QIK: A System for Large-Scale Image Retrieval on Everyday
Scenes With Common Objects

Arun Zachariah

azachariah@mail. missouri.edu
University of Missouri-Columbia
Columbia, Missouri

ABSTRACT

In this paper, we propose a system for large-scale image retrieval
on everyday scenes with common objects by leveraging advances
in deep learning and natural language processing (NLP). Unlike
recent state-of-the-art approaches that extract image features from
a convolutional neural network (CNN), our system exploits the
predictions made by deep neural networks for image understanding
tasks. Our system aims to capture the relationships between objects
in an everyday scene rather than just the individual objects in
the scene. It works as follows: For each image in the database, it
generates most probable captions and detects objects in the image
using state-of-the-art deep learning models. The captions are parsed
and represented by tree structures using NLP techniques. These
are stored and indexed in a database system. When a user poses
a query image, its caption is generated using deep learning and
parsed into its corresponding tree structures. Then an optimized
tree-pattern query is constructed and executed on the database to
retrieve a set of candidate images. Finally, these candidate images
are ranked using the tree-edit distance metric computed on the tree
structures. A query based on only objects detected in the query
image can also be formulated and executed. In this case, the ranking
scheme uses the probabilities of the detected objects. We evaluated
the performance of our system on the Microsoft COCO dataset
containing everyday scenes (with common objects) and observed
that our system can outperform state-of-the-art techniques in terms
of mean average precision for large-scale image retrieval.

CCS CONCEPTS

« Information systems — Multimedia and multimodal re-
trieval; Image search.

KEYWORDS
image retrieval; deep learning; NLP; indexing; ranking

ACM Reference Format:

Arun Zachariah, Mohamed Gharibi, and Praveen Rao. 2020. QIK: A System
for Large-Scale Image Retrieval on Everyday Scenes With Common Objects.
In 2020 International Conference on Multimedia Retrieval (ICMR’20), June

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICMR °20, June 8—11, 2020, Dublin, Ireland

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7087-5/20/06....$15.00
https://doi.org/10.1145/3372278.3390682

Mohamed Gharibi
mggvf@mail.umkc.edu
University of Missouri-Kansas City
Kansas City, Missouri

Praveen Rao
praveen.rao@missouri.edu
University of Missouri-Columbia
Columbia, Missouri

8-11, 2020, Dublin, Ireland. ACM, New York, NY, USA, 10 pages. https:
//doi.org/lo.l145/3372278,3390682

1 INTRODUCTION

Content-based image retrieval (CBIR) has been a topic of research
for many years. In CBIR, given a query image, the goal is to find
images in the database that are similar to the query image. Typically,
an image is mapped to a feature vector and a similarity metric is
defined between feature vectors and used to identify images similar
to the query image. Advances in computer vision and deep learning
have resulted in numerous research efforts and commercial solu-
tions for CBIR. As image datasets continue to grow in volume on the
Web and in domains such as healthcare, insurance, precision agri-
culture, remote sensing, astronomy, and defense, there continues
to be great interest in efficient large-scale image retrieval.

Current image retrieval systems typically have two stages: the
filtering stage to identify a set of candidate images and a re-ranking
stage, where a small number of similar candidates are re-ranked
based on specific criteria. Several approaches used hand-crafted
local features [7, 25] and techniques based on bag-of-words method,
hamming embedding, large vocabularies, spatial matching, etc., to
represent images in high-dimensional space [13, 19-21, 31, 32, 37,
42]. For re-ranking, a few strategies have been proposed based on
local features and geometric verification [5, 31, 32].

Advances in CNNs have resulted in new methods for image
understanding including image recognition and object detection.
Deep CNNs have achieved remarkable accuracy for object recog-
nition on standard benchmarks (e.g., GoogLeNet [39], Inception
v3 [40], ResNet [18]). Another interesting success is the develop-
ment of image captioning models like Show and Tell [45] and Show,
Attend and Tell [46] that use a combination of convolutional lay-
ers/networks and recurrent neural networks. Thus, it is now more
feasible than before to extract useful knowledge from images and
understand their context on a large-scale.

Several techniques have recently explored the use of CNNs for
large-scale image retrieval. They rely on CNN features for global
image representations enabling fast filtering [4, 6, 15, 23, 33, 43, 47].
For re-ranking, local image representations from CNNs have been
employed through spatial matching and geometric verification [27-
29]. DELF [29, 41] extracts deep local features from CNNs for index-
ing and ranks based on geometric verification. An instance retrieval
technique, which we will hereinafter refer to as FR-CNN [36], lever-
ages both local and global features from a Faster R-CNN [34].

Unlike prior approaches that rely on features constructed from
CNNs developed for image understanding tasks, we explore if pre-
dictions made by such networks for tasks such as image captioning
and object detection can be used in a novel and effective way for
large-scale image retrieval. Thus, rather than developing local or

global descriptors for images by directly using CNN-based features,
we look ahead in the processing pipeline to employ the actual pre-
dictions. Specifically, we investigate how both the filtering and
ranking steps during image retrieval can benefit from these predic-
tions. We will refer to the predictions made on an image collectively
as the probabilistic image understanding (PIU) of the image.

In this paper, we propose a system called QIK (Querying Images
Using Contextual Knowledge) for large-scale image retrieval on ev-
eryday scenes (with common objects) by synergistically combining
PIUs and NLP. The key contributions of our work are as follows:

e QIK is a generic framework that aims to capture the context
of everyday scenes and learn the relationships between ob-
jects in them for efficient image retrieval. For this purpose,
QIK generates the PIU of an image using state-of-the-art
image captioning and object detection models. The PIUs are
processed during image retrieval.

e QIK employs modern techniques in NLP for linguistic analy-
sis of the PIUs. For instance, image captions are transformed
into tree structures widely used in computational linguis-
tics [22]. These tree structures are queried during the filter-
ing step of image retrieval and later used for ranking the
candidate images.

e We conducted an evaluation of QIK against state-of-the-art
techniques such as DELF [29], DIR [15], CroW [23], and FR-
CNN [36] using the Microsoft COCO dataset [24], which is
a well-known dataset containing complex everyday scenes
with common objects. We computed the mean average preci-
sion (mAP) for top-k matches of a query to compare QIK and
its competitors. First, we observed that using image captions
for filtering and ranking, QIK performed better than when
only the detected objects were used for image retrieval in
terms of mAP. This asserts that leveraging relationships be-
tween objects during image retrieval yields better quality re-
sults. Furthermore, QIK using image captions outperformed
the aforementioned competitors in terms of mAP.

