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ABSTRACT

In cities with tall buildings, emergency responders need an accurate floor level
location to find 911 callers quickly. We introduce a system to estimate a victim’s
floor level via their mobile device’s sensor data in a two-step process. First, we
train a neural network to determine when a smartphone enters or exits a build-
ing via GPS signal changes. Second, we use a barometer equipped smartphone to
measure the change in barometric pressure from the entrance of the building to the
victim’s indoor location. Unlike impractical previous approaches, our system is
the first that does not require the use of beacons, prior knowledge of the building
infrastructure, or knowledge of user behavior. We demonstrate real-world feasi-
bility through 63 experiments across five different tall buildings throughout New
York City where our system predicted the correct floor level with 100% accuracy.

1 INTRODUCTION

Indoor caller floor level location plays a critical role during 911 emergency calls. In one use case,
it can help pinpoint heart attack victims or a child calling on behalf of an incapacitated adult. In
another use case, it can help locate firefighters and other emergency personnel within a tall or burning
building. In cities with tall buildings, traditional methods that rely on GPS or Wi-Fi fail to provide
reliable accuracy for these situations. In these emergency situations knowing the floor level of
a victim can speed up the victim search by a factor proportional to the number of floors in that
building. In recent years methods that rely on smartphone sensors and Wi-Fi positioning (Xue et al.,
2017) have been used to formulate solutions to this problem.

In this paper we introduce a system that delivers an estimated floor level by combining deep learn-
ing with barometric pressure data obtained from a Bosch bmp280 sensor designed for “floor level
accuracy” (Bosch, 2016) and available in most smartphones today'. We make two contributions:
the first is an LSTM (Hochreiter & Schmidhuber, 1997) trained to classify a smartphone as either
indoors or outdoors (I0) using GPS, RSSI, and magnetometer sensor readings. Our model improves
on a previous classifier developed by (Avinash et al., 2010). We compare the LSTM against feed-
forward neural networks, logistic regression, SVM, HMM and Random Forests as baselines. The
second is an algorithm that uses the classifier output to measure the change in barometric pressure of
the smartphone from the building entrance to the smartphone’s current location within the building.
The algorithm estimates the floor level by clustering height measurements through repeated building
visits or a heuristic value detailed in section 4.5.

We designed our method to provide the most accurate floor level estimate without relying on external
sensors placed inside the building, prior knowledge of the building, or user movement behavior. It
merely relies on a smartphone equipped with GPS and barometer sensors and assumes an arbitrary

'As of June 2017 the market share of phones in the US is 44% Apple and 29.1% Samsung (ComScore,
2017). 74% are iPhone 6 or newer (Comscore, 2017). The iPhone 6 has a barometer (Apple, 2017). Models
after the 6 still continue to have a barometer. For the Samsung phones, the Galaxy s5 is the most popular
(Piejko, 2017), and has a barometer (Samsung, 2014)
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user could use our system at a random time and place. We offer an extensive discussion of potential
real-world problems and provide solutions in (appendix B).

We conducted 63 test experiments across six different buildings in New York City to show that the
system can estimate the floor level inside a building with 65.0% accuracy when the floor-ceiling
distance in the building is unknown. However, when repeated visit data can be collected, our simple
clustering method can learn the floor-ceiling distances and improve the accuracy to 100%. All code,
data and data collection app are available open-source on github.?.

2 RELATED WORK

Current approaches used to identify floor level location fall into two broad categories. The first
method classifies user activity, i.e., walking, stairs, elevator, and generates a prediction based on
movement offset (Avinash et al., 2010) (Song et al., 2014). The second category uses a barometer
to calculate altitude or relative changes between multiple barometers (Parviainen et al., 2008) (Li
et al., 2013) (Xia et al., 2015). We note that elevation can also be estimated using GPS. Although
GPS works well for horizontal coordinates (latitude and longitude), GPS is not accurate in urban
settings with tall buildings and provides inaccurate vertical location (Lammel et al., 2009).

