
SysGen: System State Corpus Generator
Ben Lenard

DePaul University
blenard@anl.gov

James Wagner
University of New Orleans
jay.wagner88@gmail.com

Alexander Rasin
DePaul University

arasin@cdm.depaul.edu

Jonathan Grier
Grier Forensics

jgrier@grierforensics.com

ABSTRACT
Security investigations often rely on forensic tools to deliver the nec-
essary supporting evidence. It is therefore imperative that forensic
tools are scientifically tested in both their accuracy and capabilities.
The primary means to develop and validate forensic tools is by
evaluating them against a set of known answers (i.e., a data corpus).
While researchers have long recognized the need for standardized
forensic corpora, there are few such tools or datasets available,
particularly for database management systems (DBMS). In fact,
there are currently no publicly available tools that can generate a
DBMS dataset for forensic testing. In this paper, we share SysGen,
a customizeable data generator and a pre-built corpus that offers a
reference for most major relational DBMSes. The pre-built corpus
includes individual DBMS files, the full disk snapshot, the RAM
snapshot, and network packets taken from a set of clean virtual
machines. SysGen can be easily adapted to execute a custom work-
load scenario, capturing a new data corpus; it can also create other
variations of full system snapshots, even beyond DBMS testing.

KEYWORDS
Dataset generator, forensic benchmark, forensic tool testing
ACM Reference Format:
Ben Lenard, James Wagner, Alexander Rasin, and Jonathan Grier. 2020.
SysGen: System State Corpus Generator. In The 15th International Conference
on Availability, Reliability and Security (ARES 2020), August 25–28, 2020,
Virtual Event, Ireland. ACM, New York, NY, USA, 6 pages. https://doi.org/
10.1145/3407023.3409202

1 INTRODUCTION
Forensic and security software suites seek to prevent and detect
cyberattacks by employing methods such as file carving, malware
signature identification, and intrusion detection. These tools require
extensive testing to assess the accuracy of their reports for mission-
critical environments (e.g., a criminal trial), provide insight into
deployment configurations, and evaluate their capabilities to detect
and interpret cutting-edge threats. Current efforts to test these tools
are disconnected and disorganized; testing is based on procedures
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ARES 2020, August 25–28, 2020, Virtual Event, Ireland
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8833-7/20/08. . . $15.00
https://doi.org/10.1145/3407023.3409202

defined by individual organizations (or researchers), and performed
internally on the basis of in-house datasets.

Universal and standardized testing protocols are hindered by
the lack of data corpora. A major requirement for such standard-
ized data corpora is that the entire system state must be captured;
copying individual files is often insufficient for comprehensive
testing. Specifically, this paper considers database management
systems (DBMS). A corpus consisting of DBMS data files is not
complete because a DBMS is a complex system consisting of many
data files, system metadata describing the data files, transaction
logs, audit logs, and backup files. Furthermore, DBMS system state
elements also reside in RAM (e.g., modified data not yet written
to disk), on the disk image outside of DBMS storage (e.g., deleted
DBMS storage released back to the operating system), and in net-
work traffic data.

In this paper, we created and published SysGen, a data cor-
pus generator that easily adapts to incorporate a wide variety of
datasets and simulates user-specified workloads. The initial ver-
sion of SysGen focuses on a representative data corpus for DBMS
forensic and security analysis, but the overall SysGen framework
can easily be customized to create other datasets. For a fully con-
trolled environment where tools are instrumented easily, SysGen
uses VMware virtual machines for each data generation sequence.
VMware instances allowed us to accurately capture the entire sys-
tem state (i.e., RAM, disk image, and network traffic). Moreover,
blank, dedicated VMware instances ensure that the captured snap-
shots are not contaminated by external data (our data loading pro-
cess is tailored to exclude input data files from the captured VM).

SysGen includes a representative dataset and models a workload
scenario for several major and widely used DBMSes.We created and
executed the scenario on the basis of a recognized benchmark from
the database community – Star Schema Benchmark or SSBM [10].
The data tables were further extended to provide a better cover-
age of different data types (e.g., TIMESTAMP, VARCHAR(4000)). Figure 1
summarizes the process. SysGen loads data into a DBMS using a
remote client VM, to ensure that the input file does not contam-
inate the snapshots. Our query workload was modeled based on
what [6] found to be representative of real-world DBMS workloads.
We created random query predicates and composed the workload
from read (SELECT) and write (INSERT, DELETE, UPDATE) SQL queries
based on the distribution in [6]. Although testing should use both
real and synthetic data, the advantage of synthetic data is that each
forensic artifact was generated by our workload. In fact, real data
has its own challenges because it may be difficult to know precisely
what the dataset contains (i.e., the ground truth is unknown).

