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ABSTRACT: TIMS-FT-ICR MS is an important alternative to study the isomeric diversity and elemental composition of
complex mixtures. While the chemical structure of many compounds in the Dissolved Organic Matter (DOM) remains
largely unknown, the high structural diversity has been described at the molecular level using chemical formulas. In this
study, we further push the boundaries of TIMS-FT-ICR MS by performing chemical formula-based ion mobility and tandem
MS analysis for the structural characterization of DOM. The workflow described is capable to mobility select (R ~100) and
isolate molecular ion signals (Am/z = 0.036) in the ICR cell, using single shot ejections after broadband ejections and MS/MS
based on sustained off-resonance irradiation collision-induced dissociation (SORI-CID). The workflow results are compared
to alternative TIMS-q-FT-ICR MS/MS experiments with quadrupole isolation at nominal mass (~1Da). The technology is
demonstrated with isomeric and isobaric mixtures (e.g., 4-Methoxy-1-naphthoic acid, 2-Methoxy-1-naphthoic acid,
Decanedioic acid) and applied to the characterization of DOM. The application of this new methodology to the analysis of
a DOM is illustrated by the isolation of the molecular ion [C,sH,s0,0-H]" in the presence of other isobars at nominal mass
393. Five IMS bands were assigned to the heterogenous ion mobility profile of [C,sH,s0.0-H] and candidate structures from
the PubChem database were screened based on their ion mobility and MS/MS matching score. This approach overcomes
traditional challenges associated with the similarity of fragmentation patterns of DOM samples (e.g., common neutral

losses of H,O, CO,, and CH.-H,O) by narrowing down the isomeric candidate structures using the mobility domain.

INTRODUCTION

Critical environmental and ecological processes are
strongly influenced by Dissolved Organic Matter (DOM)*?,
one of the most studied natural complex mixtures. Thus, a
thorough knowledge of DOM chemical composition and
structure at the molecular level is essential for the
understanding of its role in the aquatic environments.
Although the molecular features of DOM has been the
focus of a multitude of studies over the last decades*4, the
elucidation of its chemical structure and a clear view of
DOM isomeric complexity, persist as one of the most
challenging analytical problems.5*

Analytical approaches integrating ultra-high resolution
mass spectrometry, gas/liquid pre-separation techniques
and tandem mass spectrometry strategies have provided
much of the existing information on the chemical diversity
of DOM.49%¢ An online HPLC-Orbitrap MS/MS method
developed by Hawkes et.al5, was used in an attempt to
isolate single compounds in DOM samples from different
ecosystems. Although the ubiquitous nature of DOM
isomeric complexity was demonstrated, the proposed

procedure was unable to separate individual compounds
and differentiate fragmentation patterns from specific
isomers of the same chemical formula. This limitation,
commonly perceived in similar studies, was likely due to
two main aspects: i) LC traditional approaches are not
resolutive enough to separate closely structurally related
isomers, regardless of the type of chromatographic
column®, and ii) typical MS/MS experiments do not
separate precursor ions within nominal mass leading to
ambiguous structural interpretation, even in cases where
isobaric interferences are mass resolved and fragments can
be assigned with high mass accuracy.7®

Novel workflows that combine both LC and ion mobility
spectrometry (IMS) have been explored to assess the DOM
complexity at the level of single isomer.9? Lu et.al*®
described the integration of LC-IMS-TOF MS for the
analysis of riverine DOM; while the approach allowed
molecular components to be separated in both LC and IMS
domains, several isomeric species shared close values of
retention time and CCS, thus underestimating the isomeric
coverage. In addition, the multi-precursor
isolation/fragmentation at nominal mass limited the
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veracity of the molecular structure assignment based on
MS/MS data.

Witt et.al® reported a negative ion mode Electrospray
Ionization Fourier Transform Ion Cyclotron Resonance
tandem Mass Spectrometry (ESI-FT-ICR MS/MS) method
for the analysis of DOM at the chemical formula level.
Sustained off-resonance irradiation collision-induced
dissociation (SORI-CID) of single molecular ions mass
peaks, previously isolated by Correlated Harmonic
Excitation Field (CHEF) and correlated shots of isobars in
the ICR cell, permitted the identification of fragmentation
pathways at the chemical formula level. Despite the several
advantages of this method, the high structural diversity at
the isomeric level of DOM limited the candidate structural
assignment.

