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ABSTRACT
Throughput-oriented many-core processors demand highly
efficient network-on-chip (NoC) architecture for data trans-
ferring. Recent advent of silicon interposer, stacked memory
and 2.5D integration have further increased data transfer rate.
This greatly intensifies traffic bottleneck in the NoC but, at
the same time, also brings a significant new opportunity in
utilizing wiring resources in the interposer. In this paper, we
propose a novel concept called Equivalent Injection Routers
(EIRs) which, together with interposer links, transform the
few-to-many traffic pattern to many-to-many pattern, thus
fundamentally solving the bottleneck problem. We have de-
veloped EquiNox as a design example. We utilize N-Queen
and Monte Carlo Tree Search (MCTS) methods to help se-
lect EIRs by considering comprehensively from topological,
architectural and physical aspects. Evaluation results show
that, compared with prior work, the proposed EquiNox is able
to reduce execution time by 23.5%, energy consumption by
18.9%, and EDP by 32.8%, under similar hardware cost.

1. INTRODUCTION
Throughput-oriented processors (e.g., GPUs) have been

increasingly used to speed up a wide range of conventional
and emerging applications. Due to the large number of cores
in the processors, networks-on-chip (NoCs) have been gaining
significant research interest [1, 2, 3, 4, 5, 6, 7, 8] to provide
low-latency and high-throughput on-chip communication.
Meanwhile, with the recent advent of silicon interposer and
2.5D integration technology, memory chips can be integrated
with the processor chip in one package to provide dramatically
increased memory throughput [9, 10, 11, 12]. However, this
places a huge pressure on the NoC component. Unfortunately,
existing schemes have turned out to be ineffective when ap-
plied to these interposer-based systems. With more advanced
interposer technologies on the horizon [13, 14, 15, 16], the
performance gap between the memory and NoC will likely
get even widened. Thus, it is imperative to redesign the NoC
accordingly to meet the requirements of interposer-based
throughput processors.
Silicon interposers bring both major problems and oppor-

tunities to throughput-oriented processors. On the one hand,
the many-to-few-to-many traffic pattern in those processors
may cause a bottleneck in the reply network, where data
reply packets that are destined to the many cores are injected
through only a few injection nodes. With the boosted memory
bandwidth in stacked memory in interposer systems, this
injection bottleneck is greatly intensified and is only getting
worse with future memory technologies. On the other hand,
interposer contains multiple dedicated Redistribution Layers
(RDLs), which provides abundant wiring resources that are
currently underutilized [14, 17]. These wiring resources have

electrical characteristics that are similar to that of on-chip
links [18]. This provides a basis for exploiting a hybrid use
of on-chip and interposer components.
In this work, we explore the new wiring opportunities

brought by the interposer to address the intensified injection
bottleneck that is also caused by the interposer. Given the root
cause of the injection bottleneck is the few-to-many traffic
pattern, we propose Equivalent Injection Routers (EIRs) that
transform the traffic to many-to-many pattern, thus funda-
mentally solving the bottleneck problem. This is achieved
by providing each injection point with a group of equivalent
injection routers, all of which have “equivalent” capability
in terms of accepting and distributing the injecting traffic.
The required additional interconnects are provided by the
redistribution layers in the interposer. While the concept of
EIRs is straightforward, selecting the set of equivalent routers
requires comprehensive consideration from topological, ar-
chitectural and physical aspects. This leads to a large design
space as explained later in Section 3.

To demonstrate the feasibility of the proposedEIR approach,
we have developed EquiNox as a design example. The scheme
employs a N-Queen based cache bank placement as the
basis for selecting equivalent routers. As the solutions of
N-Queen are not unique, a scoring policy is developed to
select the placement that minimizes network congestion and
maximizes EIR potential. The groups of EIRs are then
selected by a carefully designed Monte Carlo Tree Search
(MCTS) method to search through the design space, while
balancing the number of EIRs, their impact on the network,
the needed interposer links, the length of the links, and the
number of cross-points in the RDLs. The network interface
architecture is also enhanced to support the increased injection
flexibility from EIRs. The proposed EquiNox is able to meet
the requirements of topologically equivalent, architecturally
efficient and physically viable EIR designs. Evaluation on
a wide range of benchmarks shows that EquiNox achieves
47.7% reduction in execution time and 55.0% reduction in
energy-delay product (EDP) compared with a single network
scheme, and 23.5% reduction in execution time and 32.8%
reduction in EDP compared with a separate network scheme.
The main contributions of this paper are as follows:
• Analyzing new opportunities and challenges of NoCs
in silicon interposer-based throughput processors;

• Proposing the concept of Equivalent Injection Routers
to provide a novel solution to address NoC bottleneck;

• Developing EquiNox as a case in point to demonstrate
the effectiveness of the proposed approach.

The rest of the paper is organized as follows. Section 2
providesmore background andmotivation on interposer-based
throughput processors and the need to address the intensified
injection bottleneck. Section 3 proposes the concept of
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Figure 1: Overview and cross-section view of an interposer-based throughput-oriented processor.

Equivalent Injection Routers and analyzes the challenges
to realize it. Section 4 describes the proposed EquiNox in
details. Section 5 discusses the evaluation methodology, and
Section 6 presents simulation results. Finally, related work is
summarized in Section 7, and Section 8 concludes the paper.

2. BACKGROUND AND MOTIVATION

2.1 Interposer-based Throughput Processors
To meet the growing demand of high-bandwidth and low-

latency memory in many-core processors, 2.5D integration
systems have been proposed and commercially yielded to
achieve wafer-level integration of processor dies and memory
dies. Figure 1 depicts the architecture of a typical silicon
interposer-based throughput processor. The interposer is
a silicon substrate that provides mechanical and electrical
characteristics to integrate multiple dies [14]. On the left
side of Figure 1, the processor die is represented by the large
light yellow square. Eight memory dies are located outside
the processor die, denoted as the green squares labeled with
“MEM". In the processor die, processing elements (PEs) and
last level cache banks (LLCBs or simply CBs) are placed
in a tile-based fashion. Each cache bank is connected with
a dedicated memory controller (MC) that interfaces with a
memory die. Each memory die is actually a die stack, which is
composed of several individual dies that are vertically placed
on top of each other to form a 3D die stack. This technology
is known as the High Bandwidth Memory (HBM) [19, 20].
HBMs can greatly benefit from integration in 2.5D systems,
since the in-package interconnects offered by the interposer
have superior physical properties than off-chip interconnects.