The rest of the paper is organized as follows: Section 2 discusses
recent related work and our motivation; Section 3 presents the
design details of QIK; Section 4 discusses the implementation and
performance evaluation of QIK and comparison with state-of-the-
art techniques; and finally, we conclude in Section 5.

2 RELATED WORK AND OUR MOTIVATION

Related Work. We briefly discuss recent techniques that use CNN-
based features for image retrieval. FR-CNN [36] uses image-wise
and region-wise representations pooled from an object detection
CNN such as Faster R-CNN [34]. The image-wise representations
serve as global features and are used during the filtering step. The
region-wise representations serve as local features and are used for
re-ranking. DIR [15] produces a global and compact fixed-length
representation of each image by aggregating many region-wise
descriptors so that it is robust to scale and transformation. The
regions to be pooled are predicted using a region proposal network.
DELF [29] is a local feature descriptor that employs an attention-
based keypoint selection mechanism to identify semantically useful
local features needed for image retrieval. A more recent work by
Tiechman et al. [41] proposes a novel region aggregation method

for image retrieval. It extracts DELF features and object regions
from an image and extends the idea of aggregated selective math
kernels [42]. The region aggregation method helps in re-balancing
the visual information in an image. CroW [23] is an efficient non-
parametric weighting and aggregation scheme to transform con-
volutional image features to a compact global image feature. The
output of the convolutional layers are aggregated before the fully
connected layers. Gordo et al. [16] used human-annotated region
level captions during training time to generate global visual repre-
sentation of images for semantic retrieval. At query time, only the
query image is used without any captions. VistaNet [44] combines
text with images but for sentiment analysis.

Our Motivation. Prior image retrieval approaches that rely on CNN-
based features have been tested on datasets that contain objects
such as buildings, scenic views, and landmarks (e.g., the Oxford
Dataset [31], the Paris Dataset [32], the INRIA Dataset [19], the
Google Landmarks Dataset [2]). Although some of them have been
extended with 100k distractor images (e.g., Paris 106k, Oxford 105k),
the evaluated queries were still on buildings, landmarks, etc. Images
containing everyday scenes with common objects are quite differ-
ent from these images as they contain objects in the foreground
and background. In such an image, certain objects become the main
focus of the image when a human observes it. Based on our experi-
ments using the MS COCO dataset, we observed that techniques
based on CNN-based features failed to precisely capture the main
aspect of an image leading to false positives. Figure 1 shows a set
of query images as well as false positives output by the evaluated
techniques. For the query image in Figure 1(a), DELF returned an
image of a kitchen, however, without people in it (Figure 1(b)). For
the query image in Figure 1(c), FR-CNN returned an image with
baseball players instead of skateboarders possibly due to the hand
and leg movements (Figure 1(d)). For the query image in Figure 1(e),
CroW returned an image of a room with daylight but without peo-
ple (Figure 1(f)). Finally, for the query image in Figure 1(g), DIR
returned an image of a space similar to the query image but without
a person wearing a tie (Figure 1(h)).

We emphasize that human cognition can capture the key essence
of an image and describe it aptly via a caption; it can ignore ob-
jects (or regions) in an image that do not really matter to describe
the main context of the image. Hence, we posit that an accurate
image captioning system can be very useful to describe images con-
taining everyday scenes with common objects; image retrieval based
on automatically generated captions of images could perform better
than techniques relying on CNN-based features. This motivated
us to design a new approach called QIK to provide superior image
retrieval performance than its competitors for images containing
everyday scenes. Our approach moves away from directly building
global or local image descriptors using features of CNNs/deep neu-
ral networks. Instead, it aims to use the predictions made by these
networks for image understanding tasks, i.e., PIUs of images, in a
novel way and employ modern NLP techniques for efficient and
accurate large-scale image retrieval.

3 PROPOSED DESIGN

In this section, we first present the design of QIK for large-scale
image retrieval on everyday scenes with common objects. Our

(g) Query image for DIR [15]

(h) A false positive by DIR

Figure 1: On the left, we show a query image from the MS
COCO dataset used for image retrieval. On the right, we
show a false positive output by a technique using CNN-
based features when retrieving the top-k matches for the
query image. We set k = 8.

design is motivated by the fact that recent techniques based on
CNN-based features [15, 23, 29, 36] may fail to fetch precise matches
for everyday scenes. We begin with an overview of QIK followed
by the technical details on how QIK indexes an image repository
and performs image retrieval using PIUs.

3.1 Overview of QIK

Figure 2 shows the architecture of QIK. Given an image repository,
QIK generates PIU for each image using state-of-the-art deep learn-
ing models for image captioning and object detection. Pre-trained

models can be used. As a result, QIK captures the context of every-
day scenes and learns the relationships between objects in them.
The generated PIU will contain most probable captions and objects.
On each caption, QIK constructs a sentence parse tree and a de-
pendency tree [22], which have been widely studied in NLP and
computational linguistics. The entire collection of trees, which are
ordered trees, are represented in XML [10]. The XML documents
are stored and indexed using an XML database system. The other
contents of the PIU (i.e., detected objects) are also indexed.

QIK can use either captions or detected objects for image re-
trieval. In the first case, given a query image, QIK generates the
most probable caption (using the same image captioning model)
and the associated parse and dependency trees. Using the parse
tree, QIK generates an optimized XPath query [8] containing only
essential keywords in the caption while preserving the ordering
between these keywords and their relationships. After executing
the XPath query on the XML documents, a set of candidate im-
ages are retrieved. Finally, the candidate images must be ranked
as the database system does not enforce any ordering between the
candidate images. In order to rank and return the top-k relevant
images, QIK relies on tree edit distance [9], which is the minimum
cost to transform one tree to another via node insert, delete, and
relabel operations. For each candidate image, the tree edit distance
between its caption’s parse tree (or dependency tree) and the parse
tree (or dependency tree) of the query image’s caption is computed.
Finally, the candidate images are ranked in increasing order of the
computed tree edit distance, and the top-k matches are returned to
the user. More details will be provided later in this section.