With the advent of high-resolution ion mobility
analyzers (R>80), several groups have work on their
integration to ultra-high resolution mass analyzers. 3
Our team has pioneered the integration of trapped IMS
(TIMS) with FT-ICR MS since 2015 for the characterization
of isomeric species in complex mixtures3. Since them,
several reports have shown the unique advantages of
TIMS-FT-ICR MS for the characterization of the isomeric
content in complex mixtures (e.g., endocrine disruptors,
glycans, water accommodated fractions of crude oils,
DOM, etc.).33% While TIMS coupling to TOF-MS and FT-
ICR MS showed similar performance and high
reproducibility during the analysis of DOM (i.e., both MS
platforms were able to capture the major trends and
characteristics), as the chemical complexity at the level of
nominal mass increases with m/z (m/z > 300-350), only the
TIMS-FT-ICR MS was able to report the lower abundance
compositional trends.> Recently, a workflow based on
TIMS-q-FT-ICR MS/MS at the level of nominal mass (i.e., 1
Da isolation) allowed for further estimation of DOM
isomeric content based on ion mobility selected
fragmentation patterns and core fragments.” Aside from a
novel estimation of the number of isomers based on
MS/MS and ion mobility data, the high similarity of neutral
losses in DOM MS/MS at nominal mass suggested that
better isolation strategies prior to MS/MS were necessary.

In this study, we further push the boundaries of TIMS-
FT-ICR MS by performing chemical formula-based ion
mobility and tandem MS analysis for the structural
characterization of DOM. The workflow described is
capable to mobility select (R ~100) and isolate molecular
ion signals (<36mDa) in the ICR cell, using single shot
ejections after broadband ejections and MS/MS based on
sustained off-resonance irradiation collision-induced
dissociation (SORI-CID). Taking advantage of the high ion
mobility resolution (R~100) and mass resolution
(R~400,000), chemical formula-based ion mobility and
tandem mass spectrometry profiles were generated. The
technology is shown for the case of an isomeric and
isobaric standard mixture and a DOM standard.

EXPERIMENTAL

Sample preparation.

Two isomeric standards (4-Methoxy-1-naphthoic acid
and 2-Methoxy-1-naphthoic acid) and an isobaric
compound at nominal mass 201 Da (Decanedioic acid)
were purchased from Sigma-Aldrich (St Louis, MO) and
Thermo Fisher Scientific (Ward Hill, MA) respectively.
Surface water was collected from Pantanal (PAN) National
Park - SE Brazil, one of the most important and biodiverse
freshwater wetlands around the world. Details on sampling
and sample treatment procedure can be found in this
reference.> The DOM extracted sample was dissolved in
Denatured Ethanol to a final concentration of 1 ppm. Prior
to ESI-TIMS-FT ICR MS analysis, both the sample and
standards were spiked with 5% (v/v) of low-concentration
Tuning Mix (G1969-85000) from Agilent Technologies
(Santa Clara, CA). All solvents used were of Optima LC-
MS grade or better, obtained from Fisher Scientific
(Pittsburgh, PA).

ESI Source

An Electrospray lonization source (Apollo II ESI design,
Bruker Daltonics, Inc., MA) was utilized in negative ion
mode. Sample solutions were introduced into the
nebulizer at 150 pL/h using a syringe pump. Typical
operating conditions were 3300-3600 V capillary voltage, 4
L/min dry gas flow rate, 1.0 bar nebulizer gas pressure, and
a dry gas temperature 180 °C.

TIMS-FT-ICR MS/MS experiments

A custom built TIMS-FT-ICR MS Solarix 7T
spectrometer equipped with an infinity ICR cell (Bruker
Daltonics Inc., MA) was used for all the experiments. The
principle on TIMS separation when coupled to the FT-ICR
MS can be found in several publications of our group.23%39
Briefly TIMS relies on the utilization of an electric field to
hold ions stationary against a moving gas, so that the drag
force is balanced with the electric field and ions are
spatially separated across the TIMS analyzer axis based on
their ion mobility.4°4> During ion mobility separation, a
quadrupolar field confines the ions in the radial direction
to increase trapping efficiency. The ion mobility, K, of an
ion in a TIMS cell is described by the equation (1):

v, A

KO - Fg - Vetution=Vout (1)

where vg, E, A, Velution, and Vo are the velocity of the gas,
applied electric field, a calibration constant, elution
voltage, and tunnel out voltage, respectively.