The main contributions of this paper are:
1

https://doi.org/10.1145/3407023.3409202
https://doi.org/10.1145/3407023.3409202
https://doi.org/10.1145/3407023.3409202

ARES 2020, August 25–28, 2020, Virtual Event, Ireland Lenard et al.

Host Computer

VM Client

VM Server

Configure SQL
workloads

Configure:
• VM size
• DBMS settings
• Capture settings

Execute SQL workloads

Capture:
• Disk snapshot
• RAM snapshot
• Network traffic
• User-specified
 additional files

Figure 1: SysGen architecture.

• A data corpus generator, SysGen, that initializes a VM server
with a pre-installed DBMS and 1) cleanly (i.e., from a second
independent VM) executes a series of database queries, and
2) captures the entire resulting state of the virtual machine
(RAM, network traffic, disk snapshot, and custom individual
files) before and after each query sequence.

• A corresponding dataset based on a well-known database
benchmark that was extended to include additional data
types for better coverage (e.g., Character Large Object or
CLOB) and a real-world representative SQL query workload.

• A resulting data corpus for several DBMSes (MySQL, Oracle,
SQLite, DB2, and PostgreSQL) generated using our workload.

We share the data corpus as well as the scripts, data, VM setup
files, SQL statements, and all generated artifacts for the community
to utilize. These artifacts are available at http://dbgroup.cdm.depaul.
edu/SysGen/. The data corpora will be maintained and extended
as future work for this project. In fact, we envision other uses
for SysGen, including non-DBMS corpus generation and timeline
database corpus (i.e., series of snapshots representing the evolution
of a single VM through a series of workloads). Currently, all artifacts
are generated on a Linux platform; however, we will expand SysGen
to support Windows and Macintosh in our subsequent releases (see
Section 6).

The rest of the paper is organized as follows: Section 2 pro-
vides work related to SysGen and data corpora; Section 3 presents
the SysGen and the data corpus requirements; Section 4 describes
the SysGen generation process and output; Section 5 presents de-
tailed steps for automating and scaling to multi-machine and multi-
platform deployment. Finally, Section 6 describes future directions
for SysGen and our data corpora maintenance goals.

2 RELATEDWORK
Data corpus properties. Data corpora and generators research

focused specifically on the desired properties, modalities, expec-
tations, and comparative advantages of different data generation
approaches. Garfinkel [3] lists seven requirements to define the
quality of a digital corpus. Representative of the real-world data
to be encountered. Complex with information from many sources.
A wide variety of data should be included. Heterogeneous us-
ing a range of computer systems and usage patterns. Annotated

allowing for new tools to be validated against existing ones. Dis-
tributed in open file formats. Tools should be able to easily access
the data. Available to researchers in an unclassified environment.
Maintained to reflect constantly changing and evolving computer
systems and cybersecurity threats.

Garfinkel et al. [5] defined the major data corpus modalities:
1) disk images, 2) memory images, 3) network traffic, and 4) files.
Additionally, time sequence multi-modality data are important to
observe for the given subject during its operations. In other words, it
is useful for researchers and tools to have the stages of the subject’s
operational lifespan. Garfinkel et al. [5] emphasized the need for
digital forensic corpus so that the scientific process can be used to
evaluate different tools and algorithms against a known reference
set so for reproduceable results. Yannikos [19] also cites the need
for varied corpora that are multi-modal since the current corpora
are domain and area specific such as files, network or memory only.

One of the key characteristics highlighted in [3] and [4] is the
maintenance of the digital corpus since digital forensic tools need to
be continuously evaluated due to the rapidly evolving technology.
Similarly, the reference set corpus needs to be updated to support
the maintenance of the tool or techniques. SysGen ensures that our
process can be used to iteratively rebuild the dataset.

In [4], Garfinkel cited that over the years they encountered vari-
ous policy issues when working with sensitive data, ranging from
privacy issues to copyright issues to illegal content. Since SysGen
code is fully available by design, we will avoid such issues. Our
generated data corpus is partially available for download (for open-
source DBMSes that have no licensing constraints) and the rest can
be recreated using SysGen code and downloadable software (for
closed-source DBMSes such as Oracle).

