Hooktracer: Automatic Detection and Analysis of
Keystroke Loggers Using Memory Forensics

Andrew Case
Volatility Foundation
Ryan D. Maggio
Division of Computer Science and Engineering, Louisiana State University
Md Firoz-Ul-Amin
Division of Computer Science and Engineering, Louisiana State University
Mohammad M. Jalalzai
Division of Computer Science and Engineering, Louisiana State University
Aisha Ali-Gombe
Department of Computer Science, Towson University
Mingxuan Sun
Division of Computer Science and Engineering, Louisiana State University

Golden G. Richard IIT*

Center for Computation and Technology and Division of Computer Science and
Engineering, Louisiana State University

Abstract

Advances in malware development have led to the widespread use of attacker
toolkits that do not leave any trace in the local filesystem. This negatively im-
pacts traditional investigative procedures that rely on filesystem analysis to
reconstruct attacker activities. As a solution, memory forensics has replaced
filesystem analysis in these scenarios. Unfortunately, existing memory foren-
sics tools leave many capabilities inaccessible to all but the most experienced
investigators, who are well versed in operating systems internals and reverse

*Corresponding author
Email addresses: andrew@dfir.org (Andrew Case), rmaggi2@lsu.edu (Ryan D.
Maggio), mfiroz1@lsu.edu (Md Firoz-Ul-Amin), mjalal7@lsu.edu (Mohammad M.
Jalalzai), aaligombe@towson.edu (Aisha Ali-Gombe), msun@csc.lsu.edu (Mingxuan Sun),
golden@cct.1lsu.edu (Golden G. Richard III)

Preprint submitted to Elsevier April 6, 2020



engineering. The goal of the research described in this paper is to make investi-
gation of one of the greatest threats that organizations face, userland keyloggers,
less error-prone and less dependent on manual reverse engineering. To accom-
plish this, we have added significant new capabilities to HookTracer, which is
an engine capable of emulating code discovered in a physical memory captures
and recording all actions taken by the emulated code. Based on this work, we
present new memory forensics capabilities, embodied in a new Volatility plugin,
hooktracer_messagehooks, that uses Hooktracer to automatically decide whether
a hook in memory is associated with a malicious keylogger or benign software.
We also include a detailed case study that illustrates our technique’s ability to
successfully analyze very sophisticated keyloggers, such as Turla.

Keywords: memory forensics; keystroke loggers; malware detection;
emulation; incident response; reverse engineering

1. Introduction

The rise of memory-only malware and attack payloads has led to the nearly
ubiquitous use of volatile memory analysis in incident response. Volatile mem-
ory analysis, also known as memory forensics, is the technique of acquiring and
then analyzing a sample of volatile memory (RAM) obtained from a running
computer system or virtual machine. Whereas traditional filesystem forensics
can recover only those artifacts that the operating system and running applica-
tions choose to record to disk, memory analysis techniques allow an investigator
to fully examine and reconstruct the entire state of a system. This state includes
all of the in-kernel and userland data structures, code, user-generated input and
output, and more. When focused against malware, these capabilities allow an
investigator to detect and analyze all of a malware sample’s actions, regardless
of the techniques employed by the malware to become resident within memory.

As recently documented by Microsoft [42], nearly all modern malware and
attacker toolkits have at least one memory-only component and many of them
reside solely in memory. One of the most infamous of these was Duqu, which
was used to compromise a significant portion of Kaspersky’s corporate network
environment [10]. Duqu leveraged memory-only rootkits that were installed by
exploiting then zero-day vulnerabilities in Microsoft Windows. Duqu utilized
no persistence mechanisms, meaning a reboot fully removed it from a system.
In Kaspersky’s environment, this provided little relief, however, as other Duqu-
infected systems would probe the network for rebooted systems and then re-
infect them. As documented by Kaspersky in their post-mortem report, full
detection and understanding of Duqu was only achieved after memory foren-
sics was used by its incident response team. Careto [39], Skeleton Key [19],
and Poison Ivy [22] are other examples of powerful malware that execute in a
memory-only or near memory-only manner and that require memory forensics
to detect and analyze. The popular open source Metasploit [63] and PowerShell
Empire [1] attack frameworks also run memory-only unless the user chooses to



store files within the filesystem. Combined, these malware samples and frame-
works provide attackers with complete control of a system in a manner that
requires no storage of any data anywhere on the local filesystem or within its
contained stores, such as the registry.

As the trend of attackers leveraging memory-only toolkits continues to grow,
the need for memory forensic tools and techniques that are accessible to foren-
sic investigators with a wide range of skill levels has become essential. Unfortu-
nately, current memory forensics tools do not meet this need. Volatility [2] is the
most widely used and powerful memory forensic framework currently available.
It is open source and contains over 200 plugins that support deep inspection of
memory-resident artifacts contained within volatile memory captures of Win-
dows, Linux, and Mac systems. While extremely powerful, a major shortcoming
of Volatility is that many of its capabilities are only accessible to expert digital
forensics investigators. This is particularly true when malware analysis tasks are
involved, as they often require manual reverse engineering within Volatility by
the analyst. This is primarily a result of Volatility being able to correctly iden-
tify malware hooks in memory, but not providing post-processing algorithms
capable of successfully differentiating hooks placed by legitimate software from
malicious ones.

The goal of the research presented in this paper is to automate and make
accessible to investigators of all skill levels one of Volatility’s most powerful ca-
pabilities - detection of userland keyloggers. Keyloggers are one of the most
dangerous threats facing users [74] as they allow recording and exfiltration of
keystrokes entered by users, contents of copy and paste buffers, and data dis-
played within applications. Sophisticated malware often bundles additional ca-
pabilities within its keylogger modules, including the ability to take screenshots
and record audio from microphones and video from web cameras [36]. As dis-
cussed in the next section, the Windows API commonly abused by keyloggers,
SetWindowsHookEx [53], is one type of hook that Volatility can correctly find,
but with no post-processing capability. As documented on the Volatility Labs
blog [44], making this determination currently requires a labor-intensive mix
of reverse engineering in conjunction with running multiple Volatility plugins.
This process also assumes deep knowledge of the Windows API and systems
internals. These requirements make the technique inaccessible to all but the
most experienced investigators. Furthermore, even for subject matter experts,
the process is still labor intensive, manual, and time consuming. Given the
substantial amount of evidence that investigators must sift through in modern
investigations [56], any portion of the workflow that requires manual exami-
nation by senior staff members causes a severe bottleneck in an organization’s
incident response capabilities. Our work, embodied in a new Volatility plugin
called hooktracer_messagehooks, leverages the significant additions that we made
to the HookTracer engine [13] to enable automated and scalable detection and
analysis of this threat.



2. The SetWindowsHookEx API

Although heavily abused by malware, SetWindowsHookEx also has a num-
ber of legitimate uses. These include allowing software to monitor for nearly all
hardware events, such as USB device insertion, mouse movement, or keystrokes
being typed. Common legitimate uses of keyboard monitoring include imple-
menting computer-based training (CBT) and application-specific hot keys. As
shown in Figure 1, to register a hook, a module must call SetWindowsHookEx
with four parameters set.

HHOOK SetWindowsHookExA (
int idHook,
HOOKPROC 1pfn,
HINSTANCE hmod,

DWORD dwThreadId

)i

Figure 1: The function prototype of SetWindowsHookEx.

The first parameter, idHook, dictates which event the hook wants to mon-
itor, such as for keystrokes or mouse clicks. The second parameter, Ipfn, is
the callback function within the hooking module that receives each triggered
message. The third parameter, hmod, is a handle to the DLL containing the
hooking procedure or NULL. The fourth parameter, dwThreadld, is either zero
or the thread ID of the thread for which the hook should be active. The specific
process(es) in which a hook will be active and where the hook code will reside
is fully dependent on the values of the last two arguments to the function. If
dwThreadld is non-zero, then it specifies the thread ID within the calling pro-
cess to hook. Otherwise, if dwThreadld is zero, then all threads within the same
desktop will be hooked. This also affects the behaviour of hmod. If dwThreadld
is zero and hmod is a handle to a DLL, then that DLL will get loaded (injected)
into every hooked process once a thread of the process generates a registered
hook (e.g., receives keyboard input). If dwThreadld is zero and hmod is NULL,
then the callback at the offset specified by pfn inside the calling executable will
be triggered from the context of the hooked threads.

2.1. Abuse by Malware

As reported by Kaspersky in 2011 [28], abuse of SetWindowsHookEz is
the most common method for userland keyloggers to gain access to victim’s
keystrokes. This remains true today [71, 32]. This popularity has held as the
only other two methods available to userland keyloggers are 1) extremely noisy
to system monitors; 2) require the malware to inject code into foreign processes
on its own instead of relying on features of the runtime loader; and 3) require
polling the keyboard state in a cyclical fashion, which misses keystrokes en-
tered between polling operations. From an incident response perspective, the
in-memory artifacts introduced by code injection are trivially detected and re-
ported as malicious by Volatility’s malfind and apihooks plugins [73, 45].



On the other hand, userland keyloggers that utilize Set WindowsHookEx have
much of the hard work done for them by the operating system. For example, if
the keylogger wishes to monitor keystrokes across all processes within a desk-
top, then all it needs to do is set dwThreadld to zero. Similarly, if the keylogger
wants its malicious DLL injected into all of its victim processes automatically,
then it can simply pass a handle to the DLL in the hmod parameter. All of this
can be done without suspicious and noisy API calls, such as AdjustTokenPriv-
ileges, WriteProcessMemory, and CreateRemoteThread. Volatility’s apihooks
and malfind plugins will not detect DLLs loaded through SetWindowsHookEx
as maliciously injected since they are loaded through normal operating system
procedures.

3. Memory Analysis of Hooks

3.1. Volatility’s messagehooks Plugin

The messagehooks plugin of Volatility can enumerate all hooks registered
through SetWindowsHookEz. To enumerate each hook, as explained in The Art
of Memory Forensics [46], messagehooks first enumerates every window station
of every user logon session. It then enumerates the desktop(s) associated with
each window station. For each desktop, it then enumerates its global hooks as
well as the local hooks for each active thread. After enumerating all global and
local hooks, messagehooks prints one block of output per hook. An example of
a global hook is shown in Figure 2 and Figure 3 shows the corresponding local
hook in a specific thread.

Offset (V) : 0xfeal09d8

Session H

Desktop : WinstaO\Default

Thread : <any>

Filter : WH_CALLWNDPROC

Flags : HF GLOBAL

Procedure : 0x11l60

ihmod H

Module : C:\Windows\system32\wlsOwndh.dll

Figure 2: A global message hook as displayed by messagehooks.

