Gaslight Revisited: Efficient and Powerful Fuzzing of
Digital Forensics Tools

Shravya Paruchuri
Division of Computer Science and Engineering, Louisiana State University
Andrew Case

Volatility Foundation

Golden G. Richard IIT*

Center for Computation and Technology and Division of Computer Science and
Engineering, Louisiana State University

Abstract

The fields of digital forensics and incident response have seen significant
growth over the last decade due to the increasing threats faced by organizations
and the continued reliance on digital platforms and devices by criminals. This
rise has coincided with a significant and continued increase in the size, complex-
ity, and number of digital forensic investigations that must be performed. In the
past, such investigations were performed manually by expert investigators, but
this approach is no longer viable given the amount of data that must be pro-
cessed compared to the relatively small number of trained investigators. These
resource constraints have led to the development and reliance on automated
processing and analysis systems for digital evidence. Given the central role that
such evidence plays in securing organizations and nations against attacks as well
as in criminal and civil legal proceedings, it is necessary that such systems are
developed in a robust and reliable manner. In this paper, we present our effort
to develop a stress testing platform specifically tailored to assess the robustness
and reliability of digital forensics tools. For our initial testing, we chose to target
The Sleuth Kit framework given its prominence as both as a standalone tool as
well as a programming library that is utilized by a large number of open source
and commercial filesystem analysis systems. The results of our efforts were the
automated discovery of many critical programming errors in The Sleuth Kit
framework.

Keywords: memory forensics; digital forensics; fuzzing; software testing;

*Corresponding author
Email addresses: shravyaparuchuri@gmail.com (Shravya Paruchuri), andrew@dfir.org
(Andrew Case), golden@cct.lsu.edu (Golden G. Richard III)

Preprint submitted to Elsevier June 22, 2020

incident response

1. Introduction

The prevalence of cybercrime and attacks, including ransomware, insider
threats, intellectual property theft, and espionage is well known and well doc-
umented [1, 2]. The scale and severity of these attacks has led to a significant
increase in the relevance and utilization of the fields of digital forensics and
incident response. Practitioners in these fields are responsible for detecting,
responding to, and documenting hostile actions taken against an organization’s
infrastructure and property by both malicious insiders as well as malicious ac-
tors anywhere in the world. To achieve these goals, practitioners must collect
and analyze all potentially relevant digital evidence to determine if any arti-
facts that support the investigation can be found. Given the continued increase
in the size of digital data, such as hard drive capacity, volatile memory (RAM)
sizes, and network activity, it has become impractical to apply traditional, man-
ual approaches to digital forensic analysis [7, 14, 22]. Instead, practitioners now
heavily rely on automated tools and frameworks to identify, extract, and present
relevant data from digital evidence sources.

While automation allows for scalable and repeatable analysis, it also re-
quires special care in the design and development of digital artifact extraction
frameworks as well as between frameworks and user interfaces. Since these
frameworks are used in critical situations, such as legal proceedings and analy-
sis after intrusions, they must clearly report accurate results. They must also
be as resistant as possible to invalid and corrupt metadata and data streams,
whether the malformed data was due to acquisition errors or staged by mal-
ware. The most common type of acquisition error in digital forensics is known
as smear [10]. Smear occurs when data is acquired from running systems and
metadata and its associated data stores change between when acquisition starts
and ends. The effect of smear is that, while a majority of the copy of an ac-
quired source is accurate, some portions may be corrupted. This places the
burden on the forensic analysis software to recover as much of the intact data as
possible while gracefully handling the corrupt data. Depending on the program-
ming language(s) used to develop the forensic framework, improper handling of
smear can lead to exploitable programming bugs, infinite loops, memory and
filesystem exhaustion, and other critical issues that can cause the program to
crash or be vulnerable to control by malware. Mishandling of malformed data
can also lead to improper reporting of artifacts, which can mislead investigators
and potentially invalidate investigations.