Song et al. (2014) describe three modules which model the mode of ascent as either elevator, stairs or
escalator. Although these methods show early signs of success, they required infrastructure support
and tailored tuning for each building. For example, the iOS app (Wonsang, 2014) used in this
experiment requires that the user state the floor height and lobby height to generate predictions.

Avinash et al. (2010) use a classifier to detect whether the user is indoors or outdoors. Another
classifier identifies whether a user is walking, climbing stairs or standing still. For the elevator
problem, they build another classifier and attempt to measure the displacement via thresholding.
While this method shows promise, it needs to be calibrated to the user’s step size to achieve high
accuracy, and the floor estimates rely on observing how long it takes a user to transition between
floors. This method also relies on pre-training on a specific user.

Li et al. (2013) conduct a study of the feasibility of using barometric pressure to generate a predic-
tion for floor level. The author’s first method measures the pressure difference between a reference
barometer and a “roving” barometer. The second method uses a single barometer as both the ref-
erence and rover barometer, and sets the initial pressure reading by detecting Wi-Fi points near the
entrance. This method also relies on knowing beforehand the names of the Wi-Fi access points near
the building entrance.

Xia et al. (2015) equip a building with reference barometers on each floor. Their method thus allows
them to identify the floor level without knowing the floor height. This technique also requires fitting
the building with pressure sensors beforehand.

3 DATA DESCRIPTION

To our knowledge, there does not exist a dataset for predicting floor heights. Thus, we built an i0S
app named Sensory? to aggregate data from the smartphone’s sensors. We installed Sensory on an
iPhone 6s and set to stream data at a rate of 1 sample per second. Each datum consisted of the
following: indoors, created at, session id, floor, RSSI strength, GPS latitude, GPS longitude, GPS
vertical accuracy, GPS horizontal accuracy, GPS course, GPS speed, barometric relative altitude,
barometric pressure, environment context, environment mean bldg floors, environment activity, city
name, country name, magnet X, magnet y, magnet z, magnet total.

Each trial consisted of a continuous period of Sensory streaming. We started and ended each trial
by pressing the start button and stop button on the Sensory screen. We separated data collection by
two different motives: the first to train the classifier, the second to make floor level predictions. The
same sensory setup was used for both with two minor adjustments: 1) Locations used to train the

Zhttps://github.com/williamFalcon/Predicting-floor-level-for-911-Calls-with-Neural-Networks-and-
Smartphone-Sensor-Data
3https://github.com/williamFalcon/sensory
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classifier differed from locations used to make building predictions. 2) The indoor feature was only
used to measure the classifier accuracy in the real world.

3.1 DATA COLLECTION FOR INDOOR-OUTDOOR CLASSIFIER

Our system operates on a time-series of sensor data collected by an iPhone 6s. Although the iPhone
has many sensors and measurements available, we only use six features as determined by forests
of trees feature reduction (Kawakubo & Yoshida, 2012). Specifically, we monitor the smartphone’s
barometric pressure P, GPS vertical accuracy GV, GPS horizontal accuracy GH, GPS Speed G5,
device RSSI* level rssi and magnetometer total reading M. All these signals are gathered from the
GPS transmitter, magnetometer and radio sensors embedded on the smartphone. Appendix table 5
shows an example of data points collected by our system. We calculate the total magnetic field
strength from the three-axis x, y, z provided by the magnetometer by using equation 1. Appendix
B.5 describes the data collection procedure.

M =+/22+ 92+ 22 (D
3.1.1 DATA COLLECTION FOR FLOOR PREDICTION

The data used to predict the floor level was collected separately from the 10 classifier data. We
treat the floor level dataset as the testing set used only to measure system performance. We gathered
63 trials among five different buildings throughout New York City to explore the generality of our
system. Our building sampling strategy attempts to diversify the locations of buildings, building
sizes and building material. The buildings tested explore a wide-range of possible results because of
the range of building heights found in New York City (Appendix 4). As such, our experiments are a
good representation of expected performance in a real-world deployment.