In interposer-based processors, the MCs are usually located
near the edge of the processor die to ensure short and fast
interposer connections with the memory stacks. As each MC
is connected with a CB, only a few CBs exist that are shared by
all the PEs. While the locations of the MCs are less flexible,
the placement of CBs can be adjusted to achieve more efficient
on-chip communication. Different from the conventional
many-core CPUs, the PEs in throughput processors (e.g.,
Stream Multiprocessors (SMs) in GPUs) have little inter-PE
communication, but instead communicate with CBs (and
then memory stacks) directly. PE-generated request packets
are sent to CBs through a request network. Reply packets
can be generated directly by the CBs in case of cache hits.
Otherwise, the CBs will first fetch data from the memory and
then generate reply packets containing the data. The reply
packets are sent back to the PEs through a reply network. This
traffic flow from the many PEs to a few CBs and then back
to the many PEs is commonly referred to as the Many-to-
Few-to-Many (M2F2M) traffic pattern in throughput-oriented

processors [2, 21].
Figure 1 also shows the cross-section view of the silicon

interposer structure. The processor die and memory stacks
are integrated with the interposer via micro-bumps (µbumps)
in a face-down fashion (flip-chip packaging technology)[10,
22, 13]. For example, when integrating the processor die with
the interposer layer, the die is first flipped, so the surface of
the chip is facing down and attached to the interposer. As
a result, µbumps consume chip surface area. To connect
the processor die with the memory dies, wires are routed
through the interposer layer with support of the µbumps.
Each wire must have a corresponding µbump to provide the
electrical connectivity [10, 13, 14]. Wires in the interposer
layer are implemented by fine-pitched metal layers called
Redistribution Layers (RDLs) that provide high-bandwidth
and low-latency interconnections [11]. To achieve that, the
material of the RDLs is usually copper instead of aluminum
for lower resistivity and better scalability (higher wire density).
However, the Damascene process [23] needs to be used to deal
with the poor oxidation and corrosion resistance of copper.
In practice, to yield sub-micro pitch metal layers, interposer
RDLs may employ a more complex dual-damascene process
[24]. Below RDLs, Through-Silicon Vias (TSVs) are used
to transfer electrical signals from RDLs to the outside of the
package1.

2.2 Intensified NoC Bottleneck
While the use of silicon interposer brings many benefits, it

also worsens the injection bottleneck in the on-chip network.
Specifically, each PE node or CB node is associated with
an on-chip router, and the routers are connected to form the
NoC. A node sends/receives packets to the NoC through a
network interface (NI). As mentioned, there are two networks
in the NoC: a request network and a reply network. The
reply network carries much heavier traffic than the request
network. This is because typical workloads for throughput
processors have a lot more reads than writes. Read requests
are short packets, but read replies are long packets containing
cache line data. Our simulation results also confirm this,
showing that reply traffic (including read reply and write
reply) accounts for 72.7% of the total NoC traffic in terms of
bits, and only 27.3% is request traffic (read request and write
request). Therefore, the reply network is more susceptible
to congestion than the request network [3, 5]. As all these
heavy reply traffic is eventually injected into the reply network
through a few CB nodes, these injection points (CB nodes)
become the performance bottleneck of the entire NoC [2].
In interposer-based systems, the injection bottleneck is

1The C4 bumps at the bottom of the interposer layer are not shown
in the figure for better clarity.
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Figure 2: (a) Existing injection for a CB node; (b) Each CB
has a group of equivalent injection routers (EIRs).

intensified as the throughput of HBM is significantly higher
than that of conventional DRAMs. The second generation
of HBM achieves up to 256GB/s [25] which is about 10X
higher than GDDR5. This dramatic improvement in memory
bandwidth has put a huge traffic pressure on the injection
points in the reply network. To-date, only a few of works [2,
4, 5, 6, 7] have targeted the NoC injection bottleneck, but
none of them have examined the issue in interposer-based
systems where the throughput demand are drastically different.
Alternatively, some works exist (e.g., [14, 26]) that utilize
interposer resources to improve on-chip networks in many-
core CPUs. However, as the M2F2M communication is
very different from the all-to-all traffic pattern in CPUs, it is
ineffective to adopt these designs for throughput processors.
More discussions and quantitative comparisons are provided
in later sections, but essentially, without a more specific and
effective solution, the gap between the demanded data transfer
rate in new memory technologies and the supported rate in
current injection points will continue to be widened in the
near future.

2.3 Interconnects Opportunity in Interposer
Although the injection bottleneck is worsened by the

stacked memory and 2.5D integration, the features of in-
terposer also open up new opportunities for interconnection.
First, there is much vacant space under the processor die
to route wires in the RDLs. This is because die-to-die in-
terconnects and the associated µbumps are placed near the
boundaries of the processor die and memory stack, as shown
in Figure 1. This leaves the majority of the area under the
processor die unused. Second, RDLs are composed of mul-
tiple metal layers. Although the total number of RDLs is
limited due to yielding cost, substantial wiring resources are
available even with the layers in the current RDLs. Third,
the wire latency in the interposer is comparable to that of the
die [18]. This allows a hybrid use of interposer links and
on-chip links without causing concerns on unmatched signal
transfer latency. Moreover, the floor planning of wires in
RDLs is independent from that of the processor or memory
dies (except for the interfacing µbumps), so the cross-layer
wiring complexity within RDLs is not exposed to other system
components.
With the above advantages, the next question is how the

abundant wiring resources in the interposer can be utilized
more efficiently to help with system designs, such as address-

ing the intensified injection bottleneck.