Barse et al. [2] observed that data generationmethodology should
be representative of the desired behavior observed in a real-world
scenario. [2] used small amounts of authentic data to seed the gen-
eration of large amounts of data for testing. Similarly, we used a
sample of the SSBM queries to generate a large workload to be
executed against the database. Barse et al. used synthetic data in-
stead of real data due to benefits such as repeatably and control.
Hsu et al. [6] analyzed industry-specific workloads to obtain met-
rics for their usage patterns. We followed the findings in [6] to
create a representative generic workload observed across differ-
ent industries. The average logical read ratio across all industries
was 93.9%, with only 6.1% of the workload was performing INSERT,
DELETE, and UPDATE.

Data corpora. Database community used TPC-H and SSBM [1]
for a wide variety of DBMS performance research projects and
papers. SSBM [10] is a star schema database that has addressed
certain issues within the TPC-H schema; the SSBM schema was
built specifically to represent a typical data warehousing database.

SQLite is a popular DBMS for embedded systems and in recent
years it has gained popularity for internal use within applications.
Nemetz et al. [9] developed a forensic corpus for SQLite that en-
compasses seventy-seven different SQLite database instances. The
researchers followed [3, 5] principles to create the SQLite corpus
in terms of characteristics and data sensitivity. The SQLite forensic
corpus only focused on the SQLite DBMS, and only captured the
SQLite files. Alternatively, we also captured the RAM, entire disk,
and network packets, providing a multi-modal corpus.

2

http://dbgroup.cdm.depaul.edu/SysGen/
http://dbgroup.cdm.depaul.edu/SysGen/

SysGen: System State Corpus Generator ARES 2020, August 25–28, 2020, Virtual Event, Ireland

While SQLite is a common DBMS for many applications, there
are many other widely used DBMS vendors in the field (e.g., Oracle
or PostgreSQL) that are also subject to forensic investigation. For
example, Wagner et al. [16] studied forensic investigation of data
in eight different DBMS platforms (including SQLite).

Besides [9], we are not aware of any other DBMS corpora. Our
digital corpus falls into the category of a multi-modal corpus since
we preserve the memory, harddisk and network contents over time.
In the following section, we will discuss the corpus in relation to the
seven characteristics outlined by Garfinkel as well as the sensitivity
of the data in the generated corpus.

3 REQUIREMENTS
This section discusses the goal requirements for SysGen and our
data corpus, based on requirements in [3]:

Representative. Our workload and dataset was designed to rep-
resent a typical data warehouse environment. The workload was
generated based on queries from the SSBM benchmark; we gener-
ated an expanded workload consistent with values from the SSBM
dataset. As discussed earlier, we used a read, or SELECT, ratio of
93.9% in the workload generation based on observations in [6]. The
dataset was based on SSBM Scale Factor 4 which contains over
two million records (or ~2.5GB). SysGen can be easily configured to
execute any user-specified workload to create additional corpora
representative of other types of settings (e.g., a high-frequency
transaction or a single-user environments).

Complex. We augmented the complexity of the SSBM benchmark
to include data types not represented in the existing schema. The
SSBM schema primarily used VARCHAR and INTEGER; we modified it
to include CHAR, VARCHAR(4000), CLOB/LONGTEXT, FLOAT, DOUBLE, TIME,
DATETIME, and TIMESTAMP. Customer_Extended is a new table cre-
ated to represent these data types. Each column of the new table
(with the exception of c_custkey which is an integer) represents
a different data type not present in the original SSBM data. The
DBMS-specific types chosen to represent column data type for
each DBMS are summarized in Table 1. For the first corpus release,
we excluded other exotic data types such as BLOBs and embedded
code such as PL/SQL or SQL/PL. While the loaded data is synthetic,
the comprehensive sample of available DBMS data types and sizes
provides a wider coverage of DBMS forensic artifacts.

Heterogeneous. In addition to introducing complex data types and
generating a query workload representative of a data warehouse,
we used different DBMS platforms to make the corpus heteroge-
neous. SysGen automates evaluation of our benchmark against the
following DBMSes: MySQL / MariaDB 5.5, IBM DB2 (Express-C)
11.1.4.4, Oracle 19c, PostgreSQL 11, and SQLite3. For this release, all
client and server VMs used CentOS 7.6 x86_64 since it is a common
Linux distro within the enterprise. We considered data collection
on IBM Power in the first release, but we believe the results would
be similar other than the endianness change. Section 5 discusses
our plan to introduce IBM Power support in subsequent releases.

Annotated. The input data and control scripts included with
SysGen were named based on the function of the script and the
platform of the pertinent DBMS (please see Section 4.2). Similarly,
the output of SysGen capture and our pre-generated corpus are
annotated based the underlying script phase and DBMS platform

(please see Sections 4.3 and 4.4). We included all SQL statements,
data, and Bash scripts used to build the corpus as well as inline
documentation on how to configure these Bash scripts.

