group edge. No such path exists.

(6) Connection edge and group edge. The two endpoints of such a path must be an outer node
(u, i) and an inner node a € I'(u). But, G already has a connection edge between them, so
they are at distance 1 in G and the previous analysis applies.

Thus, H is a +1-spanner of G. |
6.4.3 Putting It Together. We can now finish the proof of hardness.

THEOREM 6.8. For any constant € > 0, there is no polynomial-time glog"™ "-approximation algo-
rithm for the ADDITIVE 1-SPANNER problem unless NP C DTIME (2Poylog(m)),

ACM Transactions on Algorithms, Vol. 16, No. 3, Article 33. Publication date: June 2020.

Approximating Spanners and Directed Steiner Forest: Upper and Lower Bounds 33:23

PrROOF. We first instantiate x to be d/|2|%. With this setting of x, it is obvious that the graph G
created by our reduction has size n, which is polynomial in the size n’|2| of the Min-Rep instance
G (and that we can create G in polynomial time).

Theorem 6.1 implies that under the given complexity assumption, there is no polynomial-
time algorithm that can distinguish between the YES case where OPTyg = n’ and the NO case
where OPTyg > n'2108" “(Zl Let OPT denote the size of the optimal +1-spanner for G. Then
Theorem 6.5 implies that if G is a NO instance, then OPT > x - OPTyRr/4 > xn’ - 21°g17€("/|2‘)/4.
However, if G is a YES instance, then Theorems 6.6 and 6.7 imply that OPT < 12n’x. Thus, we
cannot approximate the +1-spanner problem better than 48 - 2log"™“(n[Z)), By using a sufficiently
smaller value of € (and restricting our attention to large enough input instances), this implies
hardness of 2!°¢" " as claimed. O

7 HARDNESS FOR +k-SPANNERS

We now prove hardness for larger additive stretch, with the goal of proving Theorem 1.11. To
extend our hardness reduction to larger stretch values, we will want to use the same basic idea:
instead of supernodes being at distance 1 from each other if they have a superedge (as in the
classical reductions [21, 25, 30]), we will make them further away initially and make sure that
canonical paths have length exactly k more than the original lengths. But, here the reason we
need large initial distance is very different from the reason that we needed it for +1-spanners:
When the additive stretch is larger than 1, then including superedges directly would lead to the
possibility of spanning a superedge using non-canonical paths made up entirely of superedges.
This was the main difficulty in proving hardness of approximation for multiplicative spanners
and was overcome in Reference [21] by sparsifying the superedges so there are no short non-
canonical paths (note that allowing directed edges solves this problem, for both multiplicative and
additive spanners, but we want hardness for even the undirected setting). But, we pay a price in the

1-e
hardness for doing this sparsification: The hardness drops to Zlong, which becomes negligible
when k = Q(logn).

Pushing past this boundary requires giving up on sparsifying. Thus, the supergraph might have
girth 4, so if the original distance between two supernodes connected by a superedge is d, then
the spanner instance we construct might have a path of length 3d using only these superedge
paths. To prevent such paths from being a problem, we will have to make them be too long, i.e.,
we will need 3d — d = 2d to be greater than the additive stretch k. But, again, we have the same
catch-22 as in +1-spanners: If we replace each superedge by a long path, then simply spanning all
of the edges in those paths is too expensive. Moreover, it now becomes difficult to span pairs that
were innocuous before, e.g., two copies of the same supernode. Overcoming these issues requires
adding even more extra paths and vertices, which create their own complications when trying to
span them. But, these difficulties can be overcome with enough technical work, as we will see.

7.1 The Reduction

Suppose we are given a bipartite Min-Rep instance G = (A, B, E) with associated supergraph G’ =
(U,V,E’). For any vertex w € U UV, we let I'(w) denote its group. So, I'(u) € A for u € U, and
I'(v) € B for v € V. We will assume without loss of generality that G’ is regular with degree d,
and let n’ = [U U V|. Let x € N be a parameter that we will set later.

Our +k-spanner instance will have several kinds of vertices. We first define the following vertex
sets:

ACM Transactions on Algorithms, Vol. 16, No. 3, Article 33. Publication date: June 2020.

33:24 E. Chlamtac et al.