The acquisition of volatile memory is an obvious source of smear as, with the
exception of virtual machine environments and hibernation files, the memory
sample must be acquired while the system is live [13, 23, 24]. A less obvious
source of smear is during disk acquisition as the traditional approach to disk
acquisition was to power down the system and then acquire the drives offline in a
lab setting. This approach has become untenable in many real-world situations,

however, due to several factors. These factors include the size of the drives to
be acquired, an inability to shut down production systems for hours or days
while acquisition occurs, and the ubiquitous use of complicated RAID setups
that can be trivially acquired live but that are often very difficult to replicate
offline without access to the original RAID hardware and software configuration.
Also, even in situations where disk images can be acquired offline, smear can
still occur due to hardware errors.

The critical importance of the accuracy and robustness of digital forensic
tools has led to several efforts to test different frameworks’ resiliency to mal-
formed input. A recent effort in this regard was a publication at the 2017 Dig-
ital Forensics Research Workshop (DFRWS) that focused on fuzzing popular
memory forensic frameworks [11]. This fuzzer, named Gaslight, was able to au-
tomatically find and report many programming errors in the tested frameworks’
parsing of in-memory artifacts.

The research effort described in this paper was inspired by Gaslight and was
focused on specifically testing filesystem forensic tools. In particular, we focused
on fuzzing of The Sleuthkit framework (T'SK) as it is one of the most commonly
used file forensic frameworks [9]. TSK is a set of command line tools that allow
for deep parsing of filesystem metadata and contents as well as a library used
by numerous commercial products and open source projects to parse filesystem
data. This makes it an attractive target for attackers, and a high value target for
our fuzzer to locate programming errors and help lead to them being reported
and fixed. In this paper, we document our effort to redesign and re-implement
the Gaslight architecture as well as add many new features that enhance its
usability and usefulness. As will be shown, our new fuzzing engine discovered
numerous programming errors in TSK that were efficiently and automatically
discovered by our new framework.

2. The Original Gaslight Architecture
As described in the 2017 paper, Gaslight had several key goals:

e Support fuzzing of both open- and closed-source memory forensics tools,
without requiring modifications to the framework itself.

e Fuzz memory forensics tools written in any programming language.
e Fuzz as quickly as possible, using all available computing resources.

e Intelligently discover and report a variety of implementation errors for
memory forensics tools, including crashes, infinite loops, and resource ex-
haustion issues.

Gaslight also had a goal of not making any changes to the memory sample
being analyzed and instead at runtime dynamically altered the data a framework
read from a memory sample. Given the size of modern memory samples, having
to make a new copy for each mutation would have been highly impractical.

Furthermore, Gaslight only mutated the bytes accessed by a framework during
the particular read operation on which it was accessed. By only mutating the
data processed by a framework the entire workflow became highly efficient and
targeted.

To accomplish these goals, Gaslight leveraged a custom FUSE [17] filesys-
tem that intercepted filesystem operations by a memory forensic framework to
mutate (change) the data in an attempt to trigger programming errors. FUSE
allows the implementation of a filesystem in userland, and as such, is much
simpler to program than a kernel-level filesystem driver. By storing a memory
sample to be analyzed under a Gaslight FUSE mount point, the custom FUSE
driver was able to monitor and intercept all filesystem operations by a memory
forensic framework.

Gaslight’s automation harness was operated by running a tested framework
in two phases. First, a particular memory analysis plugin was executed with
static command line arguments, and then the order and offsets of read operations
were recorded. No mutations were applied on the first run. The second phase
involved running the same command line invocation once for each read operation
as well as each active mutation type. The framework also allowed for a sliding
window to fuzz particular offsets inside of buffers read from the memory sample.

The end result of this two-phase approach was that every read performed
and every offset processed by the framework would be fuzzed with every active
mutation type. As previously mentioned, the use of Gaslight led to the discovery
of many programming errors in memory forensic frameworks.

3. Weaknesses of the Original Gaslight

While Gaslight is an innovative framework, the current version suffers from
several issues that negatively impact performance, efficiency, and the ability
to detect certain programming errors. We describe these drawbacks in this
section, and the remainder of the paper describes our effort to redesign and
expand Gaslight. as well as our results.