Available. SysGen code and the pre-built corpus are available at
http://dbgroup.cdm.depaul.edu/SysGen/. We utilized free or trial
versions of the DBMS software and CentOS. For SQLite, PostgreSQL,
and MySQL, we included the entire collection of output files gener-
ated by SysGen. For Oracle and DB2, we included detailed instruc-
tions to install and configure these (freely downloadable) DBMSes
on a clean VM and reproduce our results. Most importantly, ev-
erything in our data corpus can be easily recreated by running
included scripts. Naturally, that may result in some small variations
in the collected snapshots because data loading and query caching
in RAM are not deterministic processes.

Distributed. Since this is a multi-modal corpus, there are sev-
eral different files for each DBMS platform. We include the RAM
snapshots (.vmss), harddisk snapshots (.vmdk) in their raw form,
network packet capture in standard PCAP format, and additional
DBMS or SQL files in their respective native formats.

Maintained. The corpus is subject to versioning since we plan
on maintaining the corpus releases as the new software versions
are released. We also plan to expand data types (e.g., embedded
code such as PL/SQL), incorporate new workloads based on addi-
tional benchmarks, and other DBMSes and operating systems. Our
maintenance plan is briefly described in Section 6.

4 DESIGN
4.1 Virtual Machine Setup
Each VM server (see Figure 1) consisted of 8GB of RAM, 4 vCPUs,
1 vNIC, and a 25GB VMDK file; the VMDK file was partitioned into
a 350 MB boot partition, a 2GB swap partition, with the remaining
space allocated to the root partition. Standard partitioning was used,
not LVM, to simplify mounting the partitions out of the VMDK file
for subsequent file extraction. The boot and root partitions were for-
matted using EXT4. Since the Oracle install required approximately
6GB, the Oracle VM had a 35GB VMDK file instead of 25GB. All
VM servers had consistent kernel settings; FirewallD and SELinux
were disabled to avoid any complications. Each VM began with the
same default software packages; additional prerequisite packages
for each particular DBMS were installed for at the time of DBMS
installation. Where applicable, we enabled archivelogging, or the
write ahead log (WAL), in line with best practices (e.g., [11]).

Each VM client (see Figure 1) houses all of the DBMS client
libraries, SQL scripts, raw table data (i.e., CSV files), and DDL com-
mands to run against the VM server. Similar to the VM server, the
client runs CentOS 7.6 x86_64 with 2GB of RAM, 2 vCPUs, and a
similar hard disk configuration. The host machine (see Figure 1) had
32GB of RAM – enough RAM for both client and server VMs and
to prevent any type of swapping condition on the host. The host
machine runs the VMware hypervisor software, which executed
our VM control scripts (see Section 4.2), and captured network traf-
fic. N-Tier architecture and security often place the database server
on a host server so that if the web application were compromised
the DBMS data has a less of a chance of being compromised as well.
Thus it is very likely that a typical production DBMS will also be
deployed on top of VMware hypervisor software.

3

http://dbgroup.cdm.depaul.edu/SysGen/

ARES 2020, August 25–28, 2020, Virtual Event, Ireland Lenard et al.

Column Name MySQL DB2 Oracle PostgreSQL SQLite
C_Custkey Integer
C_Notes VARCHAR(4000)
C_Notes2 LongText CLOB Text
C_Discount Float Float(126) Float
C_Discount2 Double Float(126) Double Precision
C_Time Time VARCHAR(12) Time
C_Datetime Datetime Timestamp
C_TS Timestamp

Table 1: Customer_Extended table summarizing the approximate equivalent of each data type across different DBMSes.

4.2 SysGen inputs
Variations in data types across DBMS platforms presented its own
difficulties when loading data (even for simple data types). There-
fore, we provided a customized DDL of the SSBM schema, including
our extended table with the data types outlined in Table 1. We also
included the database creation scripts and, in Oracle’s case, the
response file where we create the tablespaces prior to loading the
SSBM schema. For DBMSes such as DB2, Oracle, and PostgreSQL,
we created a tablespace specifically for data and indexes; this is a
common practice (see [7, 12]).

Input data. The raw CSV data was loaded into each DBMS using
the native remote clients with the the exception of SQLite. Since
SQLite does not have a remote client we wrote our own and loaded
data via INSERT statements. On each VM server we deployed (and
included in our distribution) the following:

• ifcfg-ens33 – Static IP address.
• .ssh – folder with ssh keys.
• install_dbms – a script that installs each DBMS platform.
For DB2, the script creates a DB2 user; MySQL, Oracle, Post-
greSQL automatically add a user with the rpm installation.