3. EQUIVALENT INJECTION ROUTERS

3.1 Eliminating Few-to-Many Bottleneck
The root cause for the reply injection bottleneck is a mis-

match in quantity, where a few injection routers (i.e., CB-
connected routers) need to handle all the injection traffic that
is destined to the many PE-connected routers. Therefore, a
fundamental solution to this problem is to somehow transform
the “few-to-many" traffic pattern to a “many-to-many" traffic
pattern. To this end, we propose the approach of Equivalent
Injection Routers (EIRs) to eliminate the injection bottleneck.
In the existing architecture as shown in Figure 2(a), the injec-
tion traffic from a CB is bottlenecked at the CB-connected
injection router. In contrast, the proposed approach in Figure
2(b) provides a group of injection routers that have equivalent
capability in terms of accepting and distributing the injection
traffic from a given CB. Each CB has its own group of EIRs
that are located strategically, so injected packets can be quickly
distributed. Collectively, all the EIRs create many injection
points to realize the many-to-many traffic pattern. However,
implementing the idea of EIRs in conventional processors is
very difficult, as it requires additional interconnects between a
CB and all the EIRs in the group of that CB. This is where the
RDLs in the interposer become useful. Since RDLs are under-
utilized and largely independent from the main NoC, RDLs
can be a great resource to route the needed interconnects. In
a sense, EIRs provide a nice solution that utilizes the wiring
opportunities brought by interposer to address the intensified
injection bottleneck that is also caused by interposer (and
stacked memory) in the first place.

While the concept of EIRs looks straightforward, selecting
the set of equivalent routers requires comprehensive consider-
ation from topological, architectural and physical aspects, as
explained below.

3.2 Considerations of Selecting EIRs

3.2.1 Topologically Equivalent
Every EIR in a CB’s group is topologically equivalent in

the sense that the CB directly connects with every EIR and
can use any EIR for packet injection. Therefore, the first
consideration is to determine the optimal number of EIRs in
a group. At one end of the spectrum, if there is only one EIR
per group, the design regresses to the existing architecture in
Figure 2(a) where injection is congested. At the other end of
the spectrum, if a group includes all the PE-connected routers
as the EIRs, the CB can basically send packets to any PE in
just one hop through the EIRs. In that case, however, the
capacity in transferring traffic out of the CB is way higher
than what the CB can possibly inject, thus leaving most of the
added links (in the interposer) between the CB and EIRs idle.
Therefore, the optimal number of EIRs should be determined
carefully.

3.2.2 Architecturally Efficient
Another consideration is whether the selection of EIRs is

architecturally efficient, even with the same number of EIRs
per group. For example, with 4 EIRs in a group, there are
numerous combinations that may have dramatically different
architectural efficiency. Figure 3 presents an example where
the blue group and the gray group both have 4 EIRs. As the
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injection routers in the blue group are located closely, the
region would easily become a hot zone that leads to high
queuing latency for injected packets. In contrast, the gray
group distributes the EIRs further into the network, thus
lowering the contention among injection traffic and being
more architecturally efficient than the blue group. Due to
the large number of combinations under a given number of
EIRs in a group, it can be difficult to identify the optimal EIR
selection in the design space. Note that, while it is beneficial
to distribute EIRs across the network, the design in the gray
group requires long wires and increases the probability of
having wire intersection, both of which place additional
constraints on physical viability, as discussed next.

3.2.3 Physically Viable
The positions of EIRs should also be selected in a way that

is friendly for physical implementation. There are three main
constraints due to the unique characteristics of interposer-
based systems: 1) length of interposer links, 2) number of
intersection points in redistribution layers (RDLs), and 3)
area overhead of μbumps.
First, shorter interposer links are preferred, as long links

need repeaters which would require active silicon interposers.
Active interposers face greater thermal challenges and com-
plexity than passive interposers. Consequently, EIRs cannot
be positioned too far away from the CB.
Second, wire intersection in the interposer needs to be

minimized, as intersection points require separate metal layers
in the RDLs. For example, in Figure 3, at least two layers
are needed to handle the three points of intersection (the
three red dots). Due to the dual-damascene process, yielding
complexity increases exponentially as more metal layers are
included [23, 27]. The process is very costly because of
the operations in cleaning residual photoresist and protecting
hydrophilic low-κ dielectric films [28].
Third, because of the face-down integration in 2.5D inte-

grated chips, μbumps consume on-chip area of the top dies,
e.g., the processor die and memory dies. Every interposer
wire needs a dedicated μbump to ensure electrical connectiv-
ity with other dies. Taking 40μm pitch μbumps [22] as an
example, each 128-bit bi-directional link consumes around

0.34mm2 μbump area. This overhead can be quite substantial
when the number of interposer links is large (e.g., prior works
on CPU NoCs need hundreds of interposer links). Thus, it
is challenging to place EIRs strategically that would require
much fewer interposer links, while still being able to avoid
the reply injection bottleneck.

3.2.4 Other Complications
In addition to the above three aspects, there are other factors

that may potentially affect the design of EIRs. One major
issue is the placement of CBs that has considerable impact on
system performance. For instance, if multiple CBs are placed
closely at the same row, the contention among injection traffic
would be very high even with the help of EIRs. Also, the eight
nodes surrounding a CB node have more injection traffic, so
it is better not to include these surrounding nodes as EIRs
which would otherwise draw even more injection traffic. All
these factors, compounded by the choice of the number of
EIRs in a group, the different combinations of EIRs, and the
resulting length/number/intersection of interposer links, make
the approach of EIRs challenging (but also interesting). In
the next section, we present a design example that integrates
N-Queen and Monte Carlo Tree Search methods to explore
this large design space and materialize the benefits of EIRs.

4. DESIGN EXAMPLE: EQUINOX

4.1 Overview
In this work, we have developed EquiNox as a case in

point to demonstrate the feasibility and effectiveness of the
proposed approach on using equivalent injection routers
(EIRs). EquiNox contains the right combination of several
design elements to meet the requirements of topologically
equivalent, architecturally efficient and physically viable EIR
designs. The scheme employs a N-Queen based cache bank
placement as the basis for selecting equivalent routers. Since
the solutions of N-Queen are not unique, a scoring policy
is developed to select the placement that minimizes network
congestion and maximizes EIR potential. The actual group
of EIRs is then selected by a carefully designed Monte Carlo
Tree Search (MCTS) method. The proposed MCTS balances
the number of EIRs and their capability in distributing the
injection traffic. It also helps to determine the locations
of EIRs by simultaneously reducing the number of needed
interposer links, the length of the links, and the number of
cross-points. Finally, a few low-cost but critical changes
are applied to the NI architecture to support the increased
injection flexibility that is offered by multiple equivalent
routers. The following subsections describe these design
elements in more detail.

4.2 Contention-aware CB Placement
As the basis of the EIR approach, we first present a last-level

cache-bank placement that is benign to equivalent injection
routers.

