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ABSTRACT
Machinelearningappliedtoarchitecturedesignpresents
apromisingopportunitywithbroadapplications. Recent
deepreinforcementlearning(DRL)techniques,inparticu-
lar,enableefficientexplorationinvastdesignspaceswhere
conventionaldesignstrategiesmaybeinadequate.Thispa-
perproposesanoveldeepreinforcementframework,tak-
ingrouterlessnetworks-on-chip(NoC)asanevaluationcase
study.Thenewframeworksuccessfullyresolvesproblems
withpriordesignapproaches,whichareeitherunreliabledue
torandomsearchesorinflexibleduetoseveredesignspace
restrictions.Theframeworklearns(near-)optimalloopplace-
mentforrouterlessNoCswithvariousdesignconstraints.A
deepneuralnetworkisdevelopedusingparallelthreadsthat
efficientlyexploretheimmenserouterlessNoCdesignspace
withaMonteCarlosearchtree.Experimentalresultsshow
that,comparedwithconventionalmesh,theproposeddeep
reinforcementlearning(DRL)routerlessdesignachievesa
3.25xincreaseinthroughput,1.6xreductioninpacketlatency,
and5xreductioninpower.Comparedwiththestate-of-the-art
routerlessNoC,DRLachievesa1.47xincreaseinthroughput,
1.18xreductioninpacketlatency,1.14xreductioninaverage
hopcount,and6.3%lowerpowerconsumption.
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1. INTRODUCTION
Improvementsincomputationalcapabilitiesareincreas-
inglyreliantuponadvancementsinmany-corechipdesigns.
Thesedesignsemphasizeparallelresourcescalingandconse-
quentlyintroducemanyconsiderationsbeyondthoseinsingle
coreprocessors.Asaresult,traditionaldesignstrategiesmay
notscaleefficientlywiththisincreasingparallelism.Early
machinelearningapproaches,suchassimpleregressionand
neuralnetworks,havebeenproposedasanalternativedesign
strategy.Morerecentmachinelearningdevelopmentslever-
agedeepreinforcementlearningtoprovideimproveddesign
spaceexploration.Thiscapabilityisparticularlypromisingin
broaddesignspaces,suchasnetwork-on-chip(NoC)designs.
NoCsprovideabasisforcommunicationinmany-core
chipsthatisvitalforsystemperformance[9].NoCdesign
involvesmanytrade-offsbetweenlatency,throughput,wiring
resources,andotheroverhead.Exhaustivedesignspaceexplo-
ration,however,isofteninfeasibleinNoCsandarchitecture
ingeneralduetoimmensedesignspaces.Thus,intelligent
explorationapproacheswouldgreatlyimproveNoCdesigns.
ApplicationsincluderecentlyproposedrouterlessNoCs
[2,29].Conventionalrouter-basedNoCsincursignificant
∗Equalcontribution.

powerandareaoverheadduetocomplexrouterstructures.
RouterlessNoCseliminatethesecostlyroutersbyeffectively
usingwiringresourceswhileachievingcomparablescaling
torouter-basedNoCs.Priorresearchhasdemonstratedupto
9.5xreductioninpowerand7xreductioninareacompared
withmesh[2],establishingrouterlessNoCsasapromising
alternativeforNoCdesigns.Likemanynovelconceptsand
approachesinarchitecture,substantialongoingresearchis
neededtoexplorethefullpotentialoftherouterlessNoCde-
signparadigmandhelpadvancethefield.Designchallenges
forrouterlessNoCsincludeefficientlyexploringthehuge
designspace(easilyexceeding1012)whileensuringconnec-
tivityandwiringresourceconstraints.Thismakesrouterless
NoCsanidealcasestudyforintelligentdesignexploration.
PriorrouterlessNoCdesignhasfollowedtwoapproaches.

Thefirst,isolatedmulti-ring(IMR)[29],usesanevolutionary
approach(geneticalgorithm)forloopdesignbasedonran-
dommutation/exploration.Thesecondapproach(REC)[2]
recursivelyaddsloopsstrictlybasedontheNoCsize,severely
restrictingbroadapplicability.Briefly,neitherapproachguar-
anteesefficientgenerationoffully-connectedrouterlessNoC
designsundervariousconstraints.
Inthispaper,weproposeanoveldeepreinforcementlearn-

ingframeworkfordesignspaceexploration,anddemonstrate
aspecificimplementationusingrouterlessNoCdesignasour
casestudy.Efficientdesignspaceexplorationisrealizedus-
ingaMonte-Carlotreesearch(MCTS)thatgeneratestraining
datatoadeepneuralnetworkwhich,inturn,guidesthesearch
inMCTS.Together,theframeworkself-learnsloopplace-
mentstrategiesobeyingdesignconstraints.Evaluationshows
thattheproposeddeepreinforcementlearningdesign(DRL)
achievesa3.25xincreaseinthroughput,1.6xreductionin
packetlatency,and5xreductioninpowercomparedwitha
conventionalmesh.ComparedwithREC,thestate-of-the-art
routerlessNoC,DRLachievesa1.47xincreaseinthroughput,
1.18xreductioninpacketlatency,1.14xreductioninaverage
hopcount,and6.3%lowerpowerconsumption.Whenscal-
ingfroma4x4toa10x10NoCundersyntheticworkloads,
thethroughputdropisalsoreduceddramaticallyfrom31.6%
inRECtoonly4.7%inDRL.
Keycontributionsofthispaperinclude:
•Fundamentalissuesareidentifiedinapplyingdeepre-
inforcementlearningtorouterlessNoCdesigns;
•Aninnovativedeepreinforcementlearningframework
isproposedandimplementationispresentedforrouter-
lessNoCdesignwithvariousdesignconstraints;
•Cycle-accuratearchitecture-levelsimulationsandcircuit-
levelimplementationareconductedtoevaluatethede-
signindetail;
•Broadapplicabilityoftheproposedframeworkwith
severalpossibleexamplesisdiscussed.
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Therestofthepaperisorganizedasfollows:Section2
providesbackgroundonNoCarchitecture,reinforcement
learning,anddesignspacecomplexity;Section3describes
issuesinpriorrouterlessNoCdesignapproachesandthe
needforabettermethod;Section4detailstheproposed
deepreinforcementlearningframework;Section5illustrates
ourevaluationmethodology;Section6providessimulation
results;Section7reviewsrelatedwork;Section8concludes.

2. BACKGROUND

2.1 NoCArchitecture
Single-ringNoCs:Nodesinasingle-ringNoCcommu-
nicateusingoneringconnectingallnodes.1 Packetsare
injectedatasourcenodeandforwardedalongtheringto
adestinationnode.Anexamplesingle-ringNoCisseenin
Figure1(a).Single-ringdesignsaresimple,buthavelow
bandwidth,severelyrestrictingtheirapplicabilityinlarge-
scaledesigns.Specifically,networksaturationisrapidly
reachedasmorenodesareaddedduetofrequentend-to-end
controlpackets[1].Consequently,mostsingle-ringdesigns
onlyscaletoamodestnumberofprocessors[22].
Router-basedNoCs:NoCroutersgenerallyconsistof
inputbuffers,routingandarbitrationlogic,andacrossbar
connectinginputbufferstooutputlinks.Theseroutersenable
adecentralizedcommunicationsysteminwhichrouterscheck
resourceavailabilitybeforepacketsaresentbetweennodes
[2]. Mesh(ormesh-basedarchitectures)havebecomethe
defactochoiceduetotheirscalabilityandrelativelyhigh
bandwidth[29].Thebasicdesign,showninFigure1(b),
featuresagridofnodeswitharouterateverynode.These
routerscanincur11%chipareaoverhead[13]and,depending
uponfrequencyandactivity,upto28%chippower[7,16]
overhead,althoughsomerecentwork[5,33]hasshownmuch
smalleroverheadusingnarrowlinksandshallow/fewbuffers
withhighlatencycost;thisindirectlyshowsthatroutersare
themaincostinexistingNoCs.Hierarchical-ring,illustrated
inFigure1(c),insteadusesseverallocalringsconnectedby
thedottedglobalring.Routersareonlyneededfornodes
intersectedbytheglobalringastheyareresponsiblefor
packettransferbetweenringgroups[3].Extensiveresearch
hasexploredrouter-basedNoCoptimization[7,17,44],but
thesesolutionsonlyslightlyreducepowerandareaoverhead
[29].
RouterlessNoCs:Significantoverheadassociatedwith

router-basedtopologieshasmotivatedrouterlessNoCdesigns.
Earlyproposals[44]usedbus-basednetworksinahierarchi-
calapproachbydividingthechipintomultiplesegments,
eachwithalocalbroadcastbus.Segmentsareconnected
byacentralbuswithlow-costswitchingelements.These
bus-basednetworksinevitablyexperiencecontentiononlo-
calbusesandatconnectionswiththecentralbus,resulting
inpoorperformanceunderheavytraffic.Recently,isolated
multi-ring(IMR)NoCshavebeenproposedthatexploitaddi-
tionalinterconnectwiringresourcesinmodernsemiconductor
processes[29].Nodesareconnectedviaatleastoneringand
packetsareforwardedfromsourcetodestinationwithout
switchingrings.IMRimprovesovermesh-baseddesignsin
termsofpower,area,andlatency,butrequiressignificant
bufferresources:eachnodehasadedicatedinputbufferfor
eachringpassingthroughitsinterface,thusasinglenodemay
requiremanypacket-sizedbuffers[2,29].Recentrouterless
NoCdesign(REC)[2]hasmostlyeliminatedthesecostly
buffersbyadoptingsharedpacket-sizebuffersamongloops.
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4x4routerlessNoCwithrings.

