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1 Abstract—Analysis of app-specific behavior has become an
increasingly important capability in the fields of digital forensics
and incident response. The ability to determine the precise actions
performed by a user, such as URLs visited, files downloaded,
messages sent and received, images and video viewed, and
personal files accessed can be the difference between a successful
analysis and one that fails to meet its goals. Unfortunately, proper
analysis of volatile app-specific evidence, especially the recovery
of large objects such as multimedia and large text files stored
in memory has not been explored. This is mainly because the
allocation function in the various Android memory management
algorithms handles large objects differently and in separate
memory regions than small objects. Thus, in this paper our
effort is focused on developing an app-agnostic memory analysis
tool capable of recovering and reconstructing large objects from
process memory captures. We present AmpleDroid, a tool that
identifies and extracts large objects loaded in an application
memory space. Our methodology involves the inspection of the
process image to identify vital Android runtime data structures
utilized during large object allocation. AmpleDroid is evaluated
on a number of apps and the results shows the recovery of almost
91% of the allocated large objects from process memory.

Index Terms—Android Runtime, Large Object, Multimedia,
app memory

I. INTRODUCTION

Android is the most popular mobile operating system with
a market share of 73.3% [1]. People use a wide variety of
mobile or personal digital assistant (PDA) applications (app)
for day-to-day activities, which involve the processing, sharing
and manipulation of both textual data and multimedia objects
like photos, video, and audio [2]. All these activities leave
behind evidence in the device memory. Extraction of such
evidence from memory requires a unique approach called
memory analysis, a vital technique employed by practitioners
for the identification and extraction of evidence from Android
devices [3]. Recent research efforts, such as [4]–[6], target the
recovery of forensic evidence from the new Android Runtime
(ART). Soares et al described a technique to analyze objects in
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memory within the ART execution environment using volatile
memory [7] data extraction [5]. Soares et al performed an
in-depth study of the runtime and built extensions for the
Volatility framework [8] [9] for devices compliant with the
ARM (Advanced RISC Machine) architecture [5]. Timeliner
is a forensics technique capable of automatically extracting the
timeline of user actions from a single memory image acquired
from an Android device for all the installed apps [6]. The
forensic technique in Timeliner is designed to leverage the
memory image of Android’s centralized ActivityManager ser-
vice [6]. DroidScraper is another app analysis tool for Android
version 8 that recovers small objects allocated in a process
memory image using RegionSpace memory management. Re-
gionSpace is a memory management space in Android that
consists of equal-sized regions [4]. DroidScraper analyzes
these regions and recovers the allocated small objects like int,
bool etc. [4]. However, all of this work has limitations that
prevent recovery of large size multimedia objects like images,
audio, video and large textual data. Hence, we propose a tool
called AmpleDroid that can recover large objects allocated in
the Large Object Space (LOS). LOS is a region of memory
in the new ART reserved for objects larger than a particular
size [10] [11]. AmpleDroid embodies a new memory analysis
technique that analyzes large object memory allocations to
recover large text files and multimedia artifacts from process
memory dumps. In experimental studies, the tool exhibits high
accuracy (≈ 91%) for large objects recovery and decoding.

A. Contribution

• The tool AmpleDroid can be used to analyze process
memory to identify and extract allocated large objects
like multimedia.

• The tool is evaluated on multiple applications to success-
fully recover 91% of the allocated large objects.

The rest of the paper is organized as follows: Section 2
presents the background of this paper; Section 3 provides an
overview of our design and implementation; Section 4 presents
the evaluation of the proposed approach; Section 5 presents
summary of related work; Section 6 summarizes our findings
and conclusions.