3.1. Reliance on FUSE

The most significant drawback in the original Gaslight architecture is the
reliance on FUSE as the filesystem operation interception mechanism. FUSE
is problematic for several reasons. First, as documented in two recent papers,
FUSE causes extreme filesystem performance degradation as well as CPU uti-
lization spikes [8, 26]. In the worst cases, these papers document the use of FUSE
causing an extra CPU usage of over 30% and over 80% performance slowdowns
in filesystem operations. Considering that Gaslight must run a tested frame-
work many thousands or even millions of times, this performance issue makes
relying on using FUSE quite inefficient.

FUSE is also difficult to use in practice as it requires root (or sudo) privileges
to mount the custom filesystem. In shared work environments, this is a potential
security hazard as well as a non-standard requirement for security testing tools.

Finally, the reliance on FUSE greatly limits the detection capabilities of
the fuzzer as it can only monitor filesystem operations. As discussed in Sec-
tion 5, our newly developed fuzzing architecture monitors other runtime opera-
tions, which led to finding several programming errors in TSK that the original
Gaslight would be unable to detect.

8.2. Non-Specific Fuzzing Mutations

The next major drawback of the current version of Gaslight is that it em-
ployed over 25 mutations, many of which had overlapping coverage and that
did not expand the detection capability of the framework. Having so many mu-
tations also furthered harmed performance as they all must be tested on each
fuzzing operation.

4. The Redesigned Gaslight Architecture

Our goal with the redesign of Gaslight was to keep the portions that were
successful, redesign and replace the insufficient components, and to develop
completely new capabilities that enhance detection of programming errors as
well as aiding framework developers with ongoing testing. Our research effort
began with addressing the issues previously described in the original Gaslight
architecture. To start, we designed a system that could replace FUSE with
LD_PRELOAD, and then we developed specific mutations that targeted digital
forensic tools in an efficient manner.

4.1. Leveraging LD_PRELOAD

4.1.1. Background

LD_PRELOAD is a debugging feature of the dynamic linker implemented
on Linux systems that allows a shared library to intercept library function calls
at runtime [15]. In practice, this means that a shared library can monitor and
change the implementation and return values of functions in other libraries. A
common debug use is to print the arguments sent to functions to determine what
parameters they are being sent and how they are processing the data. Given
its power over the system runtime, this feature has also been heavily abused by
real-world malware starting in the mid-1990s [16] through the present [12, 21].

4.1.2. Supporting Fuzzing Operations

Our new Gaslight architecture uses LD_PRELOAD to hook filesystem and
memory allocation operations. Unlike FUSE, LD_PRELOAD has no discernible
overhead since it adds just one function call, the one implemented by the hooking
library, into the existing function call stack.

To monitor filesystem operations, Gaslight hooks the open, read, and close
system calls. This allows it to monitor when a disk image is accessed by a
forensic framework as well as count the number of reads performed. To monitor
memory allocations, the malloc, realloc and calloc functions are monitored. As
described later, this allows us to find a wide class of programming errors in

frameworks. Figure 1 shows the open hook used by Gaslight to track when the
disk image is accessed.

int open (const char *pathname, int flags, ...) {
va_list args;
mode_t mode;
int fd;

/[ariginal syscall
if (Ifunc_open)
func_open = (int (*) (const char *, int, mode_t)) disym (REAL_LIBC, "open”);

va_start (args, flags);
mode = va_arg (args, int);
va_end (args);

fd = func_open (pathname, flags, mode);
printf("MUTATIONS: open() file '%s' (fd=%d)\n", pathname, fd);
start_fuzz_tracking(fd, pathname);

return fd;

Figure 1: Gaslight’s open hook

Each Gaslight function starts by locating the address of the original im-
plementation through the call to disym. This is a standard approach for all
applications that leverage LD_PRELOAD. After locating the original open ad-
dress, the real implementation is called. The path and return value are then
sent to Gaslight’s start_fuzz_tracking function, which ensures that only read op-
erations on the configured disk image will be monitored and not those of other
files, such as configuration files. The file descriptor returned by the real open
function is then returned to the calling code.

Figure 2 shows the high-level design of our new framework that leverages
LD_PRELOAD as its interception mechanism. Our newly designed architecture
removes the need for users to be root, significantly improves performance, and
allows a wide range of operations to be monitored.