In the second case, given a query image, QIK detects objects in
an image (using an object detection model [34, 35]) with probabil-
ity greater than a user-specified threshold. It then retrieves a set
of candidate images that contain all of the detected objects. For
ranking, it combines the probabilities of the detected objects in the
query image and in a candidate image to compute a score for the
image. The candidate images are ranked in decreasing order of the
score, and the top-k matches are returned to the user. More details
will be provided later in this section.

Metadata

Deep learning UK
" model_name: “show-tell”,
" hum_steps: 100000,

Image captioning #id: 10,
¢

system class: [“urban”, “200"
PIU " [caption: "A man on a bike
generation riding past a large horned
{fanimal.”,

Object detection

Optimized XPath
generation

Result ranking

) Bounding_box: .
}

Sentence
parsing

Caption
generation

Query ﬂ
image Results _

ﬂ“ L T el oo
& User mterface i -

Tree
_..Structures

XML and JSON
database

Parse tree
(e.g., Apache Solr) noor

Dependency
tree

Figure 2: Architecture of QIK

3.2 PIU Generation, Linguistic Analysis and
Indexing

QIK goes beyond the raw CNN-features used by other approaches. It
generates PIU for each image in the image repository by leveraging
the predictions made by deep neural networks developed for image
understanding tasks. For generating image captions, each image
is provided to a pre-trained image captioning model to predict the
most probable captions. These captions denote the context of the
everyday scene in the image and also describe the relationship
between objects in the scene. In addition, each image is run against
an object detection model to identify the most probable objects in
the image (with probability greater than a user-defined threshold).
The bounding boxes can also be stored as part of the image’s PIU.
QIK is a generic framework because it is designed to accommodate
multiple image understanding models. The PIU generated from
different models can be queried together during image retrieval.

Figure 3: An example image (Source: Flickr30K [48])

Example 3.1. Consider an image shown in Figure 3. The Show
and Tell captioning model produces three captions by default. The
most probable caption is "a young boy kicking a soccer ball on a
field." Suppose an object detection model identifies two objects with
probabilities greater than 0.9. Suppose these two objects are "soccer
ball" and "person". Together, they constitute the PIU of the image.

QIK employs state-of-the-art NLP techniques to perform linguis-
tic analysis of the image PIUs. Specifically, the image captions are
analyzed linguistically. For each caption, QIK constructs its sentence
parse tree and dependency tree. A parse tree represents the structure
of the sentence/phrase based on the grammar rules by identifying
tokens denoting noun phrases, nouns, verb phrases, verbs, adjec-
tives, determiners, prepositions, etc., in the sentence/phrase. These
tokens are based on parts-of-speech (POS) tagging in computational
linguistics [22]. A dependency tree on the other hand provides a
representation of how words in a sentence/phrase are connected
by syntactic dependencies [22].

Example 3.2. Consider the caption "a young boy kicking a soccer
ball on a field" Figure 4(a) shows the parse tree of the caption output
by the Stanford Parser [38]. Figure 4(b) shows the corresponding
dependency tree output by the Stanford Parser [12].

QIK uses both JSON and XML data models to store the PIUs
of images. This is because of the nature of contents in a PIU. For
instance, the parse and dependency trees are ordered trees; hence,
XML is the appropriate choice as it preserves ordering of the tree

ROOT
|
FRAG
NP S
T~ |
DT JJ NN VP
| | | e boy
a young boy VBG NP PP
‘ — I a young Kicking
kicking DT NN NN IN NP
| | | -
a soccer bal on DT NN ball field
PN /N
a field a soccer on a
(a) Parse tree (b) Dependency tree

Figure 4: Examples of parse and dependency trees

nodes-this is critical when processing a query image during image
retrieval. However, for storing detected objects, their bounding
boxes, etc., it is beneficial to store in JSON as it consumes less
storage space.Both the JSON and XML documents representing the
PIUs are stored and indexed to enable fast query processing.

<ROOT><FRAG><NP><DT>a</DT><JJ>young</JJ><NN>boy</NN></NP><S>
<VP><VBG>kicking</VBG><NP><DT>a</DT><NN>soccer</NN>
<NN>ball</NN></NP><PP><IN>on</IN><NP><DT>a</DT><NN>field</NN>
</NP></PP></VP></S></FRAG></RO0T>

(a) Parse tree representation

<boy><a/><young/><kicking><ball><a/><soccer/></ball>
<field><on/><a/></field></kicking></boy>

(b) Dependency tree representation

Figure 5: XML representation

Example 3.3. Figure 5(a) shows the XML document for the parse
tree in Figure 4(a). The leaf nodes of the parse tree are represented
as text nodes in XML. The dependency tree is also represented
similarly. However, the leaf nodes are treated as XML elements as
shown in Figure 5(b).

Algorithm 1 sketches the key steps involved in generating, ana-
lyzing, and indexing the PIUs in QIK. For each image in the reposi-
tory, the most probable captions are generated and their parse and
dependency trees are constructed and stored in an XML database.
The objects detected in the image with a probability greater than a
user-specified threshold are also indexed.

3.3 Retrieval Using Captions in PIUs

We first show how QIK processes a query image when using
image captions and returns the top-k relevant matches to the user.
Algorithm 2 sketches the overall steps during image retrieval. The
filtering step is denoted by Lines 1-8. The caption of the query
image is first predicted using the same pre-trained image captioning
model that was used during indexing. The most probable objects
with probability greater than a user-defined threshold are also
predicted. For the caption, Algorithm 3 is invoked to generate a basic
XPath query. After that, an optimized XPath query is generated by
invoking Algorithm 4. A query for objects can also be generated.
The optimized XPath query is executed to obtain an initial set of
qualifying image IDs. The query for objects is also executed to

Algorithm 1 IndexPIU(img)

Input: img denotes an image in the database
1: Predict the most probable captions C of img
2: Predict the most probable objects O in img with probability
greater than a user-defined threshold

3: for each caption ¢ € C do

4 Generate the parse tree p for ¢

5. Generate the dependency tree d for ¢

6: Represent p in XML

7. Represent d in XML

8: Store and index the XML documents in the database system
9: for each object 0 € O do

10: Represent o as a JSON record containing the probability of o
11: Store and index the JSON record in the database system

Algorithm 2 RetrieveImages(k, imgq)

Input: k denotes the maximum number of matches to return
Input: imgy denotes the query image
1: Predict the most probable caption C for imgg
: Predict the most probable objects O in imggq
: q < GenerateBasicXPath(C)
q’ < GenerateOptimizedXPath(q)
: Generate a query ¢’ for O
. Execute ¢’ on the XML database to obtain set of image IDs
: Execute ¢’ on the JSON database to obtain set of image IDs
: Compute the intersection of the above two sets to obtain the
candidate images
9: for each candidate image img. do
10: Compute tree edit distance between the parse tree (or de-
pendency tree) of the caption of img, and the parse tree (or
dependency tree) of the caption C
11: Sort (in ascending order) the candidate images based on the
computed tree edit distance values
12: return top-k matches

[~ S B~ NS B N I N

obtain another set of qualifying image IDs. The intersection of
these two sets produces the candidate image IDs that match the
criteria specified in the XPath query (based on captions) as well as
the objects in the query image.