Fig. 1. Source Code Listing for the Type of Large Object Space

II. BACKGROUND

Memory analysis can provide unique insights into runtime
system activity, including information about and data from
recently executed applications. A forensic investigator requires
OS-specific mechanisms to identify and extract allocated ob-
jects from memory. In the Android OS, identification of allo-
cated objects from LOS in the heap is essential for evidence
extraction, as this region of memory is specifically reserved for
allocating large objects such as images, text, audio and video.
The ART organizes virtual memory of an app into several cat-
egories including heap space (for Java objects), zygote shared
object space, and space for large objects [4]. RegionSpace
memory allocation is the overall mechanism used in ART to
allocate both small and large objects in regions of memory
[4]. This memory management algorithm allocates objects at
the top of the region, and a new top is determined by adding
the size of the object to the top address. The RegionSpace
algorithm has two allocation functions that determine how
objects are laid out in memory. The Alloc() function is used
to allocate small objects such as small primitives, strings,
arrays, and other complex objects such as InetAddress. On the
other hand, the AllocLarge() function handles the allocation
of objects that are above a certain threshold of 12KB. At the
start of a process runtime, a heap region is created, which in
turn creates multiple regions of equal size, some of which are
reserved as LOS and are used by the AllocLarge() function to
allocate large objects. Typically, the LOS is located in a unique
region in the process memory called Dalvik Large Object
Allocation [12]. In ART, LOS uses discontinuous memory
mapping, where object allocation regions are not contiguous
[13]. Primarily objects stored in the LOS are allocated in
arrays of types such as byte, char, string, float, and int [12].
ART categorizes the LOS into three types: FreeList, Map, and
Disabled as shown in Figure.1 [12].

During heap initialization, the system creates a LOS struc-
ture based on whether the runtime option for LOS is type
Freelist or MAP. A Freelist LOS creates a continuous space
called the FreeListSpace, which is designed to hold free
blocks and handle holes. A MAP LOS creates a discontinuous
space called the LargeObjectMapSpace [13], a shared memory
region that allocates objects using memory maps instead of
the typical Linux malloc. During a large object allocation,
the allocator inspects the availability of the size required for
the new large object in memory [12] and then creates a
memory mapping matching that size. The beginning offset
of the mapping is then chained to the allocation tracking
map of the LargeObjectMapSpace. Similarly, after the freeing

Fig. 2. AmpleDroid’s Component Workflow

of a large object, the blob of memory gets evacuated to a
unique region called the evacuation region, where it remains
until the next garbage collection(GC) cycle [11]. Objects
that are moved to the evacuation region are not recovered
from the LOS region, hence, the retrieval of such objects
are not within the scope AmpleDroid. The Android Open
Source Project(AOSP) source code was analyzed to identify
that large objects like images, video, and text files are al-
located in LargeObjectMapSpace, thus, AmpleDroid focuses
on LargeObjectMapSpace. The structure and class definition
of the LargeObjectSpace and LargeObjectMapSpace are ex-
plained in detail in the system design section. Apart from
FreeListSpace and LargeObjectMapSpace, there is another
LOS category called Disabled that allocates runtime-specific
large objects that are never garbage collected.

III. SYSTEM DESIGN

AmpleDroid is a large object evidence recovery and decod-
ing tool that analyzes an app’s memory capture to extract large
objects. The tool inspects various data structure definitions and
class templates to retrieve and recreate large objects allocated
during runtime. Recovery of large objects can be performed
for either textual data or multimedia. As shown in Figure.2,
AmpleDroid’s workflow consists of - The Process Memory
Analysis Module (PMAM), which includes two major tasks:
Task1: Large Object Data Structure Recovery and Task2:
Large Object Decoding to recover and decode the large objects
stored in process memory.

Workflow of AmpleDroid begins with the extraction of
the process memory image and the recovery of its main
runtime structures. The design of our approach is generic
in that the system can utilize any of the available process
memory imaging techniques/tools [14], [15]. For illustrative
purposes, we used Memfetch to extract the memory images of
targeted processes [14]. Memfetch utilizes the /proc filesystem
to dump available memory maps from a running app. The
memory of the targeted userspace process is dumped into a
directory containing individual mapping and allocation files.
The mem*.bin files are anonymous memory blocks like the
stack and the heap. The map*.bin files are a copy of all
maps, including the shared libraries and large object space



Fig. 3. Process Memory Analysis Module - PMAM

allocations. Map files acquired using Memfetch [14] are then
decoded with AmpleDroid to extract the large object data. The
acquired process dump is then analyzed to identify the ART
data structures using the tool DroidScraper [4]. The identified
data structures constitute the main runtime’s object, process
heap, threads, and stacks that are crucial during app execution
and therefore vital to understand large object allocations. The
heap plugin in DroidScraper is used in AmpleDroid to identify
the LOS offset and its attributes, illustrated in Figure.4. The
app dump along with the ART data structures (used to recover
large objects) are passed to the PMAM for further inspection.