As seen in Figure 2, this message hook is active inside the Default desktop
of logon session 0. We can tell it is a global hook, since its thread is identi-
fied as “<any>”. This is Volatility’s method for signifying that the hook has
been set in all threads associated with the same desktop. We also see that the
WH_CALLWNDPROC message type is being monitored. Finally, we see the
registered callback is the code beginning at offset 0x1160 inside of C: \ Windows
\system32 \wlsOwndh.dll. Examining Figure 3, we see it is reporting that the
global hook is active inside of thread 3180 of the spoolsv process with process
ID 1360. messagehooks will report one of these blocks for each thread of the
desktop.



Offset (V) : Oxfeal09d8

Session : 0

Desktop : Winsta0O\Default

Thread : 3180 (spoolsv.exe 1360)

Filter : WH_CALLWNDPROC

Flags : HF_ GLOBAL

Procedure : 0x1160

ihmod : 0

Module : C:\Windows\system32\wlsOwndh.dll

Figure 3: A local message hook as displayed by messagehooks.

3.2. Analyzing a Reported Hook

Once an analyst has used messagehooks to generate the list of hooks present
in a memory sample, they must determine if each hook was set by legitimate
software or by malware. Unfortunately, Volatility provides little in the way of
guidance for this process. Instead, the investigator must revert to manual re-
verse engineering. To illustrate this process, Figure 4 shows the steps to begin
analyzing a hook. To start, the analyst must run the dlllist plugin to determine
the load address of the DLL. In this output, we have grepped for the DLL name
to reduce output, and are interested in the first column’s value (0x6e6d0000).
Since the hook is present inside the DLL, we need its load address in memory
to calculate where the hook is inside the process’ address space. Next, we load
the volshell plugin, and use the dis function to disassemble the beginning of the
hook. For the parameter to dis, we calculate the load address from dlllist as well
as the callback (pfn) offset given in Figure 3. As can be seen, the output from dis
is simply the raw assembly of the hook without any additional, helpful informa-
tion, such as function names, parameter values, or instruction cross references.
This makes an already tedious process even slower, and as mentioned previously,
understanding the assembly well enough to make a determination regarding a
hook’s legitimacy requires significant reverse engineering skills. Furthermore, in
Figure 4 we show the disassembly of the initial hook callback, but as readers
with assembly knowledge can see, there are calls to three other functions. This
means the analyst has to not only reverse engineer the initial handling function,
but also any subroutines that are called to get a complete picture.

Worse, messagehooks has no filtering capability to enable re-use of knowledge
gained during previous manual inspections of hooks. This forces the investigator
to resort to mental recall or adhoc filtering scripts. Both of these methods are
brittle and error-prone, as they do not account for code changes within modules
between operating system versions and updates. Furthermore, the ability to
write scripts is not universal among digital forensic investigators, and mental
recall for single investigators obviously does not scale across a team. The main
focus of our research effort is to completely remove the need for an investigator
to reverse engineer in-memory code and to allow results of previous analysis to
be used in an automated and scalable manner.



$ python vol.py --profile=Win75P1x86 -f win7x886.vmem dlllist\
-p 1360 | grep wlsOwndh.dll

0x6e6d0000 0x6000 Ox1 2019-01-03 04:24:44 UTC+0000%
C:\Windows\system32\wlsOwndh.d11l

$ python vol.py --profile=Win75P1x86 -f win7x886.vmem volshell -p 1360
In [2]: dis(0x6ebd0000+0x1160)

0x6e6d1160 6ald PUSH 0x14

Ox6ebdlle2 68aB8lledée PUSH DWORD 0Ox6e6dlla8
Ox6ebdlle7 eB24ffffff CALL 0x6e6d1090
Ox6ebdlléc 33f6 XOR ESI, ESI

Ox6ebdll6e 8975fc MOV [EBP-0x4], ESI
0x6eb6dl171 8b7d10 MOV EDI, [EBP+0x10]
Ox6ebdl174 397508 CMP [EBP+0x8], ESI
0x6e6dl177 750a JNZ 0x6e6dl1183

0x6e6d1179 B837f0818 CMP DWORD [EDI+0x8], 0x18
Ox6eb6dl17d 0£846a030000 JZ 0Ox6ebdlded

0x6e6dl183 c745fcfeffffff MOV DWORD [EBP-0x4], Oxfffffffe
Ox6ebdll8a e841000000 CALL 0x6e6d11d0
Ox6eb6d118f 57 PUSH EDI

0x6e6dl1190 f£750c PUSH DWORD [EBP+0xc]
0x6ebdl193 f£7508 PUSH DWORD [EBP+0x8]
0x6e6dl196 56 PUSH ESI

0x6e6d1197 ff152cl06d6e CALL DWORD [0x6e6dl02c]
0x6eb6dl19d eBleffffff CARLL 0Ox6e6dl0e0
Oxbebdlla2 c20c00 RET Oxc

[instructions after function returns cut from figure]

Figure 4: Analyzing message hooks using Volatility.

4. HookTracer

HookTracer is a custom emulator environment, which provides an API for
programmatic analysis and observation of code in volatile memory samples.
HookTracer is built on top of the unicorn emulator [62] and operates as a Python
API for Volatility plugins. unicorn is an open source emulator written in C that
contains Python language bindings. unicorn is used in many security projects
[3], and it provides programmers with full control over emulated code.

Before the research and development described in this paper, HookTracer’s
main functionality and purpose was to enumerate the memory regions (VADs)
that emulated code traversed. These capabilities were sufficient for analyzing
APIT hooks [13], but are insufficient for properly understanding and evaluating
message hooks. This occurs as the number of instructions encountered when
emulating API hooks is significantly smaller than compared to message hooks
and the use of system APIs in API hooks occurs much less frequently. The
goal of nearly all malicious API hooks is to either filter data back to the caller,
such as to remove a malicious process from the process list before returning it
to an anti-virus engine, or to steal sensitive parameters sent to functions, such
as passwords and encryption keys, and write them to disk. As shown later,
malicious message hooks perform a wide array of activity, such as clipboard
snooping, gathering the names of GUI elements, performing code injection, and
much more.



The amount of work performed by message hooks compared to API hooks
necessitated a significant amount of new research and development to integrate
new functionality into HookTracer. To add these missing capabilities, our team
developed a new set of features and APIs for HookTracer, totaling nearly 2,000
lines of new Python code. The main purpose of these additions was to 1) add
full support for 32-bit executables and libraries, as the existing implementation
was focused on 64-bit code, and 2) provide function call interception capabilities.
Our new function call interception APIs allow HookTracer to internally monitor
when particular Windows APIs are about to be called by emulated code and
then provide callbacks for the following purposes:

e Stable emulation

e Supporting system resource access

Faking return values of called functions
e Faking parameters sent to functions

e Recording parameters passed to emulated functions

The remainder of this section describes each of these issues in more detail.

4.1. Providing Stable Emulation

Whole system emulators, such as QEMU [9], emulate entire operating sys-
tems and, as a result, can allow an application full access to all resources, such
as the network, filesystem, and other running processes. This also implies that
global resources, such as semaphores, locks, and mutexes, can be queried and
changed while the emulated code is running. Conversely, when emulating code
from a memory sample, there is no operating system active and the sole actor
is the code being emulated. This led to a few situations where we needed to
internally implement certain Windows APIs to provide stable emulation. To
accomplish this, before emulation begins, we record the runtime address of all
exported functions of every loaded module within a hooked process. This is
performed using Volatility’s existing APIs. When problematic functions are
later called by emulated code, HookTracer then overrides the native Windows
implementation with a stable implementation provided by HookTracer itself.

The three categories where such implementations are provided are:

e Lock access - Since no other processes or threads are active within the
emulated environment, the state of a lock is “stuck” at its value at the
time of memory capture

e Memory region allocations - Handling of memory region allocation re-
quests, such as through the VirtualAlloc API, requires in-kernel code that
is not supported by the emulator

e Debugging APIs - These APIs allow reading and writing memory of other
processes, none of which are present within the emulated environment



4.2. Supporting System Resource Access

Of particular importance to forensic investigators is malware’s access and
activity related to the filesystem, the registry, and the network. While our goal
is to detect malware that leaves absolutely no traces in the local filesystem, we
certainly do not want to miss detecting malware that does. Since these resources
provide persistence, lateral movement, data gathering, and data exfiltration, we
added extensive support for each.

4.2.1. Filesystem Access

Since there is no actual filesystem inside the emulated environment, Hook-
Tracker must monitor calls to filesystem related functions and provide imple-
mentations of important calls. For calls to open a file handle, such as OpenFile
or CreateFile, HookTracer will return a unique handle from its internal handle
table. For subsequent calls to read from the file handle, such as the use of
ReadF'ile, HookTracer will attempt to read from the cached version of the file in
memory through Volatility’s API [75]. If the file is not cached, then HookTracer
returns a buffer of null bytes. For write operations, HookTracer implements a
“shadow” cached file and internally overlays written data on top of the cached
file data. For calls to close a file handle, HookTracer simply removes it from the
tracking array.

Another commonly used set of filesystem functions include those that re-
turn metadata about a file or directory. On Windows the most popular of
these is ZwQueryInformationFile [4], which allows gathering all of a file’s meta-
data. HookTracer’s implementation of this function handles the most common
requests to ensure that emulated code can execute properly. HookTracer also
emulates the common GetFileSize call and attempts to return the size of the
file reported by the file cache or otherwise simply returns a value of 256 KB for
the file.

4.2.2. Registry Access

Malware often uses the registry to gather data to be exfiltrated or to maintain
persistence. Similar to how HookTracer now simulates filesystem access, it
also now handles registry accesses. First, HookTracer maintains an in-memory
registry tree to handle calls for creating registry keys and values. For queries to
registry keys and values, if the requested node is not currently in the internal
tree, then HookTracer attempts to access the in-memory registry data accessible
through Volatility’s APIs [75]. This allows the malware to branch based on real
data where possible and also allows HookTracer to use the precise information
gathered and stored by emulated code.

4.2.3. Network Access

Particularly when emulating malicious code, it is essential that HookTracer
fakes as much network connectivity and activity as possible. Malware will com-
monly perform checks to see if it has internet access before executing its actual
payload. Since many sandbox systems and malware analysis labs are isolated,



network connectivity checks by malware will often thwart automated and dy-
namic analysis. The widespread use of network connectivity checks by malware
for this purpose led to the creation of projects such as FakeNet [31] and FakeNet-
NG [23]. These software projects present fake instances of network services, such
as DNS and HT'TP, to malware running inside of automated analysis systems to
trick the malware into thinking it has real internet access. Use of these projects
is now common in the industry.