• cache_settings – a folder with recommended DBMS cache
settings for each platform. In general, MySQL and Post-
greSQL require more manual configuration than Oracle and
DB2 which automatically manage memory allocation.

• Start[DBMS NAME].bsh – starts the DBMS. For SQLite, it
starts our custom python server application. For Oracle, it
sets required environment variables. (e.g., ORACLE_SID).

• Reboot.bsh – reboot the VM from the host machine.
On the VM client we deployed (and included in our distribution)

a folder [DBMS]-client-setup containing:
• SSBM_schema.sql – DBMS-specific DDL file since each
DBMS has slight differences in their SQL semantics.

• DropCreateDB.bsh and DropCreateDB.sql – written per
DBMS; for example, in MySQL one just has to issue “Drop
database bench; create database bench,” but in DB2 the script
contains 20+ lines for creating the database (e.g., DB2 re-
quires creating a backup after you create a database).

• raw_data – folder with SSBM and Customer_Extended data
in CSV format. INSERT statements were used for SQLite.

• control_files – only Oracle requires CTL files for SQLLDR.
• ssbmsql – a folder containing pairs of files, e.g., ssbm-
sql0.bsh and ssbmsql0.sql. The first file is a wrapper bash
script to execute the SQL workload with the DBMS-specific
client. The second file is the SQL query workload. Although

our current release executes and captures one workload,
SysGen already automatically executes multiple files in this
folder to capture a time series of snapshots.

For each DBMS we provide three host scripts, along with the
SSH keys to the host computer. The host computer executed the
following scripts via SSH remote commands:

• runTests-[DBMS]-clean.sh – initializes the DBMS.
• runTests-[DBMS]-load.sh – a script that runs a sequence
of steps for a DBMS load process.

• runTests-[DBMS]-run.sh – a script that runs a sequence
of steps to execute the workload against a DBMS. A set of
individual files and folders to be extracted from the root
partition of the harddisk can be specified in this script.

These scripts were also responsible for suspending and unsuspend-
ing the VM, and copying the files while the VM is suspended. See
Sections 4.3 and 4.4 for a detailed description.

SSBM Workload Generator. In order to have a workload gener-
ated to our specifications, we expanded on the [10] query set. We
include a python script to gather the unique values for SSBM data.
Our workload generator reads these CSV files and loads statistics
about unique values to generate the corresponding SQL queries. Our
python script is configured with the number of iterations, or runs,
to produce, as well as the number of select, insert, update, and delete
statements. The SSBM query set is limited to SELECT statements so
we created other types of operations from scratch. Insert generating
function increments last c_custkey by one, and generates a random
date inline with the other fields. For the update statements, we up-
date either Customer table or our new Customer_extended table,
with a random selection of 5 different update statements. For deletes,
we pick a random c_custkey value and delete customer’s records
from Lineorder, Customer, and Customer_extended tables.

4.3 Data corpus generation
SysGen has three components: clean, load, and run phases.

Clean phase. During the clean phase, runTests-[DBMS]-clean.sh
builds and automatically deploys client and server VMs with our
configuration settings. These settings include making the VMs net-
work interface a static IP, turning off FirewallD and SELinux, adding
our ssh keys for remote access, installing the DBMS software, and
creating the DBMS instance where applicable. This script also stores
snapshots of the clean phase to verify that disk and RAM contents
where clean prior to the load phase, and as a checkpoint in case we
need to rerun our data generation.

Load phase. Data loading is controlled by the host computer via
runTests-[DBMS]-load.sh. The only exception to this is starting

4

SysGen: System State Corpus Generator ARES 2020, August 25–28, 2020, Virtual Event, Ireland

the network sniffer, vmnet-sniffer, for packet capture; all network
traffic is captured on the virtual network between the client, server,
and host during the load phase. Similar to other network sniff-
ing tools, vmnet-sniffer utilizes the standard PCAP format so that
common network analysis tools can read these files. To minimize
complexity, we did not enable SSL traffic between the client and
VM so that network packets did not require decryption. After the
network sniffer was started, our script powers on the VM server
and waits 30 seconds before rebooting the VM. Rebooting the VM
ensures that its memory contents are clean. Once the VM is re-
booted, the automation script starts the DBMS, where applicable,
then drops and re-creates the database for loading. In Oracle, the
script drops and re-creates the tablespaces and users to re-create
the database. Our script loads the data using the corresponding
DBMS client tool: SQLLDR for Oracle, Import for DB2, Infile for
Mysql, Copy for Postgress, and a custom process for SQLite.

