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Abstract—As 10T services scale up from single homes to smart
cities, directories and mapping services are needed to manage po-
tentially millions of devices. However, directory service providers
will likely struggle to accommodate the increasing number of IoT
devices, made more challenging by their heterogeneous metadata
and the large volume of queries. One of the critical challenges,
the high heterogeneity of IoT, is being addressed by a working
standard of W3C, which formalizes a physical or virtual device
as a formatted Thing Description (TD).

We propose a local directory service architecture with a series
of design requirements. With a focus on query performance,
we build a proof-of-concept system to store metadata of IoT
devices as TDs in terms of the working standard. A Raspberry
Pi is configured to investigate the query performance of relational
database and non-relational database as the classic choices for in-
ternal directories. Evaluation results demonstrate that compared
with relational database, non-relational database can achieve 2.9
times higher resilience on property query and 2.35 times faster
processing on spatial query, with mild loss on aggregation query.

I. INTRODUCTION

Internet of Things (IoT) consists of physical objects and
devices connecting, communicating, and interacting with one
another through the network. The arrival of 5G era would fos-
ter IoT into a new stage. With the phenomenal growth in IoT
technologies and devices, future mobile network is foreseen to
accommodate additional billions of IoT connections by 2024
[1], making computing and connectivity more pervasive in our
day-to-day lives.

In line with this trend, IoT will continue to bring huge busi-
ness opportunities to vertical industries and social sectors in a
bunch of fields such as smart home, smart city, healthcare, and
public safety. For further supporting countless access requests
from massive user base, performance-guaranteed directory
services are required to store IoT metadata including identifier,
name, address, security, type, etc [2]. IoT directory services
provide look-up functions for users as well as applications to
retrieve these metadata.

While the development of IoT has brought tremendous
convenience and business opportunities, the untoward effects
gradually appear for directory services. Both storage efficiency
and query performance are facing challenges [2], [3]. Since
metadata of IoT devices are various and have diverse entries
depending on their manufacturers, storing large amounts of
heterogeneous IoT metadata to the same directory would either
waste lots of spaces (with relational database) or lead to a peril
facing malicious query (with non-relational database). Besides,
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pre-configuring a device to a directory is infeasible due to
the mobility of IoT. Similar factors also restrain directories
from expeditious responding to users’ queries. Thus, if service
providers fail to stem the heterogeneity and focus on query
performance soon, IoT directory will come under enormous
pressure, regardless of how popular the service look.

There have been a few pioneering works that discuss the
metadata standardization and directory design of IoT. W3C [4]
is working on a standard Thing Description (TD) of IoT. TD
contains metadata and interaction affordances about the device
itself and is an entry point to be mounted upon the inter-
net. Despite of remarkable standardization work, describing
metadata is fundamental but not enough for directory design.
Scalable directory architecture is designed to dynamically
assign network resources and updates replicas in [2], [5].
While in addition to the standardization issue, more attention
on database and data format, with the analysis in our work,
would potentially improve the query performance. Query
performance for IoT application is discussed in [6], [7], but
their targeted scenarios are not directory services.

Correspondingly, we focus on query performance especially
for IoT directory, given insufficient work and unavoidable
challenges in this area. We investigate the initial concerns for
IoT directory design from the perspective of service providers.
To get rid of the burdensome structure and concentrate on
query performance, we propose the local directory architec-
ture, which is an abstraction of the huge global directory
model. For the standardization concern, we adopt W3C TD
format with slight modification to describe our metadata. We
then build a proof-of-concept system that consists of data
layer, setting layer, and test layer. Based on it, we evaluate the
performance of property query, aggregation query, and spatial
query for both MongoDB and MySQL databases that are
selected as the representatives of relational and non-relational
databases. We also measure CPU utilization and the impacts
of TD’s flexibility and polygon size. Additionally, we compare
the efficiency of the metadata description frameworks, JSON-
LD and RDF formats, using SPARQL queries. Although most
cases support the benefits of non-relational database, we do
measure a boundary beyond which using relational database
achieves better results. Thus, we argue that service providers
should estimate and measure the possible queries based on
different categories before making a wise choice.

Our contributions in this paper are summarized as follows.



o We analyze the design issues for IoT directory services.

« We propose a local directory architecture for future IoT
related services and implement a proof-of-concept system
adopting a W3C working standard.

« Extensive performance evaluation is conducted based on
different types of queries, databases, and data formats.