4.2. Tuning Gaslight’s Mutations

After studying the original Gaslight’s set of mutations and mapping them out
to the effects such changes would have on frameworks programmed in a variety
of languages, we decided to significantly reduce the number of mutations used
by our framework. By using a smaller number of highly effective mutations, we
were able to find programming errors in a more efficient manner. The final set
of mutations that were chosen filled mutated buffers with the following:

Mutations queue

Figure 2: Gaslight Redesigned

All NULL (0x00) values

All hex 0xff values

Randomly generated values

The current byte value from the disk image shifted right by 2

The current byte value from the disk image shifted left by 2

The current byte value from the disk image logical XOR’d with 0x80

oot W

Mutations 1-3 were kept from the original Gaslight architecture due to their
effectiveness and close mirroring of the real-world effects of smear. Many acqui-
sition tools fill unreadable buffers with either NULL or Oxff bytes as padding.
Randomly generated values provide good coverage of a tool’s robustness and
also mimic how smear or malware can place any value in any location desired.

Mutations 4 and 5 were developed by our research team as they help to trig-
ger serious errors that the original Gaslight could have only potentially triggered
through its random generation mutation. Mutation 4 and 5 mimic metadata,
such as bitmasks and size fields, being slightly changed during acquistion. It also
breaks brittle filesystem parsing code that does not properly handle unknown
values in bitmasks. Mutation 6 flips the sign of the integer value being exam-
ined. This can trigger a variety of programming errors as large values become
small and small values become extremely large. It also helps to find signedness
mishandling issues in C and C++4 applications.

5. Enhancing Operations and Usability

Beyond redesigning Gaslight to be more efficient and scalable, we also added
three significant features that were not present in the original Gaslight architec-

ture and whose absence greatly reduced usability and error detection coverage.

5.1. Monitoring Memory Allocations

Frameworks implemented in C and C++ must manage their own memory
allocations and deallocations. This complex task has historically led to many
exploitable programming errors in a wide variety of programs and frameworks.
TSK and many other open source and commercial filesystem parsers are imple-
mented in these languages and are potentially vulnerable to the same implemen-
tation issues. Parsing filesystem data requires allocating memory based on size
and length fields encoded within the filesystem’s metadata. This means that
values are fully controllable by malware as well as being potentially affected by
smear. Forensic frameworks, such as TSK, must take extreme care when using
such values for allocations and subsequent operations as there are number of
programming errors that can lead to heap-based buffer overflows, integer under-
flows and overflows, memory exhaustion attacks, and more. Beyond exploitable
vulnerabilities, crashes in forensic frameworks also have other negative effects,
as they make automation difficult and can result in returning only partial results
to analysts. The latter often goes unnoticed by investigators, who are frequently
burdened with large caseloads.

The original Gaslight architecture is only capable of detecting a limited set of
memory allocation issues, specifically, those that cause the application to crash
upon using too much memory or a failed allocation. This set of circumstances
is very limited, as these typically occur on modern systems only when a system
completely exhausts both ddavailable RAM and swap space. One exception is if
applications have been configured to use only a subset of system RAM, but this
is not a common configuration for forensic tools in real-world labs. Similarly,
fuzzing engines are generally run on powerful systems with a large amount of
RAM and many CPU cores, so that as much coverage can be completed as
quickly as possible. This masks the fact that applications may be using very
significant amounts of memory without crashing due to the system being used
for fuzzing being extremely powerful.

To detect potential memory exhaustion vulnerabilities in forensic frame-
works, we implemented LD_PRELOAD hooks for the malloc, realloc and calloc
memory allocation functions. Before calling the real allocation function, our
hooking code checks to see if the memory size requested by the framework is
more than 64MB. If so, an error log entry is generated and the program is
aborted. This maximum allowable size is configurable, but we found 64MB to
be the ideal size based on our testing. By enforcing a maximum allocation well
beyond what filesystem parsers would normally make, our framework is able to
detect potential memory allocation and exhaustion vulnerabilities on its own,
independent of how much RAM the system it is being executed on has installed.