Values of Ko can be correlated with the ion-neutral
Collision Cross Section (CCS, Q, A2) using the Mason-
Schamp equation (2):
a8m)/2z (1 1\/2 17607
= st et o) mreeew ()

where z is the charge of the ion, kg is the Boltzmann
constant, N* is the number density, and m; and my, refer to

the masses of the ion and bath gas, respectively.+
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The TIMS analyzer was controlled using an in-house
software, written in National Instruments LabVIEW, and
synchronized with the FTMS control acquisition program.
TIMS separation was performed in the Oversampling
Mode33 using nitrogen as a bath gas at ca 300 K, P1 = 2.6
and P2 = 0.8 mbar, and a constant RF (2200 kHz and 140-
160 Vpp).The TIMS cell was operated using a
fill/trap/elute/quench sequence of 9/3/9/3 ms, a maximum
of 500 IMS scans per mass spectrum and a voltage
difference across the AE gradient of 0.05 V (R~100). The
ramp voltage gradient was stepped by 0.1 V/frame with a
AVramp of 30 to 100 V. The deflector (Veer), funnel entrance
(Vfun) and funnel out (Vo) voltages were Vger = —120/50 V,
Viun = =70 V and Vo= -6V/30 V. For the case of the DOM
sample, the TIMS cell was operated in a multiple
accumulation mode, with an average of 20 FT scans per
IMS frame (ramp voltage gradient stepped by o.0125
V/frame) resulting in a stepped E gradient of 0.25V/frame.
A maximum of 400 IMS scans per mass spectrum was
collected and a 5V voltage difference across the AE
gradient was established. The remaining voltage settings
were kept constant.

CHEF-SORI-CID and Q-CID experiments

The precursor ions at nominal mass were pre-isolated in
the quadrupole to increase the number of ions of interest
in the collision cell (~ 10 m/z window), then transferred to
the ICR cell and isolated with a 1 m/z notch applying
Correlated Harmonic Excitation Field (CHEF)®4445 with
typical 8-10 % isolation power. Each single precursor ion
was preserved for further SORI activation and the
remaining isobaric peaks were ejected out of the ICR cell
by single shots. Argon was pulsed into the ICR cell (10 mbar
pressure) and a pump delay of 3s was used to reestablish
high vacuum conditions before mass analysis. The ions
were then sweep excited and finally detected with 2MW
transient. A SORI power ranged from 0.5-1% with a pulse
length of 0.1-0.2 s and a frequency offset of —500 Hz were
set up for SORI-CID experiments. For comparison
purposes, nominal mass g-CID isolation tandem MS
experiments were performed using 15-20 eV CID energies
prior to injection to the FT-ICR MS.

Data processing

The TIMS-FT-ICR MS spectra were externally calibrated
for ion mobility using the Agilent Tuning Mix calibration
standard and the reported nitrogen mobility (K,) values by
Stow et. al 447 The MS/MS spectra were internally
calibrated using the exact masses of known neutral losses
in DOM.3 The assignment of chemical formula was
conducted using Data Analysis (Bruker Daltonics v 5.2)
based on formula constrains of CyHyOo.,, and odd and
even electron configurations were allowed. TIMS spectra
for each molecular formula was processed using the
custom-built Software Assisted Molecular Elucidation
(SAME) package - a specifically designed TIMS-MS data
processing script written in Python v3.7.3. SAME package
utilizes noise removal, mean gap filling, “asymmetric least

squares smoothing” base line correction, peak detection by
continuous wavelet transform (CWT)-based peak
detection algorithm (SciPy package), and Gaussian fitting
with non-linear least squares functions (Levenberg-
Marquardt algorithm).3® Data was processed using Data
Analysis (v. 5.2, Bruker Daltonics, CA) and all other plots
were created using OriginPro 2016 (Originlab Co., MA).
Candidate structures were obtained by in-silico
fragmentation using the MetFrag CL tool and the
PubChem database#*4 and theoretical CCS using the
trajectory method (TM) in IMoS software version 1.09c for
nitrogen as a bath gas at ca. 300 K. .55
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Figure 1. TIMS-q-CHEF-SORI CID MS/MS schematics. Ion
mobility ranges are isolated with a 10 m/z window in the
quadrupole and accumulated in the collision cell. Tons within
the same mobility range injected in the ICR cell, followed by
CHEF-correlated shots isolation at 0.036 m/z and SORI-CID
fragmentation. After a full ion mobility scan at a single target
precursor (0.036 m/z window), the next full ion mobility scan
at the nest precursor is generated. Example is shown for
isobars with different ion mobility values (light and dark green
signals).