The rest of this paper is organized as follows: Section II
provides the considered system model and related issues of
IoT directory services. Section III introduces the design and
implementation of our prototype. Section IV analyzes the
query performance based on different databases and date
formats. Section V gives the related work. Finally, Section VI
concludes the paper.

II. SYSTEM MODEL

In this section, we introduce the local directory service
architecture and discuss two key points that affect query
performance: data format and database selection.

A. Directory Architecture

Future IoT directory service would allow users or IoT ap-
plications to register the profiles of devices and look them up.
The profiles are considered as standard metadata descriptions.
Directory services provide functions to process data items
using database-like CRUD operations with a focus on query
performance. Since directory services are highly divergent,
optimization of the overall query performance should make
the most of different query types.

Fig. 1 depicts a local directory architecture diagram on top
of standard IoT description. In a local network, a discovery
agent runs on an edge computation node or an IoT gateway,
which collects metadata of IoT devices as well as external
environment information (e.g. location, temperature, etc.) and
compiles them as TDs. Those TDs are then transmitted to a
nearby directory consisting of a database and three modules
named indexer, publisher, and resolver. The indexer receives
TDs, indexes them in real-time, and stores the indexed data
to the Database. The publisher is responsible for pushing data
to other related directories or synchronizing data among other
directories in the same hierarchy. As all the validated data
stored in the database, the resolver can interact with users or
applications by resolving their various queries and responding
to them after extracting the targeted results from the database.
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Fig. 1. Local directory service architecture.

Needless to say, a directory architecture can be fairly
complicated generalized upon the local service architecture.

Scaling the local directory architecture derives scalable and
hierarchical geo-distributed directory architecture. Imagine a
global directory service architecture with hierarchical direc-
tories, relevant challenges [2], [8], [9] such as ACID trans-
actions, data aggregation, name services, cross-domain access
control, are essential to address, but beyond the scope of this
paper. Local directory model works very well for our purpose
of analyzing query performance.

B. Data Description Format

A TD can be either presented in JavaScript Object Nota-
tion for Linked Data (JSON-LD) or in Resource Description
Framework (RDF) formats.

JSON-LD is initially designed to present linked data of
interoperable web resources over web-based programming
models. JSON-LD stores linked data in JSON-based storage
engines, which enables existing JSON files to be easily inter-
preted to JSON-LD. In addition, since JSON-LD is completely
compatible with JSON, the large number of well-configured
data, methods, and libraries for JSON can be reused without
any extra efforts. A sample thing description is shown in
Listing 1. This TD describes an IoT object titled “smart_light”
with unique id ending with “1234”. It defines basic security
scheme for the object and one of the properties shows the
status of object. Note that for space constraints, it is just
an example with other properties, actions, events, and some
default values intentionally omitted.

{
"@context": "https://.../td/v1l",
"id": "urn:dev:wot:com:...:1234",
"title": "smart_light",
"securityDefinitions": {
"basic_sc": {"scheme": "basic"}
}I
"security": ["basic_sc"],
"properties": {
"status": {
"type": "string",
"forms": [{"href": "http:...."}]
}
}I
"actions": {...},
"events": {...}
}

Listing 1. An example TD file with simplified fields and values.

Similarly, RDF is also a description language for repre-
senting metadata about web resources based on URI and
XML [10]. The metadata of web resource could be title,
author, redirection, etc. With the development of internet, the
concept of web resource has been soon generalized to nearly
all kinds of information identified on the web. RDF is based
on the idea of identifying things using URIs and describing
resources in terms of simple properties and corresponding
values. RDF is represented in triplets: (subject, predicate,
object). For example, < https : //zxx//1234 >< hitps :



/Jwww.w3.org/2019/wot/td#title > “smart_light” in-
dicates that a smart light with id = 1234, whose title is
“smart_light”. Apparently, a RDF file can be easily converted
to JSON-LD format, and vice versa.

Based on the compatibility and additional performance tests
in Section IV-B, we set JSON-LD as our default data format
in the following sections.

C. Database Selection

Database selection is another key concern for establishing
efficient directory services. The debates between SQL and
NoSQL databases remain a critical issue in IoT environment.
Both SQL and NoSQL databases have shown their fortes in
particular aspects. However, neither of them would completely
supersede the counterpart considering scalability, flexibility,
and database maturity.

The number of devices in a single local directory is an-
ticipated not larger than several million, since IoT directories
are often distributed based on geographical location. A single
directory may store metadata of IoT devices from a building
size to a city size. Thus, both vertical scalability favorable by
SQL database and horizontal scalability favorable by NoSQL
database are potentially needed in specific situations.

