
Insider Attack Detection for Science DMZs
Using System Performance Data

Ross Gegan∗, Brian Perry∗, Dipak Ghosal∗, Matt Bishop∗
∗ University of California, Davis

{rkgegan, bperry, dghosal, mabishop}@ucdavis.edu

Abstract—The science DMZ is a specialized network model
developed to guarantee secure and efficient transfer of data
for large-scale distributed research. To enable a high level
of performance, the Science DMZ includes dedicated data
transfer nodes (DTNs). Protecting these DTNs is crucial to
maintaining the overall security of the network and the data,
and insider attacks are a major threat. Although some limited
network intrusion detection systems (NIDS) are deployed to
monitor DTNs, this alone is not sufficient to detect insider
threats. Monitoring for abnormal system behavior, such as
unusual sequences of system calls, is one way to detect insider
threats. However, the relatively predictable behavior of the
DTN suggests that we can also detect unusual activity through
monitoring system performance, such as CPU and disk usage,
along with network activity. In this paper, we introduce a po-
tential insider attack scenario, and show how readily available
system performance metrics can be employed to detect data
tampering within DTNs, using DBSCAN clustering to actively
monitor for unexpected behavior.

Index Terms—Science DMZ, data transfer node (DTN),
scientific workflows, system performance metrics, computer
security, insider attack, anomaly detection, machine learning,
DBSCAN, clustering.

I. INTRODUCTION

Scientific research depends on the safe transfer of huge
quantities of data, in some cases terabytes worth [1].
Research organizations use Science Demilitarized Zone
(DMZ) networks, a network model designed to guarantee
optimized and reliable transfers through performance tun-
ing and efficient network organization, as well as custom
built data transfer nodes (DTNs). This Science DMZ
model enables higher performance and more reliable data
transfers [2], and help connect research sites to each other
as well as cloud computing resources. Science DMZs often
avoid typical defense measures such as firewalls in order
to optimize performance, instead using Access Control
Lists (ACLs) and other forms of detection [3]. However,
these defenses are insufficient for handling insider threats.
Insider threats are a serious concern, as ensuring data
integrity is critical to scientific research [4]. In particular,
protecting data confidentiality and preventing data exfiltra-
tion are important concerns [4]. Therefore, monitoring for
insider data tampering is important to provide the DTNs
with extra protection, both to protect their performance
and the integrity of the transferred data. DTNs can also

This material is based upon work supported by the National Science
Foundation under Grant Number OAC-1739025.

be useful in contexts outside of scientific research, such as
transfers between cloud service providers [5].

This work examines a method of detecting insider at-
tacks targeting the data stored on or moving through a
DTN. Since the insider attack category can be broadly
defined, we focus our efforts primarily on detecting data
sabotage, considering a possible attack scenario involving
SSH obfuscation. We consider a novel method of detect-
ing data tampering which monitors the host performance
data to detect file editing events, distinguishing between
user file modification and the modification occurring as
a result of the DTN’s file transfers. The limited range
of legitimate DTN operations [6] allows for effective
anomaly detection. The anomaly detection method used
for this utilizes DBSCAN clustering [7] of host metrics
such as CPU utilization, along with checking disk writes
and network activity. To recreate the DTN environment,
we set up an experimental DTN using a server with a
10 Gbps backbone link to the UC Davis Science DMZ.
Our experimental DTN follows the best practices described
in ESnet’s DTN tuning guide [8]. To emulate scientific
data being transferred to the DTN, real traffic and DTN
activity is generated by files continually transferred from
the Energy Sciences Network (ESnet) test DTNs. As the
DTN operates, we continually log and monitor system
performance and network behavior, performing real-time
monitoring by continually re-clustering the CPU activity
and checking the disk and network activity.

The key contributions are as follows:

• We consider a new SSH obfuscation system using
PDF files, describing how it could be exploited by
insiders as part of the overall attack chain.

• We present a real-time detection method which can
quickly identify unexpected file editing on the DTN
using DBSCAN, as well as the obfuscated SSH ses-
sions.

• We demonstrate the value of system performance
metrics for anomaly detection on DTNs for protecting
data integrity.

In Section II we provide background information on
the Science DMZ, insider attacks, and system performance
metrics, along with related work. In Section III we describe
a potential attack scenario we have envisioned where an
insider can establish an obfuscated SSH session on the

IEEE SPC 2020 - sixth Workshop on Security and Privacy in the Cloud (SPC)

978-1-7281-4760-4/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on January 18,2021 at 01:14:47 UTC from IEEE Xplore. Restrictions apply.

DTN, giving them the ability to sabotage data. Section IV
we provide details on our detection system, in addition to
some background on clustering and anomaly detection. In
Section V we describe our experimental setup in-depth and
in Section VI will discuss and evaluate our results. Finally,
in Section VII we summarize our conclusions and discuss
future work.

