Luminescence and Electron Dynamics in Atomically Precise Nanoclusters with 8 Superatomic Electrons

K. L. Dimuthu M. Weerawardene,^a Pratima Pandeya,^a Meng Zhou,^b Yuxiang Chen,^b Rongchao Jin,^b Christine M. Aikens,^{a*}

- a) Department of Chemistry, Kansas State University, Manhattan, KS 66506, USA
- b) Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA * cmaikens@ksu.edu: 1-785-532-0954

Abstract

 $[Au_{13}(dppe)_5Cl_2]^{3+}$ $[Au_{25}(SR)_{18}]^{-}$ and The (dppe 1,2bis(diphenylphosphino)ethane) nanoclusters both possess a 13-atom icosahedral core with eight (8e) delocalized superatomic electrons, but their emission properties and timeresolved electron dynamics differ significantly. In this work, experimental photoluminescence and photoluminescence decay measurements are combined with timedependent density functional theory calculations of radiative and non-radiative decay properties and lifetimes to elucidate the similarities and differences in the emission of these two nanoclusters with similar cores. In this work, the photodynamic properties of [Au₁₃(dppe)₅Cl₂]³⁺ are elucidated theoretically for the first time. [Au₁₃(dppe)₅Cl₂]³⁺ exhibits a single strong emission peak compared to the weaker bimodal luminescence of $[Au_{25}(SR)_{18}]^-$ (modeled here as $[Au_{25}(SH)_{18}]^-$). The strongly emissive state is found to arise from deexcitation out of the S_1 state, similar to $[Au_{25}(SH)_{18}]^-$. Both theory and experiment exhibit microsecond lifetimes for this state. Transient absorption measurements and theoretical calculations demonstrate that the excited state lifetimes for higher excited states are typically less than 1 ps. The decay times for the higher excited states of $[Au_{13}(dppe)_5Cl_2]^{3+}$ and its model compound $[Au_{13}(pe)_5Cl_2]^{3+}$ (pe = 1,2bis(phosphino)ethane) are observed to be shorter than the lifetimes of the corresponding states of $[Au_{25}(SR)_{18}]^-$; this occurs because the energy gap separating degenerate sets of unoccupied orbitals is only ~0.2 eV in $[Au_{13}(dppe)_5Cl_2]^{3+}$ compared to a ~0.6 eV energy gap in $[Au_{25}(SH)_{18}]^-$.

Introduction

Subnanometer-sized, ligand-protected gold nanoclusters (AuNCs) are of great interest due to their potential applications in biomedicine, 1-4 catalysis, 5-10 energy conversion, 11-12 etc. Unlike in larger plasmonic gold nanoparticles, quantum size effects dominate the physical and chemical properties of AuNCs in this size regime. These atomically precise AuNCs have discrete electronic states and molecular-like optical properties and are perfect models to elucidate structure-property relationships. They typically consist of a common structural picture: highly symmetrical inorganic cores that follow electronic or geometric closing rules and a layer of ligands to protect the core. A variety of ligands have been used to synthesize AuNCs such as thiolates, ¹³⁻³⁵ selenolates, ³⁶⁻ ³⁹ phosphines, ⁴⁰⁻⁵⁰ alkynyls, ⁵¹⁻⁵⁶ and mixed ligands. ^{44-45, 50, 57-62} X-ray crystal structure determinations reveal that thiolate ligands form complex gold-thiolate staple motifs in varying lengths 13-15, 21-25, 29-32 and bind to the gold core through terminal -S groups. Since Au atoms are incorporated in the ligand layer, the gold core in thiolate-protected nanoclusters is generally smaller than the chemical formula of the AuNC implies. For example, the [Au₂₅(SR)₁₈] cluster (often denoted simply as Au₂₅) consists of an icosahedral atom-centered Au@Au₁₂ core and six v-shaped –(R)S–Au–S(R)–Au–S(R)– staple units that protect 12 surface gold atoms. However in phosphine-protected AuNCs, ligands coordinate to atop sites on the gold core surface forming well-defined ligand layers.