Hints from Existing Placements: Several popular CB
placements exist, such as Top, Side, Diagonal and Diamond
[21] that are originally proposed for the all-to-all traffic pattern
in many-core CPUs. We analyze these placement schemes
to obtain some hints for finding placements that are good for
the traffic patterns in throughput processors. To get a visual
intuition of the traffic situation under different placements,
Figure 4 draws the heat map of the average number of cycles
that a flit experiences when traveling through a router in the
reply network (where the injection traffic forms the few-to-
many traffic pattern). Each colored block denotes a router. A
brighter block means that flits spend more cycles in this router.
The scale is shown on the right, and the variance of cycles
among the routers is shown below each sub-figure. For the
Top and Side placements, it can be seen that there are severe
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delays that stress CB nodes and/or the nodes surrounding
them. This is due to the higher probability that reply packets
may encounter each other when CBs are placed at the same
row or the same column.
For the Diagonal or Diamond placements, since there are

no CBs at the same row/column, the traffic is more balanced,
as indicated from the significantly reduced variance values.
However, these two placements may cause intersection prob-
lems for EIRs due to diagonally neighboring CBs. Consider
the two adjacent CB nodes such as the two red-circled nodes
in the Diamond (or Diagonal) placement. If the upper CB
node has a horizontal (e.g., x-) interposer link connecting
an EIR and the lower CB has a vertical (e.g., y+) interposer
link connecting another EIR, the two links would inevitably
intersect with each other even if both links are only one-hop
long. This increases the number of RDLs and yielding cost.
In comparison, for the two yellow-circled nodes that are not
directly positioned diagonally, intersection can be avoided if
the lengths of interposer links are selected carefully. More-
over, neighboring diagonal CBs also increase the contention
of injection traffic, which could be mitigated if they are not
positioned diagonally.

N-Queen Based Placement: The above analysis prompts
us to find a CB placement that minimizes the alignment of CBs
in the same row, column or diagonal, so as to reduce traffic
contention and be friendly with interposer wiring. These
considerations lead us to utilize the N-Queen algorithm that
is originally proposed to place N queens on a chessboard
where no two queens can capture each other. If used for
placing the CBs, such placement ensures that there is only
one CB node in a row or a column and there are no CB
nodes in diagonal (whether neighboring or not). An example
is shown in Figure 4 where the placement is very effective,
with a variance of only 0.54. This is 35.7% lower than the
Diamond placement and 96.7% lower than the Top placement.
Moreover, the fact that only one CB node is on any diagonal
in the N-Queen placement also decreases the probability of
having wire intersection. This increases the flexibility of
selecting equivalent injection routers.

Scoring Policy: The N-Queen algorithm does not generate
a unique solution. Many N-Queen placements exist, and they
may have different impact on traffic congestion. To assess
different placements quantitatively, we introduce a concept
of hot zone. The hot zone of a CB node is defined as the 8
nodes that surround the CB node, as illustrated in Figure 5.
In particular, the 4 nodes that are connected directly with a
CB node are called Direct Access Zones (DAZs). DAZs are
very congested as any injected packet is forwarded through
DAZs as the first hop. The other 4 nodes at the four corners

are called Corner Access Zones (CAZs). Packets have a high
probability of being forwarded to CAZs as the second hop. If
there is an overlap between the DAZ hot zone of a CB node
with the CAZ hot zone another CB node, traffic congestion
is greatly exacerbated. Therefore, hot zone overlaps can be
used as a metric to assess the quality of N-Queen placements.
It is worth pointing out that, in N-Queen placement, it is not
possible to have DAZ-DAZ or CAZ-CAZ overlaps, which is
another reason why N-Queen is a good placement strategy.

The following scoring policy is introduced. Under a given
placement, we calculate a penalty score for each node (tile)
in the network, and the summation of the penalty scores of
all the nodes is the final penalty score of that placement.
Among the four direct neighbors of a node, if m of them are
hot zone overlaps, the penalty score of this node is

∑m
1 . We

use this policy rather than simply adding m points, to reflect
the compounded delay by multiple hot zone overlaps. For
example, in Figure 5, to calculate the penalty score of the
red node, we notice that two of its direct neighbors (light
yellow nodes) are hot zone overlaps, so the penalty score
of the red node is 1+2=3. Note that the node above the red
node is a DAZ but is not a hot zone overlap; whereas the two
yellow nodes are DAZ-CAZ overlaps. In case of an 8 × 8
network, there are 92 different N-Queen placements. The one
with the lowest score is chosen, as shown in Figure 5. For
larger networks, a similar procedure is followed to generate a
number of N-Queen placements, and the least penalized one
is selected.

4.3 Selecting EIRs with MCTS
After the CB placement is decided by the above N-Queen

and scoring policy, the next step is to select the EIRs. Two
observations can be used to simplify the complexity of the
selection. First, for a given CB, it is better to distribute EIRs
on different directions from the CB, as two EIRs on the same
direction would cause contention in that direction. Second,
it is better to place EIRs within a few hops from a CB to
avoid using long interposer wires and to reduce intersection.
However, the design space after these simplifications is still
quite large. In the example of an 8 × 8 network, there are
1.7 × 1010 possible combinations of EIR selections, even if
we limit EIRs to be within 3 hops of the corresponding CB
node. Therefore, a systematic search approach is needed to
identify a good EIR selection. In this work, we develop a
search method based on Monte Carlo Tree Search (MCTS).
MCTS is a classic search algorithm in machine learning

[29] and has been recently employed to enhance the AI
algorithms in the game of Go, Shogi and StarCraft II [30, 31,
32] to search their huge solution spaces. We adopt MCTS
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due to the inherent similarity between placing EIRs in our
problem and placing stones in the game of Go. Other search
algorithms might work, such as genetic algorithm (GA) or
simulated annealing (SA), but likely at a lower efficiency
due to the additional mathematical transformation and less
effective problem representation. For example, to utilize GA,
a natural representation is to use a 64-bit gene for an 8 × 8
network, where each bit is either 0 or 1 to indicate if that node
is an EIR. This unnecessarily expands the problem space to