II. BACKGROUND AND RELATED WORK

A. Science DMZ

The Science Demilitarized Zone (DMZ) is a model
designed for scaling scientific research, ensuring reliable
performance and high rate data transfers [2] between sites.
Though the DMZs differ depending on their purpose,
DMZs share certain key features. Figure 1 presents a
typical science DMZ configuration and its components.
A science DMZ is typically connected with a site at the
network perimeter, through a border router linking the
Science DMZ and the site. Assuming their security policies
allow for it, multiple organizations can share access to their
Science DMZs [6]. Therefore, the slower site or campus
network gains access to the high performance resources
of the Science DMZs, allowing high performance data
transfers over the wide area network. A critical component
is the data transfer node (DTN), which is dedicated to man-
aging the efficient data transfers. For these transfers, the
Science DMZ model prioritizes correctness, consistency,
and performance, in that order [2]. Different security mea-
sures such as data encryption during transfers, and stateless
firewalls controlling which DTNs are communicating, help
to prevent data exfiltration [6].

The DTN connects directly to the Science DMZ router,
serving as a high-performance server responsible for man-
aging all of the incoming and outgoing data. As such, it
is a critical component, and the security of the Science
DMZ depends on protecting the DTN and its data. The
DTNs do not typically run many applications, they are used
almost solely for parallel data transfers (commonly per-
formed using GridFTP [9]), along with some performance
monitoring performed by tools like perfSONAR [10], and
system maintenance [2], [6]. This simplicity not only
improves the efficiency of file transfers, it also improves
the security of the DMZ by allowing strict access control
to be implemented, minimizing the attack surface. The
Science DMZ model is flexible, meaning no two DTNs
will be identical in terms of hardware and software [11],
and more or less user access to the DTNs is possible
depending on the security policy. For example, shell access
might be restricted on the DTN in some cases [2]. How-
ever, the basic usage can be expected to remain similar
across organizations. This is helpful to keep in mind
when considering detection of attacks, as the range of
normal and acceptable behavior is much more limited and
predictable than a general purpose system. This narrower
range of normal network and host activity makes practical

anomaly detection based on system performance metrics
in these environments more feasible [12]. Since access to
the DTN is strictly controlled, insider attacks from within
an organization might be the primary concern.

Fig. 1: A typical Science DMZ (reprinted from [13]).

B. Insider Attacks

An insider attack can describe any case where the attack
is performed by somebody with legitimate access to a
system [14]. Clearly, this encompasses a wide range of
attack types, from data sabotage and leaking to blackmail
and fraud. Many different insider attack taxonomies have
been created [15] [16]. Generally speaking, we need to first
consider the insider’s profile, whether they are intentionally
malicious or if they are unintentionally causing damage,
if they are masquerading as authorized or legitimately
authorized, and what is their intended role within the
system [15]. The attacks also vary in terms of the level of
sophistication and the attacker’s knowledge of the target,
their personal motivation and goals. We need to consider
the scope and targets of the attack - are they attacking
the network, the operating system, applications, or stored
data? In some cases, the attacks will occur across multiple
levels but become more noticeable on a particular level. For
instance, data tampering is noticeable at the application or
data level, while exfiltration can be observed at the network
level [15].

Figure 2 shows the insider attack chain, and some
actions that might be taken during the different steps of
an attack. Attackers can be classified into one of three
categories depending on their actions and role in the chain
of an attack [15]. Masqueraders perform reconnaissance
and imitate legitimate users to set up an attack, while
traitors and unintentional perpetrators execute the attack
through extracting data, sabotaging data or some other
part of the overall system. In our experiments, we focus
primarily on the ”actions on objectives” portion of the
attack sequence, looking at data tampering detection in
the DTN environment. However, in Section III, we will
consider an SSH obfuscation method which could be used

IEEE SPC 2020 - sixth Workshop on Security and Privacy in the Cloud (SPC)

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on January 18,2021 at 01:14:47 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: The cyber attack chain [15]. In the first five steps, the insider acts as a ”masquerader” to gain control of the system. The final actions can also
be executed by a traitor or an unintentional perpetrator within the organization, skipping the initial steps.

as part of a full insider attack chain. This method can be
used to conceal the SSH protocol, making the exchange of
protocol related packet data within PDF files. To a network
IDS monitoring the DTN, this activity would appear as
normal file transfers. We will explain its functioning at a
high level, and consider how we can detect the obfuscated
SSH sessions before any data tampering occurs.

As expected from the wide variety of attacks, there
are many categories of insider attack defense. Our focus
is on the ”Detection and Assessment” branch of defense
[15], in particular we consider anomaly-based detection
and unsupervised detection of insider attacks. In this paper,
one of our goals will be to try detecting insider threats
on the DTN using novel data sources and techniques.
Therefore, we will try to detect insider threats using host
performance data such as CPU usage and disk writes,
applying DBSCAN clustering [17] to create a detection
scheme well-suited for the DTN environment.