5.2. Reusable Crashes

The original Gaslight architecture provided no mechanism to “replay” crashes
nor to use the configuration that caused a crash for future testing purposes. To

alleviate these issues, we added several features to Gaslight’s fuzzing harness
that not only record the exact configuration variables used for each invocation,
but that also the exact mutated data stream. This was particularly important
for the random generation mutation, as otherwise there was no information to
recover the original values substituted by the fuzzer engine.

We then developed a script that reads a saved state file and only runs the
fuzzer engine with the exact crash state reproduced, including the original mu-
tation data for the affected read operation. This allows developers to reproduce
crashes in their frameworks, including inside a debugging environment where
the application state can be assessed.

5.3. Replayable Crashes

A top priority of our research effort was to remove the need for developers
to keep an entire disk image around to re-trigger a previous crash in the fu-
ture. Instead, we wanted to capture the entire data stream that caused a crash
and allow it to be usable (replayable) without the original disk image present.
To accomplish this, we developed a special operation mode of our redesigned
Gaslight that will read a saved state file and then produce a second file which
includes the contents of the data read from disk for each read operation before
the one that caused the crash. For the read operation that caused the crash,
the mutated buffer inside the saved state file is used to populate the new file.
The end result of this special operation mode is that at any point in the future
the fuzzing engine can recreate the exact state and set of data that caused a
framework to crash in the past. This mode will be useful to developers who
wish to implement regression testing or who will be testing a wide variety of
frameworks for correctness and robustness.

Besides being useful for regression testing, replayable crashes also conserve
disk space. In our testing, the majority of TSK commands required less than one
hundred (100) read operations. The worst case commands, such as parsing the
metadata of all files in the filesystem, required around four hundred (400) read
operations on average. TSK uses a default read size of 65,536 bytes (64KB).
Taken together, this means that even in the worst case scenario of a crash
occurring on the 400th read of 64KB blocks, the resulting crash file would
26MB whereas the full filesystem partition might be very large, with even single
consumer grade hard drives exceeding 12TB as of late 2019. For several of the
programming errors triggered by our framework, the crashes occurred within
the first ten reads and the associated replayable crashes are less than 1MB in
size.

We envision publishing replayable files alongside our code library once all
the errors that we found in TSK are patched and included in a stable release.
We also envision that this library of crash streams will significantly grow over
time and can be used by all open source and commercial vendors for robustness
testing of their software, which will aid the entire digital forensics community.

6. Fuzzing Environment

6.1. Hardware Setup

Our fuzzing framework does not have a discernible impact on the amount of
memory, CPU, or disk space used beyond that of the framework being tested. As
discussed previously, the size of the generated crash state logs and other logging
information is generally in the tens of megabytes. The memory footprint is only
a few data structures used to track the read operations of the framework being
tested and which mutations the fuzzer is currently configured to generate.

During the main testing periods, the fuzzer ran on a bare-metal system
configured with 64GB of RAM and a 6 core/12 thread Intel CPU.

6.2. Software Environment

The 64-bit version of Ubuntu 18.04 TLS was used as the operating system
for all tests. All core system runtime libraries and the kernel used were those
provided by the Ubuntu software manager.

6.3. The Sleuthkit Configuration

Testing was performed against the latest version of TSK from its official
GitHub repository. TSK is actively developed, and as such, relying on periodic
releases would potentially lead us to triggering bugs fixed since release, which
does not align with our goal of finding undiscovered bugs to help aid the project.
Furthermore, by compiling TSK ourselves, we were able to compile with source
code debugging enabled, which greatly sped up crash triage. During the testing
phase, we updated to the latest code base once a week and recompiled the
library and tools. This kept us fully up to date with the project.

6.4. Test Image Generation

To test TSK with our fuzzing architecture, we created test images of several
filesystems, including NTFS, HFS+, ExFat, and Ext4. Each image file was
256MB in size and created using dd with an input source of /dev/zero. For our
architecture, the size of the disk image does not affect the total time needed
to fuzz a forensic framework task. Instead, the main factor related to time
needed to run an entire fuzzing operation is the particular task being performed
by the forensic framework. As an example, operations that read the metadata
of a single file, such as through TSK’s istat command, only require reading
the metadata of a single file and do not require a significant number of read
operations. On the other hand, gathering the metadata of every file in the
filesystem through TSK’s fis can require a significant number of read operations
if the filesystem contains many files and directories.