264 (or 1.8× 1019) and introduces numerous invalid solutions
during crossover and mutation operations. Similar issue on
problem formulation exists in SA as well.
Our proposed searchmethod follows a typicalMCTS,with a

few customization and optimizations specific to EIR selection.
The search process builds a search tree iteratively. Each
iteration consists of four steps, namely selection, expansion,
simulation and backpropagation, as shown in Figure 6.
(1) Selection: Search starts from the root node (e.g., an
empty state with no EIR selected) and recursively selects
a child node until reaching a current leaf node (e.g., a few
EIRs added from previous iterations). This step selects a
promising path from the current search tree, so the path
can be expanded in the following steps. The selection is
based on an Upper Confidence Bound (UCB) formula2 that
balances exploitation, which maximizes the rewards from
known nodes, and exploration, which explores unknown nodes
for potentially higher rewards [33].
(2) Expansion: Assuming the above leaf node is not a termi-
nating node (e.g., last EIR added), this step randomly chooses
a possible successive state (e.g., add another EIR or a group
of EIRs), attaches to the leaf node, and expands the tree by
one level.
(3) Simulation: Possible outcomes following the expansion
are “simulated” by performing a rollout policy. In case of the
Go game, this step means that multiple moves are performed
speculatively if the current move is indeed made. Similarly,
additional EIRs are selected speculatively (but not actually
selected).
(4) Backpropagation: An evaluation function estimates the
value of the rollout based on a set of defined rules and grading
policy. The evaluation score is then backpropagated to all

2Defined as vi + C ×
√

lnN/ni , where vi is the estimated value of
the chosen child, ni is its total number of visits, and N is the total
number of visits of its parent node. C is a balancing parameter.

Expansion
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Backpropagation

Score

Score

Score

Score

Figure 6: Four primary stages of MCTS.

the nodes on the path, starting from the expanded node to the
root node. The score is accumulated to the existing scores of
those nodes.
At the end of the first iteration, the level-1 child node of the

root with the highest accumulative score is considered as near-
optimal, and the corresponding EIR selection represented by
that node is added to the final EIR selection. This information
is carried over to the second iteration as part of the new root
state. The second iteration finalizes the EIR selection of a
level-2 child (with the highest accumulative score) of the root,
and so on so forth, until the EIRs of all the CBs are selected.
The above search process adds EIR one by one. While this

is correct, during implementation we observe that the search
tree can be as deep as 24 levels for an 8 × 8 network and even
deeper for larger networks. This reduces search efficiency
significantly. To address this issue, instead of adding EIR one
at a time, we add EIRs group by group. Specifically, each
node expansion adds the selection of all the EIRs belonging
to a CB node. Therefore, the tree depth equals exactly the
number of CB nodes, which is usually limited in a processor.
An important component of MCTS is the evaluation func-

tion in backpropagation. We integrate four metrics in the
evaluation function to reflect the considerations on EIR ef-
ficacy and physical viability: (minimizing) the max of EIR
traffic load, average hop count, number of intersection points,
and link length. The first metric estimates the total amount of
traffic that each EIR needs to handle for all the PE nodes, and
the objective is to minimize the maximum one across all the
EIRs. This metric helps to balance traffic load among EIRs to
avoid hotspots. This is particularly useful as some CB nodes
may have fewer EIRs, e.g., due to the consideration of avoid-
ing intersection or simply due to boundary constraints. The
second metric uses average hop count to approximate packet
latency. The third and fourth metrics consider the physical
constraints of RDLs in the interposer. All the four metrics
can be easily calculated under a specific EIR selection and
CB placement, assuming each PE has relatively similar traffic
load. Owing to this, metric calculations can be performed
quickly in each backpropagation step to guide the search
process; whereas detailed full system simulations with actual
workloads are conducted later only for EIR selections that
are found to be promising by MCTS. The evaluation function
sums the four metrics (after normalization). Lower function
values indicate better EIR selections.
We implement the above MCTSmodel in Python 3.7.3 [34]

and execute on an x86_64 Linux server, equipped with an
Intel E5-2630v3 32-core processor and 64GB memory. The
search process turns out to be quite efficient. For instance,
for an 8 × 8 network, MCTS can stabilize to a near-optimal
EIR selection in less than 10 hours by assessing only 0.047%
of the entire solution space. Figure 7 shows the best design
found by MCTS in this case. EIRs with the same color
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Figure 7: EquiNox in case of an 8x8 NoC. Blocks with the
same color belong to the same CB group.

belong to the same group of a CB (in MCTS, we do not
allow an EIR to be shared with more than one CB). While the
search process is carried out without human intervention, it is
interesting to see that MCTS seems to be able to “synthesize”
several design attributes of good EIR selections. First, as can
be seen, all the EIRs are placed exactly 2 hops away from
each CB, despite the up to 3-hop flexibility in the constraint.
Closer examination verifies that 2-hop away EIRs bypass
both DAZ and CAZ hot zones surrounding the corresponding
CB node. Second, intersection is completely avoided, thus
requiring minimally only one RDL in the silicon interposer.
Furthermore, interposer links with 2-hop length can be fit
into one clock cycle, thus avoiding the use of repeaters and
active interposers. Note that those 2-hop links are routed in
the interposer, so they do not interfere with the placement of
regular links in the processor die.
As the network size increases, one might think that EIRs

located multiple hops away from CBs are more efficient.
However, the 2-hop away EIRs actually work very well for
larger networks. First, the number of routers to distribute
the injected packets increases geometrically as the packets
are forwarded further into a network (e.g., 4 routers after
the first hop, 16 routers after the second hop, etc.). Thus,
for larger networks, the bottleneck is still at the region close
to injection points. Second, we have observed that, the
contention delay from injection quickly drops after one or
two hops after the injection points, regardless of the network
sizes. Therefore, using interposer links to bypass the first two
hops are sufficient to avoid injection contention even in large
networks. For extremely large networks, if the need arises, it
is possible to use slightly longer interposer links (e.g., 3-hop
links). Intersection can still be avoided as those networks
provide more space to place non-intersected links. However,
as we show later in the Evaluation section, two hops are more
than enough even for 16 × 16.