Next, we provide a brief introduction to XPath [8], a query lan-
guage for selecting nodes in an XML document. A simple XPath
query can be written as /A1:Ny[p1]/- - - /Ai::Ni[pil/- - - /An:=:Nnlpn].
where A; denotes an XPath axis, N; denotes an XML element name,
and p; denotes a predicate of that node. A predicate may be empty
for a node. Although there are 13 XPath axes [8], we only use
4 of them: (a) child to indicate a parent-child relationship, (b)
descendant to indicate an ancestor-descendant relationship, (c)
following to indicate that a node follows the other in document
order (a.k.a. preorder), and (d) following-sibling to indicate that
two nodes share a common parent.

Next, we discuss the details of basic XPath generation (Algo-
rithm 3) and optimization (Algorithm 4) performed during image
retrieval. In Algorithm 3, a query caption is first parsed into its

parse tree, which is then pruned by removing non-essential key-
words such as "on", "a", "in", and others (Line 2). We basically ignore
prepositions, determiners, conjunctions, etc., in the query image’s
caption during the filtering step. The pruned tree is traversed in
preorder (Lines 3-14) to generate a basic XPath query containing
XPath axes such as child, following, and following-sibling to

preserve the ordering of essential keywords in the caption.

Algorithm 3 GenerateBasicXPath(C)

Input: C denotes the image caption
Output: An XPath expression

1: Let D denote the parse tree of C

2: Prune D by removing subtrees rooted at POS tags such as DT,

IN, and other non-essential keywords

3: for each node n in preorder traversal of D do
Let t denote node label of n
if n is the root node of D then

q < /child::t

else if n is child of the previous node (in preorder) then

Append /child::t togq
else if nis a sibling of the previous node (in preorder) then
10: Append /following-sibling::ttogq
11: else if nis aleaf node then
12: Append [text()="t"] toq
13 else
14: Append /following::t to g

D A

Example 3.4. Let us suppose the caption predicated for a query
image is “a young boy kicking a soccer ball on a field" A parse tree
is constructed as shown in Figure 4(a). Algorithm 3 produces the
basic XPath query as shown in Figure 6.

/child::R0O0T/child: :FRAG/child: :NP/child: :JJ[text()="young"]/
following-sibling: :NN[text()="boy"]/following::S/

child: :VP/child: :VBG[text()="kicking"1/

following-sibling: :NP/child: :NN[text()="soccer"]1/
following-sibling: :NN[text()="ball"]/following: :PP/
child::NP/child: :NN[text()="field"]

Figure 6: Basic XPath query

From the basic XPath query, an optimized query is generated
using Algorithm 4. The key idea is to replace a sequence of XPath
axes with a single axis that still specifies the same constraint on the
keywords as the original query in order to reduce the length of the
XPath query in terms of the number of nodes and axes. The XPath
query is processed from left-to-right, one axis-node pair at a time.
Each time a node containing a predicate is encountered, an XPath
axis and node name are appended to the optimized query (Lines 3-
10). The axis type depends on the sequence of axes encountered
since the previous node with a predicate. A sequence of child axes
from the root node of the query to the first node with a predicate
is replaced by the child axis (Line 9). When only one axis appears
(e.g., child, following, following-sibling) since the previous
node with a predicate (e.g., an adjective and its noun), it is replaced
by that axis (Line 9). A sequence of axes where the leading axis is
following or following-sibling since the previous node with a

predicate is replaced by following (Line 4 or Line 6). The first axis
of the generated query (child) is replaced finally by descendant.

Algorithm 4 GenerateOptimizedXPath(q)

Input: g denotes an input XPath expression

Output: Optimized XPath expression
1: ¢/ « NULL; leadingAxis «— NULL
2: for each axis x and node n in ¢ (from left-to-right) do
3. if n has predicate p then

4 if leadingAxis is following then

5 Append /following: :n[p] to g’

6 else if leadingAxis is following-sibling then
7: Append /following: :n[p] to g’

8 else

9 Append /x::n[p] to q’

10: leadingAxis <— NULL

11: elseif x is child then

12: continue

13: elseif x is following: :sibling or following then
14: leadingAxis < x

15: else

16: print("Invalid axis");

17: return NULL

18: Replace the first axis in ¢’ with descendant
19: return ¢’

Example 3.5. Algorithm 4 transforms the basic XPath query
shown in Figure 6 into an optimized XPath query (Figure 7).

/descendant::JJ[text()="young"]/following-sibling: :NN[text()="boy"1/
following: :VBG[text()="kicking"]/following: :NN[text()="soccer"]/
following-sibling: :NN[text()="ball"]/following: :NN[text()="field"]

Figure 7: Optimized XPath query

After the candidate images are obtained, they are ranked using
the tree edit distance metric. As shown in Algorithm 2, we compute
the tree edit distance between the parse (or dependency tree) of
the candidate image’s caption and the parse tree (or dependency
tree) of the query image’s caption. We rank the candidate images
by increasing order of the computed tree edit distance value and
return the top-k matches to the user.

3.4 Retrieval Using Detected Objects in PIUs

In this section, we show how QIK processes a query using detected
objects in images and returns the top-k relevant matches to the user.
Algorithm 5 sketches the overall steps during image retrieval. The
filtering step is denoted by Lines 1-3. First, given a query image, the
objects detected in it (using an object detection model) that have
probabilities greater than a user-specified threshold are selected.
Then a Boolean AND query is constructed on these objects. The
JSON database is queried to fetch all the candidate images that
contain every object in the query. In the ranking step (Lines 4-
7), a score is computed for each candidate image by using the
probabilities of the detected objects. Given a candidate image, its
score is the sum of the product of the probabilities of the selected

objects in the candidate image and the query image. The intuition
is that a candidate image containing objects of higher probabilities
will yield a higher score. A higher probability object will dominate
the score over a lower probability object in the query image. Finally,
the images are sorted in descending order by their scores, and the
top-k results are returned.