The speed of data retrieval and the flexibility of data storage
often considered as an inevitable trade-off. NoSQL beats
SQL in flexibility, whereas SQL generally reveals higher data
processing capability. Moreover, the standardization of IoT
description injects new opportunity to utilize SQL database,
since the fields of data will be formalized. For directories with
standard metadata especially, although NoSQL seems more
flexible to store and arrange heterogenous IoT data, rethinking
query performance of database deserves more consideration in
order to provide fast look-up functions.

In addition, SQL is an experienced technology and multiple
functional suites are developed to address potential issues.
Some security issues such as authentication and data con-
fidentiality are incorporated in SQL. On other hand, such
security features are yet to be addressed in NoSQL [7].
Similarly in spatial query, only a few NoSQL functions are
generated compared with that provided by SQL. Security and
geographic features are critical in IoT applications. A secured
communication channel or a suite of well-defined interfaces
are occasionally deterministic to deliver services.

III. PROTOTYPE IMPLEMENTATION

In this section, we introduce the prototype implementation
and related configuration.

To realize the local directory architecture and investigate
query performance upon it, we build a proof-of-concept sys-
tem where we use Raspberry Pi to connect to the directory
server remotely. Tab. I and Tab. II show the configuration
of the directory server and Raspberry Pi respectively. The
core component of the directory is implemented as a database
server storing 10,000 records, which is expected to be a
regular size for a local directory. Each record is a TD for
describing a physical or virtual IoT device. The directory

enables manual registration for devices and metadata retrieval
with queries by property or location. Since current devices do
not hold standard description files, we generate mock metadata
as the source of records based on the working standard. The
generated TDs are validated in [11]. Required fields inside
a record are: @context, id, title, securityDefinitions, security,
properties, actions, and events.

TABLE I
CONFIGURATION OF DIRECTORY SERVER
Category Specification
CPU Intel CORE 17-8750, 6 cores, 2.2GHz
System Ubuntu 18.04.2 LTS
Storage 8GB RAM, 256GB Hard Disk
Database MySQL 5.7.27 [12], MongoDB 3.6.3 [13]
TABLE II
CONFIGURATION OF RASPBERRY P1
Category Specification
CPU ARMV7 Processor, 4 cores, 1.2GHz
System Raspbian GNU/Linux 9
Storage 1GB RAM, 32GB microSD
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Fig. 2. The system consists of the directory server running in a laptop and a
Raspberry Pi querying metadata remotely.

As shown in Fig. 2, the system is composed of three
layers: data layer, setting layer, and testing layer. In the
data layer, metadata are generated in IoT devices where we
use the Raspberry Pi to represent the general IoT devices.
TDs are produced and updated by the generator running
inside the data layer. The data are delivered to the collector
running on the server. In the setting layer, devices generate a
bunch of queries for testing based on three specific types of
queries: property query, aggregation query, and polygon query.
On the server side, metadata are validated as all necessary
fields are properly provided. Thing description translator then
transforms metadata to either JSON-LD format or RDF/XML
format. Then based on user-identified preference of SQL or
NoSQL database, thing descriptions with JSON-LD format
are pushed to MySQL or MongoDB respectively. Incidentally,
JSON-LD format data are stored in SQL table by reserving
the space to conquer the flexibility issues, which will be
discussed in Section IV. In our tests, we conduct an additional
experiment to compare query performance for different data
formats bypassing configuring a RDF database. Querying and
responding are running in the testing layer. The query issuer
takes the generated queries and performs look-up query to
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Fig. 3. Query performance on property query, aggregation query, spatial query for local directory with different flexibility of TDs.

MySQL or MongoDB databases. The receiver waits for the
response, parses it, and outputs the results. The performance
is monitored during the former process. Since lookup func-
tions in directory services require high throughput and low
response time, we monitor the response time per query as the
performance indicator from time to time in our tests.

IV. QUERY PERFORMANCE ANALYSIS

In this section, we present and analyze our evaluation
regarding database specification and data description format.
We compare SQL database and NoSQL database according
to different query types, features, and CPU utilization. Two
kinds of thing description format, JSON-LD and RDF, are
also evaluated as a supplement.

A. Database Specification

Since IoT devices are highly variable and each device could
be configured with distinct fields, formatting metadata into
SQL tables requires some sort of unification. In order to
reserve spaces for SQL table, we define the flexibility of
thing description in Def. 1. The flexibility of TD gives an
upper bound of the number of properties, actions, or events.
In practice, if a TD exceeds the flexibility limit, the directory
drops the exceeding fields in the validation process.