After creating each image, we then mounted it and instructed a script we
developed to create a number of files, directories, and sub-directories inside the
image. It also creates symbolic links for filesystems that support it and alternate
data streams for NTFS images. The goal of the script is to produce varying
types of files and metadata throughout the filesystem to trigger as many code
paths as possible in the filesystem parser.

10

Function

Programming Error

ntfs_load_bmap

Insufficient bounds checking of
attribute before processing leads to
crash

tsk_fs_attrlist_get

Insufficient bounds checking of
attribute list before processing leads to
crash

ntfs_proc_compunit

Insufficient bounds checking of
compression unit before processing
leads to crash

ntfs_dir_open_meta

The 64-bit size of the index allocation
attribute is not checked before using
the size directly in a call to malloc

ntfs_proc_attrlist

The 32-bit size of MFT entries is not
checked before using the size directly
in a call to malloc

Table 1: Discovered NTFS Parser Errors

Function

Programming Error

fatfs_inode_walk

malloc is called with unchecked size
when allocating memory to hold the
directory bitmap

Table 2: Discovered ExFat Parser Errors

Function

Programming Error

ext2fs_block_getflags

Use of unchecked mutated offset leads
to invalid memory access and program
crash

ext2fs_dinode_copy

Use of unchecked mutated offset leads
to invalid memory access and program
crash

Table 3: Discovered Linux Ext Parser Errors

7. Fuzzing Results

We tested our developed fuzzing architecture against the previously men-
tioned disk images and found many critical programming errors in TSK’s filesys-
tem parsers. Table 1 describes these errors found in the NTFS parsers, while
Table 2 describes the errors found in the ExFat parser, and Table 3 describes

the errors found in the Linux Ext parsers.

As can be seen, a variety of programming errors were uncovered during

11

our testing. Combined, these errors allow for crashing any program using the
affected TSK parsers, memory exhaustion attacks, and potentially arbitrary
code execution inside of a victim application.

8. Related Work

8.1. Fuzzing for Security Vulnerabilities

Fuzzing for security vulnerabilities has a long history going back to 1988
when Bart Miller assigned his students the task of fuzzing UNIX utilities [18].
Since then, there have been significant research efforts to develop smart and
efficient fuzzing techniques to find software vulnerabilities. Below, we briefly
discuss only the most closely related work.

One of the most powerful and commonly used fuzzing tools is American
Fuzzy Lop, normally referred to as AFL [27]. Unfortunately, AFL, along with
other similar tools, did not meet the requirements and goals of the original
Gaslight architecture nor does it meet our new requirements. In particular, AFL
and associated tools require access to the source code of an application to fuzz
it. Gaslight was designed to be tool and programming language agnostic and
to not require any inspection of or access to a fuzzed framework’s source code.
Since the majority of digital forensic practitioners use commercial forensic tools
to which they do not have source code access, they are unable to leverage AFL
to test the robustness of the tools on which their investigations rely. Another
drawback of AFL as it relates to testing forensics tools is that it mutates entire
files that are tested. To help with performance in mutating entire files, the AFL
documentation recommends that input files be 1KB or smaller, which makes it
completely unsuitable for fuzzing software that processes disk images, memory
samples, and most other forensic artifacts.

Attempts to work around these limitations to gain the power of AFL are not
possible given the constraints. To support fuzzing of closed-source applications,
AFL supports integration with QEMU [6]. As listed in the documentation, the
fuzzing and coverage is not as robust when analyzing closed source binaries
compared to having source code available. Furthermore, the binary-only mode
does not alleviate the small file limitation. For performance reasons, forensics
software reads data in chunks to implement caching. As an example, Volatility
and Rekall read in page size chunks, which default to 4KB, and Sleuthkit reads
data in 64KB chunks. This is true for all reads to the memory or disk image,
even if the data being requested is much smaller, such as an individual metadata
record or data structure member. These caching mechanisms create a situation
where even one read from the evidence source will exceed the limitations imposed
by AFL. In real-world tasks, such as asking Sleuthkit to read the metadata of
a file from a NTFS or Ext4 partition, there are dozens to hundreds of reads on
average for the operation to complete.