4.4 Modifications to Microarchitecture
To implement EquiNox, some modifications are needed

to the architecture. In the original NI structure, an injected
packet from the last-level cache bank is serialized by the NI
core logic and then stored in a packet injection buffer. This
buffer directly connects to the local CB-connected router.
The size of the buffer is usually a few packets, although

NI Core 
Logic

Buffer 
Selector Buffer

Buffer

Buffer

Buffer

Buffer

NI

To EIRs

To local router

Last 
Level 
Cache 
Bank

Figure 8: CB-connected NI architecture in EquiNox.

only one flit is sent to the connected router in a given cycle.
With the use of EIRs, the CB-connected NI needs to connect
to multiple equivalent injection routers. Consequently, the
NI structure needs to be modified, as depicted in Figure 8.
The main change is that the injection buffer is split to five
single-packet buffers, where four of them are connected to
the four EIRs that are two hops away through interposer, and
the remaining one is connected to the original local router.
To reduce design and verification effort, all the CB-connected
NIs use this architecture, even though some ports can be left
idle if there are fewer EIRs connected. Later in the evaluation
section, we configure the original NI to have one packet-sized
injection buffer and the modified NI to have five packet-sized
injection buffers to appropriately account for the overhead.
In addition, a de-multiplexer is inserted to switch injected
packets to different injection buffers, and a buffer selection
signal is generated by the Buffer Selector when the NI core
logic is processing a packet.

To avoid detouring, injected packets are only allowed to use
the EIRs on the shortest paths (or the local router which is also
on the shortest path), even though other EIRs might have less
traffic. This is fulfilled by the Buffer Selector. Specifically, the
relative position of a packet’s destination (xd, yd) with regard
to its source (xs, ys) is first generated. Based on the relative
position (∆x,∆y), there are 8 possible relative directions, of
which 4 are right on the axis (either ∆x or ∆y is 0) and 4 are
inside the four quadrants. If a destination is on an axis, there
is one and only one EIR that is on the shortest path, and that
EIR is selected. If the destination is inside one of the four
quadrants, there are up to two shortest-path EIRs exist (except
for boundary cases). In this scenario, round-robin is used to
select the EIR. In either case, if the buffer that connects to the
to-be selected EIR(s) is not available, the packet is injected
into the local CB-connected router. Detailed selection policy
is presented in Buffer Selection 1. Note that it is not possible
for both ∆x and ∆y to be 0 as MC nodes do not send packets
to themselves.

While not shown in Figure 8, the EIR on the receiving side
needs to accept injected packets from the split NI injection
buffer. Therefore, one input port is added to the EIR. Note that
this is needed only for routers that are selected as EIRs and
only for the reply network, while routers in the request network
is unchanged. Some EIRs are located on the boundary, so an
unused input port might already be available, if the boundary
routers use the same router template as the non-boundary
ones (to reduce verification cost). Either way, the amortized
overhead is only a few percent and much better than existing
alternatives to mitigate the injection bottleneck, as presented
in Section 6.
Deadlock freedom is a related critical issue that should
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Buffer Selection 1: Buffer Decision Policy
if ∆x == 0 or ∆y == 0 then

if the buffer is available then
Inject to the buffer associated with the node on
destination direction

else if local buffer is available then
Inject to the local buffer

else
Retry next cycle

else if ∆x ! = 0 and ∆y ! = 0 then
if 2 buffers are available then

Choose 1 buffer in round-robin fashion
else if 1 buffer is available then

Inject the packet to the buffer
else if local buffer is available then

Inject to the local buffer
else

Retry next cycle
else

Error

be discussed. First of all, EIRs do not affect existing virtual
channel (VC) allocation. Packets that are injected from an NI
to an EIR use the same VC allocation policy as if the packets
are injected to the local router. Also, without detouring, the
addition of EIRs do not change the routing policy in the
original network. Therefore, if the channel dependence graph
of the original network is acyclic, the EIRs do not introduce
new cycles and are free from routing-induced deadlocks.
Regarding protocol-introduced deadlock, since the request
and reply packets are routed through two physical networks,
there is no dependence at the endpoints and no protocol-
introduced deadlock either. Thus, EquiNox is deadlock-free.

To summarize, with the combination of a N-Queen based
CB placement, a set of carefully placed equivalent injection
routers determined by MCTS, and the needed microarchi-
tecture modifications to enable correct and deadlock-free
operations, the proposed Equnix effectively removes the in-
jection bottleneck and utilizes interposer wiring resources. In
the following sections, EquiNox is evaluated quantitatively.

5. EVALUATION METHODOLOGY
The proposed EquiNox design is evaluated using a com-

bination of architecture and RTL level simulators. Due to
the lack of a comprehensive cycle-accurate simulator that
models HBM and interposer, we have developed an integrated
simulation environment by combining and heavily modify-
ing BookSim 2.0 [35], GPGPUSim 3.2.3 [1] and Ramulator
[36]. The NoC simulation is performed by the cycle-accurate
simulator BookSim 2.0 that includes all the on-chip network
resources (e.g., links, routers, network interfaces). We inte-
grate Ramulator with GPGPUSim to enable HBM simulation.
The simulated HBM contains 8 chips, each having 4 stacks.
There are 64 TSV IOs per channel and 16 channels per chip,
totaling 1024 IOs for each chip. The physical layer PHY
that has 8 channels and locates on top of each memory stack
[37] is also simulated as the interface between HBM and
memory controllers. The area and power consumption of

Table 1: Key Parameters in Simulation.
Parameter Value
Network size 8x8, 12x12, 16x16
Network routing Minimum adaptive
Virtual channel 2/port, 1 pkt/VC
Allocator Separable input first
PE frequency 1126MHz
Shared memory / PE 48KB
L1 cache / PE 16KB
L2 cache (LLC) per bank 2MB
# of LLC banks 8
HBM bandwidth 256GB/s per stack
# of Memory dies / stack 4
Memory controllers 8, FR-FCFS

