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ABSTRACT

In this paper, we propose a system for large-scale image retrieval
on everyday scenes with common objects by leveraging advances
in deep learning and natural language processing (NLP). Unlike
recent state-of-the-art approaches that extract image features from
a convolutional neural network (CNN), our system exploits the
predictions made by deep neural networks for image understanding
tasks. Our system aims to capture the relationships between objects
in an everyday scene rather than just the individual objects in
the scene. It works as follows: For each image in the database, it
generates most probable captions and detects objects in the image
using state-of-the-art deep learningmodels. The captions are parsed
and represented by tree structures using NLP techniques. These
are stored and indexed in a database system. When a user poses
a query image, its caption is generated using deep learning and
parsed into its corresponding tree structures. Then an optimized
tree-pattern query is constructed and executed on the database to
retrieve a set of candidate images. Finally, these candidate images
are ranked using the tree-edit distance metric computed on the tree
structures. A query based on only objects detected in the query
image can also be formulated and executed. In this case, the ranking
scheme uses the probabilities of the detected objects. We evaluated
the performance of our system on the Microsoft COCO dataset
containing everyday scenes (with common objects) and observed
that our system can outperform state-of-the-art techniques in terms
of mean average precision for large-scale image retrieval.
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1 INTRODUCTION

Content-based image retrieval (CBIR) has been a topic of research
for many years. In CBIR, given a query image, the goal is to �nd
images in the database that are similar to the query image. Typically,
an image is mapped to a feature vector and a similarity metric is
de�ned between feature vectors and used to identify images similar
to the query image. Advances in computer vision and deep learning
have resulted in numerous research e�orts and commercial solu-
tions for CBIR. As image datasets continue to grow in volume on the
Web and in domains such as healthcare, insurance, precision agri-
culture, remote sensing, astronomy, and defense, there continues
to be great interest in e�cient large-scale image retrieval.

Current image retrieval systems typically have two stages: the
�ltering stage to identify a set of candidate images and a re-ranking
stage, where a small number of similar candidates are re-ranked
based on speci�c criteria. Several approaches used hand-crafted
local features [7, 25] and techniques based on bag-of-words method,
hamming embedding, large vocabularies, spatial matching, etc., to
represent images in high-dimensional space [13, 19–21, 31, 32, 37,
42]. For re-ranking, a few strategies have been proposed based on
local features and geometric veri�cation [5, 31, 32].

Advances in CNNs have resulted in new methods for image
understanding including image recognition and object detection.
Deep CNNs have achieved remarkable accuracy for object recog-
nition on standard benchmarks (e.g., GoogLeNet [39], Inception
v3 [40], ResNet [18]). Another interesting success is the develop-
ment of image captioning models like Show and Tell [45] and Show,
Attend and Tell [46] that use a combination of convolutional lay-
ers/networks and recurrent neural networks. Thus, it is now more
feasible than before to extract useful knowledge from images and
understand their context on a large-scale.

Several techniques have recently explored the use of CNNs for
large-scale image retrieval. They rely on CNN features for global
image representations enabling fast �ltering [4, 6, 15, 23, 33, 43, 47].
For re-ranking, local image representations from CNNs have been
employed through spatial matching and geometric veri�cation [27–
29]. DELF [29, 41] extracts deep local features from CNNs for index-
ing and ranks based on geometric veri�cation. An instance retrieval
technique, which we will hereinafter refer to as FR-CNN [36], lever-
ages both local and global features from a Faster R-CNN [34].

Unlike prior approaches that rely on features constructed from
CNNs developed for image understanding tasks, we explore if pre-
dictions made by such networks for tasks such as image captioning
and object detection can be used in a novel and e�ective way for
large-scale image retrieval. Thus, rather than developing local or



global descriptors for images by directly using CNN-based features,
we look ahead in the processing pipeline to employ the actual pre-
dictions. Speci�cally, we investigate how both the �ltering and
ranking steps during image retrieval can bene�t from these predic-
tions. We will refer to the predictions made on an image collectively
as the probabilistic image understanding (PIU) of the image.