RECusesjustasingleflit-sizedbufferforeachloop,along
withseveralsharedextensionbufferstoprovideeffectively
thesamefunctionalityasdedicatedbuffers[2].
BothIMRandRECdesignsdifferfrompriorapproaches

inthatnoroutingisperformedduringtraversal,sopacketsin
oneloopcannotbeforwardedtoanotherloop[2,29].Both
designsmustthereforesatisfytworequirements:everypairof
nodesmustbeconnectedbyatleastoneloopandallrouting
mustbedoneatthesourcenode.Figure2delineatesthese
requirementsandhighlightsdifferencesbetweenrouter-based
androuterlessNoCdesigns.Figure2(a)depictsanincom-
plete4x4ring-basedNoCwiththreeloops.Theseloopsare
unidirectionalsoarrowsindicatethedirectionofpackettrans-
ferforeachring.NodeFisisolatedandcannotcommunicate
withothernodessincenoringpassesthroughitsinterface.
Figure2(b)depictstheNoCwithanadditionalloopthrough
nodeF.Ifroutersareused,suchasatnodeA,thisringwould
completetheNoC,asallnodescancommunicatewithring
switching.PacketsfromnodeK,forexample,canbetrans-
ferredtonodePusingpath3,whichcombinespaths1and
path2.Inarouterlessdesign,however,therearestillmany
nodesthatcannotcommunicateaspacketsmusttravelalong
asingleringfromsourcetodestination.Thatis,packetsfrom
nodeKcannotcommunicatewithnodePbecausepath1and
path2areisolatedfromeachother.Figure2(c)depictsan
example4x4RECrouterlessNoC[2].Loopplacementfor
largernetworksisincreasinglychallenging.
RouterlessNoCscanbebuiltwithsimplehardwareinter-

facesbyeliminatingcrossbarsandVCallocationlogic.Asa
result,currentstate-of-the-artrouterlessNoCshaveachieved
9.5xpowerreduction,7.2xareareduction,and2.5xreduc-
tioninzero-loadpacketlatencycomparedwithconventional
meshtopologies[2].Packetlatency,inparticular,isgreatly
improvedbysingle-cycledelaysperhop,comparedwithstan-
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dardmesh,whichusuallyrequirestwocyclesfortherouter
alone.Hopcountinrouterlessdesignscanasymptotically
approachtheoptimalmeshhopcountusingadditionalloops
atthecostofpowerandarea. Wiringresources,however,
arefinite,meaningthatonemustrestrictthetotalnumber
ofoverlappingringsateachnode(referredtoasnodeover-
lapping)tomaintainphysicalrealizability.InFigure2(b),
nodeoverlappingatnodeA,forexample,isthree,whereas
nodeoverlappingatnodeFisone.Wiringresourcerestric-
tionisoneofthemainreasonsthatmakerouterlessNoC
designsubstantiallymorechallenging.AsdiscussedinSec-
tion3,existingmethodseitherdonotsatisfyordonotenforce
thesepotentialconstraints. Wethereforeexplorepotential
applicationsandadvantagesofmachinelearning.

2.2 ReinforcementLearning
ReinforcementLearningBackground:Reinforcement

learningisabranchofmachinelearningthatexploresactions
inanenvironmenttomaximizecumulativereturns/rewards.
Fundamentaltothisexplorationistheenvironment,E,in
whichasoftwareagenttakesactions.Inourpaper,thisen-
vironmentisrepresentedbyarouterlessNoCdesign.The
agentattemptstolearnanoptimalpolicyπforasequenceof
actions{at}fromeachstate{st},acquiringreturns{rt}at
differenttimestinE[42].Figure3depictstheexploration
process,inwhichtheagentlearnstotakeanactionat(adding
aloop)givenastatest(informationaboutanincomplete
routerlessNoC)withthegoalofmaximizingreturns(mini-
mizingaveragehopcount).Ateachstate,thereisatransition
probability,P(st+1;st,at),whichrepresentstheprobability
oftransitioningfromsttost+1givenat.Thelearnedvalue
functionVπ(s)underpolicyπisrepresentedby

Vπ(s)=E[∑
t≥0

γt∗rt;s0=s,π] (1)

R=∑
t≥0

γt∗rt (2)

whereγisadiscountfactor(≤1)andRisthediscounted
cumulativereturn.
Thegoalofreinforcementlearningistomaximizecumu-
lativereturnsRand,incaseofrouterlessNoCdesign,to
minimizeaveragehopcount.Tothisend,theagentattempts
tolearntheoptimalpolicyπ∗thatsatisfies

π∗=argmax
π
E[∑
t≥0

γt∗rt;s0=s,π]. (3)

Equation1underπ∗thussatisfiestheBellmanequation

V∗(s)=E[r0+γV
∗(s1);s0=s,π

∗] (4)

=p(s0)∑
a0

π∗(a0;s0)∑
s1

P(s1;s0,a0)[r(s0,a0)+γV
∗(s1)]

(5)

wherep(s0)istheprobabilityofinitialstates0.Thegeneral
formofπ(a0;s0)isinterpretedastheprobabilityoftaking
actiona0givenstates0withpolicyπ.Equation5suggests
thatanagent,afterlearningtheoptimalpolicyfunctionπ∗,
canminimizetheaveragehopcountofaNoC.
DeepReinforcementLearning:Breakthroughsindeep
learninghavespurredresearcherstorethinkpotentialappli-
cationsfordeepneuralnetworks(DNNs)indiversedomains.
Oneresultisdeepreinforcementlearning,whichsynthesizes
DNNsandreinforcementlearningconceptstoaddresscom-
plexproblems[35,40,41].Thissynthesismitigatesdata

Environment

Agent

State
(NoC)

Action
(add loop)

Returns

Input

reliancewithoutintroducingconvergenceproblemsviaeffi-

Figure3:Reinforcementlearningframework.

cientdata-drivenexplorationbasedonDNNoutput.Recently,
theseconceptshavebeenappliedtoGo,agrid-basedstrategy
gameinvolvingstoneplacement.Inthismodel,atrained
policyDNNlearnsoptimalactionsbysearchingaMonte
CarlotreethatrecordsactionssuggestedbytheDNNduring
training[40,41].Deepreinforcementlearningcanoutper-
formtypicalreinforcementlearningbygeneratingasequence
ofactionswithbettercumulativereturns[35,40,41].

2.3 DesignSpaceComplexity
DesignspacecomplexityinrouterlessNoCsposesasig-
nificantchallengerequiringefficientexploration.Asmall
4x4NoCusing10loopschosenfromall36possiblerectan-

gularloopshas36
10 ≈10

8totaldesigns.Thisdesignspace
increasesrapidlywithNoCsize;an8x8NoCwith50loops

chosenfrom784possiblerectangularloopshas78450 ≈10
79

designs.Itcanbeshownthatthecomplexityofrouterless
NoCdesignsexceedsthegameofGo.SimilartoAlphaGo,
deepreinforcementlearningisneededhereandcanaddress
thiscomplexitybyapproximatingactionsandtheirbenefits,
allowingsearchtofocusonhigh-performingconfigurations.