HookTracer implements a strategy similar to FakeNet in that it intercepts
calls to network functions and returns fake data. Full discussion of returning
faked data is discussed in the next subsection. For DNS resolution attempts,
HookTracer simply returns the public IP address of Google. For calls to func-
tions that perform HTTP requests, HookTracer will construct a reply that
matches the requested protocol and file (or mime) type. For calls to receive
raw data, such as recv, HookTracer returns the English alphabet repeating for
the length requested. For network APIs that don’t require generating fake data,
such as bind, accept, and socket, HookTracer will fake return values that indicate
success. Combined, this capability allows HookTracer to successfully emulate a
significant amount of network activity generated by emulated code.

4.3. Faking Returned Data

To provide the most complete emulation possible, we added the ability for
HookTracer to insert a “fake” return value for functions where emulation would
not succeed or where emulation may not succeed. Faking a return value in-
cludes setting the return value (the EAX register on 32-bit systems and RAX
on 64-bit systems) to zero or non-zero, which is the common Windows pattern,
as well as filling in any data structure(s) that the calling code expects to be pop-
ulated. The rest of this subsection describes the functions and function types
that HookTracer now fakes by default for this purpose.

GetComputerName: Malware often gathers the network name of infected
systems to definitively associate stolen data with a particular system. Hook-
Tracer fills the buffer expected by GetComputerName callers with a static “Win-
dows7Desktop”.

GetModuleFileNameW: This function is used to get the full path of an
executable module loaded in a process. Malware often uses it to find the full
path of where it is running from disk. HookTracer leverages Volatility’s APIs
to determine the full path of the module requested by the calling function and
copies it to the passed in memory buffer.

System Time Functions: Malware often uses GetSystemTime to gather
the local time of a system followed by functions, such as SystemTimeToFile-
Time, to convert the timestamp to a human readable value that can be logged
to disk or sent across the network. To return a reasonable timestamp, Hook-
Tracer uses Volatility’s APIs to determine the time of the system when the
memory sample was acquired and returns its value.

Timestomping Functions: Timestomping [15] is a very popular anti-
forensics technique used by malware to alter the timestamps of its files on disk.

10



To accomplish this, malware will call GetFileTime with a handle to a common
Windows file, such as kernel32.dll, to get its timestamps. The malware will then
use SetFileTime to copy these timestamps for the malicious file. This allows
malicious files to blend in with other files during timeline analysis and filesystem
anomaly detection. HookTracer handles this call sequence by returning times-
tamps matching the time when the memory sample was taken and allowing
SetFileTime calls to succeed.

Filesystem Enumeration: The FindFirstFile and FindNextFile APIs al-
low programs to enumerate all files and sub-directories of a given directory. This
functionality is often abused by malware to find files to infect, encrypt, delete,
or exfiltrate. Since there is no actual filesystem present, HookTracer fakes a
realistic looking directory structure.

Process Enumeration: The list of running processes is queried by mal-
ware for many purposes, such as finding processes to inject code into, searching
for security monitoring software, or gathering a list of process names for exfil-
tration. Enumerating processes is accomplished through a set of calls to Cre-
ate Toolhelp32Snapshot, Process32First, and Process32Next. HookTracer fakes
the corresponding data structures for these calls and uses the actual process
list generated by Volatility’s APIs to return the processes active in the memory
sample.

4.4. Faking Function Parameters

To trigger the real payload of a malicious function in memory, the parame-
ters passed to the function must match those that the function expects. Since
HookTracer emulates code in a standalone environment, it must first setup fake
parameters to functions before initially emulating them. As described in Section
5.2, to trigger the payloads of malicious keylogger hooks, our plugin needs to
use our new HookTracer APIs to create the parameters and data structures that
match those that a running Windows system generates after each keystroke.

4.5. Recording Function Parameters

The original HookTracer implementation simply monitored which memory
regions were accessed by emulated code, but to deeply examine malicious mes-
sage hooks, we needed the ability to fully understand the functionality of emu-
lated code. For example, the original HookTracer engine would simply list the
fact that a certain number of basic blocks were executed inside of DLLs, such
as kernel32.dll or user32.dll. Unfortunately, legitimate message hooks will use
many APIs inside of these DLLs. To gain a deeper understanding, we needed
to know which Windows APIs were actually used and what parameters were
sent to them. To provide this capability, we developed an API where a list
of Windows APIs to be monitored can be passed in, and then for each call to
a monitored function by emulated code, the HookTracer analysis plugin will
receive a callback notification. It can then inspect the name of the function
being called as well as its parameters. The incredible insight that can be gained
with this feature is shown in Section 6.3 as analysis of the Turla malware is
showcased.

11



5. Message Hooks Analysis

5.1. hooktracer_messagehooks

To automate analysis of message hook handlers and to remove the need
for manual reverse engineering, we developed a new Volatility plugin, hook-
tracer_messagehooks. Our plugin leverages the new and improved HookTracer
API to emulate message hook handlers and then runs a variety of analysis re-
sults to aid the investigator. To use the plugin, an investigator first runs the
Volatility messagehooks plugin, saves its output, and then feeds this output
to hooktracer_messagehooks. We chose to use the output of messagehooks as
this allows the investigator to quickly run our plugin a number of times with
different analysis options, without having to regenerate the hook data. Further-
more, since Volatility is a command line tool, it is already common practice
for investigators to run individual plugins manually or within a script and save
the output to files. For the remainder of this section, we explain how hook-
tracer-messagehooks works in more detail and in the next section we document
a case study using the plugin against the Turla malware.

5.2. Faking a Keystroke

Before our plugin begins emulation of a hook, it first creates the data struc-
tures that would be generated by a user typing "A’. These data structures are
then mapped into the emulated address space through the HookTracer API.
When emulation of the hook begins, the hooked code will read our “fake” val-
ues and keystroke data. This is necessary, as keyloggers typically check the state
of the keyboard and the action that generated the keystroke before executing
their real payload. As shown in Figure 5, message hook handlers are sent three
parameters for each event.

LRESULT CALLBACK EKevboardProc(int nCode,
WPARAM wParam, LPARAM lParam)

Figure 5: Function prototype for a message hook handler.

The first parameter, nCode, can assume several values. These are HC_ACTION
or HC_LNOREMOVE. Keyloggers will verify that the value is HC_ACTION so
that they are ensured they have received a current keystroke. The second pa-
rameter, wParam, is the action that generated the keystroke event. Keylog-
gers generally filter for WM_KEYDOWN events, but can also monitor for a
WM_KEYDOWN followed by a WM_KFEYUP. The third parameter, [Param,
describes the key’s value and associated attributes (i.e., it is an extended key,
etc.).

Figure 6 shows the initial code of the keyboard event handler of the Gozi
malware. Gozi steals keystrokes and passwords, captured screenshots, and in-
fected systems throughout the world. Its source code was eventually leaked
online and is still accessible on GitHub [12]. As shown, before processing the

12



if ( !g bLoggerEnabled || ( nCode != HC ACTION ) || !HookStruct ){
break:;

}

if ( (UINT)wParam != WM KEYDOWN ){ //message
break;

}

Figure 6: Leaked Gozi source code.

keystroke and executing its malicious payload, Gozi first checks that the ac-
tion matches HC_ACTION and that the event is WM_KEYDOWN. Analysis of
Gozi’s message hook handler is is described in Section 7.3.

5.83. Reporting Malicious Hooks

An important feature of our plugin is the ability to automatically determine
if a message hook is malicious or benign without intervention by an analyst.
A study of the previously referenced Microsoft documentation for SetWindow-
sHookEzx shows that its legitimate uses include functionality such as hot keys,
‘magic’ keys, reader accessibility enhancements, and on-screen training mod-
ules (CBT). All of these legitimate uses only access keystroke data for a short
time and typically keep the data solely within memory. Furthermore, legitimate
hooks do not typically perform other actions indicative of data exfiltration. We
consider a message hook as potentially malicious (and certainly worthy of in-
vestigation) if any of the following conditions are met:

Keystroke data is logged to a file

Keystroke data is sent over the network
Keystroke data is written to the registry
Contents of the clipboard are accessed
Screenshots are generated

Debugging APIs are used (code injection)
The hook immediately calls CallNextHookEx

oot W

The first three criteria cover malware that exfiltrate keystrokes. Given the
security risk, there is no reason for legitimate applications to store keystrokes
in local storage or over the network. Criterion 4 exists as keylogging malware
will often grab the clipboard contents at the same as the latest keystroke in
an attempt to capture passwords copied from password managers or text files.
The stealing of clipboard contents was initially popularized by banking trojans
and now occurs in a wide variety of malware. Criterion 5 covers many malware
families, such as Zeus [33], that take screenshots of victims’ systems in their
message hook handler when targeted applications, such as web browsers, are in
the foreground. This allows the malware operator to see the websites visited by
a user, view visible username values, and potentially sensitive information, such
as bank account numbers. Criterion 6 covers debugging APIs as they are used

13



for code injection as well as for scanning memory of the process the malware
is active in. There is no reason for this activity to occur in legitimate message
hook handlers.

To monitor such activity, our plugin compares each API call made by an
emulated hook and matches it to a list of functions commonly used to imple-
ment the malicious activities. If any of these calls are found then the hook is
reported as malicious. The only exception to this is our monitoring of hooks
that perform no action except to immediately call the CallNextHookEzx func-
tion. CallNextHookEz tells the runtime system that the currently executing
hook handler has finished processing the event and that the next one in the
chain can be called. Malware will often abuse SetWindowsHookEx to inject a
malicious DLL into many processes, but then not actually analyze the requested
hook. This allows the injected DLL to perform other malicious actions with-
out concern for specific keystrokes or other actions by the victim users. Lagma
[44] was one of the first advanced malware samples to use this technique. The
infamous Carberp malware, which was used to steal an estimated $250M USD
from victims [38], also utilized this technique, as illustrated in its leaked source
code [57].

5.4. Generating Trace Records

Beyond making a simple yes/no determination of a hook being malicious,
hooktracer_messagehooks can also generate a listing of the precise activity per-
formed by a hook. This base version of a trace will provide a list of the APIs
called by the hook in the order they were called. The extended version will re-
port the parameters sent to a select set of functions. This includes APIs related
to filesystem, network, and registry activity, string manipulation, creation of
mutexes and atoms, and code injection. By reviewing the list, an analyst can
determine the exact resources accessed by a particular hook.

Once a malicious hook is identified, the investigator can then re-run hook-
tracer_messagehooks to generate a trace record of the hook. This record can
be used later to automatically re-identify the malicious hook on the same sys-
tem or other systems. Multiple trace records can also be combined for analysis
in one plugin run as hooktracer_messagehooks supports newline-separated input
files that can include any number of malware traces. This has many advantages,
including allowing entire teams to pool their gathered trace records into a single
source. The use of trace records provides full automation and repeatability of
analysis, regardless of the skill level of the investigator performing analysis.