In this paper, we propose a system called QIK (Querying Images
Using Contextual Knowledge) for large-scale image retrieval on ev-
eryday scenes (with common objects) by synergistically combining
PIUs and NLP. The key contributions of our work are as follows:

• QIK is a generic framework that aims to capture the context
of everyday scenes and learn the relationships between ob-
jects in them for e�cient image retrieval. For this purpose,
QIK generates the PIU of an image using state-of-the-art
image captioning and object detection models. The PIUs are
processed during image retrieval.

• QIK employs modern techniques in NLP for linguistic analy-
sis of the PIUs. For instance, image captions are transformed
into tree structures widely used in computational linguis-
tics [22]. These tree structures are queried during the �lter-
ing step of image retrieval and later used for ranking the
candidate images.

• We conducted an evaluation of QIK against state-of-the-art
techniques such as DELF [29], DIR [15], CroW [23], and FR-
CNN [36] using the Microsoft COCO dataset [24], which is
a well-known dataset containing complex everyday scenes
with common objects. We computed the mean average preci-
sion (mAP) for top-k matches of a query to compare QIK and
its competitors. First, we observed that using image captions
for �ltering and ranking, QIK performed better than when
only the detected objects were used for image retrieval in
terms of mAP. This asserts that leveraging relationships be-
tween objects during image retrieval yields better quality re-
sults. Furthermore, QIK using image captions outperformed
the aforementioned competitors in terms of mAP.

The rest of the paper is organized as follows: Section 2 discusses
recent related work and our motivation; Section 3 presents the
design details of QIK; Section 4 discusses the implementation and
performance evaluation of QIK and comparison with state-of-the-
art techniques; and �nally, we conclude in Section 5.

2 RELATED WORK AND OUR MOTIVATION

Related Work. We brie�y discuss recent techniques that use CNN-
based features for image retrieval. FR-CNN [36] uses image-wise
and region-wise representations pooled from an object detection
CNN such as Faster R-CNN [34]. The image-wise representations
serve as global features and are used during the �ltering step. The
region-wise representations serve as local features and are used for
re-ranking. DIR [15] produces a global and compact �xed-length
representation of each image by aggregating many region-wise
descriptors so that it is robust to scale and transformation. The
regions to be pooled are predicted using a region proposal network.
DELF [29] is a local feature descriptor that employs an attention-
based keypoint selection mechanism to identify semantically useful
local features needed for image retrieval. A more recent work by
Tiechman et al. [41] proposes a novel region aggregation method

for image retrieval. It extracts DELF features and object regions
from an image and extends the idea of aggregated selective math
kernels [42]. The region aggregation method helps in re-balancing
the visual information in an image. CroW [23] is an e�cient non-
parametric weighting and aggregation scheme to transform con-
volutional image features to a compact global image feature. The
output of the convolutional layers are aggregated before the fully
connected layers. Gordo et al. [16] used human-annotated region
level captions during training time to generate global visual repre-
sentation of images for semantic retrieval. At query time, only the
query image is used without any captions. VistaNet [44] combines
text with images but for sentiment analysis.

Our Motivation. Prior image retrieval approaches that rely on CNN-
based features have been tested on datasets that contain objects
such as buildings, scenic views, and landmarks (e.g., the Oxford
Dataset [31], the Paris Dataset [32], the INRIA Dataset [19], the
Google Landmarks Dataset [2]). Although some of them have been
extended with 100k distractor images (e.g., Paris 106k, Oxford 105k),
the evaluated queries were still on buildings, landmarks, etc. Images
containing everyday scenes with common objects are quite di�er-
ent from these images as they contain objects in the foreground
and background. In such an image, certain objects become the main
focus of the image when a human observes it. Based on our experi-
ments using the MS COCO dataset, we observed that techniques
based on CNN-based features failed to precisely capture the main
aspect of an image leading to false positives. Figure 1 shows a set
of query images as well as false positives output by the evaluated
techniques. For the query image in Figure 1(a), DELF returned an
image of a kitchen, however, without people in it (Figure 1(b)). For
the query image in Figure 1(c), FR-CNN returned an image with
baseball players instead of skateboarders possibly due to the hand
and leg movements (Figure 1(d)). For the query image in Figure 1(e),
CroW returned an image of a room with daylight but without peo-
ple (Figure 1(f)). Finally, for the query image in Figure 1(g), DIR
returned an image of a space similar to the query image but without
a person wearing a tie (Figure 1(h)).