The procedure described in appendix B.6 generates data used to predict a floor change from the
entrance floor to the end floor. We count floor levels by setting the floor we enter to 1. This trial can
also be performed by starting indoors and walking outdoors. In this case, our system would predict
the person to be outdoors. If a building has multiple entrances at different floor levels, our system
may not give the correct numerical floor value as one would see in an elevator. Our system will
also be off in buildings that skip the 13th floor or have odd floor numbering. The GPS lag tended to
be less significant when going from inside to outside which made outside predictions trivial for our
system. As such, we focus our trials on the much harder outside-to-inside prediction problem.

3.1.2 DATA COLLECTION FOR FLOOR CLUSTERING

To explore the feasibility and accuracy of our proposed clustering system we conducted 41 separate
trials in the Uris Hall building using the same device across two different days. We picked the floors
to visit through a random number generator. The only data we collected was the raw sensor data and
did not tag the floor level. We wanted to estimate the floor level via entirely unsupervised data to
simulate a real-world deployment of the clustering mechanism. We used both the elevator and stairs
arbitrarily to move from the ground floor to the destination floor.

4 METHODS

In this section, we present the overall system for estimating the floor level location inside a build-
ing using only readings from the smartphone sensors First, a classifier network classifies a device
as either indoors or outdoors. The next parts of the algorithm identify indoor/outdoor transitions
(I10), measure relative vertical displacement based on the device’s barometric pressure, and estimate
absolute floor level via clustering.

4.1 DATA FORMAT

From our overall signal sequence {z1, 2, Zj, ..., T } We classify a set of d consecutive sensor read-
ings X; = {z1, 22, ...,zq4} as y = 1 if the device is indoors or y = 0 if outdoors. In our experiments

* As measured by the iOS status bar
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we use the middle value z; of each X as the y label such that X; = {«;_1,z;, 2,41} and y; = z;.
The idea is that the network learns the relationship for the given point by looking into the past and
future around that point. This design means our system has a lag of d/2 — 1 second before the net-
work can give a valid prediction. We chose d = 3 as the number of points in X by random-search
(Bergstra & Bengio, 2012) over the point range [1, 30]. Fixing the window to a small size d allows
us to use other classifiers as baselines to the LSTM and helps the model perform well even over
sensor reading sequences that can span multiple days.

4.2 INDOOR-OUTDOOR CLASSIFICATION NEURAL NETWORKS

Figure 1: LSTM network architecture. A 3-layer LSTM. Inputs are sensor readings for d consecutive
time-steps. Target is y = 1 if indoors and y = 0 if outdoors.

The first key component of our system is a classifier which labels each device reading as either
indoors or outdoors (I0). This critical step allows us to focus on a subset of the user’s activity,
namely the part when they are indoors. We conduct our floor predictions in this subspace only.
When a user is outside, we assume they are at ground level. Hence our system does not detect floor
level in open spaces and may show a user who is on the roof as being at ground level. We treat these
scenarios as edge-cases and focus our attention on floor level location when indoors.

Although our baselines performed well, the neural networks outperformed on the test set. Further-
more, the LSTM serves as the basis for future work to model the full system within the LSTM;
therefore, we use a 3-layer LSTM as our primary classifier. We train the LSTM to minimize the
binary cross-entropy between the true indoor state y of example ¢ and the LSTM predicted indoor
state LSTM(X ) = ¢ of example 4. This objective cost function C' can be formulated as:
1 n
Clyirii) = — > —(wilog(s) + (1 = yi)log(1 —5) 2)

i=1

Figure 4.2 shows the overall architecture. The final output of the LSTM is a time-series 7' =
{t1,t2, ..., t;, tn} where each t; = 0,t; = 1 if the point is outside or inside respectively.

The IO classifier is the most critical part of our system. The accuracy of the floor predictions depends
on the IO transition prediction accuracy. The classifier exploits the GPS signal, which does not cut
out immediately when walking into a building. We call this the "lag effect.” The lag effect hurts our
system’s effectiveness in 1-2 story houses, glass buildings, or ascend methods that may take the user
near a glass wall.