5.5. Generating I0Cs

Beyond trace records that can be reused by hooktracer_messagehooks, the
plugin can also automatically generate standard indicators of compromise (I0Cs).
These can then be used across a variety of incident response frameworks, end-
point security monitoring agents, and security information and event manage-
ment (SIEM) systems. IOCs are ubiquitously used throughout the security
industry to describe malware based on the filesystem, registry, and network

14



activity performed. By generating IOCs for message hooks, our plugin allows
incident response teams to search for threats throughout their environment in
a consistent manner, using existing workflows.

5.6. Monitoring Data Transformations

Keyloggers often transform logged data to avoid detection by security scan-
ners looking for common logging patterns in files on disk and in network traffic.
The most common transformations consist of arithmetic operations, such as
XOR and ROL, but some malware also uses “real” cryptography. To aid inves-
tigators analyzing malware that encrypts logged data, hooktracer_messagehooks
monitors for transformations of gathered keystrokes. In situations where a trans-
formation occurred, the plugin will attempt to automatically generate a script
capable of decrypting a given key log file.

hooktracer_messagehooks currently supports automated decoding and script
generation against keyloggers that leverage the XOR and ROL operations with
a static key (shift value). To accomplish this, the plugin monitors for transfor-
mation that utilizes these instructions, and when detected, records the source
value. For XOR, this is the integer key used to transform the destination value.
For ROL, this is the integer that specifies by how many bits to shift the data.
When a static key (shift) is used for every offset of transformed data, then
hooktracer_messagehooks generates a simple Python script that takes a file path
from the command line, transforms every byte of the file with the monitored
operation and static key, and then writes it to an output file. When used in
conjunction with the plugin’s automatic component extraction, this allows an
investigator to decrypt all previously logged data on infected systems.

For transformations beyond XOR and ROL, the plugin currently reports
the address ranges of the instructions that transformed the data. This tells
an investigator where to begin analyzing the encryption routine. This process
does then require reverse engineering, but our plugin pinpoints where this effort
should begin and provides the associated data that must analyzed.

5.7. Automatically Extracting Components

Analysts can optionally instruct hooktracer_messagehooks to automatically
extract all components referenced by a malicious hook. When enabled, the
following artifacts are extracted as they are encountered:

e The executable or memory region hosting the malicious hook

e Files written to or read

Registry data
Network data

Extracting malicious executables directly from memory allows the investi-
gator to perform further binary analysis tasks, such as reverse engineering with
IDA Pro or running signature checks. This does not provide the capability to

15



load the executable into a traditional sandbox, however, as substantial trans-
formations occur during runtime loading. Extracting files, registry keys, and
network data from memory allows an investigator to determine the extent of
the infection on the system being investigated as well as view the exact data
being referenced and generated by the keylogger.

For extracted components, files are created using a naming convention of
<file|reg|http> . <pid> . <thread id> . <instruction address> . <instruction
count>.extracted. This convention ensures that all created files are unique and
conveys the context for extracted data, enhancing investigative efficiency as well
as documentation efforts associated with legal proceedings.

6. Case Study: Turla

6.1. The Turla Malware

Turla is both the name of a high-profile advanced persistent threat (APT)
group as well this group’s digital espionage platform. As documented by MITRE
[16] and Kaspersky [40], the Turla group is responsible for compromising victims
in over 45 countries, with the majority of the victims belonging to government
agencies, military departments, and embassy operators. It is widely believed
that the Turla team is Russia’s most advanced hacking group inside of its intel-
ligence agencies, and its past attack campaigns have involved hacking satellites
to target victims in remote areas and compromising entire ISPs to deliver tar-
geted malware to a single victim [14].

Of the many capabilities provided by the Turla espionage platform, log-
ging of keystrokes and environmental data is a central focus. As part of its
payload, Turla leverages SetWindowsHookEz to gather and record keystrokes
along with other system data. As documented in two lengthy blog posts by
malware.news [48, 49], Turla’s hook handler performs a substantial number of
operations per-keystroke and to manually uncover the actions taken requires
days of expert-level reverse engineering. To showcase our HookTracer engine
and our hooktracer-messagehooks plugin, we now present each feature of the
plugin as it analyzes Turla’s malicious message hooks.

6.2. Analysis Environment

6.2.1. Operating Environment

To execute Turla, we setup a new VMWare Fusion virtual machine running
the 64-bit Professional version of Windows 7. We then allowed the virtual
machine to install all security and operating system updates.

6.2.2. Infecting with Turla
The MD5 hash of the Turla sample used in our analysis is:

59b57bdabee2celfb566de51dd92ec94

16



This sample is a DLL deployed by the Turla platform during operations. To
activate the DLL, we leveraged rundll32.exe to execute the DLL as if it was a
traditional application executable (EXE file). This commonly used technique is
documented in recipe 13-2 of the Malware Analyst’s Cookbook [43].

6.2.3. Post-Infection Actions

After using rundll32 to execute the malware, we launched Notepad and
typed in a sentence followed by opening Internet Explorer and browsing to
Google. The purpose of these actions was to trigger events monitored by Turla
in processes whose activity we controlled. We then waited 30 seconds and
suspended the virtual machine. When the virtual machine was suspended, a
complete copy of RAM at the time of suspension was written to disk. This
provided a near-instantaneous capture of memory, and is a standard method of
collecting memory captures infected with a particular malware sample [43, 24].

6.3. Hook Handler Analysis

When run in its default mode, hooktracer_messagehooks lists only the mes-
sage hooks that it determines to be malicious based on the criteria previously
listed. This allows an investigator to quickly determine, with confidence, if mal-
ware utilizing malicious hooks is present on the system. If an investigator wishes
to observe the behaviour of a hook in detail, they can then run the plugin with
the —list-apis option set. This will instruct the plugin to list, in order, all ex-
ported functions called by an emulated hook. The plugin can also be run with
~list-apis-condensed option set, which instructs it to only list functions that
match the built-in filter of suspicious and malicious functions. In both modes,
functions whose parameters are of interest to investigators are listed. Figure
7 shows the output of hooktracer_messagehooks’s condensed API listing mode
against an instance of Turla’s hook. Note that line numbers have been added
in the figure to aid the discussion.

By simply reading the output, an investigator can determine the hook’s func-
tionality and make the same determination as the plugin’s automated engine,
namely, that the hook is malicious. Lines 1-5 illustrate building a string that
includes the handle of the current window and the system time. HookTracer
reports sprintf related functions by showing both the format specifier sent to
the function as well as the buffer filled in by the function. Lines 6-7 show gath-
ering of the victim process’ process ID (1084) and associated formatting. Lines
8-10 show the filename of the process being gathered and saved. Line 11-12
shows the Window Text as returned by HookTracer. All of the gathered values
are then concatenated together by the memmove call on line 13. Lines 14-17
show the common API sequence used to convert a keyboard input to a Unicode
character (ToUnicodeEz). On line 18, our fake keystroke (’A’) is then sent to
swprintf. Lines 19-26 show the file path of the keylogger file being built, and line
27 shows the CreateFile call to open a handle to the file. Note that the 41424344
in the output is the fake handle value assigned by HookTracer. After the file
is opened, successive calls to memmove are used to concatenate a header-type

17



1. GetForegroundWindow

2. GetSystemTime

3. SystemTimeToFileTime

4., swprintf: [%02d.%02d.%04d %02d:%02d:%02d.%03d] \

[24.1.2019 20:43:38.0]

5. swprintf: [h]:%d | [h]:1234

6. GetWindowThreadProcessId

7. swprintf: [pid]:%d | [pid]:1084

8. OpenProcess: 1084

9. GetProcessImageFileNameW

10. swprintf:[pn]:%s | [pn]:turla.dll

11. GetWindowTextW

12. swprintf: [t]:%s | [t]:MyWindowName

13. memmove: [24.1.2019 20:43:38.0] [h]:1234 \
[pid]:1084 [pn]:turla.dll [t]:MyWindowName

14. GetKeyboardState

15. GetKeyboardLayout

16. MapVirtualKeyExW

17. ToUnicodeEx

18. swprintf: %c | A

19. GetModuleFileNameW

20. lstrcatw: C:\Users\bob\Desktop'\

21. lstrcatw: SPUNINST

22. lstrcatw: C:\Users\bob\Desktop'

23. FindFirstFileW

24, lstrcatw: SPUNINST

25. lstrcatw: msimm.dat

26. FindClose

27. CreateFileW: 41424344 -> C:\Users\bob\Desktop\SPUNINST\msimm.dat

28. memmove: ESLOT Ver=21.0

29. memmove: [ul]:

30. memmove: WIN-94808I1D091\bob

31. memmove: [24.1.2019 20:43:38.0] [h]:1234 \
[pid]1:1084 [pn]l:turla.exe [t]:MyWindowName

32. memmove: [24.1.2019 20:43:38.0] [h]:1234 \
[pid]:1084 [pn]:turla.exe [t]:MyWindowName A

33. WriteFilewW: 41424344 -> 278

34. CloseHandle: 41424344

35. callNextHookEx

Figure 7: hooktracer_messagehooks against Turla.

18



value (KSLOT Ver=21.0), the Windows computer or domain name, username
of the logged on user, the previously gathered environmental data, and finally
the A’ keystroke. The hook then writes to the previously opened file, closes the
file handle, and calls CallNextHookFzx, as its work is completed for the current
keystroke.

All of the previous analysis was accomplished without any reverse engineer-
ing effort by the plugin’s user. Results are also obtained quickly as the plugin’s
analysis time for each hook is less than a minute in our test Debian virtual
machine, to which we assigned a mere 2 CPU cores and 2GB of RAM.

6.4. Automatic Component Extraction

For functions that interact with the filesystem, registry, or network, hook-
tracer_messagehooks can be instructed to automatically save the referenced com-
ponents to the investigator’s system. In the previous Turla analysis, this leads
to extraction of the file written to by the keylogger:

C:/ Users/bob/ Desktop/ SPUNINST/msimm.dat.

6.5. Logfile Decoding

Turla encrypts recorded data using an array of XOR keys. The array is
indexed based on the position in the file of the byte being written. Since the
XOR key is not static, the plugin cannot automatically produce a script capable
of decoding any log file produced by the keylogger. It does isolate the encryption
loop, however, which saves a tremendous amount of analysis time. When used in
conjunction with automatic component extraction, the malicious DLL will also
be automatically written to disk. The analyst can then perform any additional
reverse engineering, as needed, beginning analysis at the exact address where
logging data is transformed.