3. MOTIVATION

3.1 DesignSpaceExploration
Deepreinforcementlearningprovidesapowerfulfounda-
tionfordesignspaceexplorationusingcontinuouslyrefined
domainknowledge.Thiscapabilityisadvantageoussince
priormethodsforrouterlessNoCdesignshavelimiteddesign
spaceexplorationcapabilities.Specifically,theevolutionary
approach[29]evaluatesgenerationsofindividualsandoff-
spring.Selectionusesanobjectivefunctionwhileevolution
reliesonrandommutation,leadingtoanunreliablesearch
sincepastexperiencesareignored.Consequently,exploration
canbemisledandgenerateconfigurationswithhighaverage
hopcountandlongloops(48hops)inan8x8NoC[2].The
recursivelayeringapproach(REC)overcomesthesereliabil-
ityproblemsbutstrictlylimitsdesignflexibility.Latency
improvesasthegeneratedloopspassthroughfewernodes
onaverage[2],buthopcountstillsuffersincomparisonto
router-basedNoCsasitisrestrictedbythetotalnumberof
loops.Foran8x8NoC,theaveragehopcountis5.33inmesh
and8.32inthestate-of-the-artrecursivelayeringdesign,a
1.5xincrease[2].
Bothapproachesarealsolimitedbytheirinabilitytoen-
forcedesignconstraints,suchasnodeoverlapping.InIMR,
ringselectionisbasedsolelyoninter-core-distanceandring
lengths[29]sonodeoverlappingmayvarysignificantlybased
onrandomringmutation.Constraintscouldbebuiltintothe
fitnessfunction,buttheseconstraintsarelikelytobeviolated
toachievebetterperformance.Alternatively,inREC,loop
configurationforeachnetworksizeisstrictlydefined.A4x4
NoCmustuseexactlytheloopstructureshowninFigure2(c)
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sonodeoverlappingcannotbechangedwithoutmodifying
thealgorithmitself.Theseconstraintsmustbeconsidered
duringloopplacementsinceanoptimaldesignwillapproach
theseconstraintstoallowmanypathsforpackettransfer.

3.2 ReinforcementLearningChallenges
Severalchallengesapplytodeepreinforcementlearningin

anydomain.Tobemoreconcrete,wediscusstheseconsider-
ationsinthecontextofrouterlessNoCdesigns.
SpecificationofStatesandAction:Statespecification
mustincludeallinformationfortheagenttodetermineop-
timalloopplacementandshouldbecompatiblewithDNN
input/outputstructure.Anagentthatattemptstominimize
averagehopcount,forexample,needsinformationabout
thecurrenthopcount.Additionally,informationqualitycan
impactlearningefficiencysinceinadequateinformationmay
requireadditionalinference.Bothstaterepresentationand
actionspecificationshouldbeaconstantsizethroughoutthe
designprocessbecausetheDNNstructureisinvariable.
QuantificationofReturns:Returnvaluesheavilyinflu-

enceNoCperformancesotheyneedtoencouragebeneficial
actionsanddiscourageundesiredactions.Forexample,re-
turnsfavoringlargeloopswilllikelygenerateaNoCwith
largeloops.RouterlessNoCs,however,benefitfromdiverse
loopsizes;largeloopshelpensurehighconnectivitywhile
smallerloopsmaylowerhopcounts.Itisdifficulttoachieve
thisbalancesincetheNoCwillremainincomplete(notfully
connected)aftermostactions.Furthermore,anagentmay
violatedesignconstraintsifthereturnvaluesdonotappropri-
atelydetertheseactions.Returnsshouldbeconservativeto
discourageuselessorillegalloopadditions.
FunctionsforLearning:Optimalloopconfigurationstrate-
giesareapproximatedbylearnedfunctions,butthesefunc-
tionsarenotoriouslydifficulttolearnduetohighdatare-
quirements.ThisphenomenonisobservedinAlphaGo[40]
wherethepolicyfunctionsuccessfullychoosesfrom192pos-
siblemovesateachofseveralhundredsteps,butrequires
morethan30milliondatasamples.Aneffectiveapproach
mustconsiderthisdifficulty,whichcanbepotentiallyad-
dressedwithoptimizeddataefficiencyandparallelization
acrossthreads,asdiscussedlaterinourapproach.
GuidedDesignSpaceSearch:AnidealrouterlessNoC

wouldmaximizeperformancewhileminimizingloopcount
basedonconstraints.Similarhopcountimprovementcan
beachievedusingeitherseveralloopsorasingleloop.Intu-
itively,thesingleloopispreferredtoreduceNoCresources,
especiallyunderstrictoverlappingconstraints.Thisimplies
benefitsfromignoring/trimmingexplorationbranchesthat
addloopswithsuboptimalperformanceimprovement.

4. PROPOSEDSCHEME

4.1 Overview
Theproposeddeepreinforcementlearningframeworkis

depictedinFigure4.Frameworkexecutionbeginsbyinitializ-
ingtheMonteCarloTreeSearch(MCTS)withanemptytree
andaneuralnetworkwithoutaprioritraining.Thewhole
processconsistsofmanyexplorationcycles.Eachcyclebe-
ginswithablankdesign(e.g.,acompletelydisconnected
NoC).Actionsarecontinuouslytakentomodifythisdesign.
TheDNN(dashed"DNN"box)selectsagoodinitialaction,
whichdirectsthesearchtoaparticularregioninthedesign
space;severalactionsaretakenbyfollowingMCTS(dashed
"MCTS"box)inthatregion.TheMCTSstartsfromthecur-
rentdesign(aMCTSnode),andtreetraversalselectsactions

DNN
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One Exploration 
Action

Sequential
Action(s)

Search Tree 
Updating

Evaluation 
Metrics

More Action?

Design 
Simulations

Blank 
Design

DNN MCTS

Stop?
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Yes
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Yes

Decision-Making

Learning

A Single Cycle

usingeithergreedyexplorationoran"optimal"actionuntila

Figure4:Deepreinforcementlearningframework.

leaf(oneofmanyexploreddesigns)isreached.Additional
actionscanbetaken,ifnecessary,tocompletethedesign.Fi-
nally,anoverallrewardiscalculated("EvaluationMetrics")
andcombinedwithinformationonstate,action,andvalue
estimatestotraintheneuralnetworkandupdatethesearch
tree(thedotted"Learning"lines).Theexplorationcyclere-
peatstooptimizethedesign.Oncethesearchcompletes,full
systemsimulationsareusedtoverifyandevaluatethedesign.
Intheframework,theDNNgeneratescoarsedesignswhile
MCTSefficientlyrefinesthesedesignsbasedonpriorknowl-
edgetocontinuouslygeneratemoreoptimalconfigurations.
Unliketraditionalsupervisedlearning,theframeworkdoes
notrequireatrainingdataset;instead,theDNNandMCTS
graduallytrainthemselvesfrompastexplorationcycles.
Frameworkexecutioninthespecificcaseofrouterless

NoCsisasfollows:eachcyclebeginswithacompletelydis-
connectedrouterlessNoC;theDNNsuggestsaninitialloop
addition;followingthisinitialaction,oneormoreloopsare
added("SequentialAction")bytheMCTS;rewardsarepro-
videdforeachaddedloop;theDNNandMCTScontinuously
addloopsuntilnomoreloopscanbeaddedwithoutviolating
constraints;thecompletedrouterlessNoCconfigurationis
evaluatedbycomparingaveragehopcounttothatofmesh
togenerateacumulativereward;overallrewards,alongwith
informationonstate,action,andvalueestimates,areusedto
traintheneuralnetworkandupdatethesearchtree;finally,
theseoptimizedrouterlessNoCconfigurationsaretested.
Theactions,rewards,andstaterepresentationsinthepro-
posedframeworkcanbegeneralizedfordesignspaceex-
plorationinrouter-basedNoCsandinotherNoC-related
research.Severalgeneralizedframeworkexamplesaredis-
cussedinSection6.8.Theremainderofthissectionaddresses
theapplicationoftheframeworktorouterlessNoCdesign
asawaytopresentlow-leveldesignandimplementationde-
tails.OtherrouterlessNoCimplementationdetailsincluding
deadlock,livelock,andstarvationareaddressedinprevious
work[2,29]soareomittedhere.