We emphasize that human cognition can capture the key essence
of an image and describe it aptly via a caption; it can ignore ob-
jects (or regions) in an image that do not really matter to describe
the main context of the image. Hence, we posit that an accurate

image captioning system can be very useful to describe images con-

taining everyday scenes with common objects; image retrieval based
on automatically generated captions of images could perform better
than techniques relying on CNN-based features. This motivated
us to design a new approach called QIK to provide superior image
retrieval performance than its competitors for images containing
everyday scenes. Our approach moves away from directly building
global or local image descriptors using features of CNNs/deep neu-
ral networks. Instead, it aims to use the predictions made by these
networks for image understanding tasks, i.e., PIUs of images, in a
novel way and employ modern NLP techniques for e�cient and
accurate large-scale image retrieval.

3 PROPOSED DESIGN

In this section, we �rst present the design of QIK for large-scale
image retrieval on everyday scenes with common objects. Our







Algorithm 1 IndexPIU(im�)

Input: im� denotes an image in the database
1: Predict the most probable captions C of im�

2: Predict the most probable objects O in im� with probability
greater than a user-de�ned threshold

3: for each caption c 2 C do

4: Generate the parse tree p for c
5: Generate the dependency tree d for c
6: Represent p in XML
7: Represent d in XML
8: Store and index the XML documents in the database system
9: for each object o 2 O do

10: Represent o as a JSON record containing the probability of o
11: Store and index the JSON record in the database system

Algorithm 2 RetrieveImages(k , im�q )

Input: k denotes the maximum number of matches to return
Input: im�q denotes the query image
1: Predict the most probable caption C for im�q

2: Predict the most probable objects O in im�q

3: q  GenerateBasicXPath(C)

4: q0  GenerateOptimizedXPath(q)

5: Generate a query q00 for O
6: Execute q0 on the XML database to obtain set of image IDs
7: Execute q00 on the JSON database to obtain set of image IDs
8: Compute the intersection of the above two sets to obtain the

candidate images
9: for each candidate image im�c do

10: Compute tree edit distance between the parse tree (or de-
pendency tree) of the caption of im�c and the parse tree (or
dependency tree) of the caption C

11: Sort (in ascending order) the candidate images based on the
computed tree edit distance values

12: return top-k matches

obtain another set of qualifying image IDs. The intersection of
these two sets produces the candidate image IDs that match the
criteria speci�ed in the XPath query (based on captions) as well as
the objects in the query image.

Next, we provide a brief introduction to XPath [8], a query lan-
guage for selecting nodes in an XML document. A simple XPath
query can be written as /A1::N1[p1]/· · · /Ai ::Ni [pi ]/· · · /An ::Nn [pn ],
whereAi denotes an XPath axis, Ni denotes an XML element name,
and pi denotes a predicate of that node. A predicate may be empty
for a node. Although there are 13 XPath axes [8], we only use
4 of them: (a) child to indicate a parent-child relationship, (b)
descendant to indicate an ancestor-descendant relationship, (c)
following to indicate that a node follows the other in document
order (a.k.a. preorder), and (d) following-sibling to indicate that
two nodes share a common parent.

Next, we discuss the details of basic XPath generation (Algo-
rithm 3) and optimization (Algorithm 4) performed during image
retrieval. In Algorithm 3, a query caption is �rst parsed into its

parse tree, which is then pruned by removing non-essential key-
words such as "on", "a", "in", and others (Line 2). We basically ignore
prepositions, determiners, conjunctions, etc., in the query image’s
caption during the �ltering step. The pruned tree is traversed in
preorder (Lines 3-14) to generate a basic XPath query containing
XPath axes such as child, following, and following-sibling to
preserve the ordering of essential keywords in the caption.