Algorithm 5 RetrievelmagesObj(k, imgq)

Input: k denotes the maximum number of matches to return
Input: imgq denotes the query image
1: Let O = {(o1,p1), (02, p2), . . ., (0n, pn)} denote the most proba-
ble objects and their probabilities in imgq such that p; is greater
than a user-specified threshold
2: Generate a query q to specify a Boolean AND of the objects
01,02,...,0p
3. Execute g on the JSON database to obtain set of image IDs
along with the probabilities of the objects in each candidate
image
4: for each candidate image img. do
5. Let Oc = {(01,71),(02,72),...,(0n,rn)} denote the matched
objects and their probabilities in the candidate image
6: score(imgc) = NIy pi X i
7: Sort (in descending order) the candidate images based on their
scores
8: return top-k matches

4 PERFORMANCE EVALUATION

In this section, we report the performance evaluation of QIK and
compare it with four different image retrieval techniques that utilize
global and/or local feature descriptors, namely, DIR [15], DELF [29],
CroW [23], FR-CNN [36], and LIRE [26]. LIRE is an open source
CBIR system that provides a wide range of options such as color
histograms, color and edge directivity descriptor (CEDD), etc., to
extract local features and other well-known techniques [7, 25] to
extract global feature vectors. These are then indexed for fast image
retrieval. We used the original code published by the authors of
DIR, DELF, CroW, FR-CNN, and LIRE for comparison with QIK.

4.1 Implementation and Experimental Setup

QIK was primarily written in Java and compiled using Java 1.8.
The parse tree and dependency trees for captions were generated
using the Stanford Parser package (version 3.9.2) [3]. The entire
compiled application was deployed on Apache Tomcat 9.0.20. XML
data was stored and indexed using BaseX [1, 17] (version 9.2), a
high performance XML engine. QIK used the APTED library [30],
a robust, main-memory implementation, for computing tree edit
distance required during the ranking step.

QIK used a pre-trained Inception v3 model [40] for initializing the
parameters of Show and Tell [45] for generating captions of images.
The training was done for 3 million steps on a single NVIDIA
GeForce Titan X Pascal 12GB GPU on the MS COCO dataset [24]
comprising of 83K training images and 41K validation images. The
accuracy of the model was further improved by executing a second
round of training for 2 million steps to enable fine tuning of the

Inception v3 model. For object detection, QIK used Faster-RCNN
with NASNet-A image featurization [49] trained on MS COCO.

We ran the experiments on CloudLab [14] in the Wisconsin data
center. All nodes had two Intel Xeon Silver 4114 10-core CPUs (2.20
GHz) and 192 GB of RAM, and ran Ubuntu 16.04.

4.2 Dataset

For evaluation, we used MS COCO [24] containing 124K images
of complex everyday scenes, involving 80 common objects in their
natural context. Each image had 5 human-annotated captions. We
chose a random subset of 15K images for evaluation as some of the
competitors of QIK could not operate on larger number of images.

4.3 Queries

For the 15K dataset, we generated two-, three-, and four-object
combinations using the 80 objects specified in MS COCO such
as "person + couch’, "person + car + cup", etc. The number of
two-object, three-object, and four-object combinations were 50, 50,
and 40, respectively. Consider only two-object combinations. For
each combination c, we did the following: We selected the images
containing those two objects based on human labeling from the 15K
dataset. Let I denote the selected images. For each image i € I, we
identified the true matches for i as a query image using a pre-trained
Universal Sentence Encoder [11] model. Essentially, we computed
the similarity between the human-annotated captions of i against
the human-annotated captions of other images in I and used a
similarity threshold 7 to determine a true match. That is, if any
caption of i was similar to a caption of an image j in I with similarity
greater than 7, then j was considered a true match for i. Thus, we
completely relied on human judgment by using their annotations
for deciding the true matches for an image query. We computed the
mAP value for the combination c for different top-k matches (k=2,
k=4, k=8, and k=16). We followed the same procedure for three-
object and four-object combinations. The total number of image
queries in two-object, three-object, and four-object combinations
were 4406, 1585, and 561, respectively.

4.4 Results

Next, we present the image retrieval performance of QIK and its
competitors in terms of mAP and retrieval time.

4.4.1 QIK: Captions vs. Detected Objects. We first compared the
image retrieval performance of QIK when using captions versus
detected objects in PIUs. Hereinafter, we denote them by QIK.
and QIK,, respectively. Note that QIK. used Algorithm 2 and QIK,
used Algorithm 5. Our goal was to show that captions provide
superior performance as they can capture the relationships between
important objects in an image compared to just retrieving images
containing certain objects. Table 1, Table 2, and Table 3 show the
average of the mAP values for the two-object, three-object, and
four-object combinations, respectively. Clearly, QIK. outperformed
QIK, for two different probability thresholds for object detection,
i.e., 0.9 and 0.8. Thus, one can conclude that captions in PIUs indeed
capture the object relationships leading to superior image retrieval
performance for everyday scenes.

Table 1: QIK. vs QIK,: two-object combinations (avg. mAP)

7=0.6 7=0.7
k=2 | k=4 [k=8 [k=16 | k=2 | k=4 | k=8 [k=16
QIK. | 0.94 | 0.96 | 0.96 | 0.94 | 0.81 [0.85 | 0.84 [0.81
QIKg~| 0.85 | 0.83 | 0.82 [0.79 [0.64 | 0.62 | 0.61 [0.57
QIKs"| 0.80 [0.79 [0.77 | 0.75 [0.60 | 0.60 | 0.57 | 0.56

Table 2: QIK, vs QIK,: three-object combinations (avg. mAP)

7=0.6 t=0.7

k=2 | k=4 [k=8 [k=16 [k=2 | k=4 [k=8 [k=16

QIK: | 0.93 | 092 | 0.93 | 0.94 | 0.83 | 0.80 | 0.80 | 0.78

QIK??9 0.81 | 0.78 | 0.78 | 0.77 | 0.58 | 0.59 | 0.57 | 0.52

QIK??8 0.52 | 0.50 | 0.52 | 0.50 | 0.73 | 0.72 | 0.70 | 0.67

Table 3: QIK, vs QIK,: four-object combinations (avg. mAP)