C. Related Work

Detecting insider attacks is a very broad research area,
considering a range of topics based on the types of at-
tackers and the form of the attacks. For further reading,
Homoliak, Ivan, et al. [16] provides a survey of the
large variety of taxonomies for insider attacks, covering
taxonomies both for attacks and defense techniques. Liu et
al. [15] provides another look at insider attack taxonomies.
A CERT guide [14] gives an in-depth description of insider
attacks and best practices for mitigating or eliminating
them. In our case, the focus is primarily on data sabotage
by an insider who at one point was granted legitimate
access to a system, and using machine learning to de-
tect that anomalous behavior. A number of different data
sources have been used for this form of insider detection
[16]. However, using performance data for insider threat
detection like our method appears less common.

Some recent papers have been written on securing
Science DMZs specifically. Nagendra et al. [3] introduces
a tool called SciMon, designed to protect Science DMZ

DTNs. Machine learning based anomaly detection appears
uncommon, and these papers do not consider system
performance metrics for detection. However, these metrics
have been applied to detecting insider attacks in other
contexts. Nikolai et al. [18] describes a method of detecting
insider data theft in IaaS cloud environments using a
mixture of system metrics such as CPU and memory usage
and network metrics such as the number of network bytes
sent or received. Oppermann et al. [19] describes how a
simulated insider attack in a cloud environment can be
detected by monitoring CPU usage along with network
traffic.

III. DATA OBFUSCATION ATTACK SCENARIO

In order to establish how an insider might gain the
ability to tamper with data on the DTN, we consider
one potential attack scenario using data obfuscation. This
can be considered as the ”Masquerader” step shown in
Figure 2. We make the assumption that the attacker is
an insider who at one point had been granted legitimate
access to the system, and the privileges necessary to modify
data on the DTN. In this case, it is possible that the
insider could setup a backdoor, allowing them to continue
remotely modifying the DTN files after officially losing
access. However, the attacker would like to avoid being
caught running an SSH session, which might be blocked
by the DTN [2]. Therefore, we consider a method of SSH
obfuscation which could be used to remotely execute the
attack. By hiding the raw SSH data in another file type,
we can have a hidden SSH session. Many types of files
could be used, including image files. In our case, the SSH
sessions are obfuscated by hiding SSH data within PDF
files.

This PDF obfuscation method involves creating a stealth
SSH connection by concealing the protocol data within
PDF files before transmitting on the network. If both the
sender and receiver are able to decode the obfuscation,
a covert connection can be setup. Assuming the network
IDS does not perform deep packet inspection to block

IEEE SPC 2020 - sixth Workshop on Security and Privacy in the Cloud (SPC)

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on January 18,2021 at 01:14:47 UTC from IEEE Xplore. Restrictions apply.

packets containing PDF data, the SSH session with the
target will appear as normal file transfers over GridFTP.
Since we know DTNs do not perform this type of check,
and GridFTP file transfers are the expected behavior, it is
likely this method would allow the attacker to establish a
stealth SSH session, giving them the capability to execute
their attack.

The basic functioning of the PDF obfuscation method
is shown in Figure 3. The obfuscation server is setup
on the DTN, while the insider is running the client on
their own machine. As the endpoints exchange packets,
the obfuscation program checks if the packet contains
obfuscated data. If it does, then it will deobfuscate the
data by inserting it into a PDF and reading from it,
sending that raw data to the original application - SSH in
this case. If the packet does not contain obfuscated data,
the program inserts the raw SSH protocol data into the
PDF to obfuscate it, before sending it through the tunnel.
By masquerading as legitimate traffic, the insider gains
the ability to perform their tampering on the DTN while
evading detection by network intrusion detection systems.
Between this and tampering with user logging, the insider
could evade detection through traditional means. Therefore,
alternative means of detection such as monitoring system
performance metrics could improve upon traditional insider
attack defense.

Regardless of the precise method used to gain or main-
tain access, the attacker has the ability to modify data,
putting any files stored on the DTN during the transfer
process at risk. The following section describes our method
of detecting file editing on the DTN, and how file editing
can be distinguished from the disk writes caused by
standard DTN transfers.

IV. DATA SABOTAGE DETECTION

Previous work has demonstrated how certain host per-
formance metrics can be linked to network activity, and
can be used to detect some insider attacks [19]. In ad-
dition, logs of host activity (system calls, user command
histories) and network data are common data sources
used to perform anomaly detection for different forms of
insider attacks [15]. However, detection schemes relying
on forensic logging can be hampered if the attacker is
able to modify these logs [20], and interpreting the log
data can be difficult or time-consuming [21]. Therefore,
we want to consider additional data sources. Normally, as
a dedicated component of the Science DMZ, a DTN is
expected to perform only a narrow range of tasks, mostly
related to moving data and performance monitoring. The
performance metrics can be expected to remain within a
consistent range, which allows us to more easily predict
typical system performance [2] [13]. Therefore, we take
advantage of the difference in system performance dur-
ing normal activity and file modification to help detect
unexpected file editing events which might occur during

an insider attack, as well as detecting obfuscated SSH
sessions.