Algorithm 3 GenerateBasicXPath(C)

Input: C denotes the image caption
Output: An XPath expression
1: Let D denote the parse tree of C
2: Prune D by removing subtrees rooted at POS tags such as DT,

IN, and other non-essential keywords
3: for each node n in preorder traversal of D do

4: Let t denote node label of n
5: if n is the root node of D then

6: q  /child::t

7: else if n is child of the previous node (in preorder) then
8: Append /child::t to q
9: else if n is a sibling of the previous node (in preorder) then
10: Append /following-sibling::t to q
11: else if n is a leaf node then
12: Append [text()=�t�] to q
13: else

14: Append /following::t to q

Example 3.4. Let us suppose the caption predicated for a query
image is “a young boy kicking a soccer ball on a �eld." A parse tree
is constructed as shown in Figure 4(a). Algorithm 3 produces the
basic XPath query as shown in Figure 6.

/child::ROOT/child::FRAG/child::NP/child::JJ[text()=�young�]/

following-sibling::NN[text()=�boy�]/following::S/

child::VP/child::VBG[text()=�kicking�]/

following-sibling::NP/child::NN[text()=�soccer�]/

following-sibling::NN[text()=�ball�]/following::PP/

child::NP/child::NN[text()=�field�]

Figure 6: Basic XPath query

From the basic XPath query, an optimized query is generated
using Algorithm 4. The key idea is to replace a sequence of XPath
axes with a single axis that still speci�es the same constraint on the
keywords as the original query in order to reduce the length of the
XPath query in terms of the number of nodes and axes. The XPath
query is processed from left-to-right, one axis-node pair at a time.
Each time a node containing a predicate is encountered, an XPath
axis and node name are appended to the optimized query (Lines 3-
10). The axis type depends on the sequence of axes encountered
since the previous node with a predicate. A sequence of child axes
from the root node of the query to the �rst node with a predicate
is replaced by the child axis (Line 9). When only one axis appears
(e.g., child, following, following-sibling) since the previous
node with a predicate (e.g., an adjective and its noun), it is replaced
by that axis (Line 9). A sequence of axes where the leading axis is
following or following-sibling since the previous node with a



predicate is replaced by following (Line 4 or Line 6). The �rst axis
of the generated query (child) is replaced �nally by descendant.

Algorithm 4 GenerateOptimizedXPath(q)

Input: q denotes an input XPath expression
Output: Optimized XPath expression
1: q0  NULL; leadin�Axis  NULL

2: for each axis x and node n in q (from left-to-right) do
3: if n has predicate p then

4: if leadin�Axis is following then

5: Append /following::n[p] to q0

6: else if leadin�Axis is following-sibling then
7: Append /following::n[p] to q0

8: else

9: Append /x::n[p] to q0

10: leadin�Axis  NULL

11: else if x is child then
12: continue
13: else if x is following::sibling or following then
14: leadin�Axis  x

15: else

16: print("Invalid axis");
17: return NULL
18: Replace the �rst axis in q0 with descendant

19: return q0

Example 3.5. Algorithm 4 transforms the basic XPath query
shown in Figure 6 into an optimized XPath query (Figure 7).

/descendant::JJ[text()=�young�]/following-sibling::NN[text()=�boy�]/

following::VBG[text()=�kicking�]/following::NN[text()=�soccer�]/

following-sibling::NN[text()=�ball�]/following::NN[text()=�field�]

Figure 7: Optimized XPath query

After the candidate images are obtained, they are ranked using
the tree edit distance metric. As shown in Algorithm 2, we compute
the tree edit distance between the parse (or dependency tree) of
the candidate image’s caption and the parse tree (or dependency
tree) of the query image’s caption. We rank the candidate images
by increasing order of the computed tree edit distance value and
return the top-k matches to the user.

3.4 Retrieval Using Detected Objects in PIUs

In this section, we show how QIK processes a query using detected
objects in images and returns the top-k relevant matches to the user.
Algorithm 5 sketches the overall steps during image retrieval. The
�ltering step is denoted by Lines 1-3. First, given a query image, the
objects detected in it (using an object detection model) that have
probabilities greater than a user-speci�ed threshold are selected.
Then a Boolean AND query is constructed on these objects. The
JSON database is queried to fetch all the candidate images that
contain every object in the query. In the ranking step (Lines 4-
7), a score is computed for each candidate image by using the
probabilities of the detected objects. Given a candidate image, its
score is the sum of the product of the probabilities of the selected

objects in the candidate image and the query image. The intuition
is that a candidate image containing objects of higher probabilities
will yield a higher score. A higher probability object will dominate
the score over a lower probability object in the query image. Finally,
the images are sorted in descending order by their scores, and the
top-k results are returned.