Vo =U X [x] x [k - 1],
Vo =V x [x] x [k - 1],
S={sy:yeUuV}
L={ty;j:ueUUV,iecx],je[k-1]}
M:{muv:{u,v}EE ANie[k-2]},
Vin = AUB,
0= {Qy yeUUV}

P:{pu,i,j:ueUUV,ie[x],je

k-1
2

b

Let the union of the above verticesbe Vg = VE . UVR UAUBUSUMULUPU Q, which will

out out
be the “main” vertex set. Note that
[Vl < kn’x + n'|Z| +n" + n’kx + n’dk + n" + n’kx
< 3n’kx +n'(|Z| + 2 + dk)
< 3n’kx + 2n' (2] + dk).
To decrease the diameter, we will also have an extra node ¢ and extra nodes
T={t,;:yeVpnicl[k-1]}.
The final vertex set of our instance will be
Ve =VRUT
=VkL, uvEk

out out

UAUBUSUMULUQUPUTU {t}.

Now that our vertices are defined, we need to define edges. We first add inner edges, which will
just be a copy of the Min-Rep instance G. Formally, since A, B C Vg, we just let E;, = E.
We next define the crucial connection edges—we connect the inner nodes to the outer nodes:

Econ = {{(u,i,1),a} :uce UUV AaeT(u)Aie[x]}.
We now need to define paths among the outer nodes:
Eparn = {{(w.1,)), (w,i,j+ D)} :u e UUV AP € [x] Aj € [k-2]}

The next edges also form paths: Ep is set up to provide alternate bounded-length paths between
the outermost outer nodes, and Ej is set up to provide bounded-length paths from the outermost
outer nodes to S.

{(u,i,k—1),0y i1} :ucUUV A€ [x]}
fu,i,jy£u,i,j+1} cuceUUV AILE [x] /\j S [k — 2]}
Cuik-1-Sul :u € UUV AL € [x],

={
U{
U
Ep={{(u,i,k —1),pyir1}:uc UUV Ai e [x]}

—_—

. . k=1
U {{pu,i,j,pu,i,jﬂ}:u ceUUV Aie[x]Nje {T]— 1}

U {{Pu,i,r%rqu} rueUUVAILe [x]}.

ACM Transactions on Algorithms, Vol. 16, No. 3, Article 33. Publication date: June 2020.

Approximating Spanners and Directed Steiner Forest: Upper and Lower Bounds 33:25

We now connect the nodes in S using two edge sets:

Eso = {{su, lu,ik-1} s u € UUV A € [x]},

Esm = {{susmi,} s u € U A{u, v} € E'}

U {{so.mE22) 0 € V A {u,v) € E').
And now we connect the nodes in M via more paths. Note that the following edge set is empty
ifk =3:
En = {({ml,,,mit MY {u,0) € E' A€ [k - 3]}
We connect M to V,,; using outer edges:
Eour = {(w,ik—1),ml Y :ueUANie[x]A{uv}eE}
U{{(v,ik—1),mt 2 :oeV Aie[x]Alu0)eE).

We now add group edges to form a clique in each group and star edges to make the entire graph
have diameter 2k:

Egroup = {{a,b} :a,b € AUBAT (a) =T (b)},
Estar = {t, ty 1}y € VR U {{tyis tyin)y € VR A € [k — 2]}
This completes the reduction: The final edge set is Eg = Ej, U Econ U Eparn U EL U Ep U Ego U
Esm U ErM UEout U Egroup U Estar-
7.2 Analysis
7.2.1 Soundness. We will first show that the size of any +k-spanner of G is lower bounded by
OPTr (the optimal solution of the Min-Rep instance G). Let H be an arbitrary +k-spanner of G.

Definition 7.1. Let {u,v} € E’. A path between outer nodes (u, i,k — 1) and (v, j, k — 1) is called
canonical if it has the form
(u,i,k-1) - (u,i,k—2) » --- - (u,i,1) > a—>b
- (v,j,1) = (v,),2) > - > (v,j,k—1).

In other words, it goes through edges in Ej4;p,, then through a connection edge, then an inner
edge, then a connection edges, and then more edges in E, 4.

Note that any canonical path has length exactly 2k — 1 and that a € I'(u) and b € T'(v). Since the
distance in G from (u, i,k — 1) and (v, j,k — 1) is k — 1, a canonical path is a valid spanning path
for this pair.

Definition 7.2. A +k-spanner H’ of G is said to be canonical if for all outer nodes (u, i, k — 1) and
(v,i,k — 1) with {u, v} € E’, there is a canonical path between (u, i,k — 1) and (v, i,k — 1).

Note that this definition of canonical uses the same value of i on both sides—this is to simplify
the charging argument used in the proof of the next lemma.

LEMMA 7.3. There is a canonical +k-spanner H' of G with |[E(H)| < 2k|E(H)|.