Figure 8 shows where this process leads an investigator for Turla’s hook. A
simple XOR loop is used by the malware, which then calls WriteFile followed by
CloseHandle. This same API call sequence was listed in Figure 7. In the IDA
Pro screenshot, we have annotated some of the local variables based on their
parameter position to WriteFile. Making this annotation is a very simple oper-
ation since WriteFile and its parameters are documented on the MSDN. After
annotating the logged_buffer and buffer_length parameters, it becomes obvious
where they are used in the XOR loop. We then see where the current value
to XOR comes out of a large array that we renamed to encryption_keys. From
here, it would be a very straightforward operation to write a custom decoder for
strings encrypted with the malware. Given our extensive experience in scoping
malware analysis projects, we estimate the entire reversing task described here
would take a novice reverse engineer around 30 minutes and around 10 minutes
for an expert.

19



A

=
mov [rsp+928h+counter], @
jmp short loc_7FEF7421680
'
"]
loc_7FEF7421688:
moy eax, [rsp+928h+buffer_length]
cmp [rsp+928h+counter], eax
jnb short loc_7FEF74216E1
A | A i
"I "I
movsxd rcx, [rsp+928h+counter]
mov rax, [rsp+928h+logged_buffer] loc_7FEF74216E1:
mousx edi, byte ptr [rax+rcx] mov [rsp+928h+var_9068], @
nov eax, cs:file_size lea r9, [rsp+928h+FileSizeHigh]
Xor edx, edx mov r8d, [rsp+928h+buffer_length]
moy ecx, 64h mou rdx, [rsp+928h+logged_buffer]
div rex moy rcx, [rsp+928h+hObject]
lea rax, encryption_keys call cs:WriteFile
movsx eax, byte ptr [rax+rdx] |
mou edx, edi
Xor edx, eax
mousxd rcx, [rsp+928h+counter]
mov rax, [rsp+928h+logged_buffer]
mov [rax+rcx], dl
mnov eax, cs:file_size
add eax, 1
mov cs:file_size, eax
jmp short loc_7FEF742166F
A |
"I "I
loc_7FEF742166F : loc_7FEF742170A:
mov eax, [rsp+928h+counter] mov rcx, [rsp+928h+logged_buffer]
add eax, 1 call cs:quword_7FEF7438718
mov [rsp+928h+counter], eax mov rcx, [rsp+928h+h0Object] ; hObject
call cs:CloseHandle
jmp short $+2
Xor eax, eax
nov rcx, [rsp+928h+var_18]
Xor rcx, rsp
call __security_check_cookie
add rsp, 926h
pop rdi
retn
does_file write endp

Figure 8: Analysis of Turla XOR loop in IDA Pro.

6.6. Creating a Trace Record

Figure 9 shows the trace record for Turla’s hook, which includes all of the
functions shown in Figure 7 except for those related to string and buffer ma-
nipulation. In our experience with malware analysis, we have observed malware
samples use new string manipulation functions, such as changing sprintf to
snprintf, in updated versions. This was generally done when the malware up-
dated its on-disk format of logged data or when it attempted to fix vulnerabilities
in its code. To avoid missing instances of such variations, we developed Hook-
Tracer to only record use of core Windows APIs whose functionality cannot be
easily or directly replaced by calling a different function.

6.7. Generating I0Cs
6.7.1. 10C Creation and Use

As mentioned previously, HookTracer can generate indicators of compromise
files to support existing workflows used by incident response teams. For Turla’s

20



[GetForegroundWindow,GetSystemTime, SystemTimeToFileTime
,GetWindowThreadProcessId,OpenProcess,
GetProcessImageFileNameW,GetWindowTextW, GetKeyboardsState,
GetKeyboardLayout ,MapVirtualKeyExW, ToUnicodeEx,
GetModuleFileNameW,CreateFileW,WriteFileW,CloseHandle]

Figure 9: Trace record for Turla.

hook, this would include three records: 1) the full path to the log file, 2) the
SPUNINST sub-directory, and 3) the msimm.dat file. HookTracer generates
separate records for several reasons. First, the full path can be highly specific
to our emulator. Turla is an example of malware that writes its log file to
the directory that the malware is launched from, which obviously changes per
infection. Other keyloggers write to hardcoded paths though, which is why we
still include the full path. Second, we include any sub-directories created by
the malware as experience tells us that some malware will create a hardcoded
directory name, but then vary the name of the file inside of it. Finally, we
keep the name of the keylogger file itself for malware, such as Turla, that use
hardcoded names. By keeping all components, the generated IOCs are as flexible
and broad as possible. Once generated, an incident response team member
can then feed the IOC into any enterprise-level endpoint security monitoring
(EDR) product to determine every system in the environment that contains
file(s) matching the IOC. When using industry-standard EDRs, thousands of
endpoints can be checked in an under a minute, and the use of IOCs in this
manner is standard practice in the industry [18, 37, 68].

7. Hooktracer Testing and Limitations

To test HookTracer’s correctness and viability, we tested it against a number
of other real-world malware samples to ensure that the reported hook behaviour
matched that of each sample. In this section, we document the results of this
work for several prolific malware samples. For 64-bit samples, we leveraged the
same Windows 7 64-bit virtual machine used for the Turla case study. For 32-bit
samples, we used a 32-bit version of Windows 7 inside of a virtual machine.

7.1. Loki Bot

Loki Bot is an information stealer sold on underground online markets that
targets credentials and keystrokes, and that has been used in a variety of real-
world attack campaigns [51, 70]. Loki logs keystrokes through the use of SetWin-
dowsHookEx, and its message hook handler gathers the last pressed key, the
contents of the clipboard, and the name of the active window.

7.1.1. Setup
Our analysis was performed against a 32-bit executable sample of Loki that
has a MDb) hash value of:

21



eccad903b)c27d149e159338f58481a9

In order to activate the keylogger functionality, we followed the steps as
described in Rob Pantazopoulos’ research paper [58]. Once activated, we then
typed letters into Notepad, Wordpad, and Internet Explorer, waited thirty sec-
onds, and then suspended the virtual machine.

7.1.2. Analysis

Figure 10 shows the output of our plugin against the message hooks handler
of Loki, and the malicious nature of the handler is clear. After the handler
locates and calls APIs to retrieve the keystroke value (lines 1-16), it then calls
GetWindowTextW on line 18. Next it opens a handle to a strangely named
file (line 22) and writes the return value of GetWindowTextW, whose value was
faked by HookTracer (MyWindowName), to the file. It then reads the contents
of the clipboard (line 30), opens a a new handle the same file (line 35), and
writes out the clipboard contents to the file (line 38). Loki prefixes clipboard
contents with CB: and HookTracer fakes GetClipboardData to return a value
of BBBBCCCCDDDD. Finally, on lines 43-46 we see the handler writing the
faked keystroke A to the file.

Loki’s message hook handler triggers several of our malicious criteria, in-
cluding clipboard access and writing clipboard and keystroke data to a file, and
is automatically flagged as malicious by the plugin.

7.2. Turla Keylogger Module

The Turla group previously described has developed several distinct toolkits
over the years. In its description of “The Epic Turla Operation”, Kaspersky
researchers documented a keylogger deployed by Turla that relied on Set Win-
dowsHookEz, but that is distinct from the previously analyzed sample [35].

7.2.1. Setup
Our analysis was performed against a 32-bit Epic Turla keylogger sample
that has a MD5 hash value of:

a3cbf6179d437909eb532b7319b3dafe

In order to gather a sample for analysis, we executed the malware to activate
it, typed into Notepad, Wordpad, and Internet Explorer, waited thirty seconds,
and then suspended the virtual machine.

7.2.2. Analysis

Figure 11 shows the output of our plugin against the message hook handler of
the Epic Turla keylogger. Unlike the previously discussed malware, this handler
performs only one task, which is to append the current keystroke to the key
log file. For unknown reasons, the keylogger exports its message hook function
_LowLevelKeyboardProc@12, which causes it to appear as line 1 in the output.

22



CONONUOIPWN P

APEPEDPPEPRAPPRPPRPPOOOOWWWWWWNNNNMNNNMNNNNRRRPRRRRERRREO
VONOCOPPWONPRPOOVONOGCOPMNWNRPOOVONOCAOPMNWNRPOOVONGTOP,RWNR, ®© -

LoadLibraryW: user32 —> 77200000
GetForegroundwWindow
LoadLibraryW: user32 -> 77200000
GetWindowThreadProcessId
LoadLibraryW: user32 —> 77200000
GetKeyboardState

LoadLibraryW: user32 —> 77200000
GetKeyboardLayout

LoadLibraryW: user32 -> 77200000
ToUnicodeEx

LoadLibraryW: user32 —> 77200000
GetAsyncKeyState

LoadLibraryW: user32 —> 77200000
GetKeyState

LoadLibraryW: user32 -> 77200000
GetForegroundWindow
LoadLibraryW: user32 -> 77200000
GetWindowTextw

LoadLibraryW: user32 —> 77200000
wsprintfw

wvsprintfw

CreateFileW: C:\Users\Administrator\AppData\Roaming\4C@383\34A037.kdb
SetFilePointer
GetProcessIdOfThread

. WriteFile: 41424344 -> 48 -> Window: MyWindowName

CloseHandle

LoadLibraryW: user32 -> 77200000
OpenClipboard

LoadLibraryW: user32 -> 77200000
GetClipboardData

Globallock

LoadLibraryW: user32 -> 77200000
wsprintfw

wvsprintfw

CreateFileW: C:\Users\Administrator\AppData\Roaming\4C@383\34A037.kdb
SetFilePointer
GetProcessIdOfThread

. WriteFile: 41424344 -> 28 -> CB: BBBBCCCCDDDD

CloseHandle

GlobalUnlock

LoadLibraryW: user32 -> 77200000

CloseClipboard

CreateFileW: C:\Users\Administrator\AppData\Roaming\4C@383\34A0837.kdb
SetFilePointer

. GetProcessIdOfThread

. WriteFile: 41424344 -> 2 —> A
CloseHandle
LoadLibraryW: user32 -> 77200000
CallNextHookEx

Figure 10: hooktracer_messagehooks against Loki Bot.

23



_LowLevelKeyboardProc@12
memset: cfffffe8 — 0 — 20 - 20
strlen: cfffffe8 — 0 -
sprintf: cfffffe8 | %c | a
vfprintf: %s | a

fflush

CallNextHookEx

NO O PrWN PR

Figure 11: hooktracer_messagehooks against Epic Turla.