Algorithm 5 RetrieveImagesObj(k , im�q )

Input: k denotes the maximum number of matches to return
Input: im�q denotes the query image
1: Let O = {(o1,p1), (o2,p2), . . . , (on ,pn )} denote the most proba-

ble objects and their probabilities in im�q such that pi is greater
than a user-speci�ed threshold

2: Generate a query q to specify a Boolean AND of the objects
o1,o2, . . . ,on

3: Execute q on the JSON database to obtain set of image IDs
along with the probabilities of the objects in each candidate
image

4: for each candidate image im�c do

5: Let Oc = {(o1, r1), (o2, r2), . . . , (on , rn )} denote the matched
objects and their probabilities in the candidate image

6: score(im�c ) =
Õn
i=1 pi ⇥ ri

7: Sort (in descending order) the candidate images based on their
scores

8: return top-k matches

4 PERFORMANCE EVALUATION

In this section, we report the performance evaluation of QIK and
compare it with four di�erent image retrieval techniques that utilize
global and/or local feature descriptors, namely, DIR [15], DELF [29],
CroW [23], FR-CNN [36], and LIRE [26]. LIRE is an open source
CBIR system that provides a wide range of options such as color
histograms, color and edge directivity descriptor (CEDD), etc., to
extract local features and other well-known techniques [7, 25] to
extract global feature vectors. These are then indexed for fast image
retrieval. We used the original code published by the authors of
DIR, DELF, CroW, FR-CNN, and LIRE for comparison with QIK.

4.1 Implementation and Experimental Setup

QIK was primarily written in Java and compiled using Java 1.8.
The parse tree and dependency trees for captions were generated
using the Stanford Parser package (version 3.9.2) [3]. The entire
compiled application was deployed on Apache Tomcat 9.0.20. XML
data was stored and indexed using BaseX [1, 17] (version 9.2), a
high performance XML engine. QIK used the APTED library [30],
a robust, main-memory implementation, for computing tree edit
distance required during the ranking step.

QIK used a pre-trained Inception v3model [40] for initializing the
parameters of Show and Tell [45] for generating captions of images.
The training was done for 3 million steps on a single NVIDIA
GeForce Titan X Pascal 12GB GPU on the MS COCO dataset [24]
comprising of 83K training images and 41K validation images. The
accuracy of the model was further improved by executing a second
round of training for 2 million steps to enable �ne tuning of the



Inception v3 model. For object detection, QIK used Faster-RCNN
with NASNet-A image featurization [49] trained on MS COCO.

We ran the experiments on CloudLab [14] in the Wisconsin data
center. All nodes had two Intel Xeon Silver 4114 10-core CPUs (2.20
GHz) and 192 GB of RAM, and ran Ubuntu 16.04.

4.2 Dataset

For evaluation, we used MS COCO [24] containing 124K images
of complex everyday scenes, involving 80 common objects in their
natural context. Each image had 5 human-annotated captions. We
chose a random subset of 15K images for evaluation as some of the
competitors of QIK could not operate on larger number of images.

4.3 Queries

For the 15K dataset, we generated two-, three-, and four-object
combinations using the 80 objects speci�ed in MS COCO such
as "person + couch", "person + car + cup", etc. The number of
two-object, three-object, and four-object combinations were 50, 50,
and 40, respectively. Consider only two-object combinations. For
each combination c , we did the following: We selected the images
containing those two objects based on human labeling from the 15K
dataset. Let I denote the selected images. For each image i 2 I , we
identi�ed the truematches for i as a query image using a pre-trained
Universal Sentence Encoder [11] model. Essentially, we computed
the similarity between the human-annotated captions of i against
the human-annotated captions of other images in I and used a
similarity threshold � to determine a true match. That is, if any
caption of i was similar to a caption of an image j in I with similarity
greater than � , then j was considered a true match for i . Thus, we
completely relied on human judgment by using their annotations
for deciding the true matches for an image query. We computed the
mAP value for the combination c for di�erent top-k matches (k=2,
k=4, k=8, and k=16). We followed the same procedure for three-
object and four-object combinations. The total number of image
queries in two-object, three-object, and four-object combinations
were 4406, 1585, and 561, respectively.