Proor. For each superedge {u,v} € E’, let a,,, € I'(u) and b,,,, € I'(v) be arbitrary inner nodes
so that {aye, by) € E, ie., a pair of nodes that would cover the superedge. We create a new graph
H’ by starting with H, and then for each pair of outer nodes (u, i,k — 1) and (v, i,k — 1) where
{u,v} € E’ that do not have a canonical path, we add the canonical path between them through
ay and by, Slightly more formally, if any edges in the following path are missing, we add them

ACM Transactions on Algorithms, Vol. 16, No. 3, Article 33. Publication date: June 2020.

33:26 E. Chlamtac et al.

(note that all of these edges are in G): (u, i,k — 1) = (u, i,k —1) = -+ = (u,i,1) = ayp = byy —
(v,i,1) = (v,i,2) > -+ = (v, i,k —1).

Since H' includes H, it is clearly a +k-spanner. It is canonical by construction: Otherwise, there
is a pair of outer nodes (u, i,k — 1) and (v, i,k — 1) with {u,v} € E’, which is not spanned by a
canonical path. But, for every such pair, we added a canonical path.

Thus, it remains only to bound the size of H’. We do this by a charging argument: We will show
how to charge edges we added to already existing edges of H in such a way that no edge of H is
charged more than 2k — 1 times. This will clearly prove the lemma.

Suppose, to get H', we added a canonical path to span (u, i, k — 1) and (v, i, k — 1). Note that this
path has length exactly 2k — 1. To charge this path to an edge of H, we first need to understand
the way in which (u,i,k — 1) and (v, i,k — 1) could have been spanned in H. Since the distance
between them in G is exactly k — 1 (using the path through M), in H there must be a path between
them of length at most 2k — 1, and this path must be non-canonical (or else, we would not have
added a canonical path). It is easy to verify that there are only three non-canonical paths between
them of length at most 2k — 1:

1) wik-1)->m,, ->mi, - > mﬁ;z — (v,i,k — 1) (length k — 1), and
@) (wik=1) > lyir = buiz = > luiko1 = Su = Miy, = Moy, — -+ > mi 2 -
(v,i,k — 1) (length 2k — 1), and

. 1 2 k-2
(3) (wik=1) > m,, »>m, = =>my” = sy >y i1 loika— = lyi1—

(v,i,k — 1) (length 2k — 1).

Hence, H must include at least one of these paths. All three of them include an outer edge: either
{(u,i,k —1), m,lw} or {(v,i,k—1), mﬁ;z} or both. We charge all edges on the canonical path we
added to whichever of these outer edges exists in H (if they both exist in H, then we pick one
arbitrarily). Any two canonical paths will be charged to different outer edges, and thus each edge
in H is charged at most 2k — 1 times. o

THEOREM 7.4. Any +k-spanner H of G has |[E(H)| > 5¢ - OPTy.

ProoF. By Lemma 7.3, we just need to show that |[E(H’)| = x - OPTk.

For i € [x], let C; € AU B be the set of inner nodes that in H” are adjacent to the associated
outer node, i.e., C; = {a € AUB : {(T"!(a),i,1),a} € E(H')}. We first claim that C; is a REP-cover
of G for all i € [x]. To see this, fix i € [x] and a superedge {u, v} € E’. Since H’ is canonical, there
is a canonical path (u,i,k-1) = (u,i,k-2) - -+ = (u,i,1) 2 a— b —> (v,i,1) = (v,i,2) —
(- = (v,i,k — 1) in H'. Thus, a and b are both in C;, and since the middle edge of the canonical
path is an edge in E we know that C; covers the superedge {u, v}. Hence, C; is a valid REP-cover
for all i € [x], and thus |C;| > OPTyg.

Now note that by definition, every node a € C; is incident on a connection edge {a, (T (a), i,1)}.
Since this edge is different for all i € [x] and a € C;, we get that |[E(H')| > 7, |Ci| > x -
OPT]\JR. O

7.2.2 Completeness. We now show completeness: that there is a +1-spanner of G that does not
cost too much more than OPTy,g. Let C be a REP-cover of size OPTyg, and for eachu € U UV let
C,=CnT(u).

The subgraph H of G that we analyze will include E;jp, U Epqsp U EL U Ep U Ego U Egpy U Epp U
Egroup U Estar. In other words, the only edge sets we defined which it does not entirely include are
Econ and E,y,¢. Of these, we do not include any edges of E,,;. We include connection edges to inner
nodes in C, i.e., we also include all edges in the set {{(u,i,1),a} :u € UUV Aae C, Ai € [x]}.