Definition 1 (Flexibility of Thing Description). The flexibility
of a thing description is defined as the largest number of
properties, actions, or events allowed by directory databases,
i.e. flexibility = max{#properties, #actions, #events}.

Location information is a key feature in IoT scenarios
given the high mobility and location-sensitive services in
IoT. Substantial location-based queries would impose a heavy
load to IoT directory. The performance of polygon query
plays an important role in directory services. Correspondingly,
our metadata principle requires each TD has an explicitly
defined geographic location field with position coordinates (i.e.
longitude and latitude). For easy understanding, we formalize
the size of a polygon as Def. 2.

Definition 2 (Size of a Polygon). The number of vertices of
a polygon required to accurately represent a geographic area
is referred as the size of the polygon.

Note that it is impossible to achieve 100% accuracy when
describing a geographic area. In practice, a polygon in small
size usually presents a regular area such as a building or

a campus, while a polygon in large size usually defines a
irregular area such as a district or a city. As an example in
Fig.4, a rectangular polygon shapes Columbia University with
size = 5 and we quite roughly shapes Manhattan with the
polygon whose size = 55.

(a). Polygon for Columbia University (b). Polygon for Manhattan

Fig. 4. Sample polygons with small size and large size.

In our experiments, we first evaluate the base case with
flexibility = 1, where each device has just one property,
one action, and one event respectively. Then we extend the
experiments to flexibility = 5, where each record randomly
has up to five properties, five actions, and five events. There-
fore, if these data are stored in MySQL, some blank fields
are left inside a SQL table. In both cases, the directory loads
ten thousands of TDs and we independently test property
query, aggregation query, and spatial query. After each round
of query testing, we clear the query cache in the database. The
density of spatial queries is set to 8 objects per query and the
polygon size is set to 5. The queries we used to compare
query performance are given in Tab. III. The performance
is represented by processing time which is measured as the
timespan from issuing a query to fetching the entire response
as a tuple. Thus, the processing time can be expressed by the
following formula:

processing time = round trip time + retrieval time

TABLE II
QUERIES SELECTED IN OUR TESTS

Type of Query
Property Query
Aggregation Query
Spatial Query

Description
Find the devices with a specific title.
Count the devices supporting a specific protocol.
Find the devices inside a specific polygon.

Fig. 3 shows the comparisons for processing time of prop-
erty query, aggregation query, and spatial query. Although
MySQL performs always better on aggregation query, Mon-
goDB responds much faster on property query and spatial
query than MySQL. When the flexibility increases to 5, Mon-



goDB outperforms MySQL even obviously on property query
and spatial query. The impact of processing time caused by
the different flexibility reflects the resilience of databases. The
less processing time increases, the better resilience database
achieves. For aggregation query, MySQL is always around 1.3
times outperforms than MongoDB, which might be considered
as a mild performance loss of MongoDB as the flexibility
of TD increases. Note that flexibility = 1 means the
fields inside tables are mandated, which is the worst case for
MongoDB in the comparisons. Thus, we can conclude that
MongoDB achieves at least 1.9 times better performance than
MySQL for property query and spatial query. Additionally,
MongoDB achieves 2.9 and 2.7 times better resilience for
property query and spatial query on average, without any
resilience loss in aggregation query.

In Fig. 5, we measure CPU utilization rates in the server
side where each type of query are tested across eight minutes.
It turns out that MongoDB exerts slight more CPU pressure
on aggregation query while saves around 60% CPU utilization
on other queries.
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Fig. 5. CPU utilization ratio for three types of query measured in the server.

According to the analysis above, most of the results are
in favor of MongoDB. However, MySQL truly handles ag-
gregation query very well. To make the best of that, Fig.
6 measures the processing time against the percentage of
aggregation query where property query and spatial query
evenly take the rest proportion. The non-overlapping area
intuitively presents the benefit of different database. As the
proportion of aggregation queries increases over the boundary
(63% in Fig 6(a) and 77% in Fig 6(b)), MySQL potentially
becomes a better choice.
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Fig. 6. Impact of proportion of aggregation query.

With the performance testing above, neither of them could
evidently perform better than the other one in all aspects,
which holds our claim that selection of databases should con-
sider the dedicated IoT behaviour for directory services. Thus,

a smart directory provider would estimate the proportions of
queries in different types based on their history statistics, rather
than recklessly start building directories. That said, if 30%
performance loss on aggregation query is acceptable, non-
relational database would be a preferable choice for query
performance concern.