7=0.6 7=0.7

k=2 | k=4 [k=8 [k=16 [k=2 | k=4 [k=8 [k=16

QIK, | 0.91 | 095 | 0.97 | 0.94 | 0.81 | 0.82 | 0.83 | 0.78

QIK?,;9 0.80 | 0.82 | 0.80 | 0.76 | 0.52 | 0.52 | 0.53 | 0.49

QIK(;;8 0.68 | 0.67 | 0.66 | 0.65 | 0.48 | 0.47 | 0.49 | 047

4.4.2 QIK. vs. Its Competitors. Next, we compared QIK, with its
competitors, which used CNN-based features for filtering. For fair
evaluation, we used the default parameters in the code of DIR,
DELF, CroW, and FR-CNN. For LIRE, we used CEDD to extract the
features of images and indexed them using Lucene. In addition, the
sentence parse trees were used during the ranking step for tree edit
distance computation. (The results obtained by using dependency
trees were similar and are not shown in the interest of space.) For
the two-object combinations, we computed the mAP value for each
combination and report the average of the mAP values. Similarly,
we report the average of mAP values for the three-object and four-
object combinations. Tables 4, 5, and 6 report these values for two
different 7 values and different values of k. In all cases, QIK out-
performed its competitors by virtue of using captions in PIUs and
applying NLP processing. QIK, was able to capture the the rela-
tionships between objects in everyday scenes leading to superior
performance. Other approaches relied on local/global descriptors
of images constructed from features with or without CNNs. In most
cases, CroW was the best approach among the chosen competitors;
LIRE was the worst approach. This confirms that techniques us-
ing CNN-based features are superior to traditional feature-based
indexing of images.

We measured the average time taken by each technique for image
retrieval. As reported in Table 7, QIK was competitive in terms of
average retrieval time. LIRE ran the fastest but yielded the lowest
mAP value. Although CroW’s mAP value was the second best, it
was the slowest.

4.4.3 Scalability of QIK. To test the scalability of QIK, we indexed
124K images in MS COCO. We executed 2720 queries; on an aver-
age, QIK took 0.5 seconds for each query. This shows that QIK can
support efficient retrieval on large image repositories.

Table 4: Results for two-object combinations (avg. of mAP)

7=0.6 7=0.7
k=2 | k=4 | k=8 | k=16 | k=2 | k=4 | k=8 | k=16
QIK | 0.94 | 0.96 | 0.96 | 0.94 | 0.81 | 0.85 | 0.84 | 0.81

CroW 0.86 | 0.85 | 0.83 | 0.82 | 0.71 | 0.66 | 0.64 | 0.61

FR-CNN | 0.82 | 0.84 | 0.83 | 0.79 | 0.63 | 0.64 | 0.63 | 0.59

DIR 0.80 | 0.79 | 0.78 | 0.76 | 0.56 | 0.57 | 0.54 | 0.51

DELF 0.52 | 0.52 | 0.49 | 0.49 | 0.35 | 0.32 | 0.29 | 0.27

LIRE 0.40 | 0.41 | 0.40 | 0.37 | 0.19 | 0.19 | 0.17 | 0.16

Table 5: Results for three-object combinations (avg. of mAP)

7=0.6 7=0.7
k=2 | k=4 | k=8 | k=16 [k=2 | k=4 | k=8 | k=16
QIK | 0.93 | 0.92 | 0.93 | 0.94 | 0.83 | 0.80 | 0.80 | 0.78

CroW 0.83 | 0.82 | 0.82 | 0.81 | 0.65 | 0.59 | 0.59 | 0.57

FR-CNN | 0.76 | 0.78 | 0.78 | 0.76 | 0.50 | 0.55 | 0.56 | 0.53

DIR 0.78 | 0.78 | 0.75 | 0.68 | 0.49 | 0.52 | 0.51 | 0.45

DELF 0.50 | 0.51 | 0.48 | 0.47 | 031 | 0.29 | 0.27 | 0.25

LIRE 0.37 | 0.36 | 0.35 | 038 | 0.14 | 0.15 | 0.14 | 0.14

Table 6: Results for four-object combinations (avg. of mAP)

7=0.6 7=0.7
k=2 | k=4 | k=8 [k=16 | k=2 | k=4 | k=8 | k=16
QIK | 0.91] 0.95]0.97 | 0.94 | 0.81 | 0.82 | 0.83 | 0.78

CroW | 0.86 | 0.90 | 0.88 | 0.86 | 0.71 | 0.66 | 0.65 | 0.62

FR-CNN | 090 | 0.89 | 0.87 | 0.84 | 0.59 | 0.64 | 0.63 | 0.57

DIR 0.84 | 0.80 | 0.75 | 0.72 | 0.53 | 0.53 | 0.52 | 0.50

DELF 0.64 | 0.64 | 0.57 | 0.49 | 0.45 | 0.40 | 0.33 | 0.26

LIRE 042 | 042 | 045 | 041 | 0.13 | 0.17 | 0.18 | 0.17

Table 7: Average time taken (in seconds) for image retrieval

Two-object | Three-object | Four-object

combination | combination | combination
QIK 0.49 s 0.54s 0.54s
CroW 8.67 s 8.49 s 8.50 s
FR-CNN 0.73 s 0.73 s 0.74 s
DIR 0.45s 0.44 s 0.44 s
DELF 0.51s 0.52's 0.48 s
LIRE 0.33 s 034 s 0.34 s

5 CONCLUSIONS

QIK is an efficient system for large-scale image retrieval using PIUs
of images. It leverages the predictions of deep neural networks
designed for image understanding tasks, thereby capturing relation-
ships between multiple objects in complex scenes. The captions pre-
dicted for the images are analyzed linguistically by constructing sen-
tence parse trees and dependency trees. During the filtering step, the
parse tree of a query image’s caption is transformed to an optimized
XPath query and executed to fetch a set of candidate images from
the database. Finally, the tree edit distance is used for ranking and

returning the top-k results for a query. Through performance evalu-
ation on the MS COCO dataset, we observed that QIK outperformed
state-of-the-art techniques for large-scale image retrieval. QIK is
available on GitHub at https://github.com/MU-Data-Science/QIK.
Acknowledgments

This work was supported by the National Science Foundation under
Grant No. 1747751. Part of this work was done when the first and
last authors were at University of Missouri-Kansas City.