4.2 RouterlessNoCsRepresentation
RepresentationofRouterlessNoCs(States):Staterep-
resentationinourframeworkusesahopcountmatrixtoen-
codecurrentNoCstateasshowninFigure5.A2x2routerless
NoCwithasingleclockwiseloopisconsideredforsimplicity.
Theoverallstaterepresentationisa4x4matrixcomposedof
four2x2submatrices,eachrepresentinghopcountfromaspe-
cificnodetoeverynodeinthenetwork.Forexample,inthe
upperleftsubmatrix,thezerointheupperleftsquarecorre-
spondstodistancefromthenodetoitself.Movingclockwise
withloopdirection,thenextnodeisonehopaway,thentwo,
andthreehopsfornodesfurtheralongtheloop.Allother
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submatricesaregeneratedusingthesameprocedure.This
hopcountmatrixencodescurrentloopplacementinformation
usingafixedsizerepresentationtoaccommodatefixedDNN
layersizes.Ingeneral,theinputstateforanN×NNoCis
anN2×N2hopcountmatrix.Connectivityisalsoimplicitly
representedinthishopcountmatrixbyusingadefaultvalue
of5∗Nforunconnectednodes.
RepresentationofLoopAdditions(Actions):Actions
aredefinedasaddingalooptoanN×NNoC.Werestrict
loopstorectanglestominimizethelongestpath. Withthis
restriction,thelongestpathwillbebetweendiagonalnodes
atthecornersoftheNoC,asinREC[2].Actionsareen-
codedas(x1,y1,x2,y2,dir)wherex1,y1,x2andy2represent
coordinatesfordiagonalnodes(x1,y1)and(x2,y2)anddir
indicatespacketflowdirectionwithinaloop.Here,dir=1
representsclockwisecirculationforpacketsanddir=0rep-
resentscounterclockwisecirculation.Forexample,theloop
inFigure5representstheaction(0,0,1,1,1). Weenforce
rectangularloopsbycheckingthatx1=x2andy1=y2.

4.3 ReturnsAfterLoopAddition
Therewardfunctionencouragesexplorationbyrewarding

zeroforallvalidactions,whilepenalizingrepetitive,invalid,
orillegalactionsusinganegativereward.Arepetitiveaction
referstoaddingaduplicateloop,receivinga−1penalty.An
invalidactionreferstoaddinganon-rectangularloop,receiv-
inga−1penalty.Finally,illegalactionsinvolveadditions
thatviolatethenodeoverlappingconstraint,resultingina
severe−5∗Npenalty.Theagentreceivesafinalreturnto
characterizeoverallperformancebysubtractingaveragehop
countinthegeneratedNoCfromaveragemeshhopcount.
Minimalaveragehopcountisthereforefoundbyminimizing
themagnitudeofcumulativereturns.

4.4 DeepNeuralNetwork
ResidualNeuralNetworks:Sufficientnetworkdepthis
essentialand,infact,leadingresultshaveusedatleastten
DNNlayers[14,40,41].Highnetworkdepth,however,can
causeoverfittingformanystandardDNNtopologies.Resid-
ualnetworksofferasolutionbyintroducingadditionalshort-
cutconnectionsbetweenlayersthatallowrobustlearning
evenwithnetworkdepthsof100ormorelayers.Abuilding
blockforresidualnetworksisshowninFigure6(a).Here,
theinputisXandtheoutput,aftertwoweightlayers,is
F(X).NoticethatbothF(X)andX(viatheshortcutcon-
nection)areusedasinputtotheactivationfunction.This
shortcutconnectionprovidesareferenceforlearningoptimal
weightsandmitigatesthevanishinggradientproblemduring
backpropagation[14].Figure6(b)depictsaresidualbox
(Res)consistingoftwoconvolutional(conv)layers.Here,the
numbers3x3and16indicatea3x3x16convolutionkernel.
DNNarchitecture: TheproposedDNNusesthetwo-

headedarchitectureshowninFigure6(c),whichlearnsboth
thepolicyfunctionandthevaluefunction.Thisstructure
hasbeenproventoreducetheamountofdatarequiredto
learntheoptimalpolicyfunction[41].Weuseconvolutional
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Figure6:Deepresidualnetworks.(a)Agenericbuild-
ingblockforresidualnetworks.(b)Abuildingblockfor
convolutionalresidualnetworks.(c)Proposednetwork.

tialanalysisinimagesegmentation,whichperformswell
onconvolutionalneuralnetworks.Batchnormalizationis
usedafterconvolutionallayerstonormalizethevaluedis-
tributionandmaxpooling(denoted"pool")isusedafter
specificlayerstoselectthemostsignificantfeatures.Fi-
nally,bothpolicyandvalueestimatesareproducedatthe
outputasthetwoseparateheads.Thepolicy,discussedin
section4.2,hastwoparts:thefourdimensions,x1,y1,x2,y2,
whicharegeneratedbyasoftmaxfunctionfollowingaReLU
anddir,whichisgeneratedseparatelyusingatanhfunc-
tion.Tanhoutputbetween-1and1isconvertedtoadi-
rectionusingdir>0asclockwiseanddir≤0ascounter-
clockwise.ReferringtoFigure6(c),thesoftmaxinputaf-
terReLUis{aij}wherei=1,2,3,4andj=1,...,N.Di-
mensionsx1andy1aremaxj(exp(a1j)/∑jexp(a1j))and
maxj(exp(a2j)/∑jexp(a2j)).Thesameideaappliestox2
andy2.Thevalueheadusesasingleconvolutionallayer
followedbyafullyconnectedlayer,withoutanactivation
function,topredictcumulativereturns.
GradientsforDNNTraining:Inthissubsectionwede-

riveparametergradientsfortheproposedDNNarchitecture.2

WedefineτasthesearchprocessforarouterlessNoCin
whichanagentreceivesasequenceofreturns{rt}aftertak-
ingactions{at}fromeachstate{st}.Thisprocessτcanbe
describedasequenceofstates,actions,andreturns:

τ=(s0,a0,r0,s1,a1,r1,s2,...). (6)

AgivensequenceofloopsisaddedtotherouterlessNoC
basedonτ∼p(τ;θ).Wecanthenwritetheexpectedcumu-
lativereturnsforonesequenceas

Eτ∼p(τ;θ)[r(τ)]=
τ
r(τ)p(τ;θ)dτ (7)

p(τ;θ)=p(s0)∏
t≥0

π(at;st,θ)P(st+1;st,at), (8)

wherer(τ)isareturnandθisDNNweights/parameterswe
wanttooptimize.Followingthedefinitionofπinsection

2Althoughnotessentialforunderstandingthework,thissubsection
providestheoreticalsupportandincreasesreproducibility.
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2.2,π(a0;s0,θ)istheprobabilityoftakingactiona0given
states0andparameterθ.Wethendifferentiatetheexpected
cumulativereturnsforparametergradients

∇Eτ∼p(τ;θ)[r(τ)]=∇θ
τ
r(τ)p(τ;θ)dτ (9)

=
τ
(r(τ)∇θlogp(τ;θ))p(τ;θ)dτ (10)

=Eτθ∼p(τ;θ)[r(τ)∇θlogp(τ;θ)]. (11)

NoticethattransitionprobabilityP(st+1,rt;st,at)isindepen-
dentofθsowecanrewriteEquation11as

Eτθ∼p(τ;θ)[r(τ)∇θlogp(τ;θ)] (12)

=Eτθ∼p(τ;θ)[r(τ)∇θΣlogπ(at;st,θ)] (13)

≈∑
t≥0

r(τ)∇θlogπ(at;st,θ). (14)

Thegradientinequation14isproportionaltorawreturns
(aconstantvaluebasedonthepastsearchtrajectory). We
thereforesubstituter(τ)withAtas

∇θEτ∼p(τ;θ)[r(τ)]≈∑
t≥0

At∇θlogπ(at;st,θ) (15)

At=∑
t>t

γt−trt−V(st;θ), (16)

wherethefirstterminEquation16representsthereturns
fromthefuturetrajectoryattimet.WealsosubtractV(st;θ)
toreducethevariancewhenreplacingaconstantwithapre-
diction.Thisapproachisknownasadvantageactor-critic
learningwheretheactorandthecriticrepresentthepolicy
functionandvaluefunction,respectively[42].Inatwo-
headedDNN,θconsistsofθπandθvforthepolicyfunction
andthevaluefunction,respectively.Gradientsforthesetwo
setsofparametersaredirectlyobtainedbyrepresentingEqua-
tion15astimeintervals,ratherthanasasummationover
time.Thesegradientsarethengivenas

dθπ=(∑
t>t

γt−trt−V(st;θv))∇θπlogπ(at;st,θπ) (17)

dθv=∇θv(∑
t>t

γt−trt−V(st;θv))
2. (18)

Thewholetrainingprocedurerepeatsthefollowingequations

θπ=θπ+γ∗dθπ (19)

θv=θv+c∗γ∗θv, (20)

whereγisalearningrateandcisaconstant.