RESULTS AND DISCUSSION

The experimental sequence for TIMS in tandem with
CHEF-shots isolation and SORI CID is shown in Figure 1.
Briefly, ions within a mobility range are scanned in the
TIMS cell using a non-linear scan function, then pre-
filtered in the quadrupole with 10 Da window and stored in
the collision cell prior to the injection in the ICR cell for
CHEFT+SHOTS and SORI-CID.

The target precursor is isolated in the ICR cell with a
0.036 m/z window by first applying a characteristic CHEF
wave function to broadband eject ions out with a 1 m/z
notch and by further ejecting isobars using correlated
shots to 0.036 m/z window. lons are fragmented using
SORI-CID and a final mass spectrum is generated at ultra-
high resolution (R~150,000-400,000). The coupling of the
TIMS cell to the FT- ICR in this setting is particularly
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advantageous since ions can be identified by their mobility
and chemical formula. The mobility selected high-
resolution isolation and fragmentation of precursor ions
can provide unambiguous structural information at the
level of chemical formula. This capability is very
challenging, if not impossible, to achieve by traditional g-
based MS/MS workflows on complex mixtures.

The capabilities of the proposed TIMS-q-CHEF-SORI
CID MS/MS method is illustrated for the case of a mixture
containing two isomeric standards (4-Methoxy-1-
naphthoic acid and 2-Methoxy-1-naphthoic acid) and one
isobaric standard (Decanedioic acid). Typical TIMS-q-CID
MS/MS and TIMS-q-CHEF-SORI CID MS/MS spectra of
the individual isomeric and isobaric standards are shown
in Figure 2. Notice that the isobaric standard (C) cannot be
separated by ion mobility from one of the isomeric
standards (B and C).

The 10 m/z isolation window profiles show monoisotopic
mass peaks at nominal mass 201 for [M-H] species (A/B:
[C.H,0O5-H] and C: [C,HsO,-H]). The ion mobility
projections depict single IMS bands for each standard with
closely related CCS values in the range of 155-160 Az
Although baseline separation of the isomeric species A and
B can be achieved in the IMS domain, the isobaric
compound C shares the same ion mobility as standard B.
The MS/MS spectra of the standards obtained by q-CID or
SORI-CID show very similar fragmentation patterns. The

MS/MS are both characterized by typical neutral losses of
- H,0O, CO, CH,0, and CO,. A closer view of the MS/MS
profiles indicates that the generation of some
characteristic fragments is favored when SORI-CID is used.
For example, a CO, neutral loss generates a common
fragment (m/z 157.0657) for the isomeric standards A and
B either by CID or SORI-CID. However, unique fragments
were found for standard A (m/z 142.0425) and B (m/z
127.0552) when in-cell fragmentation (SORI-CID) was
utilized. That is, the CHEF-SORI-CID approach can be
useful to identify structural isomers with distinctive
fragmentation profiles. For the case of the isobar (C), apart
from a water loss (m/z 183.1027) in q-CID, no clear
difference in the MS/MS spectra from both fragmentation
approaches was observed.

The effectiveness of the TIMS-q-CHEF-SORI CID
MS/MS method to unambiguously identify each
compound was assessed through the study of the isomeric
and isobaric standard mixture (Figure 3). The 10 Da and
nominal mass isolations of the mixture (A+B+C) resulted
in two mass peaks in the MS domain corresponding to the
precursor species [A/B-H] - and [C-H] when both strategies
(Q vs CHEF) were implemented (first column, Figure 3).
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Figure 2. Comparison of ESI(-)-TIMS-q-CID MS/MS and ESI(-)-TIMS-q-CHEF-SORI CID MS/MS of individual isomeric and
isobaric standards: 4-Methoxy-1-naphthoic acid (A), 2-Methoxy-1-naphthoic acid (B) and Decanedioic acid(C).