Since SQLite does not offer a remote client, or library, for SQL
execution over TCP/IP, we built a simple one allowing us to stream
data from the client VM to the server VM and receive responses. We
use our client to execute INSERT statements during the load phase
and query workload during the run phase. This prevents the VM
from being contaminated with the raw data or queries.

Once the load process is completed, our script suspends the VM;
suspending the VM forces its RAM into a file on disk and forces
the current filesystem state to disk. Once the VM is suspended and
the contents are written to disk, our script copies the contents of
the VM directory to another directory with the date and phase
appended to the directory name (see Section 4.4 for details). At this
point, we manually stopped the packet capture since we know the
VM is suspended.

Run phase. In run phase, runTests-[DBMS]-run.sh executes a
workload of 1,000 SQL statements against the DBMS; of the 1,000
SQL statements there are 939 SELECT statements, 20 UPDATE state-
ments, 20 INSERT statements, and 21 DELETE statements. A 93.9%
ratio was used based on the average of workloads across various
industries; we will develop other representative workloads in sub-
sequent releases (running and capturing other workloads is trivial
using SysGen). Similar to the load phase, we manually started the
network sniffer on the host machine. Following that we run the
automation script from the host machine; the script resumes the
VM server, and runs the SQL statements from the client machine.
Following the completion of the SQL statements, our script suspend
the server VM and captures the contents of its memory and disk
(see Section 4.4).

4.4 SysGen output
The following lists the files copied when the VM is suspended [15]:

• Virtual Disk.vmdk – virtual hard disk.
• [VM NAME].vmx – VMware configuration for the given
VM; a .lck file appears when the VM is powered on.

• [VM NAME].vmss – a relatively small file that contains
information about the suspended state.

• [VM NAME]-<UUID>.vmss – This contains the RAM con-
tents of the VM at the time of suspension.

For each DBMS, SysGen currently creates two folders, output-
[DBMS]-Time0-[TimeStamp] and output-[DBMS]-Time1-

[TimeStamp]. Each folder contains the full state of the server VM,
before and after the workload execution, respectively. The folder
also contains the files specified in runTests-[DBMS]-run.sh script.
Additional SQL workload files create subsequent Time snapshots.

The copy of the disk file represents the image of the entire hard
drive. For non-freely-available DBMSes, our data corpus includes
DBMS data files instead of the complete disk and RAM snapshots
(although the entire snapshot can be easily recreated using SysGen).
To extract files from a VMDK file, we use a VMDK mounting utility.
We created VMdisks using standard partitioning and not LVM to aid
in this file extraction process. Our script then copies any individual
files or folders configured by the user. We use this process to extract
Oracle and DB2 data files and distribute it with our data corpus (as
full snapshots of disk or RAM with Oracle or DB2 cannot be freely
distributed due to their inclusion of copyrighted code). We expect
that all database files will be converted into DB3F format designed
to store database forensic artifacts while remaining carver-agnostic.
Both the format description and a corresponding viewer tool are
freely available for download [17].

5 RUNNING SYSGEN AT SCALE
In our initial SysGen release, we performed the corpus generation
on a desktop computer with 32GB of RAM. Thus, the current release
does not fully achieve our vision of scaling to a big data environment
and generating a corpus that encompasses multiple nodes and
multi-architecture VMs. This section describes our detailed planned
steps to introduce further automation and scalability features into
the future releases of SysGen. Our envisioned approach will allow
SysGen to scale beyond one desktop to multiple hyper-visors with
testing similar to a continuous integration (CI) pipeline.

In a data center environment, automation is key for building a
physical server, or a VM, and automation of provisioning is key
to scalabilty as it then requires less manual interaction. While we
used VMware Desktop for this SysGen version, we would eventu-
ally switch to a VMware Server on the host machine so that we
can scale beyond a single desktop. VMware Server offers scability
features that cannot be easily obtained with the desktop version;
for example, it provides an API to communicate and control N
hyper-visors and a shared file system without the performance
issues associated with using NFS. VMware currently only supports
x86 architecture virtual machines. Kernel Virtual Machine (KVM)
offers similar functionality and supports POWER architecture as
PowerKVM; therefore we are looking at supporting KVM in addi-
tion to VMware. Regardless of hyper-visor software, since an API
or command line interface (CLI) is available to create scripts, we
can provision new VMs for corpus generation in an automated
fashion. In our current SysGen version, the initial VM is created
manually, since there was no easy way to create a new VM from
the command line using VMware Desktop.