4.5 RouterlessNoCDesignExploration
Anefficientapproachfordesignspaceexplorationises-

sentialforrouterlessNoCdesignduetotheimmensedesign
space.Deepreinforcementlearningapproachesaretherefore
well-suitedforthischallengeastheycanleveragerecorded
stateswhilelearning.Someworkusesexperiencereplay,
whichguidesactionsusingrandomsamples.Theserandom
samplesareusefulthroughouttheentirelearningprocess,so
improvecollectedstateefficiency[35],butbreakthecorre-
lationbetweenstates.AnotherapproachistheMonteCarlo
treesearch(MCTS),whichismorecloselycorrelatedtohu-
manlearningbehaviorbasedonexperience. MCTSstores
previouslyseenrouterlessNoCconfigurationsasnodesina

s
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s

s

ss s

ss s
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treestructure.Eachnodeisthenlabeledwiththeexpected
returnsforexplorationstartingfromthatnode.Asaresult,

Figure7: MonteCarlotreesearch.(a)Search.(b)Ex-
pansion+evaluationusingDNN.(c)Backup.

MCTScanprovideadditionalinsightduringstateexploration
andhelpnarrowthescopeofexplorationtoafewpromising
branches[40]toefficientlylearnoptimalloopplacement.
Inourimplementation,eachnodesinthetreerepresents
apreviouslyseenrouterlessNoCandeachedgerepresents
anadditionalloop.Additionally,eachnodesstoresasetof
statistics:V(snext),P(ai;s),andN(ai;s).V(snext)isthemean
cumulativereturnfromsnextandisusedtoapproximatethe
valuefunctionVπ(snext).P(ai;s)isthepriorprobabilityof
takingactionaibasedonπ(a=ai;s).Lastly,N(ai;s)isthe
visitcount,representingthenumberoftimesaiwasselected
ats.Explorationstartsfromstates,thenselectsthebest
actiona∗basedonexpectedexplorationreturnsgivenby

a∗=argmax
ai
(U(s,ai)+V(snext)) (21)

U(s,ai)=c∗P(ai;s)
∑jN(aj;s)

1+N(ai;s)
, (22)

whereU(s,ai)istheupperconfidenceboundandcisa
constant[39]. ThefirstterminEquation21encourages
broadexplorationwhilethesecondemphasizesfine-grained
exploitation. Atthestart,N(ai;s)andV(snext)aresimi-
larformostrouterlessNoCssoexplorationisguidedby
P(ai;s)=π(a=ai;s).RelianceuponDNNpolicydecreases
withtimeduetoanincreasingN(ai;s),whichcausesthe
searchtoasymptoticallypreferactions/brancheswithhigh
meanreturns[41].Searchisaugmentedbyanε-greedyfactor
wherethebestactionisignoredwithprobabilityεtofurther
balanceexplorationandexploitation.
TherearethreephasestotheMCTSalgorithmshownin
Figure7:search,expansion+evaluation,andbackup.(1)
Search:anagentselectstheoptimalaction(loopplacement)
byeitherfollowingEquation21withprobability1−εor
usingagreedysearchwithprobabilityε.Algorithm1de-
tailsthegreedysearchthatevaluatesthebenefitfromadding
variousloopsandselectstheloopwiththehighestbenefit.
CheckCount()returnsthetotalnumberofnodesthatcancom-
municateafteraddingaloopwithdiagonalnodesat(x1,y1)
and(x2,y2).Next,theImprv()functionreturnsthepreferred
loopdirectionbasedontheaveragehopcountimprovement.
Thetreeistraverseduntilreachingaleafnode(NoCcon-
figuration)withoutanychildren(furtherdevelopedNoCs).
(2)Expansion+evaluation:theleafstateisevaluatedusing
theDNNtodetermineanactionforrollout/expansion.Here,
π(a=ai;s)iscopied,thenlaterusedtoupdateP(ai;s)in
Equation22.Anewedgeisthencreatedbetweensandsnext
wheresnextrepresentstherouterlessNoCafteraddingthe
looptos.(3)Backup:Afterthefinalcumulativereturnsare
calculated,statisticsforthetraversededgesarepropagated
backwardsthroughthetree.Specifically,V(snext),P(ai;s),
andN(s,ai)areallupdated.
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Algorithm1GreedySearch

1:Initialization:bestLoop=[0,0,0,0],bestCount=0,bestImprv=0,and
dir=0

2:forx1=1;+1;Ndo
3: fory1=1:+1;Ndo
4: forx2=x1+1:+1;Ndo
5: fory2=y1+1:+1;Ndo
6: count=CheckCount(x1,y1,x2,y2)
7: ifcount>bestCountthen
8: bestCount=count
9: bestLoop=[x1,y1,x2,y2]
10: bestImpv,dir=Imprv(x1,y1,x2,y2)
11: elseifreturn==bestCountthen
12: imprv’,dre’=Imprv(x1,y1,x2,y2)
13: ifimprv’>bestImprvthen
14: bestLoop=[x1,y1,x2,y2]
15: bestImprv=imprv’
16: dir=dir’
17:returnbestRing,dir

4.6 Multi-threadedLearning
Theframeworkincorporatesamulti-threadedapproach,
inwhichmanythreadsindependentlyexplorethedesign
spacewhilecollaborativelyupdatingglobalparameters[34].
Figure8depictstheproposedframeworkwithmulti-threaded
exploration.Atthestart,thread0createsaparentDNNwith
initialweights/parametersθ,thencreatesmanychildthreads
(1ton)thatcreatetheirownchildDNNs,eachofwhich
actsasanindividuallearningagent.Theparentthreadsends
DNNparameterstochildthreadsandreceivesparameter
gradientsfromchildthreads.Convergenceisstabilizedby
averagingbothlargegradientsandsmallgradientsduring
training[34].Theparentthreadadditionallymaintainsa
searchtreethatrecordspastchildthreadactionsforeach
MCTSquery. Whilenotneededforcorrectness,themulti-
threadedapproachfacilitatesmoreefficientexplorationas

Thread 1 (T1)

Thread n (Tn)

Parent
Child

MCTS

Θ: Parameters

dΘ: Gradients

Query Queue 

Query
Response

Thread 0 (T0)

Agent Environment

NoC

Child

Agent Environment

NoCT6T1T3T2

T5

showninevaluationandisveryusefulinpractice.

Figure8:Multi-threadedframework.

5. METHODOLOGY
Weevaluatetheproposeddeepreinforcementlearning

(DRL)routerlessdesignagainstthepreviousstate-of-the-art
routerlessdesign(REC)[2]andseveralmeshconfigurations.
AllsimulationsuseGem5withGarnet2.0forcycle-accurate
simulation[6].Forsyntheticworkloads,wetestuniform
random,tornado,bitcomplement,bitrotation,shuffle,and
transposetrafficpatterns.Performancestatisticsarecollected
for100,000cyclesacrossarangeofinjectionrates,start-
ingfrom0.005flits/node/cycleandincrementedby0.005
flits/node/cycleuntilthenetworksaturates.ResultsforPAR-

SECarecollectedafterbenchmarksareruntocompletion
witheithersim-largeorsim-mediuminputsizes.3Powerand
areaestimationsarebasedonVerilogpost-synthesissimula-
tion,followingasimilarVLSIdesignflowasinRECthat
synthesizestheVerilogimplementationinSynopsysDesign
Compilerandconductsplace&routeinCadenceEncounter
under15nmNanGateFreePDK15OpenCellLibrary[36].
Weregardnodeoverlappingasamoreappropriatemea-

surethanlinkoverlapping(i.e.,thenumberoflinksbetween
adjacentnodes)formanufacturingconstraints.RECcanonly
generateNoCswithasinglenodeoverlappingvaluefora
givenNoCsize,whereasDRLdesignsarepossiblewithmany
values.ComparisonsbetweenRECandDRLthereforecon-
siderbothequaloverlapping(demonstratingimprovedloop
placementforDRL)andunequaloverlapping(demonstrating
improveddesigncapabilitiesforDRL).
ForsyntheticandPARSECworkloads,RECandDRL

variantsuseidenticalconfigurationsforallotherparameters,
matchingpriortesting[2]forcomparableresults.Results
neverthelessdifferslightlyduetodifferencesbetweenGem5
andSynfull[4],usedinRECtesting.InRECandDRL,
eachinputlinkisattachedtoaflit-sizedbufferwith128-
bitlinkwidth.Packetinjectionandforwardingcaneach
finishinasinglecycleupto4.3GHz.Formeshsimulations,
weuseastandardtwo-cyclerouterdelayinourbaseline
(Mesh-2).Weadditionallytestanoptimizedone-cycledelay
router(Mesh-1)and,inPARSECworkloads,an"ideal"router
withzerorouterdelay(Mesh-0)leavingonlylink/contention
delays.Thesemeshconfigurationsuse256-bitlinks,2VCs
perlink,and4-flitinputbuffer.128-bitlinkswereconsidered,
butexhibitedasub-optimaltrade-offbetweenpower/area
andperformance(sowouldnotprovideastrongcomparison
againstDRL).Packetsarecategorizedintocontrolanddata
packets,with8bytesand72bytes,respectively.Thenumber
offlitsperpacketisthengivenaspacketsizedividedby
linkwidth.Therefore,inRECandDRLsimulations,control
packetsare1flitanddatapacketsare5flits.Similarly,in
meshsimulations,controlpacketsare1flitwhiledatapackets
are3flits.ForPARSECworkloads,L1DandL1Icachesare
setto32KBwith4-wayassociativityandtheL2cacheisset
to128KBwith8-wayassociativity.Linkdelayissettoone
cycleperhopforalltests.