A substantial lag means the user could have already moved between floors by the time the classifier
catches up. This will throw off results by 1-2 floor levels depending on how fast the device has
moved between floors. The same effect is problematic when the classifier prematurely transitions
indoors as the device could have been walking up or down a sloped surface before entering the
building. We correct for most of these errors by looking at a window of size w around the exact
classified transition point. We use the minimum device barometric pressure in this window as our
po. We set w = 20 based on our observations of lag between the real transition and our predicted
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transition during experiments. This location fix delay was also observed by (Nawarathne et al.,
2014) to be between 0 and 60 seconds with most GPS fixes happening between 0 and 20 seconds.

4.3 INDOOR-OUTDOOR TRANSITION DETECTOR

O=out 1=in

S, Vi

T 0010001011111111

5 5, v,

Figure 2: To find the indoor/outdoor transitions, we convolve filters V7, V5 across timeseries of
Indoor/Outdoor predictions 7" and pick each subset s; with a Jaccard distance > 0.4. The transition
t; is the middle index in set s;.

Given our LSTM IO predictions, we now need to identify when a transition into or out of a building

occurred. This part of the system classifies a sub-sequence s; = Tj.;y|y;| of LSTM predictions as
either an IO transition or not. Our classifier consists of two binary vector masks V1, V5
Vl = [1717171717070707()’0] (3)
V2 = [0707070703171717171] (4)

that are convolved across T to identify each subset s; € .S at which an IO transition occurred. Each
subset s; is a binary vector of in/out predictions. We use the Jaccard similarity (Choi et al., 2010) as
an appropriate measure of distance between V1, V5 and any s;.

As we traverse each subset s; we add the beginning index b; of s; to B when the Jaccard distances
J1 > 0.4 or Jy > 0.4 as given by Equation 5.

We define J;, j = {1,2} by

_ |s: N V1
Isi| + [Vj| = [si N V]

Jj=J(s:i,Vj) )

The Jaccard distances .Jy, J» were chosen through a grid search from [0.2,0.8]. The length of the
masks Vi, Vo were chosen through a grid search across the training data to minimize the number of
false positives and maximize accuracy.

Once we have each beginning index b; of the range s;, we merge nearby b;s and use the middle
of each set b as an index of 7" describing an indoor/outdoor transition. At the end of this step, B
contains all the IO transitions b into and out of the building. The overall process is illustrated by
Figure 2 and described in Algorithm 1.

4.4 ESTIMATING THE DEVICE’S VERTICAL HEIGHT

This part of the system determines the vertical offset measured in meters between the device’s in-
building location, and the device’s last known IO transition. In previous work (Song et al., 2014)
suggested the use of a reference barometer or beacons as a way to determine the entrances to a build-
ing. Our second key contribution is to use the LSTM IO predictions to help our system identify these
indoor transitions into the building. The LSTM provides a self-contained estimator of a building’s
entrance without relying on external sensor information on a user’s body or beacons placed inside a
building’s lobby.

This algorithm starts by identifying the last known transition into a building. This is relatively
straightforward given the set of 10 transitions B produced by the previous step in the system (section
4.3). We can simply grab the last observation b,, € B and set the reference pressure pg to the lowest
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device pressure value within a 15-second window around b,,. A 15-second window accounts for the
observed 15-second lag that the GPS sensor needs to release the location lock from serving satellites.

The second datapoint we use in our estimate is the device’s current pressure reading p;. To generate
the relative change in height ma we can use the international pressure equation (6) (Milette &
Stroud, 2012).

P 1
ma = ffioor(po, 1) = 44330(1 — (]71)5.255) ©)
0
As a final output of this step in our system we have a scalar value ma which represents the relative

height displacement measured in meters, between the entrance of the building and the device’s
current location.