Gaslight supports efficient fuzzing of input files of any size by only targeting
the portions of the input file processed by a framework in a particular invoca-
tion. Similar drawbacks and violations of Gaslight’s requirements affect other
automated testing techniques, such as dynamic taint analysis systems.

12

8.2. Filesystem Fuzzing

There have been a few efforts to fuzz filesystem parsers. Mangle, a mutation-
based file fuzzer developed by Ilja van Sprundel in 2005, was one of the earliest
[20]. Tt worked by mutating portions of a filesystem’s header with random
bytes. This managed to break several forensic tools at the time, but fuzzing
such a small amount of metadata does little to break modern parsers and only
provides a fraction of the coverage of Gaslight.

In 2007, Newsham, Palmer, and Stamos presented a fuzzing effort that led
to the discovery of several programming errors in TSK and Encase at the time
[19]. This work focused on fuzzing partitions tables, NTFS data structures, and
several common file formats. Like AFL, this fuzzing framework mutated entire
files during its processing and led to untargeted and inefficient operation.

A more recent effort, named Janus, by a team at Georgia Tech led to the
discovery of many filesystem driver bugs in the Linux kernel [25]. This project
works by leveraging the Linux Kernel Library, which allows encapsulation of
the Linux kernel inside a userland process [5, 4]. While Janus, and the more re-
cently published Hydra project [3] by the same team, are highly efficient at find-
ing bugs in the Linux kernel, they do not substantially overlap with Gaslight’s
goals or functionality. In particular, these projects require source code access
to the kernel drivers being examined. Access to the source code not only vio-
lates Gaslight’s requirement of not relying on a framework’s source code, but it
also prevents these projects from fuzzing a filesystem not directly supported by
the Linux kernel. Gaslight has no such limitation and can effectively fuzz any
filesystem type supported by the fuzzing framework being tested. Furthermore,
to avoid mutating entire disk images, these projects only mutate the metadata
of supported filesystems. This constraint requires that the fuzzer framework’s
developers write their own filesystem parsers to locate the metadata locations.
This adds a significant layer of complexity and requires that the fuzzer devel-
oper’s code accurately finds all metadata for a particular filesystem. Gaslight
again has no such requirements or limitations.

9. Conclusions

In this paper, we have documented our research efforts to design and develop
a new fuzzing architecture that is highly effective at finding real-world program-
ming errors in filesystem parsers. Given the reliance on digital forensic tools to
solve significant cybercrime investigations, it is of the utmost importance that
these tools be reliable and robust. Using our developed architecture, framework
developers and users can perform extensive stress testing of a framework’s re-
siliency in the face of corrupt filesystem data. Such corruption is highly common
in real-world investigations where systems must be imaged live, where malware
is present, and where hardware errors in source media affect the acquisition
process.

Our new fuzzing architecture builds on a previous architecture, known as
Gaslight, that was highly effective at finding programming errors in memory

13

forensic frameworks. Our research effort began by fixing several deficiencies
in Gaslight, such as its reliance on FUSE and its unrefined set of mutations.
We then developed several innovative features that allow discovery of memory
allocation bugs and that support repeatable testing using previously triggered
crashes. The end result of our work is a framework that meets the needs of real-
world developers and investigators and which can be used to discover critical
programming errors in any tool that ingests filesystem data. To show the efficacy
of the work, we targeted the Sleuthkit framework, which is a widely used library
and set of associated tools to perform disk image forensics. During testing, our
fuzzing architecture was able to automatically find many critical programming
errors in the Sleuthkit.

10. References

[1] 300+ terrifying cybercrime and cybersecurity statistics trends.
https://www.comparitech.com/vpn/cybersecurity-cyber-crime
-statistics-facts-trends/, 2019.