6. RESULTS&ANALYSIS

6.1 DesignSpaceExploration
Explorationstartswithoutaprioriexperienceortraining
data.Overtime,asthesearchtreeisconstructed,theagent
exploresmoreusefulloopconfigurations,whichprovidein-
creasedperformance.Configurationssatisfyingdesigncrite-
riacanbefoundinsecondsandminutesfor4x4and10x10
NoCs,respectively.Figure9illustratesa4x4DRLdesign.
DifferentfromREC[2],thegeneratedtopologyreplacesone
innerloopwithalargerloopandexploresdifferentloopdi-
rections.Theresultingtopologyiscompletelysymmetricand
farmoreregularthanIMR.Weobservesimilarstructurefor
largertopologies,butomittheseduetospaceconstraints.
Multi-threadedexplorationefficacyisverifiedbycompar-
ingdesignsgeneratedusingeithersingleormulti-threaded
search.Fora10x10NoC,aftera10hourperiod,single-
threadedsearchfound6validdesigns,whereasmulti-threaded
searchfound49validdesigns. Moreover,multi-threaded
searchgeneratesdesignswith44%lowerstandarddeviation

3Severalworkloadsexhibitcompatibilityissueswithourbranchof
Gem5,butweincludeallworkloadsthatexecutesuccessfully.

7



Table1:HyperparameterExploration
Epsilon(ε) 0.05 0.10 0.20 0.30
#Validdesigns 25 27 11 2
MinHopCount 5.59 5.60 5.61 5.53
SDforHopCount 0.140 0.065 0.050 0.040

(SD)forhopcount(decreasingfrom0.027to0.015).This
demonstratesthebenefitsofmulti-threadedsearchtoeffi-
cientlyachievemoreconsistentresults.
Wefurtherevaluatechangesinthehyperparameterε,which
balancessearchexplorationandexploitation.Resultsafter
afivehourperiodusing8x8NoCsaresummarizedinTable
1.Highvaluesforεcanquicklygeneratemoreoptimalcon-
figurations,butmayfrequentlyexploreinvalidactionsand
thussufferunderstrictconstraints. Wethereforeselectthe
bestvalueforεinsubsequentevaluationsbasedonthetime
allocatedtoexplorationaswellastherigorofconstraints.In
mostcases,ε=0.1generateshigh-performingdesignsgiven
adequatetime.

Figure9:A4x4NoCtopologygeneratedbyDRL.

6.2 FrameworkCapabilities
TheproposedDRLframeworkcanautomaticallygenerate
NoCdesignsundervariousconstraintssocanbeadaptedto
availabledesignresourcesforanyNoCsize.Incontrast,REC
generatesonlyasingledesignforeachNoCsizeand,con-
sequently,cannotbeadaptedtodesigngoals,thusseverely
restrictingreal-worldapplicability.Inthefollowing,weex-
emplifythebroaddesigncapabilitiesoftheDRLframework,
noneofwhicharepossiblewithREC.
GeneratefeasibledesignsforlargerNoCs:RECdesign
doesnotworkifnodeoverlappingislessthan2∗(N−1).
Conversely,theproposedDRLframeworkcangenerateNoCs
withsmallernodeoverlappingacrossmanysizes.Forexam-
ple,withafixednodeoverlappingof18,RECcannotgener-
ateNoCslargerthan10x10.OurDRLframework,however,
hassuccessfullygeneratedconfigurationsfor12x12,14x14,
16x16and18x18routerlessNoCs.Notethat18x18isthethe-
oreticalmaxrouterlessNoCsizethatcanbefullyconnected
withanodeoverlappingof18.Ina20x20NoC,theremust
beatleast19rectangularloopspassingthroughthebottom
leftnodetoconnecttoallothercolumns.Assummarizedin
Table2,theaveragehopcountofDRLdesignsisstillclose
toN,evenwhenNapproachesthenodeoverlappinglimit,
showingtheeffectivenessoftheDRLframework.
Utilizeadditionalwiringresources:DRLisabletoex-

ploitadditionalwiringresources,whenavailable,toimprove
performance,whereasRECcannotuseanywiresbeyond
2∗(N−1).Table3andTable4illustratethehopcountad-
vantageofDRLoverRECwithvariousnodeoverlappings.
Forexample,a10x10DRLNoCwithanodeoverlappingof
20achievesa20.4%reductioninhopcountcomparedwith
theonlypossibleREC10x10NoC.
FacilitaterouterlessNoCimplementationinindustry:

RouterlessNoCsofferapromisingapproachtoachievemulti-
foldsavingsinhardwarecostcomparedwithrouter-based
NoCs,butthestrictwiringrequirementsinthepreviousREC

Table2:DRLsupportslargerNoCswith18overlapping.
NoCSize 10x10 12x12 14x14 16x16 18x18

RECHopCount 9.64 N/A N/A N/A N/A
DRLHopCount 7.94 12.25 15.11 18.03 21.01

Table3:DRLutilizesadditionalwiringresources;8x8.
Topology REC DRL DRL DRL DRL

Nodeoverlapping 14 14 16 18 20
Hopcount 7.33 6.22 5.94 5.82 5.80

ImproveoverREC N/A 15.14% 18.96% 20.60% 20.87%

Table4:DRLutilizesadditionalwiringresources;10x10.
Topology REC DRL DRL DRL DRL

Nodeoverlapping 18 18 20 22 24
Hopcount 9.64 7.94 7.67 7.59 7.55

ImproveoverREC N/A 17.64% 20.44% 21.27% 21.68%

designsmayhinderadoptioninindustry.TheproposedDRL
frameworkprovideshighflexibilitytoexploremanycombina-
tionsofNoCsizesandconstraintsthatarenotpossiblewith
REC.ThisflexibilitycangreatlyaidfutureNoCresearchand
implementationinindustrybyadaptingtootherconstraints,
suchasmaximumlooplengthormaximumhopcount,which
canalsobeintegratedintotherewardfunction.

6.3 SyntheticWorkloads
Performanceevaluationsinthisandnextsubsectionsuse
anodeoverlappingconstraintof2∗(N−1)forbothREC
andDRLbecausethatistheonlypossibleconstraintfor
REC.AlternativeDRLconfigurations,suchasthoseshown
inTables2to4,canneverthelessprovideadditionalbenefits
whilesatisfyingvariousdesigngoals.
PacketLatency:Figure10plotstheaveragepacketla-

tencyoffoursyntheticworkloadsfora10x10NoC.Tornado
andshufflearenotshownastheirtrendsaresimilartobit
rotation.Zero-loadpacketlatencyforDRListhelowestinall
workloads.Forexample,withuniformrandomtraffic,zero-
loadpacketlatencyis9.89,11.67,19.24,and26.85cyclesfor
DRL,REC,Mesh-1,andMesh-2,respectively,corresponding
toa15.2%,48.6%,and63.2%latencyreductionbyDRL.
Acrossallworkloads,DRLreduceszero-loadpacketlatency
by1.07x,1.48xand1.62xcomparedwithREC,Mesh-1,and
Mesh-2,respectively.ThisimprovementforbothRECand
DRLovermeshconfigurationsresultsfromreducedperhop
latency(onecycle).DRLimprovesoverRECduetoaddi-
tionalconnectivityandbetterloopplacement.Forexample,
ina10x10NoC,DRLprovidesfouradditionalpaths.
Throughput:DRLprovidessubstantialthroughputim-

provementsforalltrafficpatterns.Foruniformtraffic,through-
putisapproximately0.1,0.125,0.195,and0.305forMesh-2,
Mesh-1,REC,andDRL,respectively.Notably,intranspose,
DRLimprovesthroughputby208.3%and146.7%compared
withMesh-2andMesh-1.Eveninbitcomplementwhere
meshconfigurationsperformsimilarlytoREC,DRLstill
providesa42.8%improvementoverMesh-1.Overall,DRL
improvesthroughputby3.25x,2.51x,and1.47xcompared
withMesh-2,Mesh-1,andREC,respectively.Again,addi-
tionalloopswithgreaterconnectivityinDRLallowagreater
throughputcomparedwithREC.Furthermore,improvedpath
diversityprovidedbytheseadditionalloopsallowsmuch
higherthroughputcomparedwithmeshconfigurations.