4.5 RESOLVING AN ABSOLUTE FLOOR LEVEL

This final step converts the ma measurement from the previous step into an absolute floor level.
This specific problem is ill-defined because of the variability in building numbering systems. Certain
buildings may start counting floors at 1 while others at 0. Some buildings also avoid labeling the
13th floor or a maintenance floor. Heights between floors such as lobbies or food areas may be larger
than the majority of the floors in the building. It is therefore tough to derive an absolute floor number
consistently without prior knowledge of the building infrastructure. Instead, we predict a floor level
indexed by the cluster number discovered by our system.

We expand on an idea explored by Xia et al. (2015) to generate a very accurate representation of
floor heights between building floors through repeated building visits. The authors used clusters of
barometric pressure measurements to account for drift between sensors. We generalize this concept
to estimate the floor level of a device accurately. First, we define the distance between two floors
within a building d; ; as the tape-measure distance from carpet to carpet between floor 4 and floor
7. Our first solution aggregates ma estimates across various users and their visits to the building.
As the number M of ma’s increases, we approximate the true latent distribution of floor heights
which we can estimate via the observed ma measurement clusters K. We generate each cluster
k; € K by sorting all observed ma’s and grouping points that are within 1.5 meters of each other.
We pick 1.5 because it is a value which was too low to be an actual d; ; distance as observed from
an 1107 building dataset of New York City buildings from the Council on tall buildings and urban
habitat (sky, 2017). During prediction time, we find the closest cluster & to the device’s ma value
and use the index of that cluster as the floor level. Although this actual number may not match the
labeled number in the building, it provides the true architectural floor level which may be off by one
depending on the counting system used in that building. Our results are surprisingly accurate and
are described in-depth in section 5.

When data from other users is unavailable, we simply divide the ma value by an estimator 7 from
the sky (2017) dataset. Across the 1107 buildings, we found a bi-modal distribution corresponding
to office and residential buildings. For residential buildings we let 1, = 3.24 and m, = 4.02 for
office buildings, Figure 6 shows the dataset distribution by building type. If we don’t know the type
of building, we use /» = 3.63 which is the mean of both estimates. We give a summary of the
overall algorithm in the appendix (2).

5 EXPERIMENTS AND RESULTS

We separate our evaluation into two different tasks: The indoor-outdoor classification task and the
floor level prediction task. In the indoor-outdoor detection task we compare six different models,
LSTM, feedforward neural networks, logistic regression, SVM, HMM and Random Forests. In the
floor level prediction task, we evaluate the full system.

5.1 INDOOR-OUTDOOR CLASSIFICATION RESULTS

In this first task, our goal is to predict whether a device is indoors or outdoors using data from the
smartphone sensors.
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Table 1: Model performance on validation and training set.

Model Validation Accuracy Test Accuracy
LSTM 0.923 0.903
Feedforward 0.954 0.903
SVM 0.956 0.876
Random Forest 0.974 0.845
Logistic Regression  0.921 0.676
HMM 0.976 0.631

All indoor-outdoor classifiers are trained and validated on data from 35 different trials for a total of
5082 data points. The data collection process is described in section 3.1. We used 80% training,
20% validation split. We don’t test with this data but instead test from separately collected data
obtained from the procedure in section 3.1.1.

We train the LSTM for 24 epochs with a batch size of 128 and optimize using Adam (Kingma & Ba,
2014) with a learning rate of 0.006. We chose the learning-rate, number of layers, d size, number of
hidden units and dropout through random search (Bergstra & Bengio, 2012). We designed the LSTM
network architecture through experimentation and picked the best architecture based on validation
performance. Training logs were collected through the python test-tube library (Falcon, 2017) and
are available in the GitHub repository.

LSTM architecture: Layers one and two have 50 neurons followed by a dropout layer set to 0.2.
Layer 3 has two neurons fed directly into a one-neuron feedforward layer with a sigmoid activation
function.

Table 1 gives the performance for each classifier we tested. The LSTM and feedforward models
outperform all other baselines in the test set.

5.2 FLOOR LEVEL PREDICTION RESULTS

Table 2: Floor level prediction error across 63 test trials. The left side of each column shows accu-
racy when floor to ceiling height m = 4.02. The right side shows accuracy when m is conditioned
on the building. Exact floor column shows the percent of the 63 trials which matched the targer floor
exactly. The £1 column is the percent of trials where the prediction was off by one.