$ python vol.py —-f infected.mem -—profile=Win7SP1x86 handles —p 2724 -t File
Volatility Foundation Volatility Framework 2.6.1
Offset(V) Pid Handle Access Type Details

0x854ff5b0 2724 0x8 0x100020 File <snip>\Users\Administrator\Desktop
0x8713dba8 2724 Ox44 0x12019f File <snip>\Users\ADMINI~1\AppData\Local\Temp\~DFD308.tmp

Figure 12: Finding the Log File.

Lines 2-4 show the zeroing out of a buffer at address Oxcfffffe8 followed by the
copying of a lowercase ¢ into it.

This a is actually our fake keystroke of A in lowercase form. The case is
inverted as, instead of using the system APIs to translate the keyboard code to
a character, the hook does an unusual combination of checking for special keys
(shift, cap locks, etc.). Since these are not faked by HookTracer, the keylogger
calculates the keystroke as being in lowercase. The keystroke is then written to
a file on line 5 using an already opened file handle, the file buffer flushed to disk
on line 6, and the hook terminates on line 7. This behaviour meets our criteria
of not writing keystrokes to disk and is automatically flagged as malicious.

7.2.8. Finding the Log File

Since the malware uses an already opened file handle to write to the key
log file, the name of the file is not immediately obvious from the plugin’s
output. This straightforward for analysts to determine, however, as hook-
tracer_messagehooks can be configured to report the process ID of analyzed
hooks, which for this sample is 2724.

Volatility’s handles plugin can then be run with filters set for that PID and
to only show file handles. Figure 12 shows this invocation of Volatility and the
subsequent output. As can be seen, only two file handles are opened by the
malware. The first is a reference to the Desktop, and the second to a strangely
named file under the user’s temporary folder. Volatility’s dumpfiles plugin could
then be used to extract the file and verify its contents.

7.3. Gozi

Gozi, which also goes by Ursnif or ISFB, is a banking trojan that has been
around since the mid-2000s [64] and is still actively used in attack campaigns
today [67]. It has undergone significant changes during this period and also

24



inspired related malware, such as GozNym [65]. Combined, the Gozi family of
malware is responsible for the theft of hundreds of millions of dollars.

7.3.1. Setup
Our analysis was performed against a 32-bit Gozi sample that has a MD5
hash value of:

e6d118192fc848797e15dc0600834783

In order to gather a sample for analysis, we executed the malware to activate
it, typed into Notepad, Wordpad, and Internet Explorer, waited thirty seconds,
and then suspended the virtual machine.

7.8.2. Analysis

Figure 13 shows the output of hooktracer_messagehooks against the system
infected with Gozi. This hook operates by attaching the infected threads input
queue to its own (lines 6, 10, and 44), gathering the name of the module it is
executing inside of (lines 4, 11, 14, 16, 38, and 39), gathering the system time
(line 41), and gathering the name of the window in which is executing (line 42).

The use of the debug APIs by this handler meets our criteria and is automat-
ically flagged as suspicious. Manual review of the output also shows behaviour
very consistent with a keylogger and would trigger an analyst to perform further
analysis of the malware.

7.4. Telebot Keylogger

Telebots is an APT group believed to be based out of Russia. There are
previously attributed to attacks against the Ukrainian power-grid as well as the
NotPetya ransomware outbreak [52, 21]. The keylogger analyzed in this section
was used in the second wave of attacks against the Ukrainian infrastructure. It
was part of a toolchain that ended with the KillDisk malware, which deletes
important user and system files and renders victim systems unbootable.

7.4.1. Setup
Our analysis was performed against a 64-bit sample that has a MD5 hash
value of:

4919569cd19164c1f123f97c5044b03b
In order to gather a sample for analysis, we executed the malware to activate

it, typed into Notepad, Wordpad, and Internet Explorer, waited thirty seconds,
and then suspended the virtual machine.

25



1. GetCurrentThreadId

2. GetProcAddress: GetForegroundwWindow —> 7721335d
3. GetForegroundwindow

4, GetWindowThreadProcessId

5. GetProcAddress: AttachThreadInput —> 77236b54
6. AttachThreadInput

7. GetProcAddress: GetFocus —-> 77213a34

8. GetFocus

9. GetProcAddress: AttachThreadInput —> 77236b54
10. AttachThreadInput

11. GetWindowThreadProcessId

12. GetProcAddress: AttachThreadInput -> 77236b54
13. AttachThreadInput

14. OpenProcess: pid = 1084

15. GetProcAddress: GetModuleBaseNameA —-> 774515a4
16. GetModuleBaseNameA

17. _strupr

18. lstrlenA

19. 1lstrlenA

20. CloseHandle

21. memset: cffffe80 — 8 — 38 — 38

22. memset: cffffd8e — @ - 256 - 256

23. GetAncestor

24. GetProcAddress: GetKeyboardState -> 77236946
25. GetKeyboardState

26. GetProcAddress: GetKeyboardlLayout -> 77213800
27. GetKeyboardLayout

28. GetProcAddress: GetAsyncKeyState -> 7720a256
29. GetAsyncKeyState

30. GetProcAddress: GetAsyncKeyState -> 7720a256
31. GetAsyncKeyState

32. GetProcAddress: GetAsyncKeyState -> 7720a256
33. GetAsyncKeyState

34. GetProcAddress: ToUnicodeEx —> 772221b2

35. ToUnicodeEx

36. RtlAllocateHeap: 19012 | 4a44 || 204808 | 5000 —> bB200060
37. memset: b02006O6 — 0 — 19012 - 19012

38. OpenProcess: pid = 1084

39. GetModuleFileNameExW

46. CloseHandle

41. GetSystemTimeAsFileTime

42. GetWindowTextWw

43, GetProcAddress: AttachThreadInput -> 77236b54
44, AttachThreadInput

45, GetProcAddress: CallNextHookEx -> 7720abel
46. CallNextHookEx

Figure 13: hooktracer_messagehooks against Gozi.

26



7.4.2. Analysis

Figure 14 shows the output of hooktracer_messagehooks against a system
infected with the Telebots keylogger. On lines 3-10, the output shows that
process ID of the host process is gathered and written to a log file. This log
file is stored in a suspiciously named file under the user’s temp folder, which is
a common location for malware to store data. Lines 11-20 show the malware
writing the window name to the log file.

Lines 18-27 show the malware gathering the name of the executable it as
running as and writing it to the log file. This is accomplished through the use
of CreateToolhelp32Snapshot and Process32FirstW. These functions are used
to begin walking the process list. The malware walks the list in order to find
the process that it is running as so that it can extract the name. HookTracer
fakes the name of the first process returned as fake_process.exe, which can be
seen in the output on line 25. HookTracer also returns the same PID in calls
to GetWindowThreadProcessID as it does for the fake process it returns from
Process32FirstW. The combination of these two functions used together occurs
often in malware so this increases the chances that malware will find “itself”
during emulation. Lines 31-36 show the malware converting the faked A key to
a Unicode character (ToUnicodeEx) and then writing it to the log file.

In summary, this hook gathers to name and PID of the process it is running
as, the name of the active window when the latest key was pressed, and the
Unicode value for the last key pressed. It then writes these to a log file. These
actions violate several of our criteria, including the use of debug APIs and
writing keystroke data to disk. This automatically triggers the hook being
marked as suspicious by the plugin.

7.5. Limitations of Automated Message Hook Analysis

In order for hooktracer_messagehooks to identify a hook as malicious, the
hook must violate at least one of the criteria described previously as being
suspicious. The yty malware framework leveraged by the Donot Team APT
group is an example of keylogger malware that leverages SetWindowsHookFEx
for keylogging, but does not violate any of the criteria [69].

Figure 15 shows the output of hooktracer_messagehooks against the yty key-
logger. As can be seen, the hook’s only operations are to convert the pressed key
to its character equivalent and to allocate and de-allocate a few memory regions.
Reverse engineering of the handler showed that it was storing the converted key-
press inside of a custom data structure, and only once a certain number of keys
were pressed did the hook write the stored keys to disk. Since HookTracer
emulates only one key press, it did not trigger this extended behaviour.

Although our plugin does miss the malicious activity of this particular hook,
we still strongly believe that our research is highly practical and of great real-
world use. To start, the approach taken by yty to only record keystrokes once
a certain number is reached is very rarely seen in real world malware as it can
lead to lost keystrokes. For example, if the hosting process is terminated be-
tween a set of keystrokes and the threshold being reached, then none of them

27



V000N WN PR

GetForegroundwWindow
GetWindowTextW
GetWindowThreadProcessId

CreateFileW: C:\Users\JOHNSM~1\AppData\Local\Temp\_k1g2249768.~tmp

GetFileType
RtlAllocateHeap: b0200000
SetFilePointer

WriteFile: 41424344 —> 34 -> [x]Window PID >

HeapFree

. CloseHandle
. CreateFileW: C:\Users\JOHNSM~1\AppData\Local\Temp\_k1g2249768.~tmp
. GetFileType

. RtlAllocateHeap: b0202000
. SetFilePointer

. WriteFile: 41424344 —> 26 —> MyWindowName
. HeapFree

. CloseHandle

. CreateToolhelp32Snapshot
. Process32Firstw

. CloseHandle

. CreateFileW: C:\Users\JOHNSM~1\AppData\Local\Temp\_k1g2249768.~tmp
. GetFileType

. RtlAllocateHeap: b0204000
. SetFilePointer

. WriteFile: 41424344 -> 42 -> [%] IMAGE :
. HeapFree

. CloseHandle

. GetForegroundwindow

. GetWindowThreadProcessId
. GetKeyboardLayout

. ToUnicodeEx

. CreateFileW: C:\Users\JOHNSM~1\AppData\Local\Temp\_k1g2249768.~tmp
. GetFileType

. RtlAllocateHeap: b0206000

. SetFilePointer

. WriteFile: 41424344 -> 2 -> A
. HeapFree

. CloseHandle

. CallNextHookEx

Figure 14: hooktracer_messagehooks against Telebots Keylogger.

28

fake_process.exe



1. GetKeyNameTextW
2. RtlAllocateHeap
3. RtlAllocateHeap
4, RtlAllocateHeap
5. GetKeyState

6. GetKeyState

7. RtlAllocateHeap
8. HeapValidate

9. HeapFree

10. RtlAllocateHeap
11. HeapValidate
12. HeapFree

13. RtlAllocateHeap
14. HeapValidate
15. HeapFree

16. HeapValidate
17. HeapFree

18. HeapValidate
19. HeapFree

20. CallNextHookEx

Figure 15: hooktracer_messagehooks against Donot Team’s Keylogger.

will be logged. Similarly, if the user logs off or shuts down the system in the
gap time, keystrokes will again be lost. Further driving our belief is that, even
in rare occurrences such as yty’s approach, our plugin still tells an analyst that
the executable processes the keystroke, and that further reversing is needed to
figure out what is done with it. This itself is a clue that points investigators
in the right direction. We believe the powerful automation provided by hook-
tracer_messagehooks to accurately describe the actions of message hooks is a
significant and novel memory forensic capability.