6.4 PARSECWorkloads
Wecomparereal-worldperformanceofREC,DRL,and
threemeshconfigurationsfor4x4and8x8NoCsonaset
ofPARSECbenchmarks. WegenerateMesh-0resultsby
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Figure11:PacketlatencyforPARSECworkloads.

Figure12:AveragehopcountforPARSECworkloads.

artificiallyreducingpacketlatencybythehopcountforevery
recordedflitsincesuchaconfigurationisdifficulttosimulate
otherwise.Asaresult,performanceisslightlyworsethanan
"ideal"zero-cycle-routermesh.
PacketLatency:AsshowninFigure11,forthe4x4net-

work,variationsinloopconfigurationarerelativelysmall,
beingheavilyinfluencedbyfull-connectivityrequirements.
Nevertheless,inthe4x4NoC,DRLimprovesperformance
overRECinallbuttwoapplicationswhereperformance
issimilar.Forexample,DRLreducespacketlatencyby
4.7%influidanimatecomparedwithREC.Improvements
overmeshconfigurationsforfluidanimatearegreaterwith
a68.5%,60.4%,and54.9%improvementcomparedwith
Mesh-2,Mesh-1,andMesh-0.Onaverage,DRLreduces
packetlatencyby70.7%,62.8%,56.1%,and2.6%compared
withMesh-2,Mesh-1,Mesh-0,andREC,respectively.
DRLimprovementsaremoresubstantialin8x8NoCs
asDRLcanexplorealargerdesignspace.Forexample,
influidanimate,averagepacketlatencyis21.7,16.4,12.9,
11.8,and9.7inMesh-2,Mesh-1,Mesh-0,REC,andDRL,
respectively.Thiscorrespondstoa55.6%,41.0%,25.3%,
and18.2%improvementforDRLcomparedwithMesh-2,
Mesh-1,Mesh-0,andREC.Onaverage,DRLreducespacket
latencyby60.0%,46.2%,27.7%,and13.5%comparedwith
Mesh-2,Mesh-1,Mesh-0,andREC,respectively.

Table5:8x8PARSECworkloadexecutiontime(ms)
Workload NoCType

Mesh-2 Mesh-1 REC DRL
Blackscholes 4.4 4.2 4.0 4.0
Bodytrack 5.4 5.3 5.1 5.1
Canneal 7.1 6.4 6.1 6.0
Facesim 626.0 587.0 515.2 512.3
Fluidanimate 35.3 29.2 25.2 24.4
Streamcluster 11.0 11.0 11.0 11.0

HopCount:Figure12comparestheaveragehopcountfor
REC,DRL,andMesh-2for4x4and8x8NoCs.OnlyMesh-
2isconsideredasdifferencesinhopcountarenegligible
betweenmeshconfigurations(theymainlydifferinper-hop
delay).For4x4networks,RECandDRLloopconfigurations
arerelativelysimilarsoimprovementsarelimited,butDRL
stillprovidessomeimprovementinallworkloadscompared
withREC.Instreamcluster,averagehopcountis1.79,2.48,
and2.34formesh,REC,andDRL,respectively.Onaverage,
DRLhopcountis22.4%higherthanmeshand3.8%less
thanREC.Forlargernetworksizes,weagainobservethe
benefitfromincreasedflexibilityinloopconfigurationthat
DRLexploits.Thisoptimizationallowsmoreloopstobe
generated,decreasingaveragehopcountcomparedwithREC
byaminimumof12.7%forbodytrackandamaximumof
14.3%influidanimate.Onaverage,hopcountforDRLis
13.7%lessthanRECand35.7%higherthanmesh.
ExecutionTime:Executiontimesfor8x8PARSECwork-
loadsaregiveninTable5. Reductionsinhopcountand
packetlatencymaynotnecessarilytranslatetoreducedexe-
cutiontimeasapplicationsmaybeinsensitivetoNoCperfor-
mance(notablystreamcluster).Nevertheless,influidanimate,
aNoCsensitiveworkload,DRLreducesexecutiontimeby
30.7%,16.4%,and3.17%comparedwithMesh-2,Mesh-1,
andREC,respectively.Overall,DRLprovidesthesmallest
executiontimeforeveryworkload.NotethatNoCtrafficfor
PARSECworkloadsisknowntobelight,sothesignificant
throughputadvantageofDRLovermeshandREC(Figure
10)isnotfullyreflectedhere.Additionally,asmentionedear-
lier,thisevaluationrestrictsDRLtousetheonlyoverlapping
valuethatworksforREC.Largerbenefitscanbeachieved
withotherDRLconfigurations,asshownnext.

6.5 Power
TheproposedDRLframeworkcangeneratediverseNoCs
basedondifferentobjectives.Figure13demonstratesthis
capabilityasatradeoffbetweenpowerandperformance(av-
eragehopcount)for8x8NoCs.Eachpointrepresentsone
possibledesignandislabeledwiththeallowednodeover-
lapping;RECthereforerepresentsjustasingledesignpoint.
DRLwithanodeoverlappingof10exhibits1%lowerhop
countthanRECwhilereducingpowerconsumptionby15.9%
duetoreducedhardwarecomplexity.Additionally,DRLwith
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Figure14:PowerconsumptionforPARSECworkloads.

anodeoverlappingof16reducestheaveragehopcountby
18.9%withnearlyequalpowerconsumption(within0.2%)
duetomoreefficientloopplacement.Overall,DRLismore
flexibleandefficientthanthefixedRECscheme.
Weadditionallycomparethepowerconsumptionofmesh

(Mesh-2),REC,andDRL(bothwiththesamenodeoverlap-
pingof14)acrossPARSECworkloads.Resultsaregener-
atedafterplace&routeinCadenceEncounterunder15nm
technologynode[36]. Globalactivityfactorisestimated
fromlinkutilizationstatisticsinGem5simulations.Aclock
frequencyof2.0GHzisused,comparabletocommercial
many-coreprocessors.AsseeninFigure14,staticpower
forRECandDRLis0.23mW,considerablylowerthanthe
1.23mWofmesh.DynamicpoweristhelowestforDRL
duetoimprovedloopconfiguration,leadingtolowerhop
countandthereforelowerdynamicpowerthanRECinall
workloads.DRLalsoprovidessignificantsavingsovermesh
duetoreducedroutinglogicandfewerbuffers.Onaverage,
dynamicpowerforDRLis80.8%and11.7%lessthanmesh
andREC,respectively.

6.6 Area
NodeareainrouterlessNoCsisdeterminedbythenode

overlappingcap.Inpractice,toreducedesignandverification
effort,thesamenodeinterfacecanbereusedifthenode
overlappingcapisthesame.Figure15thereforecompares
thenodeareafor8x8mesh(Mesh-2),REC/DRLwithan
overlappingof14(equalareaduetoequaloverlapping),and
DRLwithanoverlappingof10.DRL(10)isselectedfor
comparisonherebecauseithasverysimilarhopcountto
REC,asshowninFigure13.Ascanbeseen,DRL(10)has
thesmallestareaat5,860µm2duetoanefficientdesign,

Figure15:Areacomparison(afterP&R).

whileprovidingequivalentperformancetoREC.BothREC
andDRLwithanoverlappingof14haveaslightlyincreased
areaat7,981µm2.Finally,meshareaismuchhigherat
45,278µm2.Thisdifferenceismainlyattributedtorouterless
NoCseliminatingbothcrossbarsandvirtualchannels.Note
thatresultsforRECandDRLalreadyincludethesmalllook-
uptableatsource.Thistableisneededtoidentifywhichloop
touseforeachdestination(ifmultipleloopsareconnected),
buteachentryhasonlyafewbits[2].Areaforthetableand
relatedcircuitryis443µm2,equivalenttoonly0.9%ofthe
meshrouter(poweris0.028mWor1.13%ofmesh).Wealso
evaluatedtheadditionalrepeatersnecessarytosupportDRL.
Totalrepeaterareais0.159mm2forDRL(14),sooverhead
comparedwithRECrepresentsjust1.1%ofmesh.