A. Performance Metrics Monitored

In order to achieve this, we monitored host performance
metrics stored in procfs - system CPU usage, user CPU
usage, disk writes, interrupts, and context switches.
Figure 6 shows how the performance metrics change over
the course of a 10GB file transfer to the DTN, and figure 7
shows how the CPU changes during file editing. Standard
file editing increases CPU usage noticeably, along with the
obvious spike in the data written to the disk. However, a
large file transfer to the DTN causes a similar increase in
total CPU usage and disk writes which can mask the file
editing when the two events overlap, and a clever attacker
could arrange for editing to coincide with large transfers.
Fortunately, the effects on CPU usage are distinguishable
by looking at the user and system CPU usage. Network
file transfers increased the system CPU (often significantly
weighted on one core), while the user CPU usage remains
stable. Meanwhile, if the files are large enough, file editing
will noticeably increase the user CPU usage while the
system CPU usage remains stable, as shown in figure 8.
Based on this, CPU usage is the primary means used for
detecting file editing events.

B. Clustering Performance Metrics

To actively monitor these performance metrics, we
continually cluster the user CPU usage using DBSCAN
(density-based spatial clustering of applications with
noise), a widely used clustering algorithm [22]. Although
other clustering methods could also be applied, this particu-
lar clustering algorithm was selected for anomaly detection
because it is specifically designed for clustering noisy
data [17]. This is necessary when monitoring network and
system performance metrics, which will have noticeable
noise even in a relatively predictable environment. As a
form of unsupervised learning, DBSCAN allows us to
distinguish between normal and unusual performance data
without performing training or using predefined threshold
values.

Although an in-depth comparison of clustering methods
is beyond the scope of this paper, it is worth noting
that DBSCAN is simple and flexible compared with other
classic clustering methods such as k-means clustering. Any
cluster shape is possible, and there is no need to define
the number of clusters beforehand. The only necessary
parameters are the maximum distance between the points
within a cluster, ε, and the minimum points required to
form a cluster, MinPts. There are three types of points -
core points, border points, and noise. Core points are within
ε distance of two or more points, while border points are
within ε distance of just one other point. Noise points are
not within ε of any other points. If at least MinPts points
are connected as core or border points, then that becomes
a cluster.

IEEE SPC 2020 - sixth Workshop on Security and Privacy in the Cloud (SPC)

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on January 18,2021 at 01:14:47 UTC from IEEE Xplore. Restrictions apply.

SSH Terminal
Client

Obfuscation
Application

TCP/SSH
data

TCP/SSH
data

Server
Obfuscation
Application

SSH

TCP/SSH
data

TCP/SSH
data

TCP/PDF
data

(SSH)

TCP/PDF
data

(SSH)

Port
2222

Port
12345

Port
22

OS
Chosen

Port

Fig. 3: PDF obfuscation overview. SSH protocol data is hidden within PDF data sent over the network. This obfuscation method is one possible method
an insider could use to stealthily establish an SSH session and perform data sabotage on a DTN. Although we chose to use PDF files, the SSH data
could be placed into other data types as well, such as image files.

Packet

No

Yes
Tunnel?

Insert data into a PDF at
the destination, and then

read it (deobfuscate)

Send the PDF
through the tunnel

Insert raw SSH data
into a PDF

Send extracted raw data to
the original application

(SSH)

Fig. 4: PDF obfuscation tunneling method. The PDF obfuscation program
either places the raw SSH protocol data into a PDF before sending it
through the tunnel, or extracts the raw protocol data arriving through the
tunnel. The tunneled data (PDF data containing obfuscated SSH data) is
inserted into a PDF at the destination. The obfuscation application then
extracts the raw SSH data and sends it to SSH.

The relative simplicity and ability to handle noise well
also allows us to easily cluster data in real-time. Using
Python, we created two scripts which continually create
new small clusters every 10 seconds using the per-second
data we gather. The first script clusters user CPU usage to
detect unexpected file modification, while the second script
clusters disk writes to detect obfuscated SSH sessions.
With ε=4 and MinPts=4, the baseline user CPU usage
values will be placed into the same cluster. However,
during a file editing event, outliers or additional clusters of
higher values will appear. Once this is detected, we check
if the disk writes are greater than 1MB. If outliers or extra
clusters appear alongside disk writes, we report an anomaly
indicating file editing. Figure 5 shows the clustering results
when 10MB of file editing coincides with a 10GB file
arriving on the DTN.