ACM Transactions on Algorithms, Vol. 16, No. 3, Article 33. Publication date: June 2020.

Approximating Spanners and Directed Steiner Forest: Upper and Lower Bounds 33:27

We first analyze the size of H and then later will prove that it is a +k-spanner of G. Recall
that d is the degree of the supergraph G’ (which is regular), and || is the size of each group. Let
n =|UUV]|.

THEOREM 7.5. |E(H) < x - Tk2OPTy\g + 8k*n’d|Z|2.

Proor. The following size bounds are direct from the definitions:

|Ein] S nwdiEP, |Epanl < (k=2)n'x,
|EL| < kn'x, |Esol < n'x,

|Esml <n'd, |Ea] < kn'd,
|Egroup| < n/|2|2, |EP| < kn’x,
|Estarl < 3n'k’x + 2n’k(|2| + dk)

The number of connection edges we add is at most x - |C| = x - OPTjr. Adding these all up, we
get that

|E(H)| < x(OPTyg + 7k*n’) + 6kn’|Z|? + 2n'k%d
< x(OPTyg + 7k*n’) + 8k*n’d|3|?
< x - 8k*OPTyg + 8k°n’d|Z|?,
where for the last inequality, we used the fact that OPTyg > n'. O
Note that this implies that if x > d|%|? then,
|E(H)| < x - 8k*OPTyg + x - 8k2OPTy
< x - 16k*OPTyk.

THEOREM 7.6. H is a +k-spanner of G.

Proor. Because of Eg;,,, the diameter of H is at most 2k and thus, we only need to worry about
spanning a pair of nodes if their distance in G is at most k — 1.

We first consider the simple case of nodes at distance 1 (i.e., edges of G). The only edges of
G missing from H are the outer edges and some connection edges. Consider a connection edge
{(u,i,1),a} that is not in H. Then, since C,, # 0, there is some a’ € C,, and thus H has a path of
length 2 spanning the missing edge: (u,i,1) — a’ — a, where the first is a connection edge and
the second is a group edge.

Now consider a missing outer edge {(u, i,k — 1), m,lw}. In H there is a path of length k + 1 be-
tween these nodes by using edges of E; and Ep,; in particular, the path (u,i,k —1) = {1 —
luio— > Ly k-1 — Sy = mb,. A similar path exists for missing outer edges of the form
(0,1, k = 1), mf?).

For the next case, consider two nodes at distance 2 in G. If the shortest path between them has
zero or one edge in E(G) \ E(H), then we know that their distance in H is at most k + 2 as desired.
The only pairs of nodes at distance 2 in G whose shortest path contains two edges from E(G) \ E(H)
are (1) outermost outer nodes corresponding to the same supernode, e.g., nodes (u,i,k — 1) and
(u,i’,k — 1) with i # i’, and (2) innermost outer nodes corresponding to the same supernode, e.g.,
nodes (u,1,1) and (u, i’, 1) with i # i’. The second case is simple: These nodes have a 2-path in H
using a different shortest path of two connection edges to the same inner node in C,. The first
case is essentially why we added the P and Q nodes: There is a path of length either k + 1 (if k is
even) or k + 2 (if k is odd) between (u, i,k — 1) and (u, i’, k — 1) by using edges in Ep.

Now consider two nodes that are at distance more than 2 (but less than k) in G. If their shortest
path contains at most 1 outer edge or connection edge, then the above discussion implies that they

ACM Transactions on Algorithms, Vol. 16, No. 3, Article 33. Publication date: June 2020.

33:28 E. Chlamtac et al.

are spanned in H. Since they are at distance less than k, their shortest path cannot include both an
outer edge and a connection edge. Hence, we are only concerned with pairs whose shortest path
contains more than one connection edge or more than one outer edge.

It is easy to verify that every shortest path of length less than k includes at most two connection
edges, or at most two outer edges. Pairs that are connected by a shortest path with two connection
edges are spanned in H by a path of length at most 2 longer than in G by routing around the
missing connection edges.

The more interesting case is pairs of nodes that are connected by a shortest path that includes
two outer edges. If these two outer edges directly follow each other on the shortest path, then we
already showed that they are spanned by a path of length at most k + 2. Hence, using this detour
only adds at most +k to the length of the shortest path and thus H has a path at most k longer
than in G. However, if they do not directly follow each other on the shortest path, then the fact
that the shortest path has length less than k implies that in fact the two nodes are outermost outer
nodes (u,i,k — 1) and (v, j, k — 1) where {u, v} € E’ (no other pairs have distance between 3 and
k — 1 in G with shortest path containing two non consecutive outer edges). By construction, there
is a canonical path of length 2k — 1 in H between these nodes, and in G their distance is k — 1, so
H does span them.