6.7 Discussion
ComparisonwithIMR:EvaluationbyAlazemietal.[2]
showedthatRECissuperiortoIMRinallaspects.Insyn-
thetictesting,RECachievesanaverage1.25xreductionin
zero-loadpacketlatencyanda1.61ximprovementinthrough-
putoverIMR.Similarly,inrealbenchmarks,RECachievesa
41.2%reductioninaveragelatency.Bothstaticanddynamic
powerarealsosignificantlylowerinRECduetoreduced
bufferrequirementsandmoreefficientwireutilization.Fi-
nally,RECareaisjust6,083µm2whileIMRareais20,930
µm2,correspondingtoa2.4xincrease.Comparisonsbetween
RECandDRLwerethereforetheprimaryfocusinprevious
subsectionssinceRECbetterrepresentsthecurrentstate-of-
the-artinrouterlessNoCs.ThelargegapbetweenIMRand
RECalsoillustratesthattraditionaldesignspacesearch(e.g.,
geneticalgorithminIMR)isfarfromsufficient,whichcalls
formoreintelligentsearchstrategies.
Reliability:ReliabilityconcernsforrouterlessNoCstem
fromthelimitedpathdiversitysincewiringconstraintsre-
strictthetotalnumberofloops.Foragivennodeoverlapping,
DRLdesignsprovidemoreloopsandthusmorepathsbe-
tweennodesasmorenodesapproachthenodeoverlapping
cap.Inthe8x8NoC,thereare,onaverage,2.77pathsbe-
tweenanytwonodesinREC.Thisincreasesto3.79paths,
onaverage,betweenanytwonodesinDRL(usingequal
overlapping).DRLcanthereforetoleratemorelinkfailures
beforetheNoCfails.
Scalability:DRLscaleswellcomparedwithbothREC
andmeshconfigurations.ForPARSECworkloads,shown
inFigure11,DRLexhibits2.6%lowerpacketlatencythan
RECfora4x4NoC,improvingtoa13.5%reductionforan
8x8NoC.Averagehopcount,showninFigure12,exhibits
asimilartrend.DRLimprovesaveragehopcountby3.8%
ina4x4NoCand13.7%inan8x8NoC.Scalingimprove-
mentsaremoreevidentinsyntheticworkloads.Figure16,
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Figure16:SyntheticScalingforNoCConfigurations.

forexample,showsscalingresultsfor4x4to10x10NoC
sizeswithuniformrandomworkloads.Notethatthesame
axisvaluesareusedforallNoCsizestoemphasizescal-
ingperformance.WhereasRECthroughputdecreasesfrom
0.285flits/node/cycleto0.195flits/node/cycle,corresponding
toa31.6%decrease,thethroughputforDRLonlychanges
slightlyfrom0.32to0.305flits/node/cycle,correspondingto
a4.7%reduction.Thisshowsasignificantimprovementin
scalabilityfromRECtoDRL.IncreasingtheNoCsizealso
allowsmoreflexibilityinloopexploration,andthusmore
effectiveuseofwiringresourcesforagivennodeoverlap-
pingconstraint.Additionally,loopdesignforN×MNoCs
usingDRLisstraightforwardtoimplement,onlyrequiring
modificationstotheDNNfordimensionsizes.

6.8 BroadApplicability
RouterlessNoCdesignrepresentsjustonepossibleap-
plicationfortheframeworkpresentedinthispaper.This
framework,withmodificationstostate/actionrepresentations,
couldalsobeappliedtorouter-basedNoCdesigns.Specif-
ically,onerelatedapplicationisin3-DNoCswherehigher
dimensionalityencouragesnoveldesigntechniques.Prior
workhasexploredsmall-worldrouter-baseddesigns[10,11]
usingarelativelylimitedlearning-basedapproach.Thede-
signspaceexplorationwouldbemoreeffectiveusingour
framework.Specifically,staterepresentationusinghopcount
remainscompatiblewiththecurrentDNNstructurebycon-
catenatingmatricesforeach2Dlayer.Actionscaninvolve
addinglinksbetweennodesinthesamelayer(intra-layer
links)ordifferentlayers(inter-layerlinks).OneDNNcan
beusedforeachactiontypetoachieveanefficientdeepre-
inforcementlearningprocesswithasmallerdesignspace.
Asignificantadvantageofourframeworkisthatstrictcon-
straintscanbeenforcedonlinkaddition,suchas3-Ddistance,
tomeettiming/manufacturingcapabilities.
Theproposedframeworkcanalsobegeneralizedforother
NoC-relatedresearchproblems.Whiledetailedexploration
isbeyondthescopeofthispaper,webrieflymentionafew
promisingexamplesthatcanbenefitfromourframework.
Futureworkmayexploitunderutilizedwiringresourcesin
siliconinterposers[21,26]andexplorebetterwaystoconnect
CPUcoresandstackedmemories.Theframeworkcouldsimi-
larlybeusedtoimprovethelatencyandthroughputofchiplet
networks[31,48]byexploringnovelinterconnectsstructures
thatarenon-intuitiveandhardforhumantoconceive.NoCs

fordomain-specificaccelerators(e.g.,TPU[25],Eyeriss[8],
andothers)areanotherpossibleapplication.Duetotheir
data-intensivenature,acceleratorscanbenefitfromhigh-
performance[27]andpossiblyreconfigurable[15]NoCs,
wheretheframeworkcanexploreconnectivityamongpro-
cessingelements(PEs)andbetweenPEsandmemory.

7. RELATEDWORK
ResearchonrouterlessNoCshasbeenlimitedtotwometh-
ods.IMRusesageneticalgorithmwithrandommutations
togenerateloopconfiguration.RECconstructslayersrecur-
sively,generatinganexactstructureforagivenNoCsize.
OurapproachfundamentallydiffersfromIMRandRECas
itcanguaranteefullyconnectedloopconfigurationswith
variousdesignconstraints.Thisadvantageiscrucialtoallow
improvedflexibilityindiverseapplications.
Manystudieshaveexploredmachinelearningappliedto

architectureandrelatedtools[12,18,19,20,23,24,28,30,32,
37,38,43,45,46,47,49],butnonehaveexploredapplication
torouterlessNoCs.Jiménezetal.[43]usedaperceptron-
basedapproachforlastlevelcachereuseprediction.Pat-
tnaiketal.[37]demonstratednear-optimalschedulingfor
aprocessing-in-memoryarchitectureusingtworegression
models. Wangetal.[45]demonstratedaholisticdesign
frameworkforNoCsusingreinforcementlearning.Margari-
tovetal.[32]proposedahighly-accurateschemeforvirtual
addresstranslationinTLBsusingatwo-levelneuralnetwork.
Similarresearchislimitedtospecificarchitecturalcompo-
nents,soiscomplementarytoourworkonrouterlessNoCs.
MachinelearninghasalsobeenusedtoaddressNoCde-
signconcernssuchascongestion.Ipeketal.[20]usere-
inforcementlearningtomitigatetrafficcongestionwithan
approximatereturnfunction.Thelearnedfunctionallowed
improvedpathselectionforpackettransferusingcurrenttraf-
ficstatisticssuchasqueuelengths.Thatwork,however,uses
asinglelearnedfunctionanddoesnotenforcespecificdesign
constraints.Incontrast,ourframeworkinvolvesbothapolicy
andvaluefunction,usingatwo-headedDNNstructure,both
ofwhicharesubjecttostrictdesignconstraints.

8. CONCLUSION
Designspaceexplorationusingdeepreinforcementlearn-
ingpromisesbroadapplicationtoarchitecturaldesign.Cur-
rentrouterlessNoCdesigns,inparticular,havebeenlimited
bytheirabilitytosearchdesignspace,makingrouterless
NoCsanidealcasestudytodemonstrateourinnovativeframe-
work.Theproposedframeworkintegratesdeeplearningand
MonteCarlosearchtreewithmulti-threadedlearningtoef-
ficientlyexplorelargedesignspaceunderconstraints.Full
systemsimulationsshowsthat,comparedwithstate-of-the-
artrouterlessNoC,ourproposeddeepreinforcementlearning
NoCcanachievea1.47xincreaseinthroughput,1.18Xre-
ductioninpacketlatency,1.14xreductioninaveragehop
count,and6.3%lowerpowerconsumption.Theproposed
frameworkhasbroadapplicabilitytodiverseNoCdesign
problemsandenablesintelligentdesignspaceexplorationin
futurework.
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