8. Related Work

The use of emulation to evaluate malware has a long history in the field
of computer security. The most common form of emulation for this purpose
is whole system emulation. In this model, the entire operating system as well
as all running applications are emulated. This allows fine grained inspection
and control of the running system by monitoring applications. QEMU and
Bochs [41] are the most commonly used emulators for this purpose. TEMU
[77], built on top of QEMU, is one of the first mature security analysis projects
to use whole system emulation. HookFinder [76] was built on top of TEMU to
monitor for malicious hooks installed by rootkits in kernel memory. Panaroma
[78], MAVMM [55], Lares [61], and Ether [20] are other foundational projects
in this area. Besides direct emulation, there are also other areas of significant
research aimed at allowing analysis and monitoring of malware outside of the
environment the malware is executing in. Virtual machine introspection (VMI)

29



is a widely-use technology for this goal as it allows monitoring of guest virtual
machines from the host. This has the benefit of the security monitor executing
from a “safe” environment where the malware being observed would ideally not
be able to attack it. Due to this advantage, there has been significant virtual
machine introspection research in both academia [54, 25, 11, 34, 7, 6, 5, 8] and
industry [60], including the libvini project that allows running Volatility plugins
against live virtual machine guests [59]. The use of malware sandboxes is also
very popular and driven by virtual machine technology. Cuckoo Sandbox is
the most widely used of these [17] and can produce detailed reports of system
activity by malware.

While whole system emulation, virtual machine introspection, and sandboxes
are mature technologies that are widely used for malware analysis, they do
not fully meet the needs of real-world incident response teams nor do they
fit in well within memory analysis-based workflows. To use these technologies
during incident response, an analyst must first accomplish two tasks. The first
is actually locating the malicious code in memory. As documented previously,
this is a labor intensive task when using currently available Volatility plugins.
Second, the analyst must then extract the module (DLL or EXE file) hosting
the code. This presents a few problems in itself. For Volatility to automatically
extract an executable module, it needs the metadata contained in the file’s
header. Since anti-virus engines and EDRs also process this metadata on live
systems, malware will often zero out their modules’ header after initialization.
This forces the analyst to then perform a very manual process of rebuilding
the PE header from scratch to make the file understandable by analysis tools,
such as IDA Pro [30]. Furthermore, only in extremely rare circumstances can
a file extracted from process memory be later executed on a different system.
This occurs due to the substantial changes that occur during loading, including
global variable initialization, selective section loading, and IAT patching [46].
This means that executables extracted from memory cannot be reliably executed
in a virtual machine and the analyst must attempt to recover the module from
filesystem of the infected system, assuming it is present.

Memory-only loading of DLLs, commonly referred to as reflective injection,
is an extremely popular attack technique, and as the name implies, the loaded
DLL is never written to disk at any point [66, 72]. This technique is generally
accomplished by malware reading encrypted DLLs over the network or from
encrypted stores within the main executable already in memory. The buffer
containing the DLL is then decrypted and directly initialized by the malware’s
loader. The buffer is then usually zeroed out to prevent direct recovery. While
Volatility can find and extract the sections of such DLLs, they will never be
directly executable on any other system.

HookTracer solves all of these issues and makes powerful, automatic emula-
tion of memory resident code accessible to even novice incident response team
members. Instead of requiring the analyst to reverse engineer in-memory code,
HookTracer can automatically determine if a hook is malicious, locate the host-
ing code, and extract it to disk. For situations where malicious code is not
backed by a file on disk, HookTracer will determine the memory region hosting

30



the code and extract it. HookTracer also eliminates the need to attempt to make
malicious code executable on a separate system to then leverage technologies
such as whole system emulation. Instead, in-memory code can be directly emu-
lated and detailed reports can be produced of the code’s behaviour. This greatly
streamlines memory analysis processing and allows full automation of the entire
workflow. Besides HookTracer, there have been two recent projects that leverage
unicorn in conjunction with Volatility. The first, ROPEMU [27, 26], automat-
ically detects ROP chains [50] within memory. ROP is used by system-level
exploits to perform code-reuse attacks. Such attacks are necessarily memory-
only and can be difficult to detect with traditional Volatility plugins. The second
project [29] also hunts for ROP chains and was specifically developed to detect
the “Gargoyle” attack [47] that hides executable code using permission changes
and timers. Detection of Gargoyle is implemented by emulating the handler of
each registered timer found by Volatility and checking if calls are made to the
Windows API functions leveraged by the Gargoyle attack. Although neither
of these projects overlap our efforts, we consider them to be important related
work, as they both leverage unicorn in conjunction with Volatility and help
showcase the growing realization by the memory forensics community that cur-
rent incident response workflows are incompatible with traditional techniques
and technology.

9. Conclusion

The rise of memory-only malware and attack payloads has led to significant
research and development efforts in the field of memory forensics. The largest
downside of these efforts has been the general inaccessibility of many of the
techniques to all but expert investigators. This causes significant bottlenecks
within the incident response workflow of organizations and leads to inconsistent
analysis results that are heavily dependent on the skill level of the investiga-
tor. Our research efforts with HookTracer and hooktracer_messagehooks have
bridged this gap in a key area of incident response - the detection and analysis
of userland keyloggers. When keyloggers are active on a system, a wide range
of data, including keystrokes, clipboard contents, and more, are vulnerable to
recording and exfiltration. By leveraging hooktracer_messagehooks, even novice
investigators can automatically determine the presence of keyloggers as well as
generate detailed records of the keylogger’s behaviour. These records can then
used in automated detection and remediation at enterprise scale.

10. Acknowledgements

This work is supported by the National Science Foundation under Grant
Number 1703683.

11. References

[1] 2016. Powershell Empire. https://www.powershellempire.com.

31



2]

[10]

[11]

2017. The Volatility Framework: Volatile Memory Artifact Extraction
Utility Framework. https://github.com/volatilityfoundation/vola
tility.

2018. Unicorn Showcase. http://www.unicorn-engine.org/showcase/.

2019. ZwQueryInformationFile. https://docs.microsoft.com/en-us/
windows-hardware/drivers/ddi/content/ntifs/nf-ntifs-ntqueryin
formationfile.

Irfan Ahmed and Golden G. Richard III. 2013. Live Forensic Analysis
of Kernel Code for Malware Detection in Cloud Computing Environments.
Proceedings of the 65th Annual Meeting of the American Academy of Foren-
sic Sciences (AAFS) (2013).

Irfan Ahmed, Golden G. Richard III, Aleksandar Zoranic, and Vassil Rous-
sev. 2013. Integrity Checking of Function Pointers in Kernel Pools via Vir-
tual Machine Introspection. Proceedings of the 16th Information Security
Conference (ISC 2013) (2013).

Irfan Ahmed, Salman Javaid, Aleksandar Zoranic, and Golden G. Richard
ITI. 2012. ModChecker: Kernel Module Integrity Checking in the Cloud
Environment. Proceedings of CloudSec 2012: The International Workshop
on Security in Cloud Computing (2012).

Irfan Ahmed, Aleksandar Zoranic, Salman Javaid, Golden G. Richard III,
and Vassil Roussev. 2013. IDTchecker: Rule-based Integrity Checking of
Interrupt Descriptor Tables in Cloud Environments. Proceedings of the 9th
IFIP WG 11.9 International Conference on Digital Forensics (2013).

Fabrice Bellard. 2005. QEMU, A Fast and Portable Dynamic Translator.
In USENIX Annual Technical Conference, FREENIX Track, Vol. 41. 46.

Boldizsdr Bencsath and Gébor Pék and Levente Buttyan and Mark
Félegyhazi. 2011. Duqu: A Stuxnet-like Malware Found in the Wild.
CrySyS Lab Technical Report 14.

Brendan Dolan-Gavitt and Tim Leek and Michael Zhivich and Jonathon
Giffin and Wenke Lee. 2011. Virtuoso: Narrowing the Semantic Gap in
Virtual Machine Introspection. 2011 IEEE Symposium on Security and
Privacy. , 297-312 pages.

Gianluca Brindisi. 2016. gozi-isfb. https://github.com/gbrindisi/mal
ware/tree/master/windows/gozi-isfb.

Andrew Case, Mohammad M. Jalalzai, Md Firoz-Ul-Amin, Ryan D. Mag-
gio, Aisha Ali-Gombe, Mingxuan Sun, and Golden G. Richard III. 2019.
HookTracer: A System for Automated and Accessible API Hooks Analysis.
Digital Forensics Research Conference (DFRWS) (2019), 104-112.

32



[14]

[15]

[16]

[19]

[20]

Catalin Cimpanu. 2018. Russia’s Elite Hacking Unit Has Been Silent, But
Busy. https://www.zdnet.com/article/russias-elite-hacking-uni
t-has-been-silent-but-busy/.

The MITRE Corporation. 2018. Technique: Timestomp. https://attack
.mitre.org/techniques/T1099/.

The MITRE Corporation. 2018. Turla. https://attack.mitre.org/gro
ups/G0010/.

Cuckoo Foundation. 2014-2019. Cuckoo Sandbox Automated Malware
Analysis. https://cuckoosandbox.org.

Jessica DeCianno. 2014. IOC Security: Indicators of Attack vs. Indicators
of Compromise. https://www.crowdstrike.com/blog/indicators-att
ack-vs-indicators-compromise/.

Dell SecureWorks Counter Threat Unit Threat Intelligence. 2015. Skeleton
Key Malware Analysis. https://www.secureworks.com/research/skele
ton-key-malware-analysis.

Artem Dinaburg, Paul Royal, Monirul Sharif, and Wenke Lee. 2008. Ether:
Malware Analysis via Hardware Virtualization Extensions. In Proceedings
of the 15th ACM Conference on Computer and Communications Security.
ACM, 51-62.

ESET. 2016. The rise of TeleBots: Analyzing disruptive KillDisk
attacks. https://www.welivesecurity.com/2016/12/13/rise-telebot
s-analyzing-disruptive-killdisk-attacks/.

FireEye. 2014. Poison Ivy: Assessing Damage and Extracting Intelli-
gence. https://www.fireeye.com/content/dam/fireeye-www/global/
en/current-threats/pdfs/rpt-poison-ivy.pdf.

FireEye. 2016. FakeNet-NG-Next Generation Dynamic Network Analysis
Tool. https://github.com/fireeye/flare-fakenet-ng.

Volatility Foundation. 2014. VMware Snapshot File. https://github.c
om/volatilityfoundation/volatility/wiki/VMware-Snapshot-File.