For the OS building process, SysGen can use either a VM tem-
plate or, alternatively, PXE booting a VM through a kickstart file.
The advantage to using VM templates (as we currently do) is that
you do not incur the cost of an OS build; the disadvantage is that the
template has to be rebuilt with an OS update or a package update.
Thus, while template is a simpler, it is associated with long-term
maintenance costs. Future versions of SysGen will allow for a con-
sistent VM creation to be automated. Once a VM built, the database

5

ARES 2020, August 25–28, 2020, Virtual Event, Ireland Lenard et al.

management software (or other software needed) has to be installed
on the VM and necessary kernel parameter modifications have to
be applied. We intend to host a configuration management service
such as Salt [14] or Ansible [13]. These two projects allow for con-
trolled and automated configuration setting and deployment of the
DBMS software itself. The templating process does not support
data corpus evolution where the OS build is frequently updated,
such as beta releases. Therefore we would prefer to transition to
automated rebuilding of the OS every time changes are made. We
envision that DBMS configuration, desired benchmark workloads,
and configurations will be executed by this process based on the
definitions stored in a repo.

In order to generate database query workloads, we would in-
corporate Jenkins [8] into our future SysGen releases. The Jenkins
project has been developed to support automation, CI, and con-
tinuous deployment (CD) which is similar to what we are doing.
The user of SysGen would kick off a Jenkins job to execute a given
workload (i.e., a data corpus scenario) against a given database type.
Jenkins would provision the virtual machine(s) in an automated
fashion, then initialize and build the current OS. After the OS build,
software installations would be executed by tools such as Ansible
or Salt. Once the VM is at a ready state, the query workload would
be to executed from the client VM by Jenkins. Within Jenkins itself,
one job would be executed by the user but in-turn multiple jobs
would run executing various tasks. Jenkins would automate all of
the tasks, including starting and suspending the VM, starting the
network sniffer, and copying all relevant artifacts as configured for
each step of the benchmark scenario. We will copy the artifacts to
another file system and identify collected data with the a unique
identifier capturing Jenkins logs for that run.

6 CONCLUSION
This paper lays the groundwork for a much larger project; we plan
to advance this effort following Garfinkel’s corpus requirements
(Sections 2 and 3). Specifically, we will focus on maintenance, large-
scale corpus generation, data complexity, additional representative
workloads, and heterogeneity.

For the pre-built corpus in this paper, we will update VM images
(or data files for non-free DBMSes) as new major DBMS versions
are released. Major DBMS versions are released every several years
for both Linux and Windows. We believe the frequency of DBMS
releases makes this feasible. For example, Oracle 12c was released
in 2013, followed by Oracle 18c in 2018 and Oracle 19c in 2019.
PostgreSQL releases a new major version no more than once a year.
While DBMSes release service packs several times a year, these
product updates mostly contain bug fixes to existing functionality;
significant new features are deployed in major releases. Using au-
tomated software deployment tools (discussed in Section 5) will
serve to automate minor DBMS updates and changes to the OS or
VM configuration.

While our corpus includes most DBMS data types, we intend
to expand SysGen by adding exotic data types such as PL/SQL,
SQL/PL, XML, Small Int, Big Int. Adding to complexity of the corpus
(i.e., data types and sizes) will be best achieved by designing new
representative workloads and incorporating more DBMS platforms
(SQL Server is the first on our list).

In this paper, we provided SysGen a workload and dataset that
represents a data warehouse. We plan to build more corpora us-
ing other real-world scenarios. For example, the data warehouse
scenario in this paper is not representative of typical activity for
SQLite. A typical SQLite workload and dataset would model a cell
phone or a web browser. We built SysGen so that running new
workloads and datasets is trivial – however, we have not yet found
an authoritative source summarising SQLite type workloads.

This paper used SysGen for major relational DBMSes on Linux,
but it was designed to simplify adding new systems. The corpus
in this paper will be expanded to include same DBMSes evaluated
on Windows and other DBMSes such as SQL Server. New corpora
will include different types of systems, most notably different types
of databases. These include column-store DBMSes (e.g., C-Store
and MonetDB) and NoSQL DBMSes (e.g., MongoDB and Riak).
We started with row-store relational DBMSes because there is 1) a
database-agnostic approach to forensic analysis [18], which enables
comparing cross-DBMS behavior and 2) many different forensic
tools for at least one row-store DBMS (SQLite) [9], which allows
for cross-tool comparison. To our knowledge, neither column-store
nor NoSQL DBMSes have progressed to that stage yet.

ACKNOWLEDGMENTS
This work was partially funded by the US National Science Founda-
tion Grant CNS-1656268 and by the Argonne National Laboratory.