NoCs are based on DSENT [38] which is extensible to simu-
late novel components of NoCs. Following the methodology
of prior works on interposer [14, 39, 40], we modify and
extend DSENT to model interposer links. To evaluate area
overhead more accurately, we use Verilog HDL to implement
the RTL of new components in EquiNox that are not modeled
in DSENT. A standard VLSI design flow is followed that
employs Design Compiler for logic synthesis using 28nm
process technology [41]. Table 1 lists the key configuration
parameters. A 8 × 8 Mesh NoC is assumed for the main
simulations, and 12× 12 and 16× 16 NoCs are also simulated
for scalability study. A wide range of 29 benchmarks from
Rodinia [42] and Nvidia CUDA SDK [43] are executed to
evaluate the performance of different proposed schemes.
We compare the following seven schemes. In particular,

schemes (1), (2) and (3) are based on the single network
type where the request and reply networks share the same
physical network. Schemes (4), (5), (6) and (7) are based
on the separate network type where the request and reply
networks have separate physical networks. In both types, we
include a baseline, one or two recent but conventional (no
interposer) schemes, and an interposer-based design. Below
are the details.
(1) SingleBase: baseline for the single network type with
Diamond placement and minimal adaptive routing.
(2) VC-Mono [4]: a recent scheme that increases network
throughput by allocating all the VCs (monopolization) to
either request or reply traffic if only one of them is present.
(3) Interposer-CMesh [14]: a state-of-the-art scheme for
many-core CPU NoCs that introduces an additional CMesh
network whose links are in the interposer.
(4) SeparateBase: baseline for the separate network type
with Diamond CB placement and minimal adaptive routing.
(5) DA2Mesh [5]: a recent scheme that splits the reply
network into eight narrow subnets with 1/8 flit size; the
network frequency is set to 2.5X of the baseline in [5].
(6) MultiPort [2]: a scheme that uses multiple injection (and
ejections) ports for all CB-connected routers to mitigate the
reply injection bottleneck.
(7) EquiNox: the proposed scheme with N-Queen placement
and MCTS-selected EIRs, as described in Section 4.

6. RESULTS AND ANALYSIS
This section presents the detailed evaluation results. As

single network schemes and separate network schemes have
very different performance-energy characteristics, we thereby
juxtapose execution time and energy consumption with ener-
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Figure 9: Comparison of Execution time, energy and energy-delay product (EDP).

gy-delay product (EDP) to reflect the trade-off more accu-
rately.

6.1 Effect on Performance
Figure 8(a) plots the execution time for the seven schemes,

normalized to SingleBase. VC-Mono reduces the execution
time by 3.6% on average, although large reduction is ob-
served in some benchmarks (e.g., 13.1% in kmeans) because
of better utilization of virtual channels via monopolization.
However, these two conventional single network schemes (Sin-
gleBase and VC-Mono) do not provide additional bandwidth
to mitigate the reply injection bottleneck and thus have lower
performance than other schemes. The third single network
scheme, Interposer-CMesh, achieves 37.9% execution time
reduction compared with SingleBase. This is mainly due
to the use of an extra network formed by interposer links in
the RDLs. The separate network schemes perform notice-
ably better than the single network schemes in general, as
the separate network schemes provide a dedicated network
for the reply traffic, thus having more injection bandwidth.
DA2Mesh obtains sizable reduction in execution time for
heartwall, kmeans, monteCarlo and particlefilter, whereas

MultiPort has larger improvement for fastWalshTrans, scan
and sortingNetworks. However, the two schemes do not seem
to perform much better than the SeparateBase when averaged
over all the benchmarks. For DA2Mesh, this is due to the
high packet serialization latency from its narrow subnetwork
links3. For MultiPort, although multiple ports widens the
injection bandwidth at CB-connected routers, the injected
traffic cannot be quickly transferred out, due to the traffic con-
tention in the hot zone surrounding CB nodes. It is interesting
to see that the three conventional separate network schemes
(SeparateBase, DA2Mesh and MultiPort) have slightly lower
performance than Interposer-CMesh. This shows that it is
beneficial to exploit interposer links. Finally, the proposed
EquiNox reduces execution time by 47.7% compared with Sin-
gleBase and by 23.5% compared with SeperateBase, which
is the largest reduction among all the schemes. In particular,
EquiNox performs much better than Interposer-CMesh as
EquiNox specifically addresses the injection bottleneck that

3The improvement of DA2Mesh is smaller here than what is reported
in [5] due to differences in benchmarks and settings. As verification,
our implemented DA2Mesh performs similarly as in the original
paper if those factors are the same.
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is unique to throughput processors.

6.2 Effect on Energy
Figure 8(b) compares NoC energy consumption. As can

be seen, the three conventional separate network schemes
(SeparateBase, DA2Mesh and MultiPort) have the highest
energy due to the overhead of two physical networks. While
being a separate network scheme, EquiNox has low energy
consumption because of small power overhead and large
reduction in execution time. On average, EquiNox achieves
15.0% less NoC energy than SingleBase and 18.9% less than
SeparateBase.

6.3 Effect on Energy-Delay Product
Figure 8(c) examines the normalized EDP of the compared

schemes. The conventional single network schemes (Sin-
gleBase and VC-Mono) have higher EDP than the separate
network schemes, as single network schemes have higher
execution time but similar energy consumption. However,
Interposer-CMesh that exploits the interposer layer is able to
reduce the EDP by 44.7% compared with SingleBase, and
achieves 26.4% and 21.0% less EDP when compared with
DA2Mesh and MultiPort, respectively. The results indicate
that the interposer-based designs are useful in exploiting the
interposer opportunity to achieve better performance-energy
trade-off. The proposed EquiNox is able to reduce EDP by
55.0% when compared with SingleBase and by 32.8% com-
pared with SeparateBase. These large improvement further
supports the observation that interposer-based designs are
promising for high-performance and energy-efficiency. In
addition, the EDP of EquiNox is 18.2% lower than Interposer-
CMesh, if compared relatively. This demonstrates the need
for optimizing the use of interpose links for specific traffic
behaviors in throughput processors.

6.4 Reduction of Packet Latency
To gain more insights on why EquiNox is able to achieve

a large performance improvement, Figure 10 plots the NoC
packet latency, breaking down into queuing and non-queuing
parts for both request and reply latency. The scheme bars
follow the same order as Figure 9 from left to right. Because
DA2Mesh has a different NoC frequency, all the results
are converted to nanosecond (ns) and then normalized to
SingleBase to provide an accurate and fair comparison. Due to
normalization, for benchmarks such as gaussian and myocyte,
the bars do not indicate that their non-queuing latency is

high; they just mean that most of the latency is from the
non-queuing part.

On average, the figure shows that request latency is consid-
erably higher than reply latency. This might be non-intuitive
since the bottleneck is at the reply injection point. However,
this is correct because the congestion at reply injection cre-
ates a backpressure that is propagated to the request network.
Analogous to the classic parking lot problem with a congested
exit point, the cars that are the farthest from the exit expe-
rience the longest waiting time. Similarly, packets in the
request network experience longer NoC latency even though
the actual congestion occurs in the reply injection. This trend
is consistent with prior observations [2, 4, 5, 7].