Classifier (m=4.02 | m=bldg conditional) Exact Floor =+ 1 floor > + 1 floor

LSTM 0.65] 1.0 03310  0.016]0
Feedforward 0.65]1.0 0330 0.016]0
SVM 0.65]1.0 0.33]0 0.016]0
Random Forest 0.65]1.0 033]0 0.016]|0
Logistic Regression 0.65]1.0 0330 0.016]0
HMM 0.61910.984 0.365|0 0.016]0.015

We measure our performance in terms of the number of floors traveled. For each trial, the error
between the target floor f and the predicted floor f is their absolute difference. Our system does
not report the absolute floor number as it may be different depending on where the user entered the
building or how the floors are numbered within a building. We ran two tests with different m values.
In the first experiment, we used m = m, = 4.02 across all buildings. This heuristic predicted the
correct floor level with 65% accuracy. In the second experiment, we used a specific m value for
each individual building.

This second experiment predicted the correct floor with 100% accuracy. These results show that a
proper m value can increase the accuracy dramatically. Table 2 describes our results. In each trial,
we either walked up or down the stairs or took the elevator to the destination floor, according to the
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procedure outlined in section 3.1.1. The system had no prior information about the buildings in
these trials and made predictions solely from the classifier and barometric pressure difference.

5.3 FLOOR LEVEL CLUSTERING RESULTS

Table 3: Estimated distances d; ; between floor ¢ and floor j in the Uris Hall building.

Floor range Estimated d; ; Actual d; ;

1-2 5.17 5.46
2-3 35 3.66
3-4 34 3.66
4-5 3.45 35
5-6 3.38 3.5
6-7 35 3.5
7-8 347 35

In this section, we show results for estimating the floor level through our clustering system. The
data collected here is described in detail in section 3.1.2. In this particular building, the first floor
is 5 meters away from the ground, while the next two subsequent floors have a distance of 3.65
meters and remainder floors a distance of 3.5. To verify our estimates, we used a tape measure in
the stairwell to measure the distance between floors from “carpet to carpet.” Table 3 compares our
estimates against the true measurements. Figure 5 in the appendix shows the resulting k& clusters
from the trials in this experiment.

6 FUTURE DIRECTION

Separating the 10 classification task from the floor prediction class allows the first part of our sys-
tem to be adopted across different location problems. Our future work will focus on modeling the
complete problem within the LSTM to generate floor level predictions from raw sensor readings as
inspired by the works of Ghosh et al. (2016) and (Henderson et al., 2017).

7 CONCLUSION

In this paper we presented a system that predicted a device’s floor level with 100% accuracy in 63
trials across New York City. Unlike previous systems explored by Avinash et al. (2010), Song et al.
(2014), Parviainen et al. (2008), Li et al. (2013), Xia et al. (2015), our system is completely self-
contained and can generalize to various types of tall buildings which can exceed 19 or more stories.
This makes our system realistic for real-world deployment with no infrastructure support required.

We also introduced an LSTM, that solves the indoor-outdoor classification problem with 90.3%
accuracy. The LSTM matched our baseline feedforward network, and outperformed SVMs, random
forests, logistic regression and previous systems designed by Radu et al. (2014) and Zhou et al.
(2012). The LSTM model also serves as a first step for future work modeling the overall system
end-to-end within the LSTM.

Finally, we showed that we could learn the distribution of floor heights within a building by aggre-
gating ma measurements across different visits to the building. This method allows us to generate
precise floor level estimates via unsupervised methods. Our overall system marries these various
elements to make it a feasible approach to speed up real-world emergency rescues in cities with tall
buildings.
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A APPENDIX

B REAL-WORLD CONSIDERATIONS

In this section we explore potential pitfalls of our system in a real-world scenario and offer potential
solutions.