A further application of Correlated Shots permitted a
single isolation (Am/z of 0.036) of both A/B and C in
different runs by ejecting C and A/B out of the ICR cell
respectively (Colum 2, Figure 3). From the MS/MS spectra
(Top column 3, Figure 3) and the IMS projections the
standard A (green) can be unambiguously identified based

on both ion mobility and fragmentation fingerprint when
the q-CID approach is used. That is, standards B and C
signals overlap in both MS/MS and IMS domains, which
could lead to the misassignment of the fragments,
consequently biasing any further structural interpretation.
Conversely, the isomeric standards A and B are identified
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by both IMS and MS/MS (see characteristic fragments m/z
142.042 and m/z 127.0554) after in-cell
isolation/fragmentation of the ion m/z 201.0557 in the ICR.
Similarly, the standard C is singly isolated by CHEF and
shots ejection of A+B and the correlation of the ion
mobility projection (blue profile) with the fragmentation
spectrum permitted the unambiguous identification of
standard C (bottom column 3, Figure 3). The above results
clearly represent a proof of concept for the structural
analysis of an isobaric and isomeric complex mixture, at
the level of chemical formula, combining high-resolution
mobility separations with single precursor ion MS/MS in
the ICR cell.

Previous analysis of DOM using non-targeted ESI-TIMS-
FT-ICR MS illustrated the typical complexity observed in
these samples with several thousands of m/z signals with a
2 Da space regularity, as the one depicted in theio Da-
isolation profile shown in the bottom of Figure 4, and
around 3000 assigned chemical formulae based on
accurate mass measurements??. The integration of the gas-
phase separation by TIMS into the FT-ICR MS workflow
and the use of a methodology based on the computation of

A+B+C 1-
201.0557 1.
201.1132

q
Am/z=1

A+B+C 1-
201.0557

1-
201.0557

Shots
CHEF Am/z436 mDa
Am/z=1
A+B+C 1-

201.0557

q
{Am/z=10 ’

1-
201.1132

Shots
CHEF Am/z=36 njDa

Am/z=1

1 «q
Am/z=10 ’

200.6 201.0201.4 201.0 201.1 201.2 100 120 140 160 180 200

core fragments, neutral losses and fragmentation patterns
from nominal mass CID experiments, also revealed a new
complexity of DOM in the isomeric dimension. As
previously discussed, the nominal mass isolation and CID
fragmentation of a DOM sample could lead to an
erroneous structural identification due to a false positive
assignment of core and intermediate fragments arising
from multiple precursors.

The TIMS-q-CHEF-SORI CID MS/MS method was
applied to the structural analysis of the Pantanal DOM
sample at the level of a chemical formula. The analysis of
the Pantanal DOM sample combining TIMS with
quadrupole isolation at nominal mass 393 Da and CID
fragmentation resulted in five MS/MS profiles that share
similar fragmentation patterns with typical neutral losses
of H,O, CO, CO,, and CH, (Figure 4, top row). The analysis
of the ion mobility domain revealed a heterogenous profile
(CCS range 170-200 A?) that can be better described with
five IMS bands (See the color profile in Figure 4). Notice
that additional isomers/conformers could share the same
IMS band; that is, the five assigned IMS bands may contain
more than five isomeric species (more details below).
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Figure 3. Comparison of TIMS-q-CID MS/MS (Am/z=1) and TIMS-q-CHEF-SORI CID MS/MS (Am/z=0.036) for an isobaric
and isomeric standards mixture (4-Methoxy-1-naphthoic acid A, 2-Methoxy-1-naphthoic acid, B, and Decanedioic acid, C).
IMS projections shown in the right corner are correlated with each corresponding MS/MS profile. Notice the overlap of
both ion mobility profiles and fragment spectra of B and C when ion mobility is combined with q-CID at nominal mass

(orange and blue).

Inspection of the fragmentation data generated per each
IMS band using TIMS-q-CID MS/MS (See Table S1)
confirmed the cooccurrence of multiple intermediate
fragments (e.g. isobaric fragments at m/z 349 resulting
from CO, losses of four different precursor ions) regardless
of the IMS band analyzed. This result, once again,
evidences the necessity of a clean isolation of single

precursor ions for a better structural analysis of DOM. The
CHEF broadband ejection applied to a 1 Da notch at
nominal mass 393 in the Pantanal DOM sample showed
several m/z signals corresponding to typical [M-H] highly
oxygenated species (Figure 4, bottom). A further
application of correlated shots ejections of the interferent
isobars permitted a clean isolation of the [C,sH,s0,-H]
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precursor ion (Am/z = 0.036). Inspection of the ion
mobility domain depicted an heterogenous profile with
five bands annotated using the SAME code. The collected
FT-ICR MS/MS scans associated with each IMS band of the
isolated ion were averaged out resulting in five fragment
spectra. Dissection of the MS/MS spectra showed common
fragments for all IMS bands associated with neutral losses
of H,O and CH;OH, multiple decarboxylations (nCO,
losses), and combinations among them (Table Sz2), in good
agreement with previous observations from Witt et.al'®.
Moreover, characteristic fragments correlated with the
IMS bands; this suggest that structural isomeric species
could be identified by their ion mobility and fragmentation
patterns.