C. Machine Learning for Anomaly Detection

Clustering and other forms of machine learning-based
anomaly detection are effective at detecting new behavior
which does not match the expected data patterns [23].
Therefore, machine learning is often applied towards pre-
dictive classification problems. However, anomaly detec-
tion based on machine learning must address a classifi-
cation problem, defining properly what is ”normal” and
what is ”abnormal”. Sommer et al. [24] discusses the
necessity of avoiding closed world assumptions when
applying anomaly detection based on machine learning.
A closed world assumption is defined by Witten et al.
[12] as the idea of specifying only positive examples and
adopting a standing assumption that the rest are negative is
called the closed world assumption. Sommer et al. argues
that in many cases where machine learning is used for
anomaly detection, there is too broad of a scope and that
anomalies are inappropriately considered attacks by default
(the semantic gap), leading to excessive false positives.
Anomaly detection is better applied towards detecting
known attacks versus novel ones. In our experiments, we
attempt to bridge the semantic gap by carrying out normal
baseline activity alongside the attack in order to establish
a ground truth. In addition, we focus on a narrow scope
- the limited functionality of DTNs results in more predi-
catable activity. Therefore, machine learning is suitable for
anomaly detection in this context. Furthermore, although
we did not have access to campus-level DTN data, we
generate real data using a test DTN, emulating scientific
workflows by receiving data from other test DTNs. Our
experimental setup is discussed in the following section.

V. EXPERIMENTAL SETUP

A. DTN Testbed

To simulate a real Science DMZ data transfer node
(DTN), we setup an experimental system acting as a DTN,
a PowerEdge T630 server which we refer to as D. D has
a RAID-10 set of 8 1TB 7.2K RPM SATA 6 Gbps hard
drives, 32GB 2133MT/s RDIMM memory capacity, and
contains two Intel Xeon E5-2637 v3 3.5GHz processors.
Just like our campus DTN, D is connected to a 100 Gbps
wide-area network, called CENIC, through a 10 Gbps

IEEE SPC 2020 - sixth Workshop on Security and Privacy in the Cloud (SPC)

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on January 18,2021 at 01:14:47 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: DBSCAN clustering of the user CPU usage during a 10MB file
editing event coinciding with a 10GB file transfer. Although the CPU
usage fluctuates, it will not normally increase beyond a certain value
during a transfer. If the user CPU usage spikes without being clustered,
this suggests unusual user activity. The red spike coinciding with disk
writes indicates file editing, while the green represents ordinary CPU
usage.

backbone link. D continually requests and receives data
from three different Energy Science Network (ESnet) test
DTNs through Globus GridFTP. To simulate the behavior
of an ordinary DMZ, D randomly requests different sizes
of files from these test DTNs. These file transfers continue
over the course of the day. Table I shows the sizes of
the files requested from the test DTNs. To simulate the
different distributions seen on a real NERSC DTN [25],
we have two potential file size distributions, with an equal
value for the total expected data received (750 GB per day).
The first case is a large number of small files, while the
second case is a small number of large files.

TABLE I: GridFTP transfer distributions

Distribution Potential File Sizes Interval

Normal 10M, 50M, 100M, 1G, 10G, 50G 1-30 minutes
Large 10G, 50G 60-75 minutes
Small 10M, 50M, 100M, 1G 5-40 seconds

B. Data Sabotage

Through the PDF obfuscation method discussed in Sec-
tion III, the attacker can establish an SSH session with the
target, while hiding the SSH session to secretly execute
the data tampering script. Once the attacker gains access,
either through masquerading or legitimate access, they gain
the ability to modify data. The specific nature of the data is
not significant. We choose to use tstat logs, which are
commonly stored during network monitoring [26]. Using
familiar data, we can make assumptions about how an
attacker might want to alter the data set. The attacker
might want to completely destroy the stored data, or they
might want to selectively alter the data by changing the
entries in one field. Selectively changing the data could

be useful, allowing the attacker to extract the legitimate
data sets while sabotaging the data left on the system.
Modifying particular data fields could also be employed
to manipulate research results, in the case of science data.
Therefore, we consider different cases of data tampering
in our experiments, by varying the degrees to which the
data is altered. A knowledgeable attacker, familiar with the
data, might only need to alter a few lines to get their desired
result. Alternatively, they might alter large portions of the
dataset. The difficulty of detecting these changes depends
on the amount of files changed, but also on distinguishing
between the attacker’s file modifications and the changes
caused by the file transfers. The nature of the DTN implies
that files will not normally be modified outside of file
transfers. However, the attacker could potentially send
traffic while the data sabotage script runs, or, if the attacker
is aware of when file transfers are occurring, they might
set their script to coincide with transfers. In addition,
some log files could be routinely written on the DTN for
monitoring [6].