Since this exhausts all cases, we have shown that H is a +k-spanner of G. m]

7.2.3 Putting It Together.

THEOREM 7.7. For any constant € > 0 and any value k > 3 (not necessarily constant), there is no

polynomial-time glog"™“n /3 -approximation algorithm for the ADDITIVE k-SPANNER problem unless
NP C DTIME (2rolylog(n)),

Proor. We first instantiate x to d|2|%. This means that the size of our reduction is
[V(H)| < k|Vg| < k(3n’kx + 2n'(|Z] + dk))
< 3n'k*d|Z)? + 2n’|2| + 2n’dk
< 7K*n'd|3|® < 7KA(n'|Z])%.
Let OPT denote the size of the sparsest +k-spanner of H. Then Theorems 7.4, 7.5, and 7.6 imply
that

— - OPTyg < OPT < x - 16k"OP Tk,

Putting the size and the approximation together (with the fact that the original Min-Rep instance
had size n’|2]), we get that an f(n)-approximation for the ADDITIVE k-SPANNER problem would
result in a 32k* - f(7k*n?)-approximation for Min-Rep. Then Theorem 6.1 implies that this is at
least 21°6" " To finish the proof, it suffices to specify the value of € to be small enough so that the

term 216" " dominates the constants in the approximation factor.]

APPENDIX
A THE PROOF OF HEIGHT REDUCTION (LEMMA 5.2)

In this section, we sketch the proof of the existence of the tree fr in Lemma 5.2 whose subtree
corresponds to an arborescence in the original graph with a bounded cost. In short, the tree T,
in Lemma 5.2 in constructed by listing all paths rooted at r of length at most ¢ in the metric
completion of G and then form a prefix tree on these paths. Our reduction is, indeed, the same as
“path-splitting” technique in Reference [15]. All we need is to show the cost guarantee using the
famous Zelikovsky’s Height Reduction Theorem.

ACM Transactions on Algorithms, Vol. 16, No. 3, Article 33. Publication date: June 2020.

Approximating Spanners and Directed Steiner Forest: Upper and Lower Bounds 33:29

To state the theorem, we need to define the metric-completion of a graph G, denoted by Mg.
The graph Mg is a complete graph on the same vertex set as G, where each edge (u,v) in Mg
has weight equal to the distance of u,v in G. Thus, each edge (u,v) of Mg is associated with a
shortest u, v-path in G, denoted by ¢(u, v). The Zelikovsky’s Height Reduction Theorem is then
stated as follows:

THEOREM A.1 (HEIGHT REDUCTION [29, 34]). For any arborescence] with edge weights w :
E(J) = R2°, there exists an arborescence]’ in the metric completion M of] with height o and
edge weightsw’ : E(J’) — R=° such that L(J) = L(J’) where L(J) and L(J’) are the sets of leaves
of J and J', respectively, and w(J) = O(a| L(T)|").

We construct the tree T, in Lemma 5.2 from paths in Mg. Let P be the set of all paths in
M that start from r and have length at most 0. We form a prefix tree T, = (V,E) on the set of
paths P (we think of paths in P as strings). That is, each vertex in T, is associated with a vertex
of Mg (and hence G), and each r, v-path in T, corresponds to a path r,v in Mg. The mapping ¥
(respectively, @) in Lemma 5.2 are defined by a vertex (resp., an edge) of Mg associated with each
vertex (respectively, edge) of T,.An edge e of Mg is, in turn, associated with a (shortest) path ¢(é)
in G. So, now, we have a mapping from an edge in T, to a (shortest) path in the original graph G.

Now consider any arborescence J in G and the arborescence J’ of height ¢ as in Theorem A.1.
Clearly, there is a tree JinT, such that V(J’) = ¥(V(J)) and E(J’) = ¥(E(J)). This simply follows
by the construction of T that we list all the rooted-paths of length at most o in M. For any edge
(u,v) € E(J"), where u = () and v = /(0), we know that w(&, 9) < w’(u,v), because w(i, 0) is
the weight of a shortest u, v-path in G, whereas w’(u, v) is the weight of a u, v-path in the subgraph
J of G. This proves Lemma 5.2.

ACKNOWLEDGMENTS

We would like to thank anonymous referees for all the useful comments in the preliminary drafts.

Parts of this work were done while Bundit Laekhanukit was a postdoctoral fellow at the Weiz-
mann Institute of Science in Israel; Guy Kortsarz and Eden Chlamta¢ were also visiting the institute
during this period.