6 APPENDIX A

>!! E

(b) Predicted caption: "a man riding a skateboard up the side of a ramp"

Figure 8: Results fetched by QIK and its competitors.

Figure 8 shows two queries and the output of different tech-
niques for k = 8. As seen in Figure 8(a), QIK returned only images
of people with one or more giraffes. However, other techniques
returned at least one false positive for the query as defined in Sec-
tion 4.3. Similarly, Figure 8(b) shows that QIK returned only images
of skateboarders. However, other techniques returned at least one
false positive.

REFERENCES

1

[10

[11

[12

(13

[14

[15

[17

[18

[19

[20

[21

[22

]

]

]

]

]

2019. BaseX: A robust, high-performance XML database engine. Available from
http://basex.org/.

2019. Google Landmarks Dataset v2. https://github.com/cvdfoundation/google-
landmark.

2019. The Stanford Parser: A statistical parser. Available from https://nlp.stanford.
edu/software/lex-parser.shtml.

R. Arandjelovi¢, P. Gronat, A. Torii, T. Pajdla, and J. Sivic. 2016. NetVLAD:
CNN architecture for weakly supervised place recognition. In IEEE Conference
on Computer Vision and Pattern Recognition.

Yannis Avrithis and Giorgos Tolias. 2014. Hough Pyramid Matching: Speeded-Up
Geometry Re-ranking for Large Scale Image Retrieval. International Journal of
Computer Vision 107, 1 (01 Mar 2014), 1-19. https://doi.org/10.1007/s11263-013-
0659-3

Artem Babenko, Anton Slesarev, Alexandr Chigorin, and Victor Lempitsky. 2014.
Neural Codes for Image Retrieval. In Computer Vision — ECCV 2014, David Fleet,
Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars (Eds.). Springer International
Publishing, Cham, 584-599.

Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. 2008. SURF:
Speeded-Up Robust Features. Computer Vision and Image Understanding 110, 3
(2008), 346 - 359.

Anders Berglund, Scott Boag, Don Chamberlin, Mary F. Fernandez, Michael Kay,
Jonathan Robie, and Jerome Simeon. 2002. XML Path Language (XPath) 2.0 W3C
Working Draft 16. Technical Report WD-xpath20-20020816. World Wide Web
Consortium. http://www.w3.org/TR/xpath20/

Philip Bille. 2005. A survey on tree edit distance and related problems. Theoretical
Computer Science 337, 1(2005), 217 - 239. https://doi.org/10.1016/j.tcs.2004.12.030
Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, and Eve Maler. 2000. Extensible
Markup Language (XML) 1.0 Second Edition W3C Recommendation. Technical
Report REC-xml-20001006. World Wide Web Consortium. http://www.w3.org/
TR/2000/REC-xml-20001006

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St.
John, Noah Constant, Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, Yun-
Hsuan Sung, Brian Strope, and Ray Kurzweil. 2018. Universal Sentence Encoder.
CoRR abs/1803.11175 (2018). arXiv:1803.11175 http://arxiv.org/abs/1803.11175
Dangqi Chen and Christopher Manning. 2014. A Fast and Accurate Dependency
Parser using Neural Networks. In Proc. of the 2014 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP). Association for Computational
Linguistics, 740-750.

Gabriella Csurka, Christopher R. Dance, Lixin Fan, Jutta Willamowski, and CAI-
dric Bray. 2004. Visual categorization with bags of keypoints. In In Workshop on
Statistical Learning in Computer Vision, ECCV. 1-22.

Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon
Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya
Akella, Kuangching Wang, Glenn Ricart, Larry Landweber, Chip Elliott, Michael
Zink, Emmanuel Cecchet, Snigdhaswin Kar, and Prabodh Mishra. 2019. The
Design and Operation of CloudLab. In 2019 USENIX Annual Technical Conference
(USENIX ATC 19). Renton, WA, 1-14.

Albert Gordo, Jon Almazan, Jerome Revaud, and Diane Larlus. 2016. Deep Image
Retrieval: Learning Global Representations for Image Search. In Computer Vision —
ECCV 2016, Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling (Eds.). Springer
International Publishing, Cham, 241-257.

A. Gordo and D. Larlus. 2017. Beyond Instance-Level Image Retrieval: Leveraging
Captions to Learn a Global Visual Representation for Semantic Retrieval. In 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 5272-5281.
Christian Griin, Sebastian Gath, Alexander Holupirek, and Marc H. Scholl. 2009.
XQuery Full Text Implementation in BaseX. In Proceedings of the 6th International
XML Database Symposium on Database and XML Technologies (Lyon, France)
(XSym °09). Springer-Verlag, Berlin, Heidelberg, 114-128. https://doi.org/10.
1007/978-3-642-03555-5_10

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. 2015. Deep Residual
Learning for Image Recognition. CoRR abs/1512.03385 (2015).

Herve Jegou, Matthijs Douze, and Cordelia Schmid. 2008. Hamming Embedding
and Weak Geometric Consistency for Large Scale Image Search. In Proceedings of
the 10th European Conference on Computer Vision: Part I (Marseille, France) (ECCV
’08). Springer-Verlag, Berlin, Heidelberg, 304-317. https://doi.org/10.1007/978-3-
540-88682-2_24

H. Jegou, M. Douze, C. Schmid, and P. Perez. 2010. Aggregating local descriptors
into a compact image representation. In 2010 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition. 3304-3311.

H. Jegou, F. Perronnin, M. Douze, J. Sanchez, P. Perez, and C. Schmid. 2012.
Aggregating Local Image Descriptors into Compact Codes. IEEE Transactions on
Pattern Analysis and Machine Intelligence 34, 9 (Sep. 2012), 1704-1716.

Daniel Jurafsky and James H. Martin. 2009. Speech and Language Processing:
An Introduction to Natural Language Processing, Computational Linguistics, and
Speech Recognition (2nd ed.). Prentice Hall, USA.

[23

[24

[25

[26

[27

[28

[29]

[30

[32

(33]

[34

@
i

[36

[37

[38

@
20,

[40

[41

[42

[43

[45

[46

Yannis Kalantidis, Clayton Mellina, and Simon Osindero. 2016. Cross-
Dimensional Weighting for Aggregated Deep Convolutional Features. In Com-
puter Vision — ECCV 2016 Workshops, Gang Hua and Hervé Jégou (Eds.). 685-701.
Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollar, and C. Lawrence Zitnick. 2014. Microsoft COCO: Common
Objects in Context. In Computer Vision — ECCV 2014. Springer International
Publishing, Cham, 740-755.