Tal Garfinkel and Mendel Rosenblum. 2003. A Virtual Machine Introspec-
tion Based Architecture for Intrusion Detection. NDSS.

Mariano Graziano, Davide Balzarotti, and Alain Zidouemba. 2016. ROP-
MEMU. https://github.com/Cisco-Talos/ROPMEMU/.

Mariano Graziano, Davide Balzarotti, and Alain Zidouemba. 2016. ROP-
MEMU: A Framework for the Analysis of Complex Code-reuse Attacks. In
Proceedings of the 11th ACM Conference on Computer and Communica-
tions Security. ACM, 47-58.

33



[28]

[29]

[38]

[39]

[40]

Nikolay Grebennikov. 2011. Keyloggers: Implementing Keyloggers in Win-
dows. Part Two. https://securelist.com/keyloggers-implementin
g-keyloggers-in-windows-part-two/36358.

Aliz Hammond. 2018. Hunting for Gargoyle Memory Scanning Evasion.
https://countercept.com/blog/hunting-for-gargoyle/.

Hex-Rays. 2018. Hex-Rays Home. https://www.hex-rays. com.

Andrew Honig, Mike Sikorski, John Laliberte, and Niles Akens. 2012. Fak-
eNet. https://practicalmalwareanalysis.com/fakenet/.

Ashkan Hosseini. 2017. Ten Process Injection Techniques: A Techni-
cal Survey Of Common And Trending Process Injection Techniques.
https://www.endgame.com/blog/technical-blog/ten-process-injec
tion-techniques-technical-survey-common-and-trending-process.

IOActive. 2012. Reversal and Analysis of Zeus and SpyFye Banking Tro-
jans. Technical Report.

Salman Javaid, Aleksandar Zoranic, Irfan Ahmed, and Golden G. Richard
ITI. 2012. Atomizer: A Fast, Scalable and Lightweight Heap Analyzer for
Virtual Machines in a Cloud Environment. Proceedings of the 6th Layered
Assurance Workshop (LAW’12) (2012).

Kaspersky. 2014. The Epic Turla Operation: Solving some of the mysteries
of Snake/Uroboros. https://media.kasperskycontenthub.com/wp-con
tent/uploads/sites/43/2018/03/08080105/KL_Epic_Turla_Technica
1_Appendix_20140806.pdf.

Takashi Katsuki. 2013. Crisis: The Advanced Malware. 2013 Symantec
Internet Security Threat Report.

Emmett Koen. 2017. Indicators of Compromise and Where to Find
Them. https://blogs.cisco.com/security/indicators-of-comprom
ise-and-where-to-find-them.

Brian Krebs. 2013. Carberp Code Leak Stokes Copycat Fears.
https://krebsonsecurity.com/2013/06/carberp-code-leak-sto
kes-copycat-fears/.

Kaspersky Lab. 2014. Kaspersky Lab Uncovers “The Mask”: One of the
Most Advanced Global Cyber-espionage Operations to Date Due to the
Complexity of the Toolset Used by the Attackers. https://usa.kaspersk
y.com/about/press-releases/2014.

Kaspersky Lab. 2019. The Epic Turla (Snake/Uroburos) At-
tacks. https://usa.kaspersky.com/resource-center/threats/epic-t
urla-snake-malware-attacks.

34



[41]

[42]

[43]

[44]

[51]

[52]

Kevin P Lawton. 1996. Bochs: A Portable PC Emulator for Unix/X. Linuz
Journal (1996).

Andrea Lelli. 2018. Out of Sight But Not Invisible: Defeating File-
less Malware with Behavior Monitoring, AMSI, and Next-gen AV.
https://cloudblogs.microsoft.com/microsoftsecure/2018/09/27/
out-of-sight-but-not-invisible-defeating-fileless-malware-w
ith-behavior-monitoring-amsi-and-next-gen-av/.

Michael Ligh, Steven Adair, Blake Hartstein, and Matthew Richard. 2010.
Malware Analyst’s Cookbook and DVD: Tools and Techniques for Fighting
Malicious Code. Wiley Publishing.

Michael Hale Ligh. 2012. MoVP 3.1 Detecting Malware Hooks in the Win-
dows GUI Subsystem. https://volatility-labs.blogspot.com/2012/
09/movp-31-detecting-malware-hooks-in.html.

Michael Hale Ligh. 2012. Reverse Engineering Poison Ivy’s Injected Code
Fragments. https://volatility-labs.blogspot.com/2012/10/revers
e-engineering-poison-ivys.html.

Michael Hale Ligh, Andrew Case, Jamie Levy, and AAron Walters. 2014.
The Art of Memory Forensics: Detecting Malware and Threats in Windows,
Linuzx, and Mac Memory. Wiley, New York.

Josh Lospinoso. 2017. Gargoyle: A Memory Scanning Evasion Technique.
https://github.com/JLospinoso/gargoyle.

MalBot. 2018. Post 0x17.1: Analyzing Turla’s Keylogger . https://malw
are.news/t/post-0x17-1-analyzing-turla-s-keylogger/22762.

MalBot. 2018. Post 0x17.2: Analyzing Turla’s Keylogger. https://malw
are.news/t/post-0x17-2-analyzing-turla-s-keylogger/23334.

David Maloney. 2016. Return Oriented Programming (ROP) Exploits Ex-
plained. https://www.rapid7.com/resources/rop-exploit-explained

/.

Malpedia. 2019. Loki Password Stealer (PWS). https://malpedia.caad.
fkie.fraunhofer.de/details/win.lokipws.

Mike McQuade. 2018. The Untold Story of NotPetya, the Most Devastating
Cyberattack in History. https://www.wired.com/story/notpetya-cyb
erattack-ukraine-russia-code-crashed-the-world/.

Microsoft. 2018. SetWindowsHookExA function. https://docs.microso
ft.com/en-us/windows/desktop/api/winuser/nf-winuser-setwindow
shookexa.

35



[54]

[56]

Matthew Muscat and Mark Vella. 2018. Enhancing Virtual Machine
Introspection-Based Memory Analysis with Event Triggers. 2018 IEEE

International Conference on Cloud Computing Technology and Science
(CloudCom).

Anh M. Nguyen, Nabil Schear, HeeDong Jung, Apeksha Godiyal, Samuel T.
King, and Hai D. Nguyen. 2009. Mavmm: Lightweight and Purpose Built
VMM for Malware Analysis. 2009 Annual Computer Security Applications
Conference. 441-450.

Martin  Novak, Jonathan Grier, and Daniel Gonzales. 2018.
New Approaches to Digital Evidence Acquisition and Analysis.
https://www.nij.gov/journals/280/pages/new-approaches-to-d
igital-evidence-acquisition-and-analysis.aspx.

nyx0. 2015. Carberp Banking Trojan. https://github.com/nyx0/Carber
P
Rob Pantazopoulos. 2017. Loki-Bot: Information Stealer, Keylogger, &

More! https://digital-forensics.sans.org/community/papers/gre
m/loki-bot-information-stealer-keylogger—-more_4802.

Bryan Payne, Steven Maresca, Tamas K. Lengyel, and Antony Saba. 2019.
LibVMI Virtual Machine Introspection. http://1libvmi.com/.

Bryan D Payne. 2012. Simplifying Virtual Machine Introspection Using
libvmi. Sandia Report (2012), 43-44.

Bryan D. Payne, Martim Carbone, Monirul Sharif, and Wenke Lee. 2008.
Lares: An Architecture for Secure Active Monitoring Using Virtualization.
IEEE Symposium on Security and Privacy. 233—-247.

Nguyen Anh Quynh and Dang Hoang Vu. 2015. Unicorn: Next Generation
CPU Emulator Framework. Black Hat USA (2015).

Rapid7. 2019. Metasploit. https://www.metasploit.com/.

SecureWorks. 2007. Gozi Trojan. https://www.secureworks.com/rese
arch/gozi.

SentinelOne. 2019. GozNym Banking Malware: Gang Busted, But Is That
The End? https://www.sentinelone.com/blog/goznym-banking-mal
ware-gang-busted/.

Skape and Jarkko Turkulainen. 2004. Remote Library Injection. http://
www.hick.org/code/skape/papers/remote-library-injection.pdf.

Sophos. 2019. Gozi V3: Tracked by Their Own Stealth.
https://news.sophos.com/en-us/2019/12/24/gozi-v3-tracked-b
y-their-own-stealth/.

36



[68]

[69]

[70]

[71]

Tanium. 2017. Tanium IOC Detect UserGuide. https://docs.tanium.co
m/.

ASERT Team. 2018. Donot Team Leverages New Modular Malware Frame-
work in South Asia. https://de.netscout.com/blog/asert/donot-tea
m-leverages—new-modular-malware-framework-south-asia.

FortiGuard SE Team. 2019. Newly Discovered Infostealer Attack Uses
LokiBot. https://www.fortinet.com/blog/threat-research/new-inf
ostealer-attack-uses-lokibot.html.

Windows Defender Advanced Threat Hunting Team. 2016. Platinum: Tar-
geted Attacks in South and Southeast Asia. https://www.microsoft.co
m/en-us/download/details.aspx?id=51956.

Volexity. 2016. PowerDuke: Widespread Post-Election Spear
Phishing Campaigns Targeting Think Tanks and NGOs. https:
//www.volexity.com/blog/2016/11/09/powerduke-post-election-s
pear-phishing-campaigns-targeting-think-tanks-and-ngos/.

Kiel Wadner. 2014. An Analysis of Meterpreter During Post-Exploitation.
SANS Institue Information Security Reading Room.

George Waller. 2012. Keyloggers: The Most Dangerous Security Risk in
Your Enterprise. https://esj.com/articles/2012/11/12/keylogger-s
ecurity-risk.aspx.

Forensics Wiki. 2012. List of Volatility Plugins. https://github.com/v
olatilityfoundation/volatility/wiki/Command-Reference.

Heng Yin, Zhenkai Liang, and Dawn Song. 2008. HookFinder: Identify-
ing and Understanding Malware Hooking Behaviors. In Proceedings of the
Network and Distributed System Security Symposium, NDSS.

Heng Yin and Dawn Song. 2010. Temu: Binary Code Analysis via Whole-
system Layered Annotative Execution. EFECS Department, University of
California, Berkeley, Tech. Rep. UCB/EECS-2010-8 (2010).

Heng Yin, Dawn Song, Manuel Egele, Christopher Kruegel, and Engin
Kirda. 2007. Panorama: Capturing System-wide Information Flow for Mal-
ware Detection and Analysis. In Proceedings of the 14th ACM Conference
on Computer and Communications Security. ACM, 116-127.

37