REFERENCES

[1] Amir Abboud and Greg Bodwin. 2017. The 4/3 additive spanner exponent is tight. 7. ACM 64, 4, Article 28 (Sept. 2017),
20 pages. DOI: https://doi.org/10.1145/3088511

[2] Amir Abboud, Greg Bodwin, and Seth Pettie. 2017. A hierarchy of lower bounds for sublinear additive spanners. In
Proceedings of the 28th ACM-SIAM Symposium on Discrete Algorithms (SODA’17). Society for Industrial and Applied
Mathematics, Philadelphia, PA, 568-576. Retrieved from http://dl.acm.org/citation.cfm?id=3039686.3039722.

[3] Donald Aingworth, Chandra Chekuri, Piotr Indyk, and Rajeev Motwani. 1999. Fast estimation of diameter and short-
est paths (without matrix multiplication). SIAM J. Comput. 28, 4 (1999), 1167-1181. DOI: https://doi.org/10.1137/
50097539796303421

[4] Ingo Althofer, Gautam Das, David Dobkin, Deborah Joseph, and José Soares. 1993. On sparse spanners of weighted
graphs. Discrete Comput. Geom. 9, 1 (1993), 81-100. DOI : https://doi.org/10.1007/BF02189308

[5] Sanjeev Arora and Carsten Lund. 1997. Approximation algorithms for NP-hard problems. In Approximation Algo-
rithms for NP-hard Problems, Dorit S. Hochbaum (Ed.). PWS Publishing Co., Boston, MA, Chapter: “Hardness of
Approximations,” 399-446. Retrieved from http://dl.acm.org/citation.cfm?id=241938.241948.

[6] Surender Baswana, Telikepalli Kavitha, Kurt Mehlhorn, and Seth Pettie. 2010. Additive spanners and («, f)-spanners.
ACM Trans. Algor. 7, 1, Article 5 (Dec. 2010), 26 pages. DOI : https://doi.org/10.1145/1868237.1868242

[7] Piotr Berman, Arnab Bhattacharyya, Konstantin Makarychev, Sofya Raskhodnikova, and Grigory Yaroslavtsev.
2013. Approximation algorithms for spanner problems and directed Steiner forest. Inf. Comput. 222 (2013), 93-107.
DOI: https://doi.org/10.1016/j.ic.2012.10.007

[8] Arnab Bhattacharyya, Elena Grigorescu, Kyomin Jung, Sofya Raskhodnikova, and David P. Woodruff. 2009.
Transitive-closure spanners. In Proceedings of the 20th ACM-SIAM Symposium on Discrete Algorithms (SODA’09).

ACM Transactions on Algorithms, Vol. 16, No. 3, Article 33. Publication date: June 2020.

https://doi.org/10.1145/3088511
http://dl.acm.org/citation.cfm?id$=$3039686.3039722
https://doi.org/10.1137/S0097539796303421
https://doi.org/10.1137/S0097539796303421
https://doi.org/10.1007/BF02189308
http://dl.acm.org/citation.cfm?id$=$241938.241948
https://doi.org/10.1145/1868237.1868242
https://doi.org/10.1016/j.ic.2012.10.007

33:30 E. Chlamtac et al.

(9]

[10]

(1]

[12]

(13]

[14]

[15]

[16]
(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]
[27]

(28]

Society for Industrial and Applied Mathematics, Philadelphia, PA, 932-941. Retrieved from http://dl.acm.org/citation.
cfm?id=1496770.1496871.

Davide Bilo, Fabrizio Grandoni, Luciano Guala, Stefano Leucci, and Guido Proietti. 2015. Improved purely additive
fault-tolerant spanners. In Algorithms—ESA 2015, Nikhil Bansal and Irene Finocchi (Eds.). Springer Berlin, 167-178.
Greg Bodwin, Michael Dinitz, Merav Parter, and Virginia Vassilevska Williams. 2018. Optimal vertex fault tolerant
spanners (for fixed stretch). In Proceedings of the 29th ACM-SIAM Symposium on Discrete Algorithms (SODA’18). Soci-
ety for Industrial and Applied Mathematics, Philadelphia, PA, 1884-1900. Retrieved from http://dl.acm.org/citation.
cfm?id=3174304.3175428.