4.4 Results

Next, we present the image retrieval performance of QIK and its
competitors in terms of mAP and retrieval time.

4.4.1 QIK: Captions vs. Detected Objects. We �rst compared the
image retrieval performance of QIK when using captions versus
detected objects in PIUs. Hereinafter, we denote them by QIKc

and QIKo , respectively. Note that QIKc used Algorithm 2 and QIKo

used Algorithm 5. Our goal was to show that captions provide
superior performance as they can capture the relationships between
important objects in an image compared to just retrieving images
containing certain objects. Table 1, Table 2, and Table 3 show the
average of the mAP values for the two-object, three-object, and
four-object combinations, respectively. Clearly, QIKc outperformed
QIKo for two di�erent probability thresholds for object detection,
i.e., 0.9 and 0.8. Thus, one can conclude that captions in PIUs indeed
capture the object relationships leading to superior image retrieval
performance for everyday scenes.

Table 1: QIKc vs QIKo : two-object combinations (avg. mAP)

�=0.6 �=0.7
k=2 k=4 k=8 k=16 k=2 k=4 k=8 k=16

QIKc 0.94 0.96 0.96 0.94 0.81 0.85 0.84 0.81

QIK
0.9

o 0.85 0.83 0.82 0.79 0.64 0.62 0.61 0.57

QIK
0.8

o 0.80 0.79 0.77 0.75 0.60 0.60 0.57 0.56

Table 2: QIKc vs QIKo : three-object combinations (avg. mAP)

�=0.6 �=0.7
k=2 k=4 k=8 k=16 k=2 k=4 k=8 k=16

QIKc 0.93 0.92 0.93 0.94 0.83 0.80 0.80 0.78

QIK
0.9

o 0.81 0.78 0.78 0.77 0.58 0.59 0.57 0.52

QIK
0.8

o 0.52 0.50 0.52 0.50 0.73 0.72 0.70 0.67

Table 3: QIKc vs QIKo : four-object combinations (avg. mAP)

�=0.6 �=0.7
k=2 k=4 k=8 k=16 k=2 k=4 k=8 k=16

QIKc 0.91 0.95 0.97 0.94 0.81 0.82 0.83 0.78

QIK
0.9

o 0.80 0.82 0.80 0.76 0.52 0.52 0.53 0.49

QIK
0.8

o 0.68 0.67 0.66 0.65 0.48 0.47 0.49 0.47

4.4.2 QIKc vs. Its Competitors. Next, we compared QIKc with its
competitors, which used CNN-based features for �ltering. For fair
evaluation, we used the default parameters in the code of DIR,
DELF, CroW, and FR-CNN. For LIRE, we used CEDD to extract the
features of images and indexed them using Lucene. In addition, the
sentence parse trees were used during the ranking step for tree edit
distance computation. (The results obtained by using dependency
trees were similar and are not shown in the interest of space.) For
the two-object combinations, we computed the mAP value for each
combination and report the average of the mAP values. Similarly,
we report the average of mAP values for the three-object and four-
object combinations. Tables 4, 5, and 6 report these values for two
di�erent � values and di�erent values of k . In all cases, QIK out-
performed its competitors by virtue of using captions in PIUs and
applying NLP processing. QIKc was able to capture the the rela-
tionships between objects in everyday scenes leading to superior
performance. Other approaches relied on local/global descriptors
of images constructed from features with or without CNNs. In most
cases, CroW was the best approach among the chosen competitors;
LIRE was the worst approach. This con�rms that techniques us-
ing CNN-based features are superior to traditional feature-based
indexing of images.

Wemeasured the average time taken by each technique for image
retrieval. As reported in Table 7, QIK was competitive in terms of
average retrieval time. LIRE ran the fastest but yielded the lowest
mAP value. Although CroW’s mAP value was the second best, it
was the slowest.