Luminescence properties of AuNCs have been explored extensively during the past couple of decades; near-infrared (NIR) emission energies (0.9-1.8 eV) have been observed regardless of the core size or the identity of the ligand layer, although with a very low quantum efficiency (<0.001).63-67 A majority of studies were focused on the thiolateprotected Au₂₅ nanocluster and the origin of emission spanning an energy range of 1.1-1.8 eV was attributed to core-based transitions, charge transfer states or ligand-based (semiring) states. 68-75 A recent theoretical investigation by some of us proposes that superatomic P←D transitions, which are Au₁₃ core-based transitions, are responsible for the emissions in the 1.15-1.55 eV energy region. ⁷⁶ Moreover, calculations on [Au₂₅(SR)₁₈]⁻ systems ($R = H, CH_3, C_2H_5, C_3H_7$) showed that the ligand/semiring states are not involved but the ligand interactions with the Au₁₃ core affect the Stokes shifts for longer aliphatic ligands. ⁷⁶ Higher-energy emission of [Au₂₅(SR)₁₈] was probed very recently by irradiating at 266 nm and the authors reported that slow electron emission dominates over direct electron detachment, although the energy absorbed (4.66 eV) exceeds the electron detachment threshold energies (2.02-2.36 eV). 77 Recently, Senanayake et al. 78 studied nonradiative relaxation dynamics of the Au₂₅ nanoparticle theoretically and reported a long relaxation time scale for the first singlet excited state (S_1) relaxation to the ground state and a much shorter time scale for relaxations between the remainder of the excited states that arise due to $P \rightarrow D$ transitions. However, it is not yet known whether these photoluminescence and non-radiative relaxation mechanisms for a thiolate-protected gold cluster are applicable to an analogous, phosphine-protected gold cluster.

Herein, we consider the $[Au_{13}(dppe)_5Cl_2]^{3+}$ cluster (dppe = 1,2-bis(diphenylphosphino)ethane), denoted Au_{13} for short, which possesses an icosahedral 13-

atom gold core similar to the [Au₂₅(SR)₁₈] cluster. The x-ray crystal structure of this cluster reveals that 5 bidentate dppe ligands (Figure 1a) protect 10 of the surface gold atoms while two chlorides bind at the two remaining trans positions. 45 This cluster possesses a total charge of +3, which leads to an 8e system and is isoelectronic with the Au₂₅ system. The chelating effect of the dppe ligand is important to stabilize the Au₁₃ cluster. This has been emphasized by utilizing other mono- and di-phosphine ligands such as PPh₃, PMe₂Ph, POct₃ and PPh₂-(CH₂)_m-PPh₂ (m = 1, 3, 4, 5) during the synthesis procedure. ^{45, 50} Although geometric and electronic requirements are satisfied to form the stable [Au₁₃]⁵⁺ core, the chelating effect of the dppe ligand seems to be significant in the formation of Au₁₃ clusters. The optical properties of this system have been examined in acetonitrile^{45, 50} and the absorption spectrum exhibits three main features around 500, 360, and 300 nm. The spectral profile of the [Au₁₃(dppe)₅Cl₂]³⁺ cluster is qualitatively similar to that of [Au₂₅(SR)₁₈]⁻ cluster¹⁴ in that it displays 3 main absorption peaks. Photoluminescence properties of the Au₁₃ cluster have also been investigated and a clear band with a quantum yield of 0.062 appearing at 766 nm after excitation at 360 nm has been observed in acetonitrile at room temperature. 45, 50 Very small or negligible emissions have been reported for other phosphine protected gold clusters such as [Au₉(PPh₃)₈]³⁺,⁷⁹ $[Au_{11}(PPh_3)_8Cl_2]^+$, 80 $[Au_{18}(dppm)_6Cl_4]^{4+}$, 49 and $Au_{55}(PPh_3)_{12}Cl_6^{81}$ in solution at room temperature.

In the current study, we compare the ground state and first singlet excited state geometries as well as electronic structures to understand the photoluminescence properties of the chloride and phosphine protected [Au₁₃(dppe)₅Cl₂]³⁺ nanocluster. Theoretical results are compared with experimental emission properties and electron dynamics. Furthermore,

its non-radiative relaxation dynamics around the first main peak of the absorption spectrum are studied using a model cluster where phenyl rings are replaced with hydrogen atoms in the dppe ligand. These results are compared with previous photoluminescence and non-radiative relaxation results of the $[Au_{25}(SR)_{18}]^-$ cluster.