Greg Bodwin and Shyamal Patel. 2019. A trivial yet optimal solution to vertex fault tolerant spanners. In Proceedings
of the ACM Symposium on Principles of Distributed Computing (PODC’19). ACM, New York, NY, 541-543. DOI : https://
doi.org/10.1145/3293611.3331588

Greg Bodwin and Virginia Vassilevska Williams. 2016. Better distance preservers and additive spanners. In Proceed-
ings of the 27th ACM-SIAM Symposium on Discrete Algorithms (SODA’16). Society for Industrial and Applied Mathe-
matics, Philadelphia, PA, 855-872. Retrieved from http://dl.acm.org/citation.cfm?id=2884435.2884496.

Shiri Chechik. 2013. New additive spanners. In Proceedings of the 24th ACM-SIAM Symposium on Discrete Algorithms
(SODA’13). Society for Industrial and Applied Mathematics, Philadelphia, PA, 498-512. Retrieved from http://dl.acm.
org/citation.cfm?id=2627817.2627853.

Shiri Chechik. 2016. Additive Spanners. Springer New York, New York, NY, 22-24. DOI:https://doi.org/10.1007/
978-1-4939-2864-4_562

Chandra Chekuri, Guy Even, Anupam Gupta, and Danny Segev. 2011. Set connectivity problems in undirected
graphs and the directed Steiner network problem. ACM Trans. Algor. 7, 2, Article 18 (March 2011), 17 pages. DOI:
https://doi.org/10.1145/1921659.1921664

C. Chekuri, M. T. Hajiaghayi, G. Kortsarz, and M. R. Salavatipour. 2010. Approximation algorithms for nonuniform
buy-at-bulk network design. SIAM J. Comput. 39, 5 (2010), 1772-1798. DOI : https://doi.org/10.1137/090750317

Eden Chlamtac and Michael Dinitz. 2014. Lowest degree k-spanner: Approximation and hardness. In Approxima-
tion, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2014) (Leib-
niz International Proceedings in Informatics (LIPIcs)), Klaus Jansen, José D. P. Rolim, Nikhil R. Devanur, and Cristo-
pher Moore (Eds.), Vol. 28. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 80-95. DOI:
https://doi.org/10.4230/LIPIcs. APPROX-RANDOM.2014.80

Eden Chlamtac, Michael Dinitz, and Robert Krauthgamer. 2012. Everywhere-sparse spanners via dense subgraphs.
In Proceedings of the IEEE 53rd Symposium on Foundations of Computer Science (FOCS’12). IEEE Computer Society,
Washington, DC, 758-767. DOI : https://doi.org/10.1109/FOCS.2012.61

Eden Chlamta¢, Michael Dinitz, Guy Kortsarz, and Bundit Laekhanukit. 2017. Approximating spanners and directed
Steiner forest: Upper and lower bounds. In Proceedings of the 28th ACM-SIAM Symposium on Discrete Algorithms
(SODA’17). Society for Industrial and Applied Mathematics, Philadelphia, PA, 534-553. Retrieved from http://dl.acm.
org/citation.cfm?id=3039686.3039720.

Don Coppersmith and Michael Elkin. 2006. Sparse sourcewise and pairwise distance preservers. SIAM 7. Discrete
Math. 20, 2 (2006), 463—501. DOI : https://doi.org/10.1137/050630696

Michael Dinitz, Guy Kortsarz, and Ran Raz. 2015. Label cover instances with large girth and the hardness of approxi-
mating basic k-spanner. ACM Trans. Algor. 12, 2, Article 25 (Dec. 2015), 16 pages. DOI : https://doi.org/10.1145/2818375
Michael Dinitz and Robert Krauthgamer. 2011. Directed spanners via flow-based linear programs. In Proceedings of
the 43rd ACM Symposium on Theory of Computing (STOC’11). ACM, New York, NY, 323-332. DOI : https://doi.org/10.
1145/1993636.1993680

Michael Dinitz and Robert Krauthgamer. 2011. Fault-tolerant spanners: Better and simpler. In Proceedings of the 30th
ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing (PODC’11). ACM, New York, NY, 169-178.
DOI:https://doi.org/10.1145/1993806.1993830

Michael Dinitz and Zeyu Zhang. 2016. Approximating low-stretch spanners. In Proceedings of the 27th ACM-SIAM
Symposium on Discrete Algorithms (SODA’16). Society for Industrial and Applied Mathematics, Philadelphia, PA, 821—
840. Retrieved from http://dl.acm.org/citation.cfm?id=2884435.2884494.

Michael Elkin and David Peleg. 2007. The hardness of approximating spanner problems. Theor. Comp. Sys. 41, 4 (Dec.
2007), 691-729. DOI : https://doi.org/10.1007/s00224-006-1266-2

Paul Erdés. 1964. Extremal Problems in Graph Theory. Academia Praha, Czechoslovakia, 29-36.