4.4.3 Scalability of QIK. To test the scalability of QIK, we indexed
124K images in MS COCO. We executed 2720 queries; on an aver-
age, QIK took 0.5 seconds for each query. This shows that QIK can
support e�cient retrieval on large image repositories.



Table 4: Results for two-object combinations (avg. of mAP)

�=0.6 �=0.7
k=2 k=4 k=8 k=16 k=2 k=4 k=8 k=16

QIK 0.94 0.96 0.96 0.94 0.81 0.85 0.84 0.81

CroW 0.86 0.85 0.83 0.82 0.71 0.66 0.64 0.61
FR-CNN 0.82 0.84 0.83 0.79 0.63 0.64 0.63 0.59
DIR 0.80 0.79 0.78 0.76 0.56 0.57 0.54 0.51
DELF 0.52 0.52 0.49 0.49 0.35 0.32 0.29 0.27
LIRE 0.40 0.41 0.40 0.37 0.19 0.19 0.17 0.16

Table 5: Results for three-object combinations (avg. of mAP)

�=0.6 �=0.7
k=2 k=4 k=8 k=16 k=2 k=4 k=8 k=16

QIK 0.93 0.92 0.93 0.94 0.83 0.80 0.80 0.78

CroW 0.83 0.82 0.82 0.81 0.65 0.59 0.59 0.57
FR-CNN 0.76 0.78 0.78 0.76 0.50 0.55 0.56 0.53
DIR 0.78 0.78 0.75 0.68 0.49 0.52 0.51 0.45
DELF 0.50 0.51 0.48 0.47 0.31 0.29 0.27 0.25
LIRE 0.37 0.36 0.35 0.38 0.14 0.15 0.14 0.14

Table 6: Results for four-object combinations (avg. of mAP)

�=0.6 �=0.7
k=2 k=4 k=8 k=16 k=2 k=4 k=8 k=16

QIK 0.91 0.95 0.97 0.94 0.81 0.82 0.83 0.78

CroW 0.86 0.90 0.88 0.86 0.71 0.66 0.65 0.62
FR-CNN 0.90 0.89 0.87 0.84 0.59 0.64 0.63 0.57
DIR 0.84 0.80 0.75 0.72 0.53 0.53 0.52 0.50
DELF 0.64 0.64 0.57 0.49 0.45 0.40 0.33 0.26
LIRE 0.42 0.42 0.45 0.41 0.13 0.17 0.18 0.17

Table 7: Average time taken (in seconds) for image retrieval

Two-object Three-object Four-object
combination combination combination

QIK 0.49 s 0.54 s 0.54 s
CroW 8.67 s 8.49 s 8.50 s

FR-CNN 0.73 s 0.73 s 0.74 s
DIR 0.45 s 0.44 s 0.44 s
DELF 0.51 s 0.52 s 0.48 s
LIRE 0.33 s 0.34 s 0.34 s

5 CONCLUSIONS

QIK is an e�cient system for large-scale image retrieval using PIUs
of images. It leverages the predictions of deep neural networks
designed for image understanding tasks, thereby capturing relation-
ships between multiple objects in complex scenes. The captions pre-
dicted for the images are analyzed linguistically by constructing sen-
tence parse trees and dependency trees. During the �ltering step, the
parse tree of a query image’s caption is transformed to an optimized
XPath query and executed to fetch a set of candidate images from
the database. Finally, the tree edit distance is used for ranking and

returning the top-k results for a query. Through performance evalu-
ation on the MS COCO dataset, we observed that QIK outperformed
state-of-the-art techniques for large-scale image retrieval. QIK is
available on GitHub at https://github.com/MU-Data-Science/QIK.
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6 APPENDIX A

(a) Predicted caption: "a woman feeding a gira�e at a zoo"

(b) Predicted caption: "a man riding a skateboard up the side of a ramp"

Figure 8: Results fetched by QIK and its competitors.

Figure 8 shows two queries and the output of di�erent tech-
niques for k = 8. As seen in Figure 8(a), QIK returned only images
of people with one or more gira�es. However, other techniques
returned at least one false positive for the query as de�ned in Sec-
tion 4.3. Similarly, Figure 8(b) shows that QIK returned only images
of skateboarders. However, other techniques returned at least one
false positive.
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