B.1 EXTERNAL PRESSURE CHANGES AND PRESSURE DRIFT

Weather adjusted pressure

102.2 = Drift adjustad
Device pressure

= Reference pressure

02.0

[}
(=%
e
£ 1018
v
5
w
@
v
£ 1016

101.4

e ————
o 100 200 00 400

Measurement index

Figure 3: Adjusting device pressure from readings from a nearby station. The readings were mostly
adjusted but the lack of resolution from the reference station made the estimate noisy throughout the
experiment.

One of the main criticisms for barometric pressure based systems is the unpredictability of baromet-
ric pressure as a sensor measurement due to external factors and changing weather conditions. Crit-
ics have cited the discrepancy between pressure-sealed buildings and their environments, weather
pattern changes, and changes in pressure due to fires (Roberson, 2014).

Li et al. (2013) used a reference weather station at a nearby airport to correct weather-induced
pressure drift. They showed the ability to correct weather drift changes with a maximum error of 2.8
meters. Xia et al. (2015) also used a similar approach but instead adjust their estimates by reading
temperature measurements obtained from a local weather station. We experimented with the method
described by (Li et al., 2013) and conducted a single trial as a proof of concept. We measured the
pressure reading p from an iPhone device on a table over 7 hours while simultaneously querying
weather data w every minute. By applying the offset equation 7 we attempt to normalize the p;
reading to the first pg reading generated by the device

Po ~ |w; — wo| + p; @)

we were able to stay close to the initial py estimate over the experiment period. We did find that the
resolution from the local weather station needed to be fine-grained enough to keep the error from
drifting excessively. Figure 3 shows the result of our experiment.

B.2 TIME SENSITIVITY

Our method works best when an offset ma is predicted within a short window of making a transition
within the building. (Li et al., 2013) explored the stability of pressure in the short term and found
the pressure changed less than 0.1 hPa every 10 minutes (Li et al., 2013) on average. The primary
challenge arises in the case when a user does not leave their home for an extended period of hours.
In this situation, we can use the previously discussed weather offset method from section B.1, or via
indoor navigation technology. We can use the device to list Wi-Fi access points within the building
and tag each cluster location using RSSI fingerprinting techniques as described by Zhang et al.
(2015) Ergen et al. (2014) and Tahat et al. (2016). With these tags in place, we can use the average
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floor level tags of the nearest n Wi-Fi access points once the delay between the building entrance and
the last user location is substantial. We could not test this theory directly because of the limitations
Apple places on their API to show nearby Wi-Fi access points to non-approved developers.

B.3 DIFFERENCES BETWEEN BAROMETERS

Another potential source of error is the difference between barometric pressure device models. Xia
et al. (2015) conducted a thorough comparison between seven different barometer models. They
concluded that although there was significant variation between barometer accuracies, the errors
were consistent and highly correlated with each device. They also specifically mentioned that the
Bosch BMP180 barometer, the older generation model to the one used in our research, provided
the most accurate measurements from the other barometers tested. In addition, Li et al. (2013) also
conducted a thorough analysis using four different barometers. Their results are in line with Xia
et al. (2015), and show a high correlation and a constant offset between models. They also noted
that within the same model (Bosch BMP180) there was also a measurement variation but it was
constant (Li et al., 2013).

B.4 BATTERY IMPACT

Our system relies on continuous GPS and motion data collected on the mobile device. Continuously
running the GPS and motion sensor on the background can have an adverse effect on battery life.
Zhou et al. (2012) showed that GPS drained the battery roughly double as fast across three different
devices. Although GPS and battery technology has improved dramatically since 2012, GPS still has
a large adverse effect on battery life. This effect can vary across devices and software implemen-
tation. For instance, on iOS, the system has a dedicated chip that continuously reads device sensor
data (Estes, 2013). This approach allows the system to stream motion events continuously without
rapidly draining battery life. GPS data, however, does not have the same hardware optimization and
is known to drain battery life rapidly. Nawarathne et al. (2014) conducted a thorough study of the
impact of running GPS continuously on a mobile device. They propose a method based on adjusted
sampling rates to decrease the negative impact of GPS on battery life. For real-world deployment,
this approach would still yield fairly fine-grained resolution and would have to be tuned by a device
manufacturer for their specific device model.
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B.5 DATA COLLECTION PROCEDURE FOR INDOOR-OUTDOOR CLASSIFIER DATA

1) Start outside a building. 2) Turn Sensory on, set indoors to 0. 3) Start recording. 4) Walk into and
out of buildings over the next n seconds. 5) As soon as we enter the building (cross the outermost
door) set indoors to 1. 6) As soon as we exit, set indoors to 0. 7) Stop recording. 8) Save data as CSV
for analysis. This procedure can start either outside or inside a building without loss of generality.