Overall, the single network schemes have relatively higher
packet latency. This is expected due to the traffic contention
betweenmixed request and heavy reply traffic. With interposer
links, Interposer-CMesh reduces packet latency by 35.6%.
SeparateBase and MultiPort have similar reduction in packet
latency, with 33.1% and 40.2% on average, respectively.
The highest average packet latency is observed in DA2Mesh.
Further inspection shows that this is mainly caused by a
much higher serialization latency. For the proposed EquiNox,
it has the lowest reply packet latency as the use of EIRs
addresses the bottleneck at the reply injection. It can be
seen that the queuing part of the request latency is reduced
significantly in EquiNox, due to the backpressure explained
above. Compared with SingleBase, EquiNox greatly reduces
the request, reply and total packet latency by 44.6%, 40.6%
and 45.8%, respectively.

6.5 NoC Area
We have also assessed the area cost of various schemes,

plotted in Figure 11. As expected, conventional single network
schemes have lower area than separate network schemes. The
only exception is Interposer-CMesh, which has an extra
concentrated mesh network with 16 routers (links are in the
interposer but not the routers). Moreover, these routers have
2xmore ports than a basic router because of the need to handle
both concentrated traffic and inherent CMesh traffic. This
contributes to a higher NoC area for Interposer-CMesh. On
the separate network schemes side, DA2Mesh has lower area
due to the narrower and simpler routers, whereas MultiPort
and EquiNox have higher area than SeparateBase due to
the use of extra ports. In particular, with the additional
components such as added buffers in NIs and added input
ports in EIRs, the proposed EquiNox consumes 4.6% more
die area than SeparateBase.
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6.6 Comparison of µbumps Area
This subsection compares the µbumps area for Inter-poser-

CMesh and EquiNox. To support the additional concentrated
mesh network, Interposer-CMesh needs 128 uni-directional
links between the processor die and interposer, with 256 bits
for each link. This leads to a total of 32,768 µbumps for
physical and electrical connectivity in Interposer-CMesh. In
contrast, the proposed EquiNox has 24 uni-directional 128-
bit links and two µbumps for each wire (from the process
die to interposer and back to the processor die), resulting
in 6,144 µbumps. The µbumps overhead is significantly
reduced in EquiNox by 81.25%. The large saving comes
from the fact that EquiNox utilizes the M2F2M traffic pattern
and strategically places only a few EIRs. Note that neither
schemes has intersection of interposer links, so one RDL is
sufficient in both schemes.

6.7 Scalability
As analyzed in Section 4.3, the proposed scheme is expected

to work well with larger network sizes. To verify this, we
follow the same design flow of N-Queen and MCTS for 8 × 8
to generate EquiNox versions for 12×12 and 16×16 networks.
As compared in Figure 12, the performance improvement
(average IPC) is 1.31x in 12×12, and 1.30x in 16×16, both of
which are greater than the 1.23x in 8×8. Larger networks may
have more serious injection bottleneck issue, so the impact
of EquiNox becomes greater. These results demonstrate the
excellent scalability of EquiNox.

6.8 Discussion
One potential issue is how to deal with the number of CBs

that is greater than N . Apparently, there will be more than one
CBs on at least one row, column or diagonal. Due to space
constraint, we state here without providing proof that, if the
number of CBs is greater than N in a N ∗ N layout, placing
CBs following the knight-move shape in chess can lead to
the lowest occurrence where two CBs are on the same row,
column or diagonal. The scoring policy is still applicable
except that hot zone overlaps may be between DAZ-DAZ and
CAZ-CAZ. The remaining steps are the same as Section 4.2.
If the number of CBs is less than N , the redundant CBs

from the N-Queen solution can be randomly deleted, and the
scoring policy can be used to select the (near) optimal one.

7. RELATED WORK
Bakhoda et al. observe the M2F2M traffic pattern and

propose a scheme specifically for this pattern [2]. Some
works propose to split a reply network into several reply

subnetworks physically [5, 7] or even in time division fashion
[6] to gain a higher injection rate for the reply network. Jang
et al. propose VC-Monopolization design for single network
NoC system in GPGPUs, which improves VC utilization and
network throughput. These works have been compared in
Section 6. The design space in interposer-based 2.5D sys-
tem is exploited for NoCs to build energy-efficent NoCs for
many-core CPUs [14, 26]. In [14], some general cases of
designing energy-efficient NoC are explored. In [26], an effi-
cient design of NoCs in chiplet interposer-based CMP systems
is proposed. However, those designs have limited effective-
ness when adopted directly to interposer-based throughput
processors due to significantly different traffic patterns.
Express links have been proposed for both off-chip (e.g.,

Express Cube [44]) and on-chip networks (e.g., Flattened
Butterfly [45] and MECS [46]). Those topologies typically
use an extensive number of express links, which are redundant
in throughput processors due to minimal inter-PE traffic.
Another approach to mitigate the impact of the injection

bottleneck is to compress reply packets to smaller packets,
and unzip after after they are injected [47]. Also, it is
possible to alleviate injection bottleneck by employing near-
data processing in interposer-based systems [39]. With near
memory computing nodes in memory stacks, the reply traffic
that needs to travel through the reply network is reduced.
These two schemes are largely orthogonal and complementary
to the our proposed EquiNox. Additionally, Ziabari et al.
propose an asymmetric network design in the request and
reply network where unnecessary links are removed to exploit
memory traffic characteristics in GPUs [3]. Zhao et al. design
a Heterogeneous Ring-Chain network (HRCnet) for the reply
network which provides lower area and power consumption
and reduces packet conflicts with a ring-based topology [8].
While these works are effective in their targeted contexts, they
do not consider interpose-related characteristics.

8. CONCLUSION
Current and future interposer-based throughput proces-

sors require high-throughput NoC to support dramatically
improved memory bandwidth. However, the wiring resources
in the interposer layer have been largely neglected in the
past for throughput processors. In this work, we propose a
novel concept of Equivalent Injection Routers that solve the
injection bottleneck by transforming the traffic pattern from
few-to-many to many-to-many. A specific design example,
EquiNox, is also proposed to demonstrate how the EIRs can
be selected effectively by considering factors from topology,
architecture and physical implementation. Evaluation results
show significant improvement of EquiNox over prior schemes
in both single and separate network designs.
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