Computational Details

All geometry optimizations are performed using density functional theory (DFT) as implemented in the Amsterdam Density Functional (ADF) 2017 package.⁸² The BP86 exchange-correlation functional⁸³⁻⁸⁴ and full-core double-ζ (DZ) Slater type basis set are used for these calculations. Generalized gradient approximation (GGA) functionals have been employed successfully in calculating geometric and electronic structures as well as optical properties of gold and silver nanoclusters previously. 14, 85-93 All structures are optimized in the gas phase. Well-converged geometries are obtained by tightening the energy and gradient convergence criteria to 1×10⁻⁴ and 1×10⁻³ respectively. Scalar relativistic effects are included by utilizing the zeroth-order regular approximation (ZORA). Vertical excitations are calculated at the optimized ground state (S_0) geometries using time-dependent density functional theory (TDDFT). Finally, the excited state gradients are calculated in order to optimize the excited state geometry. Herein, we calculate the optimized structure for the first singlet excited state (S₁). Single point TDDFT calculations are performed on the BP86/DZ optimized S₀ and S₁ geometries of [Au₁₃(dppe)₅Cl₂]³⁺ using PBE, ⁹⁴ B3LYP⁹⁵ and PBE0⁹⁶⁻⁹⁷ functionals and the vertical excitation and emission energies are summarized in Table S1. Continuum solvent calculations using the dielectric constant for acetonitrile are performed using the

conductor-like screening model (COSMO) method.⁹⁸ Excited state radiative lifetimes are calculated with the equation⁹⁹

$$\frac{1}{\tau} = \frac{4}{3t_0} \alpha_0^3 (\Delta E)^3 \sum_{\alpha \in (x, y, z)} |M_{\alpha}|^2 \tag{1}$$

where τ is the radiative lifetime, α_0 is the fine structure constant, ΔE is the excitation energy, and M_{α} is the transition dipole moment in the $\alpha=x,y,z$ direction. $t_0=((4\pi\varepsilon_0)^2\hbar^3/m_e e^4)$ where ε_0 is the vacuum dielectric constant, m_e is the mass of the electron, e is the electronic charge and \hbar is the Planck constant divided by 2π .

Nonadiabatic molecular dynamics (NA-MD) simulations are performed with the Vienna Ab initio Simulation Package (VASP)¹⁰⁰ to study the electronic population relaxation dynamics coupled with nuclear degrees of freedom. A temperature ramping calculation is performed on the optimized cluster to thermalize the systems up to 300 K. A simulation box of 24 Å was used to avoid contacts between nanoparticle images. Core electrons are treated using projector-augmented wave (PAW)¹⁰¹ pseudopotentials while plane wave basis sets are used for valence electrons. A molecular dynamics trajectory of 5 ps is computed using the microcanonical ensemble, Verlet algorithm,¹⁰² and a 1 fs integration time step. Then, a numerical scheme of Tully and Hammes-Schiffer¹⁰³ is used to obtain nonadiabatic coupling (NAC) elements along the MD trajectory. Relaxation dynamics are computed using the Fewest Switches Surface Hopping (FSSH) algorithm.¹⁰⁴ Ten different starting geometries are included by splitting the 5 ps MD trajectory into ten sub-trajectories, each of 3.5 ps in length. For each sub-trajectory, 1000 surface hopping trajectories are considered which leads to sufficiently well-converged statistics for the

electronic transitions. Excited state population decay times and ground state population increase times are calculated by fitting to equations 1 and 2 respectively.

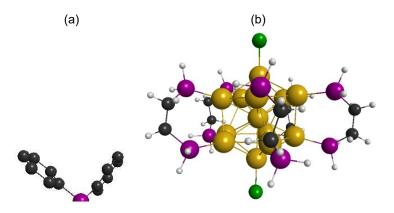
$$f(t) = \exp\left(-t \ / \tau\right) \tag{1}$$

$$f(t) = 1 - \exp\left(-t / \tau\right) \tag{2}$$

Experimental Details

The synthesis of [Au₁₃(dppe)₅Cl₂]³⁺ nanoclusters followed the method reported previously. ⁴⁵ [Au₁₃(dppe)₅Cl₂]³⁺ nanoclusters were dissolved in ethanol to prepare diluted solutions for all spectroscopic measurements. UV-vis absorption spectrum was performed on a Shimadzu UV-3600plus spectrometer. Steady state emission spectrum was measured using a Fluorolog-3 spectrofluorometer from Horiba Jobin Yvon, and time-resolved emission was measured using a time-correlated single photon counting (TCSPC) technique on the same instrument using a pulsed LED source (376 nm, 1.1 ns) as the excitation source. Femtosecond transient absorption (TA) spectra were measured on a commercial Ti:Sapphire laser system. Details of the TA measurements have been described in previous work. ¹⁰⁵