David G. Lowe. 2004. Distinctive Image Features from Scale-Invariant Keypoints.
International Journal of Computer Vision 60 (2004), 91-110.

Mathias Lux and Savvas A. Chatzichristofis. 2008. LIRE: Lucene Image Retrieval:
An Extensible Java CBIR Library. In Proceedings of the 16th ACM International
Conference on Multimedia (Vancouver, British Columbia, Canada) (MM ’08). 1085-
1088.

Anastasiya Mishchuk, Dmytro Mishkin, Filip Radenovic, and Jifi Matas. 2017.
Working Hard to Know Your Neighbor’s Margins: Local Descriptor Learning
Loss. In Proceedings of the 31st International Conference on Neural Information
Processing Systems (Long Beach, CA) (NIPS’17). 4829-4840.

Dmytro Mishkin, Filip Radenovi¢, and Jifi Matas. 2018. Repeatability Is Not
Enough: Learning Affine Regions via Discriminability. In Computer Vision —
ECCV 2018. Springer International Publishing, Cham, 287-304.

Hyeonwoo Noh, Andre Araujo, Jack Sim, Tobias Weyand, and Bohyung Han.
2017. Large-Scale Image Retrieval with Attentive Deep Local Features. In Proc. of
2017 IEEE International Conference on Computer Vision (ICCV). 1-10.

Mateusz Pawlik and Nikolaus Augsten. 2015. Efficient Computation of the Tree
Edit Distance. ACM Trans. Database Syst. 40, 1, Article 3 (March 2015), 40 pages.
James Philbin, Ondrej Chum, Michael Isard, Josef Sivic, and Andrew Zisserman.
2007. Object retrieval with large vocabularies and fast spatial matching.. In Proc.
of CVPR 2007.

J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. 2008. Lost in quantization:
Improving particular object retrieval in large scale image databases. In 2008 IEEE
Conference on Computer Vision and Pattern Recognition. 1-8. https://doi.org/10.
1109/CVPR.2008.4587635

F. Radenovic, G. Tolias, and O. Chum. 2019. Fine-Tuning CNN Image Retrieval
with No Human Annotation. IEEE Transactions on Pattern Analysis and Machine
Intelligence 41, 7 (July 2019), 1655-1668.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster R-CNN:
Towards Real-time Object Detection with Region Proposal Networks. In Proceed-
ings of the 28th International Conference on Neural Information Processing Systems
- Volume 1 (Montreal, Canada) (NIPS’15). 91-99.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2017. Faster R-CNN:
Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans.
Pattern Anal. Mach. Intell. 39, 6 (June 2017), 1137-1149. https://doi.org/10.1109/
TPAMI.2016.2577031

Amaia Salvador, Xavier Giro-i Nieto, Ferran Marques, and Shin’ichi Satoh. 2016.
Faster R-CNN Features for Instance Search. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) Workshops.

Sivic and Zisserman. 2003. Video Google: a text retrieval approach to object
matching in videos. In Proceedings Ninth IEEE International Conference on Com-
puter Vision. 1470-1477 vol.2.

Richard Socher, John Bauer, Christopher D. Manning, and Andrew Y. Ng. 2013.
Parsing with Compositional Vector Grammars. In Proceedings of the 51st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).
Association for Computational Linguistics, Sofia, Bulgaria, 455-465.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015.
Going Deeper with Convolutions. In Computer Vision and Pattern Recognition.
Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbig-
niew Wojna. 2015. Rethinking the Inception Architecture for Computer Vision.
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015),
2818-2826.

Marvin Teichmann, Andre Araujo, Menglong Zhu, and Jack Sim. 2019. Detect-To-
Retrieve: Efficient Regional Aggregation for Image Search. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR).

Giorgos Tolias, Yannis Avrithis, and Herve Jegou. 2016. Image Search with
Selective Match Kernels: Aggregation Across Single and Multiple Images. Int. J.
Comput. Vision 116, 3 (Feb. 2016), 247-261.

Giorgos Tolias, Ronan Sicre, and Herve Jegou. 2016. Particular object retrieval
with integral max-pooling of CNN activations. In International Conference on
Learning Representations. 1-12.

Quoc-Tuan Truong and Hady W. Lauw. 2019. VistaNet: Visual Aspect Attention
Network for Multimodal Sentiment Analysis. In The Thirty-third AAAI Conference.
AAAI Press, Honolulu, Hawaii, 305-312.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. 2017. Show
and Tell: Lessons Learned from the 2015 MS COCO Image Captioning Challenge.
IEEE Trans. Pattern Anal. Mach. Intell. 39, 4 (April 2017), 652-663.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan
Salakhudinov, Rich Zemel, and Yoshua Bengio. 2015. Show, Attend and Tell:
Neural Image Caption Generation with Visual Attention. In Proceedings of the

32nd International Conference on Machine Learning, Vol. 37. Lille, France, 2048— [48] Peter Young, Alice Lai, Micah Hodosh, and Julia Hockenmaier. 2014. From image

2057. descriptions to visual denotations: New similarity metrics for semantic infer-
[47] A. B. Yandex and V. Lempitsky. 2015. Aggregating Local Deep Features for ence over event descriptions. Transactions of the Association for Computational

Image Retrieval. In 2015 IEEE International Conference on Computer Vision (ICCV). Linguistics 2 (2014), 67-78. https://doi.org/10.1162/tacl_a_00166

1269-1277. https://doi.org/10.1109/ICCV.2015.150 [49] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le. 2018. Learning Transferable

Architectures for Scalable Image Recognition. In 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 8697-8710.

	Abstract
	1 Introduction
	2 Related Work and Our Motivation
	3 Proposed Design
	3.1 Overview of QIK
	3.2 PIU Generation, Linguistic Analysis and Indexing
	3.3 Retrieval Using Captions in PIUs
	3.4 Retrieval Using Detected Objects in PIUs

	4 Performance Evaluation
	4.1 Implementation and Experimental Setup
	4.2 Dataset
	4.3 Queries
	4.4 Results

	5 Conclusions
	6 Appendix A
	References