A. Process Memory Analysis Module - PMAM

The PMAM module analyzes the output acquired from
the process memory extraction tool Memfetch to recover
raw data for every large object allocated in the process
memory space during runtime [14]. As shown in Figure.
3, our analysis begins with the inspection of the recovered
heap structure to find the LargeObjectMapSpace - which is
implemented using the Linux mmap() function [13]. In ART,
the class LargeObjectMapSpace is derived from LargeOb-
jectSpace and thus inherits all of its fields. As shown in
Figure.4, the LargeObjectSpace in Android version 8 contains
the following attributes: num bytes allocated at offset 32;
num objects allocated at offset 40; total bytes allocated at
offset 48; total objects allocated at offset 56; begin at offset
64, and end at offset 68 [13].

The LargeObjectMapSpace further contains attributes of
both LargeObject (at location 112) and the AllocationTrack-
ingSafeMap (at location 120) structures as shown in Figure.4.
The LargeObject structure contains attributes like MemMap (a
pointer to the large object allocated) and is zygote (a boolean
to indicate if the allocated large object is a zygote or not). The
AllocationTrackingSafeMap structure inherits all the attributes
and functions from SafeMap [16]. The SafeMap allocation
is used after determining if the pointer acquired from the
MemMap attribute is a new pointer or a stored template
value (a pointer of LargeObject - MemMap stored initially
in the memory). The two structures hold the corresponding
pointer to the memory map and the metadata structure for
allocation tracking [16]. The combination of members of all

these structures define how the Android memory allocator lays
out every object larger than 12KB in memory.

Fig. 4. The ’Large Object Space’ object for Android 8, listing as a C structure

Fig. 5. AmpleDroid LOS plugin recovering objects with memory address

The design of PMAM module involves two tasks as shown
in Figure.2:



• The Large Object Data Structure Recovery (LODR)
• The Large Object Decoding (LOD)
1) The Large Object Data Structure Recovery (LODR): The

LODR extracts the blob of bytes for each object allocated in
the LargeObjectSpace. Examining the AOSP source code for
Android version 8, we have identified that the ART allocates
and initializes storage for an object instance using the Allo-
cObject() function, which in turn calls AllocObjectWithAllo-
cator() [17]. For large objects the AllocObjectWithAllocator
verifies that the template value parameter kCheckLargeObject
is true and the byte count for the object is greater than or
equal to the large object threshold (greater than or equal
to 12KB). If these two requirements are met then the heap
defaults the allocator type to kAllocatorTypeLOS and allocates
the object using a generic AllocLarge(). If for any reason
one of the parameters is false or the large object allocation
fails, then the heap will default to one of the small object
allocators. The large object allocation in LargeObjectSpace
created by the function AllocLarge() is based on an attribute
large object space type to finalize if the LOS allocated is a
LargeObjectMapSpace or not [18] [19].

The SafeMap allocation, identified with the MemMap
pointer as mentioned above, was studied in detail using
AOSP source code analysis [16]. The SafeMap allocation
performs binary searches using a red-black tree data structure
by comparing the address offset of LargeObject and loads
the metadata of large objects effectively [16] [20]. The red-
black tree data structure performs binary search insertions
and deletions for faster and best fit memory allocation [20].
Therefore, each node holds the large object metadata extracted
using the AmpleDroid RBtree Algorithm. The RBtree algo-
rithm identifies the addresses of all the nodes that allocate large
objects by recovering the NodeDetails. NodeDetails include
each node’s color and the consecutive node (the next node
used to recover the actual large object data). The results of the

Algorithm 1: RBtree Algorithm
Parameters: LOS offset offset

if offset != ’0x0’ then
LargeObjectMapSpace LOS = GetNode(offset)
nodeList = []
nodeList.append(LOS.begin )

else
error: “Not allocated to LOS”

end
for int i=0; i ≤ len(nodeList); i++ do

nodeList = TRAVERSAL(node[i],nodeList)
end
function TRAVERSAL(node, nodeList)