Results


Geometric and electronic structure

The average bond lengths calculated at the BP86/DZ level of theory for the ground state structure of [Au₁₃(dppe)₅Cl₂]³⁺ in the gas phase are summarized in Table 1 for both the full dppe ligand (Figure 1a) and for a model compound in which the phenyl groups are

replaced with hydrogen atoms to yield the pe-stabilized (pe = 1,2-bis(phosphino)ethane) cluster as depicted in Figure 1b. Reducing the phenyl group on the phosphine groups to H shows minimal to no impact on the average geometrical parameters. However, the individual Au_{shell} – Au_{shell} bond lengths vary significantly with the pe model ligands (Table S2), and this bond distance has a much higher standard deviation when the model ligands are used. The average Au_{center} – Au_{shell} and Au_{shell} – Au_{shell} bond lengths are ~1% shorter than the corresponding bonds of $[Au_{25}(SH)_{18}]^-$ calculated at the same level of theory. The average Au_{shell} –Cl bonds are ~6 and ~8% shorter than the average Au_{shell} –Cl bonds are ~6 and ~8% shorter than the average Au_{shell} –Cl bonds are ~6 and ~8% shorter than the average Au_{shell} –Cl bonds are ~6 and ~8% shorter than the average Au_{shell} –Cl bonds are ~6 and ~8% shorter than the average Au_{shell} –Cl bonds are ~6 and ~8% shorter than the average Au_{shell} –Cl bonds are ~6 and ~8% shorter than the average Au_{shell} –Cl bonds are ~6 and ~8% shorter than the average Au_{shell} –Cl bonds are ~6 and ~8% shorter than the average Au_{shell} –Cl bonds are ~6 and ~8% shorter than the average Au_{shell} –Cl bonds are ~6 and ~8% shorter than the average Au_{shell} –Cl bonds are ~6 and ~8% shorter than the average Au_{shell} –Cl bonds are ~6 and ~8% shorter than the average Au_{shell} –Cl bonds are ~6 and ~8% shorter than the average Au_{shell} –Cl bonds are ~6 and ~8% shorter than the average Au_{shell} –Cl bonds are ~6 and ~8% shorter than the average Au_{shell} –Cl bonds are ~6 and ~8% shorter than the average Au_{shell} –Cl bonds are ~6 and ~8% shorter than the average Au_{shell} –Cl bonds are ~6 and ~8% shorter than the average Au_{shell} –Cl bonds are ~6 and ~8% shorter than Au_{shell} – Au_{shell}

Table 1. Geometrical parameters of the ground state structure of $[Au_{13}(dppe)_5Cl_2]^{3+}$ and model $[Au_{13}(pe)_5Cl_2]^{3+}$ cluster at the BP86/DZ level of theory

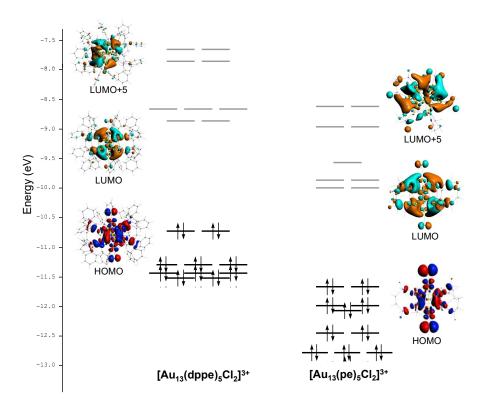

	Average Bond Length (Å)		
Bond	$[Au_{13}(pe)_5Cl_2]^{3+}$	$[\mathrm{Au}_{13}(\mathrm{dppe})_5\mathrm{Cl}_2]^{3+}$	
Au _{center} —Au _{shell}	2.792 ± 0.003	2.787 ± 0.014	
Au _{shell} -Au _{shell}	2.938 ± 0.073	2.930 ± 0.018	
Au _{shell} -P	2.413 ± 0.002	2.409 ± 0.003	
Au _{shell} -Cl	2.365 ± 0.000	2.406 ± 0.001	

Figure 1. The geometric structure of (a) dppe = 1,2-bis(diphenylphosphino)ethane ligand (H atoms are not shown for clarity) and (b) $[Au_{13}(pe)_5Cl_2]^{3+}$ nanocluster (pe = 1,2-bis(phosphino)ethane) where hydrogen atoms replace the phenyl groups on phosphines. Color code: yellow-Au, purple-P, green-Cl, black-C, white-H