Moran Feldman, Guy Kortsarz, and Zeev Nutov. 2012. Improved approximation algorithms for directed Steiner forest.
J. Comput. Syst. Sci. 78, 1 (2012), 279-292. DOI : https://doi.org/10.1016/].jcss.2011.05.009

Naveen Garg, Goran Konjevod, and R. Ravi. 2000. A polylogarithmic approximation algorithm for the group Steiner
tree problem. J. Algorithms 37, 1 (2000), 66—-84. DOI : https://doi.org/10.1006/jagm.2000.1096

ACM Transactions on Algorithms, Vol. 16, No. 3, Article 33. Publication date: June 2020.

http://dl.acm.org/citation.cfm?id$=$1496770.1496871
http://dl.acm.org/citation.cfm?id$=$1496770.1496871
http://dl.acm.org/citation.cfm?id$=$3174304.3175428
http://dl.acm.org/citation.cfm?id$=$3174304.3175428
https://doi.org/10.1145/3293611.3331588
https://doi.org/10.1145/3293611.3331588
http://dl.acm.org/citation.cfm?id$=$2884435.2884496
http://dl.acm.org/citation.cfm?id$=$2627817.2627853
http://dl.acm.org/citation.cfm?id$=$2627817.2627853
https://doi.org/10.1007/978-1-4939-2864-4_562
https://doi.org/10.1007/978-1-4939-2864-4_562
https://doi.org/10.1145/1921659.1921664
https://doi.org/10.1137/090750317
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.80
https://doi.org/10.1109/FOCS.2012.61
http://dl.acm.org/citation.cfm?id$=$3039686.3039720
http://dl.acm.org/citation.cfm?id$=$3039686.3039720
https://doi.org/10.1137/050630696
https://doi.org/10.1145/2818375
https://doi.org/10.1145/1993636.1993680
https://doi.org/10.1145/1993636.1993680
https://doi.org/10.1145/1993806.1993830
http://dl.acm.org/citation.cfm?id$=$2884435.2884494
https://doi.org/10.1007/s00224-006-1266-2
https://doi.org/10.1016/j.jcss.2011.05.009
https://doi.org/10.1006/jagm.2000.1096

Approximating Spanners and Directed Steiner Forest: Upper and Lower Bounds 33:31

[29]

(30]

(31]

(32]

(33]

(34]

Christopher S. Helvig, Gabriel Robins, and Alexander Zelikovsky. 2001. An improved approximation scheme for the
group Steiner problem. Networks37,1(2001), 8-20. DOI : https://doi.org/10.1002/1097-0037(200101)37:1(8:: AID-NET2)
3.0.CO;2-R

Guy Kortsarz. 2001. On the hardness of approximating spanners. Algorithmica 30, 3 (2001), 432-450.

G. Kortsarz and D. Peleg. 1994. Generating sparse 2-spanners. J. Algorithms 17, 2 (1994), 222-236. DOI : https://doi.
org/10.1006/jagm.1994.1032

David P. Woodruff. 2006. Lower bounds for additive spanners, emulators, and more. In Proceedings of the 47th
IEEE Symposium on Foundations of Computer Science (FOCS’06). IEEE Computer Society, Washington, DC, 389-398.
DOI : https://doi.org/10.1109/FOCS.2006.45

David P. Woodruff. 2010. Additive spanners in nearly quadratic time. In Proceedings of the 37th International Collo-
quium Conference on Automata, Languages and Programming (ICALP’10). Springer-Verlag, 463-474. Retrieved from
http://dl.acm.org/citation.cfm?id=1880918.1880970.

Alexander Zelikovsky. 1997. A series of approximation algorithms for the acyclic directed Steiner tree problem. Al-
gorithmica 18, 1 (1997), 99-110. DOI : https://doi.org/10.1007/BF02523690

Received October 2018; revised July 2019; accepted January 2020

ACM Transactions on Algorithms, Vol. 16, No. 3, Article 33. Publication date: June 2020.

https://doi.org/10.1002/1097-0037(200101)37:1<8::AID-NET2>3.0.CO;2-R
https://doi.org/10.1002/1097-0037(200101)37:1<8::AID-NET2>3.0.CO;2-R
https://doi.org/10.1006/jagm.1994.1032
https://doi.org/10.1006/jagm.1994.1032
https://doi.org/10.1109/FOCS.2006.45
http://dl.acm.org/citation.cfm?id$=$1880918.1880970
https://doi.org/10.1007/BF02523690