(parent, left, right, color) = NodeDetails(node)
nodeList.append(left)
nodeList.append(right)
return nodeList

end function

plugin to recover attributes of LOS allocation from a sample
process dump (Image Editor in this evaluation) are shown in
Figure.5. The LODR inspects the process memory image to

recover the LargeObjectSpace offset at address 0xf0999380.
The AllocationTrackingSafeMap attribute which a safe map
that holds all the LargeObject structures corresponding to
each large object allocation is also extracted and displayed
in Figure.5. The LOS begin address is at memory location
0xc4ac3000, which is the offset where the actual large object
analysis starts. The pointer LargeObject in Figure.5at offset
0xf09993f0 is also at analyzed, as it points to the map that
holds the the structure of the large object. The RBTree Header
in Figure.5 depicts the offsets that point to the MemMap
structure that in turn hold large object offsets.

2) Large Object Decoding (LOD): LOD is the second task
performed by the PMAM. LODR inspects the process dumps
to identify the metadata of each large object which can be
decoded here to extract the original file loaded in the process
memory. If the size of the object loaded in memory exceeds
the attribute value kMinLargeObjectThreshold (three times the
page size is 3*4096 = 12KB) [17] then these objects are
allocated in LargeObjectSpace as large primitive arrays [17].
Such large primitive arrays include byte array, char array, float
array, int array and string array that can be further decoded to
recover the actual file loaded in the memory. The actual file
recovered on decoding will be a large text file or a multimedia
file. The large primitive arrays recovered are explained below:

1) byte array - The byte arrays are optimized data storage
mechanisms for storing large multimedia files [21].

2) char array - The char arrays are used to store arrays of
characters from large input files like text files [22].

3) string array - The string arrays holds the resources that
are referenced from the application [23]. Resources in
Android provides a format for storing text strings for
applications with optional text styling and formatting.

4) float array, int array - These primitive arrays represent
properties like screen pixels, but these are currently
ignored as they are outside our current research focus.

To summarize, AmpleDroid with LODR analyzes the Al-
locationTrackingSafeMap and identified offsets of the large
object structures that are represented as RBTree offsets. The
RBTree offset on further analysis with LOD identified the data
structure that allocates the large object stored in the memory.
For example in Figure.5 the RBTree offset 0xd1a036c0 is a
black node that on analysis with LODR and LOD stores a
byte array at offset 0xd1a036d0.

IV. EVALUATION

AmpleDroid is a tool developed to analyze app dumps for
retrieving large object files like multimedia and text as shown
in Figure.6. This tool is written in Python to perform an in-
depth process memory analysis for Android version 8. The
free and open source code of this tool will be released with
the publication of the paper.

To assess the effectiveness of object recovery of Ample-
Droid, a series of evaluations were performed on process
memory images. The evaluations were conducted on five
benign apps: Gallery Vault, Instagram, Image Editor, PDF
Reader, and Facebook Lite from the Google Play store [24].



Fig. 6. Flow of AmpleDroid describing Recovery and extraction of large files.

Fig. 7. The statistical view of loaded files in comparison with the recovered
files using AmpleDroid on Image Editor App.

A. Experimental Setup

Our experimental setup used the genymotion Android em-
ulator as the execution environment [25]. We created Android
Virtual Devices (AVD’s) for the Samsung S8 emulator running
Android 8.0-API 26 and for the Google Nexus 6 running
Android 8.0-API 26. All the emulators had 4GB memory and
apps were installed and loaded with multiple images, text
files, to simulate real devices. We interacted with the app
manually to generate sufficient activities for evaluation. Using
Memfetch, we captured the process memory of the app [14]
and extracted the runtime data structures with DroidScraper
[4]. Finally, retrieval of the large objects was accomplished
with AmpleDroid.

B. Object Recovery and Decoding

We tested AmpleDroid on apps from various categories,
as mentioned earlier. Recovered objects were grouped into
data structures: byte arrays, char arrays and string arrays, as
these store images, video frames, text, PDF data, resource
data referenced from applications, etc. The performance of
AmpleDroid is illustrated with Table 1 depicting the recovery
percentage. The recovery percentage is the ratio of recovered
loaded files to loaded large object files.