C. Detection

We consider different sources of data in our experiments.
Host and network performance data is gathered from
procfs, as well commonly available tools such as collectl
[27]. In addition to logging these values over a 24 hour
period, we created two Python scripts to cluster the data
in real time - one script for detecting file modification,
and another script for detecting obfuscated SSH sessions.
Each scripts works by gathering 10 seconds worth of per-
second data, clustering it using DBSCAN clustering [7] to
look for anomalies, then repeating. We cluster disk writes
to detect obfuscated SSH sessions, and cluster user CPU
usage to detect file modification. All of the points should
cluster under normal conditions, meaning an anomaly is
detected when a second cluster appears. When monitoring
for file detection, we also considered noise outside the
baseline cluster as an anomaly, since user CPU usage
remains within a small range under normal conditions.

VI. RESULTS AND EVALUATION

We considered two insider attack cases - data sabotage
through file editing, and data exfiltration through obfus-
cation. By monitoring the performance metrics and taking
into account network activity, we can detect both of these
cases. We will discuss the various performance metrics we
measured, and how they were affected by file transfers, file
editing, and PDF obfuscation. In addition, we will explain
our detection results and some limitations of our approach.

A. Data Sabotage

The most obvious impact on the performance metrics
during file editing will be an increase in disk reads and
writes, and increased CPU usage. Figure 8a. demonstrates
the effects file editing had CPU had on user and system
CPU usage. Other metrics, such as interrupts and context

IEEE SPC 2020 - sixth Workshop on Security and Privacy in the Cloud (SPC)

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on January 18,2021 at 01:14:47 UTC from IEEE Xplore. Restrictions apply.

(a) Data written to disk (b) User and System CPU usage

Fig. 6: Host and network performance during a 10GB GridFTP transfer. Interrupts and context switches do not increase significantly.
CPU usage, primarily system CPU usage, increases noticeably.

switches, did not increase significantly while observing
file editing. Figure 7 shows how the user CPU usage,
representing the time spent on user level processes, in-
creases significantly as the amount of overwritten data
increases, though it stabilizes around 30MB. Meanwhile,
the system CPU usage (the time spent on kernel tasks) only
slightly increases, remaining relatively stable regardless of
increased disk writes. By observing increased disk writes
coinciding with increased user CPU usage, we can easily
identify a file editing event.

This is more complicated while file transfers are occur-
ring. Small file transfer events don’t impact the disk writes
or CPU usage significantly enough to affect this detection.
However, larger file transfers similarly cause large spikes
in both CPU usage and disk activity. Figure 6 demonstrates
the effect of a 10GB file transfer to D using GlobusFTP
on various performance metrics over the course of two
minutes. Since there are generally few programs running
on the DTN, the baseline CPU and disk activity on the
DTN remains low. When the transfer occurs around 20
seconds, we see a large spike in data being written to
the disk and CPU usage, as expected. Other metrics like
interrupts and context switches increase slightly during
a large file transfer, and more than during file editing,
but not significantly enough to be useful for detection.
Therefore, these transfers can produce similar activity and
it’s conceivable that an attacker might attempt concealing
file tampering by editing files while a large file transfer is
ongoing.

In order to detect data tampering while a large file
transfer event is occurring, we need to consider how the
host performance differs. The most obvious difference is
the insider must edit the files through user processes,
meaning user CPU usage will increase noticeably during
these file editing events. We apply DBSCAN to cluster
normal user CPU activity and detect outliers. Figure 5
shows how the clustering appears when the tstat files are
edited during a 10GB file transfer. When a small amount

of file data is modified, short spikes in the user CPU
usage will create outliers, while normal variations form the
largest, primary cluster. Sustained periods of file editing
will form a smaller clusters above the primary cluster.
The appearance of either outliers or an unexpected cluster,
combined with a spike in disk reads and writes, indicates
files are being overwritten. Clustering can reliably identify
on-going data modification, even if it coincides with a large
GlobusFTP transfer.

Although the detection is effective, it is unable to detect
small file modifications which do not significantly increase
the CPU usage. Looking at figure 7, we see that if the total
data overwritten is below 10MB, we cannot reliably detect
that event, because it falls within the normal performance
range. Therefore, it is possible an attacker could evade
detection by only editing small portions of data at a
time. Future work should consider what additional metrics
could be leveraged to detect this form of data tampering.
However, most of the science data arriving on the DTN is
likely to be in the form of large files, and modifying these
files will necessitate disk activity above the threshold for
detection.

B. Data Exfiltration

Data exfiltration can be performed through ordinary
GridFTP transfers, or by sending data through an ob-
fuscated channel. In the first case, it is likely that the
transfer could be detected by ordinary security measures,
such as Zeek network intrusion detection. However, if it is
being leaked through obfuscated protocols, an insider could
extract the data while evading detection. Therefore, we
must be able to detect the PDF obfuscated SSH sessions.