REFERENCES
[1] M. Barata, J. Bernardino, and P. Furtado. An overview of decision support

benchmarks: Tpc-ds, tpc-h and ssb. In New Contributions in Information Systems
and Technologies, pages 619–628. Springer, 2015.

[2] E. L. Barse, H. Kvarnstrom, and E. Jonsson. Synthesizing test data for fraud
detection systems. In ACSAC, pages 384–394. IEEE, 2003.

[3] S. Garfinkel. Forensic corpora: a challenge for forensic research. Electronic
Evidence Information Center, April, pages 1–10, 2007.

[4] S. Garfinkel. Lessons learned writing digital forensics tools and managing a 30tb
digital evidence corpus. Digital Investigation, 9:S80–S89, 2012.

[5] S. Garfinkel, P. Farrell, V. Roussev, and G. Dinolt. Bringing science to digital
forensics with standardized forensic corpora. Digital Investigation, 6:S2–S11,
2009.

[6] W. W. Hsu, A. J. Smith, and H. C. Young. Characteristics of production database
workloads and the tpc benchmarks. IBM Systems Journal, 40(3):781–802, 2001.

[7] IBM. Assignment of table spaces to physical storage. https:
//www.ibm.com/support/knowledgecenter/en/SSEPEK_10.0.0/intro/src/
tpc/db2z_tablespacestophysicalstorage.html, 2019.

[8] K. Kawaguchi. Jenkins automation server. https://www.jenkins.io/, 2020.
[9] S. Nemetz, S. Schmitt, and F. Freiling. A standardized corpus for sqlite database

forensics. Digital Investigation, 24:S121–S130, 2018.
[10] P. O.Neil et al. The star schema benchmark and augmented fact table indexing.

In Performance evaluation and benchmarking, pages 237–252. Springer, 2009.
[11] Oracle. Maa best practices - oracle database. https://www.oracle.com/database/

technologies/high-availability/oracle-database-maa-best-practices.html.
[12] Oracle. Database vldb and partitioning guide. https://docs.oracle.com/database/

121/VLDBG/toc.htm, 2018.
[13] RedHat. Ansible automation framework. https://www.ansible.com/, 2020.
[14] SaltStack. Saltstack infrastructure automation software. https://www.saltstack.

com/, 2020.
[15] VMware. What files make up a virtual machine? https://www.vmware.com/

support/ws55/doc/ws_learning_files_in_a_vm.html, 2019.
[16] J. Wagner, A. Rasin, and J. Grier. Database forensic analysis through internal

structure carving. Digital Investigation, 14:S106–S115, 2015.
[17] J.Wagner, A. Rasin, K. Heart, R. Jacob, and J. Grier. Db3f & df-toolkit: The database

forensic file format and the database forensic toolkit. Digital Investigation, 29:S42–
S50, 2019.

[18] J. Wagner, A. Rasin, T. Malik, K. Heart, H. Jehle, and J. Grier. Database forensic
analysis with dbcarver. In CIDR 2017, 8th Biennial Conference on Innovative Data
Systems Research, 2017.

[19] Y. Yannikos et al. Data corpora for digital forensics education and research. In
IFIP International Conference on Digital Forensics, pages 309–325. Springer, 2014.

6

https://www.ibm.com/support/knowledgecenter/en/SSEPEK_10.0.0/intro/src/tpc/db2z_tablespacestophysicalstorage.html
https://www.ibm.com/support/knowledgecenter/en/SSEPEK_10.0.0/intro/src/tpc/db2z_tablespacestophysicalstorage.html
https://www.ibm.com/support/knowledgecenter/en/SSEPEK_10.0.0/intro/src/tpc/db2z_tablespacestophysicalstorage.html
https://www.jenkins.io/
https://www.oracle.com/database/technologies/high-availability/oracle-database-maa-best-practices.html
https://www.oracle.com/database/technologies/high-availability/oracle-database-maa-best-practices.html
https://docs.oracle.com/database/121/VLDBG/toc.htm
https://docs.oracle.com/database/121/VLDBG/toc.htm
https://www.ansible.com/
https://www.saltstack.com/
https://www.saltstack.com/
https://www.vmware.com/support/ws55/doc/ws_learning_files_in_a_vm.html
https://www.vmware.com/support/ws55/doc/ws_learning_files_in_a_vm.html

	Abstract
	1 Introduction
	2 Related Work
	3 Requirements
	4 Design
	4.1 Virtual Machine Setup
	4.2 SysGen inputs
	4.3 Data corpus generation
	4.4 SysGen output

	5 Running SysGen at scale
	6 Conclusion
	References