For each evaluated app, the recovery percentage is displayed
in the % column. AmpleDroid can recover an average of
91% of all allocated large objects within the process memory
which shows that the tool is useful for Android 8 memory
analysis. On further analysis, AmpleDroid did not recover the
9% allocated objects due to the acquired process dumps. The
significant reason behind the objects not retrieved by the tool
was the impact of critical runtime external factors like Garbage
collection on the dumps.

Fig. 8. The frames of video viewed by the user

1) Editing apps object recovery: In Figure.6, the emulator
was used to install the Image Editor app and a PNG image
was loaded in the app [25]. After a few minutes, Memfetch
acquired Image Editor’s process dump [14]. By executing
DroidScraper’s Heap plugin, we identified the LOS offset.
Next, after executing AmpleDroid’s LOS plugin, we extracted
the RBtree nodes to identify the large object metadata. The
metadata upon inspection and analysis with the DecodeLosOb-
ject plugin generated a byte array which on further decoding
retrieved the PNG image loaded earlier.

We also evaluated the tool by loading 21 files: 10 JPEGs,
5 PNGs, 3 PDFs, and 3 Notepad documents into the Image
Editor app. The files recovered from memory were byte arrays
(images), char arrays (input text files), and string arrays (files
referenced from application). In Figure.7, the graph illustrates
the efficiency of the AmpleDroid tool by identifying and
recovering the large object files in comparison to the total
files loaded manually. The graph shows at least 91% recovery
and decoding efficiency.

2) Social media apps object recovery: The Android emu-
lator was used to install the Facebook Lite app. We viewed
a 1 min video, loaded images to a Facebook account and
posted a story. After a few minutes, Memfetch acquired the
process dump of the Facebook app (with the metadata of the
video viewed, story posted in memory) [14]. The metadata
on inspection with AmpleDroid displayed traces of webp and
webm files that on decoding generated a series of byte arrays
loaded in the memory. On further decoding, we could extract
the frames of the video viewed. The results of the extracted
video frames are shown in Figure.8.

V. RELATED LITERATURE

Extraction of all types of large objects (text, image, audio,
video) from smartphone memory is a significant contribution
to Android memory forensics. This is difficult due to the
variations made in the Android smartphone [26]. There are
many works associated with the recovery of forensic data
from memory images of which related work like Guitar [27],
Timeliner [6], Discrete [28], VCR [26] and DroidScraper [4]
are more useful in this work. The Visual Content Recognition
(VCR) tool is one such tool that recovers large object data
by unveiling an intermediate service used by Android device



Apps Large Objects Loaded String Array Char Array Byte, Int and Float Array Large Object Recovered %

Gallery Vault 82 15 35 26 76 93
Instagram 33 8 16 6 30 91
Image Editor 21 3 7 11 19 91
PDF Reader 30 6 11 10 27 90
Facebook Lite 72 17 24 25 66 92

TABLE I
EVALUATION RESULTS

cameras to recover visual content images [26]. Saltaformaggio
et al, in their work, VCR, extracted multimedia contents from
different apps that used the Android device camera. VCR does
not have access to such runtime information and operates on
only the input static memory image [26]. But, AmpleDroid is
different from VCR as our tool recovers all the multimedia and
text files stored in process memory without the involvement
of any standard service like the camera. Also, Ali-Gombe
et al proposed DroidScraper, a tool for analyzing the ART
RegionSpace memory allocation to extract small objects [4].
This tool was used to recover runtime data structures with
special attention to the recovery of small objects allocated
in the RegionSpace [4]. The class of data recovered by
AmpleDroid is completely different, and the large object data
recovered by our tool could contain critical digital evidence
to support legal proceedings or cyber investigations.

VI. CONCLUSION

In this paper, the tool presented is used to analyze an
Android app dump to extract the large objects allocated in
the LargeObjectSpace. The LargeObjectSpace allocation is
studied in detail to identify how the large objects are stored
in memory. AmpleDroid is tested on benign apps with at
least 91% accuracy. This tool supersedes other Android tools
because AmpleDroid performs a complete process memory
analysis on Android version 8 large object memory allocation
and extracts multimedia and text files which other tools cannot
currently process. Currently, AmpleDroid is fully automated
and will be made open source when the paper is published.
This tool can be instrumental in forensic investigations as it
provides an overall idea of how large object files (text, video,
image, etc.) are mapped in an app’s memory along with high
recovery and decoding rate.
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