The PDF obfuscation method has a clear impact on
the system, because communication between the client
and server depends on frequent writes to the PDF files.
Figure 9a shows how the disk writes increase during the
obfuscated SSH session. Figure 9b shows how this increase
in disk writes appears when clustered. The consistently

IEEE SPC 2020 - sixth Workshop on Security and Privacy in the Cloud (SPC)

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on January 18,2021 at 01:14:47 UTC from IEEE Xplore. Restrictions apply.

higher disk writes per second leads to new clusters being
formed in addition to the primary cluster representing the
baseline disk writes. During periods with no file transfers to
the DTN, this is simple to detect. However, files transfers
could also cause sustained spikes in disk writing. If an
attacker can ensure their activity on the DTN coincides
with these transfers, detection could become more difficult.
We can achieve more reliable detection by considering
the ratio of disk writes to the amount of data written per
second. Since the PDF obfuscation program writes only
small amounts of data to the disk each time, the ratio will
be much larger than during most file transfers.

Fig. 7: Change in CPU usage during file editing events. We can see that
user CPU usage increases as more file data is overwritten, while system
CPU usage remains relatively stable.

C. Real-Time Detection

Since the user CPU usage and disk writes remain within
a small enough range under normal conditions, we do
not need a large sample size to identify file modification
or the obfuscated SSH channel. In our experiments, we
found that 10 data points was sufficient to detect these
anomalies through clustering. Therefore, DBSCAN can use
a low MinPts values, and the detection can be performed
quickly. After collecting 10 seconds worth of data, the
values are clustered and checked for anomalies. If noise
points or more than one cluster appears, we report an
anomaly. This method was able to reliably identify file
modification without false positives past 10MB, where the
increase in user CPU usage becomes large enough to form
outliers and new clusters (Figure 7). By clustering the
ratio of disk writes to data written to disk, we could also
reliably identify an on-going obfuscated SSH session. The
obfuscated SSH session performs more disk writes when
characters are being typed, which will lead to a new small
cluster being formed. If two or more total clusters appear,
we can identify the anomaly. Sending three characters at
a normal pace in the obfuscated SSH session is sufficient
to create a new cluster and trigger the alert. Therefore, the
operations the attacker can perform using the obfuscated
SSH session are severely limited, and exfiltrating large

amounts of data through the obfuscated channel is no
longer feasible.

(a) CPU activity during data editing

(b) CPU activity during data editing alongside file transfer

Fig. 8: CPU Usage over the course of editing 50MB worth of files. The
spike in user CPU usage is visible even if the editing occurs during a
large data transfer.

VII. CONCLUSIONS AND FUTURE WORK

This work suggests that system performance metrics
such as CPU usage and disk writes, along with network
performance metrics such as the amount of incoming
traffic, can be used together to help identify unwanted
data modification in a DTN environment. The limited
range of applications and predictable system performance
of the DTN environment allows clustering based anomaly
detection using DBSCAN to function effectively. Using
DBSCAN clustering to detect abnormal CPU activity,
along with checking for coinciding disk and network
activity, we can predict when unexpected file editing is
occurring and distinguish it from a large file transfer, even
if the insider has taken efforts to conceal it from other
means of detection. Furthermore, this detection can be
used in real-time by repeatedly clustering the performance
metrics gathered by common tools such as collectl.

IEEE SPC 2020 - sixth Workshop on Security and Privacy in the Cloud (SPC)

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on January 18,2021 at 01:14:47 UTC from IEEE Xplore. Restrictions apply.

(a) Disk writes over time (b) Disk write clusters

Fig. 9: Disk write activity can detect an obfuscated SSH session. The obfuscated SSH session begins at 80 seconds. Although this
obfuscation method can evade traditional detection methods, the frequent writes to PDF files can be used for detection. The three new
small clusters appearing after 80 seconds indicate obfuscated SSH activity.

In the future, this form of detection could be enhanced
by considering additional performance metrics, as well as
combining it with other methods of insider attack detection,
such as system call monitoring.

REFERENCES

[1] J. Crichigno, E. Bou-Harb, and N. Ghani, “A comprehensive tutorial
on Science DMZ,” IEEE Communications Surveys & Tutorials,
2018.

[2] E. Dart, L. Rotman, B. Tierney, M. Hester, and J. Zurawski, “The
science dmz: A network design pattern for data-intensive science,”
Scientific Programming, vol. 22, no. 2, pp. 173–185, 2014.

[3] V. Nagendra, V. Yegneswaran, and P. Porras, “Securing ultra-
high-bandwidth science dmz networks with coordinated situational
awareness,” in Proceedings of the 16th ACM Workshop on Hot
Topics in Networks, pp. 22–28, ACM, 2017.

[4] P. J. Hawrylak, G. Louthan, J. Hale, and M. Papa, “Practical cyber-
security solutions for the science dmz,” in Proceedings of the
Practice and Experience in Advanced Research Computing on Rise
of the Machines (learning), pp. 1–6, 2019.

[5] W. Hong, J. Moon, W. Seok, and J. Chung, “Enhancing data trans-
fer performance utilizing a dtn between cloud service providers,”
Symmetry, vol. 10, no. 4, p. 110, 2018.