[2] 50 noteworthy cybercrime statistics in 2019. https://learn.g2.com/cy
bercrime-statistics, 2019.

[3] Hydra: an Extensible Fuzzing Framework for Finding Semantic Bugs in
File Systems. https://github.com/sslab-gatech/hydra, 2019.

[4] Linux kernel library. https://github.com/1k1, 2019.

[5] Linux Kernel Library [LWN.net]. https://lwn.net/Articles/662953/,
2019.

[6] High-performance binary-only instrumentation for afl-fuzz, 2020.

[7] J.Grier andGolden G. Richard III. Rapid forensic imaging of large disks
with sifting collectors. Digital Forensics Research Conference (DFRWS).

[8] E. Zadok B. Vangoor, V. Tarasov. To fuse or not to fuse: Performance
of user-space file systems. Proceedings of the 15th USENIX Conference on
File and Storage Technologies, 2017.

[9] Brian Carrier. The Sleuthkit. https://www.sleuthkit.org, 2019.

[10] Harlan Carvey. Page smear. http://seclists.org/incidents/2005/Ju
n/22, 2005.

[11] Andrew Case, A. Das, S-J Park, R. Ramanujam, and Golden G. Richard
ITI. Gaslight: A Comprehensive Fuzzing Architecture for Memory Forensics
Frameworks. Proceedings of the 2017 Digital Forensics Research Conference
(DFRWS), 2017.

14

[12]

[20]

[21]

chokepoint. Azazel is a userland rootkit based off of the original
LD_PRELOAD technique from Jynx rootkit. https://github.com/cho
kepoint/azazel, 2019.

Volatility Foundation. VMware Snapshot File. https://github.com/vol
atilityfoundation/volatility/wiki/VMware-Snapshot-File, 2014.

S. Garfinkel. Digital forensics research: The next 10 years. Digital Forensics
Research Conference (DFRWS), 2010.

GNU. Id.so. http://man7.org/linux/man-pages/man8/ld.so.8.html,
2019.

halflife. Shared Library Redirection Techniques. http://phrack.org/iss
ues/51/8.html, 1997.

libfuse. The reference implementation of the linux fuse (filesystem in
userspace) interface. https://github.com/libfuse/libfuse, 2019.

Bart Miller. Fuzzing Creation Assignment. https://fuzzinginfo.file
s.wordpress.com/2012/05/cs736-projects-£1988.pdf, 1988.

Tim Newsham, Chris Palmer, and Alex Stamos. Breaking
Forensics Software: =~ Weaknesses in Critical Evidence Collection.
https://www.defcon.org/images/defcon-15/dcl5-presentations

/Palmer_and_Stamos/Whitepaper/dc-15-palmer_stamos-WP.pdf, 2007.

OWASP. Fuzzing. https://www.owasp.org/index.php/Fuzzing#File_
format_fuzzing, 2019.

Ignacio Sanmillan. HiddenWasp Malware Stings Targeted Linux Sys-
tems. https://www.intezer.com/blog-hiddenwasp-malware-targeti
ng-linux-systems/, 2019.

C. Stelly and V. Roussev. Scarf: A container-based approach to cloud-
scale digital forensic processing. Digital Forensics Research Conference
(DFRWS), 2017.

Johannes Stiittgen and Michael Cohen. Robust linux memory acquisition
with minimal target impact. Digital Investigation, 11:5112-S119, 2014.

Joe Sylve, Lodovico Marziale, and Golden G. Richard III. Modern Windows
Hibernation File Analysis. Digital Investigation, 2017.

S. Kashyap P. Tseng T. Kim W. Xu, H. Moon. Janus: a state-of-the-art
file system fuzzer on Linux. https://github.com/sslab-gatech/janus,
2019.

A. Moody K. Sato M. Kahn W. Yu'Y. Zhu, K. Mohror. Direct-fuse: Remov-
ing the middleman for high-performance fuse file system support. ROSS’18:
Proceedings of the 8th International Workshop on Runtime and Operating
Systems for Supercomputers, 2018.

15

[27] Michael Zalewski. american fuzzy lop. http://lcamtuf.coredump.cx/af
1/, 2016.

16