In addition, polygon size is also a crucial factor mattering
the performance of spatial query. During our tests, we find
the performance is not much differentiated for polygon sizes
inside a small interval, which implies that query performance
is not highly sensitive to polygon size if it is restrained to
a moderate interval. For space constrains, we only show the
performance of two databases against large interval choices in
Fig. 7. We present performance as the number of queries per
second versus variable polygon sizes. The density of spatial
queries is set as around 30 objects per query. The query
performance goes down when the polygon size increases at
a large step. As the polygon size reaches 365, MongoDB is
2.35 times faster than MySQL.
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Fig. 7. Spatial query performance versus polygon size.

B. Description Scheme Specification

JSON-LD and RDF are suggested by W3C to be the
standard data formats for thing descriptions. As a supplement,
we show an additional reason that we adopt JSON-LD as our
default description format in the directory system besides its
compatibility with databases.

Since both two formats can be queried by SPARQL, it raises
our interest to see the differences on query performance. Using
Apache Jena framework [14], we perform SPARQL query to
the read same TD record, visualized in Fig. 8 stored in JSON-
LD and RDF/XML formats.

id: urn:dev:wot:com:example... O

basic_sc O O properties
6890077 title: camera O
nosec_sc O O actions
nosec_sc Q securityDefinitions Q 6214674
type: point Q O events

location O

7688805
coordinates Q

Fig. 8. Visualization of the RDF file queried in our testing.

In Fig. 9, we periodically call the look up in the testing
interval. The processing time of JSON-LD is steadily less than
that of RDF/XML with only a few exceptions. On average,
accessing JSON-LD files is 24% faster than accessing the
same information presented in RDF format. For directories
using SPARQL query, JSON-LD likely becomes an efficient



choice based on our test. Note that although this test indicates
that JSON-LD performs better in simple reading, we make no
claims about complicated queries and other aspects.
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Fig. 9. Read performance for JSON-LD versus RDF by SPARQL queries.

V. RELATED WORK

Directory Service for IoT: A directory service is a service
that provides read-optimized access to general data about
entities, such as people, corporations, and computers [15].
Traditional directory service [16] achieves satisfied read speed,
while does not support variable queries needed by IoT, such
as polygon query. Thingweb [11] is an ongoing project which
aims to build standard directory services based on both HTTP
and COAP, yet it is not necessarily represents the needs of the
mass market given various [oT scenarios and diverse databases
used in practice. Scalable directory service is designed in [2],
[5], which aims to manage massive records and support fast
lookup for IoT applications. Instead of scalability, comparing
query performance is the major concern in our work and we
consider location-based query as a key feature for mobile IoT.

IoT Metadata Description: W3C is drafting the standard-
ization for thing description (TD) [4]. A thing description
describes the metadata and interfaces of a physical or vir-
tual entity. Thing description is recommended to be encoded
in JSON-LD or RDF formats for machine-understandability.
Given the potential limitations of 10T, the thing description file
can be hosted by the thing itself or hosted in an external gate-
way or even cloud. A TD instance has four main components:
textual metadata about the thing itself, a set of interaction
affordances (i.e. properties, actions, and events) that indicate
how the thing can be used, schemas for the data exchanged
with the thing, and web links to express any formal or informal
relation to other things or documents on the internet.

Database Comparison: There are a few existing works
comparing SQL and NoSQL database [6], [7], [17]. Although
fundamental achievements are delivered, their works either
target some typical sensing scenarios or cannot be applied
to directory services. Read, write, and delete performances
for sensors with fixed data are evaluated in [6]. In [7],
different databases inside the IoT applications are compared.
Although MongoDB shows some sort of deficiency, it out-
performs Cassandra and Riak when measuring read latency
[18]. Geographic query performance under concurrent users
is analyzed in [17]. Our work mainly focuses on the future
directory analysis, which stores standard IoT description files
and dedicates query performance.

VI. CONCLUSION

The rapid growth of IoT brings substantial related metadata,
which renders providers carefully designing their directories.
With a focus on query performance, we discuss IoT directory
design issues including local directory architecture, database
selection, data format selection. In order to achieve higher
quality of service, directory designers are supposed to estimate
query performance based on the proportions of different query
types and utilize proper database to store standard metadata.
Our analysis and evaluation based on the proof-of-concept sys-
tem are the initial practice for this principle. While additional
work is required to build the IoT directory in industrial grade,
we believe that our measurement on the prototype paves the
path for widespread approaches in practice.

In the future, we will extend our directory prototype and
build the scalable geo-distributed system.
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