[6] S. Peisert, E. Dart, W. Barnett, E. Balas, J. Cuff, R. L. Grossman,
A. Berman, A. Shankar, and B. Tierney, “The medical science
dmz: a network design pattern for data-intensive medical science,”
Journal of the American Medical Informatics Association, vol. 25,
no. 3, pp. 267–274, 2018.

[7] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al., “A density-based
algorithm for discovering clusters in large spatial databases with
noise.,” in Kdd, vol. 96, pp. 226–231, 1996.

[8] E. Lawrence Berkeley National Lab, “DTN tuning,” 2019.
[9] W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, C. Dumitrescu,

I. Raicu, and I. Foster, “The globus striped gridFTP framework
and server,” in Proceedings of the 2005 ACM/IEEE conference on
Supercomputing, p. 54, IEEE Computer Society, 2005.

[10] PerfSONAR, “PerfSONAR,” 2019.
[11] Y. Qin, A. Simonet, P. E. Davis, A. Nouri, Z. Wang, M. Parashar,

and I. Rodero, “Towards a smart, internet-scale cache service for
data intensive scientific applications,” in Proceedings of the 10th
Workshop on Scientific Cloud Computing, pp. 11–18, 2019.

[12] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining:
Practical machine learning tools and techniques. Morgan Kauf-
mann, 2016.

[13] S. Peisert, W. Barnett, E. Dart, J. Cuff, R. L. Grossman, E. Balas,
A. Berman, A. Shankar, and B. Tierney, “The medical Science
DMZ,” Journal of the American Medical Informatics Association,
vol. 23, no. 6, pp. 1199–1201, 2016.

[14] D. M. Cappelli, A. P. Moore, and R. F. Trzeciak, The CERT guide to
insider threats: how to prevent, detect, and respond to information
technology crimes (Theft, Sabotage, Fraud). Addison-Wesley, 2012.

[15] L. Liu, O. De Vel, Q.-L. Han, J. Zhang, and Y. Xiang, “Detecting
and preventing cyber insider threats: A survey,” IEEE Communica-
tions Surveys & Tutorials, vol. 20, no. 2, pp. 1397–1417, 2018.

[16] I. Homoliak, F. Toffalini, J. Guarnizo, Y. Elovici, and M. Ochoa,
“Insight into insiders and it: A survey of insider threat taxonomies,
analysis, modeling, and countermeasures,” ACM Computing Surveys
(CSUR), vol. 52, no. 2, pp. 1–40, 2019.

[17] M. Hahsler, M. Piekenbrock, and D. Doran, “dbscan: Fast density-
based clustering with r,” Journal of Statistical Software, vol. 25,
pp. 409–416.

[18] J. Nikolai and Y. Wang, “A system for detecting malicious insider
data theft in iaas cloud environments,” in 2016 IEEE Global
Communications Conference (GLOBECOM), pp. 1–6, IEEE, 2016.

[19] A. Oppermann, F. G. Toro, F. Thiel, and J.-P. Seifert, “Anomaly
detection approaches for secure cloud reference architectures in
legal metrology.,” in CLOSER, pp. 549–556, 2018.

[20] D. M. Cappelli, A. P. Moore, and E. D. Shaw, “A risk mitigation
model: Lessons learned from actual insider sabotage,” tech. rep.,
CARNEGIE-MELLON UNIV PITTSBURGH PA SOFTWARE
ENGINEERING INST, 2006.

[21] M. Bishop, D. Gollmann, J. Hunker, and C. W. Probst, “08302
abstracts collection–countering insider threats,” in Dagstuhl Semi-
nar Proceedings, Schloss Dagstuhl-Leibniz-Zentrum für Informatik,
2008.

[22] E. Schubert, J. Sander, M. Ester, H. P. Kriegel, and X. Xu, “Dbscan
revisited, revisited: why and how you should (still) use dbscan,”
ACM Transactions on Database Systems (TODS), vol. 42, no. 3,
p. 19, 2017.

[23] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A
survey,” ACM computing surveys (CSUR), vol. 41, no. 3, p. 15,
2009.

[24] R. Sommer and V. Paxson, “Outside the closed world: On using
machine learning for network intrusion detection,” in 2010 IEEE
symposium on security and privacy, pp. 305–316, IEEE, 2010.

[25] A. Giannakou, D. Gunter, and S. Peisert, “Flowzilla: A methodology
for detecting data transfer anomalies in research networks,” in
2018 IEEE/ACM Innovating the Network for Data-Intensive Science
(INDIS), pp. 1–9, IEEE, 2018.

[26] A. F. M. M. M. Meo, M. Munafo, and D. Rossi, “10-year experience
of internet traffic monitoring with tstat,” 2020.

[27] M. Seger, “Collectl,” 2014.

IEEE SPC 2020 - sixth Workshop on Security and Privacy in the Cloud (SPC)

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on January 18,2021 at 01:14:47 UTC from IEEE Xplore. Restrictions apply.