B.6 DATA COLLECTION PROCEDURE FOR INDOOR-OUTDOOR CLASSIFIER DATA

1) Start outside a building. 2) Turn Sensory on, set indoors to 0. 3) Start recording. 4) Walk into and
out of buildings over the next n seconds. 5) As soon as we enter the building (cross the outermost
door) set indoors to 1. 6) Finally, enter a building and ascend/descend to any story. 7) Ascend
through any method desired, stairs, elevator, escalator, etc. 8) Once at the floor, stop recording. 9)
Save data as CSV for analysis.
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Figure 4: feedforward network architecture. A simple, three fully connected layer network. FC30 -
FC18 - FC2. Inputs are sensor readings at times ¢4, t2, t3.
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Figure 5: Distribution of ma measurements across 41 trials in the Uris Hall building in New York
City. A clear d; ; size difference is specially noticeable at the lobby. Each dotted line corresponds
to an actual floor in the building learned from clustered data-points.
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Figure 6: Distribution of "floor to floor” heights d; ; across 615 office (left) and 492 residential
buildings (right) in New York City.
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Table 4: Description of buildings used in our experiments. Material is the perceived material on the
outside of the building.

Bldg Name Stories  Material  Trials

10 Rockefeller Plz 17 Concrete 10
Uris Hall (CU) 12 Concrete 14
Mudd (CU) 19 Concrete 10
Noco (CU) 14 Glass 10
Social Work (CU) 13 Brick/Glass 20

Table 5: Example data points collected for the indoor-outdoor classifier. Feature vector X is con-
structed from 3 readings at consecutive time intervals ¢;. y is the middle point’s IO label (1* in this
case).

t; rssi GV GH GS M | 10 (y)

1 -82 7605 1414 -1 10153 100.7 O
2 -82 48 30 036 10194 1003 1*
3 82 48 30 036 10194 1002 1

15



Published as a conference paper at ICLR 2018

C ALGORITHM REFERENCES

Algorithm 1 Find Indoor Outdoor transitions

1

: pro

A S ol

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:

19: return transitions

cedure FINDIOINDEXES(T)
Vi=[1,1,1,1,1,0,0,0,0,0]
V. =10,0,0,0,0,1,1,1,1,1]
S=1

fori e {1,...|T] - |Vi|} do
si = {tiy s gy
if J(s;, V1) >= 0.4 or J(s;,V2) >= 0.4 then
S+

merged = ||
for each b, € S do
if b, + 2 <= b;_; then
merged[i] < Merge(b;, b;—1)

transitions = [
for each m; € merged do
transitions < Middle(m;)

> Find Jacc > 0.4

> Merge s; ranges

Algorithm 2 Predict Floor

1: procedure PREDICTFLOOR
2:

3
4
5:
6.
7
8

9:
10:
11:
12:
13:
14:
15:

16:
17:
18:
19:
20:

T = CaptureData(GPS, baro, RSSI, magnet)

fort € T do
tio =NNIO(t)

B = FindIOTransitionIndexes(T)
b, = Bn]
if b, 10 = 0 then return ”outdoors”

p1 = devicePressure(T;,)
po = devicePressure(by,)

ma = ffioor(Po,P1)

for k; € K do
f= |ki—mA\ <15

if exists f then

f=i
else

f :Abegﬁ()
return f

> Classify each reading as IO

> Locate last IO transition

> Compute ma

> Find the nearest k cluster

> Estimate floor level
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