Common fragments of the [C,sH,s0.-H]" precursor ion
found across the IMS bands were filtered out from the
MS/MS data and search over PubChem database and in-
silico fragmentation using Metfrag CL. Fifty candidate
structures were retrieved solely based on the accurate mass
of the precursor ion. Further analysis of each
fragmentation data associated to the five experimental IMS
bands, generated a list of 34 possible structures sorted by a
score that reflects the best MS/MS match. The refined and
sorted list of candidate structures per ion mobility and
MS/MS scoring permitted the experimental assignments.
Inspection of the heatmap in Figure 5 (top) revealed the
highest Metfrag scores for the structures associated to the
IMS bands 1,3 and 5. However, the more confident
assignments, based on the difference between the highest

and the second-to-highest scores among IMS bands, were
found for the structures with ID 14 and 16 (IMS3), 10 and 12
(IMS2), 6 and 7 (IMS1), and 26 and 27 (IMS4). A
distribution of the potential structures per IMS band
constrained by the Metfrag score is shown in Figure 5
(bottom). In general, as mentioned above, the IMS1 and
IMS3 bands group the majority of the assigned structures.
While this number of potential isomeric species associated
with a single chemical formula may appear high, it
provides a short list considering the DOM complexity for
secondary confirmation using individual standards

CONCLUSIONS

A novel TIMS-FT-ICR MS/MS workflow for the
structural analysis of complex DOM samples at the level of
chemical formula was developed. The integration of high-
resolution ion mobility with single precursor ion isolation
in the ICR with a m/z 0.036 isolation window and fragment
assignment with both high resolution and mass accuracy,
resulted in a versatile approach that permits the
identification and structural assignment of single species
from a complex mixture (i.e, mixtures containing
isomeric interferences).
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Figure 4. Comparison of TIMS-q-CID MS/MS (Am/z = 1) and TIMS-q-CHEF-SORI CID MS/MS (Am/z = 0.036) of the Pantanal
DOM at nominal mass 393 (top row). The molecular ion [C,sH,30,,-H]- solation and SORI-CID is shown as a function of the ion
mobility scans (bottom row). lon mobility projections of the precursor ions with color annotated IMS bands are shown on the
right (black dots represent the experimental data and black solid lines the best smooth fit from the SAME algorithm)

The analysis of a model mixture containing 4-Methoxy-
1-naphthoic acid, 2-Methoxy-1-naphthoic acid, and
Decanedioic acid (isomers and isobars, respectively)
demonstrated that each single compound can be
unambiguously identified, either by ion mobility or their

characteristic fragmentation spectra, thus representing a
powerful approach compared to traditional nominal mass
MS/MS schemes (co-isolation and fragmentation of several
precursors).

The characterization of a chemical formula from a DOM
sample at the nominal mass m/z 393 using the developed
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procedure evidenced that a single mass peak (m/z
393.0828) can be effectively isolated from several isobaric
species in the ICR cell. In the ion mobility domain, five IMS
bands were assigned to the heterogenous profile of the
precursor ion [CsHsO,0-H]" and correlated to the
fragmentation data obtained by CHEF+SHOTS-SORI-CID
MS/MS. Candidate structures from the PubChem database
were screened based on their ion mobility and MS/MS
matching score.

This study provides a proof of concept for the structural
analysis of complex mixtures, at the level of chemical
formula, combining high-resolution ion mobility
separations with single precursor ion MS/MS in the ICR
cell, without prior chromatographic separations.
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Tables S1, S2 contain the fragmentation data of the
precursor ion [CsH;30,-H]- from Pantanal sample using
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Metfrag Score

%3: — 0873
gg: — 0846
a) %2 — 0.820
o 22 0.793
5 20 :
D 184
= 164 0.766
(] N
b = 0.740
10 —
8 0713
g ; E— 0687
2 I
0.660

IMS1
IMS2
IMS3
IMS4
IMS5

5
o 41
c
©
e}
72}
z ]
2- "ffi"rf\;
1 L ¢ & e . Jffi
AT RS s SR
06 0.7 0.8 0.9

Metfrag score
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