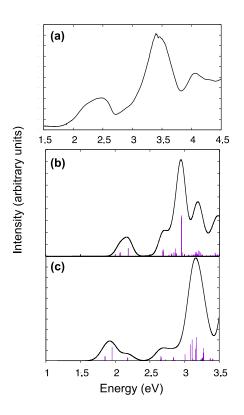
The electronic structure of the $[Au_{13}(dppe)_5Cl_2]^{3+}$ and $[Au_{13}(pe)_5Cl_2]^{3+}$ nanoclusters are compared in Figure 2 to identify how the ligand simplification affects the electronic structure of the system. The highest occupied molecular orbital (HOMO) and HOMO-1 are doubly degenerate and exhibit superatomic P character in both clusters whereas the third P orbital lies much lower in energy because the icosahedral symmetry breaks due to the presence of the two axial chlorides. The $[Au_{13}(dppe)_5Cl_2]^{3+}$ is best described as belonging to the D_5 point group, where the fivefold axis (defined as the z-axis) lies along the axis containing the two chloride ligands. (Due to slight geometrical distortions, calculations are performed with the C_1 point group, but the approximate D_5 symmetry of the nanocluster is evident in its electronic structure.) In consequence, the HOMO and HOMO-1 correspond to an essentially doubly degenerate P_x and P_y set, whereas the P_z orbital (HOMO-2) lies 0.6 eV lower in energy than P_x and P_y due to its interaction with atomic p orbitals from the

chloride ligands. In $[Au_{13}(pe)_5Cl_2]^{3+}$, the ligand-based (i.e. p atomic orbitals from Cl) and Au d-band orbitals lie closer in energy to the HOMO compared to $[Au_{13}(dppe)_5Cl_2]^{3+}$. The P_z orbital for this system is the HOMO-4, which is only 0.4 eV lower in energy than P_x and P_y . In $[Au_{13}(pe)_5Cl_2]^{3+}$, HOMO-2 and HOMO-3 primarily arise from Cl p orbitals. By comparing the two nanoclusters, it is also likely that the presence or absence of phenyl groups in the proximity of the Cl ligands may affect the relative energetics of the Cl p orbitals.

Figure 2. Comparison of energy level diagrams and HOMO, LUMO, and LUMO+5 orbitals of [Au₁₃(dppe)₅Cl₂]³⁺ and [Au₁₃(pe)₅Cl₂]³⁺ nanoclusters.

Similar to [Au₂₅(SH)₁₈]⁻, the lowest unoccupied orbitals in [Au₁₃(dppe)₅Cl₂]³⁺ show superatomic D character and are split into a doubly degenerate and a triply degenerate set.

However the energy gap between these two sets is only ~ 0.2 eV in $[Au_{13}(dppe)_5Cl_2]^{3+}$ as compared to the ~0.6 eV energy gap in [Au₂₅(SH)₁₈]⁻. In [Au₁₃(dppe)₅Cl₂]³⁺, the LUMO and LUMO+1 correspond to the D_{xz} and D_{yz} orbital set, the LUMO+2 and LUMO+3 correspond to the D_{xy} and D_{x2-y2} set, and the LUMO+4 corresponds to D_{z2} ; of note, the D_{z2} orbital is only ~ 0.02 eV higher in energy than the D_{xy} and D_{x2-y2} orbitals. [Au₁₃(pe)₅Cl₂]³⁺, the superatomic D orbitals are split into 3 sets: 2 doubly degenerate sets $(D_{xz} \text{ and } D_{yz}; D_{xy} \text{ and } D_{x2-y2})$ with a splitting of $\sim 0.1 \text{ eV}$ and a singly degenerate D_{z2} orbital that lies ~0.4 eV higher in energy compared to the LUMO. Both clusters have two doubly degenerate sets of superatomic F orbitals with a splitting of ~0.2 eV that lie ~1 eV higher in energy than the LUMO. It is evident that the replacement of phenyl groups on the phosphines by hydrogens has a noteworthy influence on the electronic structure of this system, especially on the splitting between the D orbitals. This effect on electronic structure has previously been observed for other systems such as $Au_4(PPh_3)_4^{2+}$ and $Au_4(\mu_2-\mu_3)_4^{2+}$ I)₂(PPh₃)₄, where the presence of π^* orbitals on the phenyl groups was noted to affect excitations in the visible region of the optical absorption spectrum, and thus substitution of PPh₃ with PH₃ could not reproduce the spectrum. ¹⁰⁶ This is in contrast to [Au₂₅(SR)₁₈]⁻, for which substitution of the R groups has relatively minor effects on its absorption spectrum unless the R groups lead to large structural distortions. 107-108


To further explore the ligand effect on the electronic structure of the Au_{13} system, we performed a constrained optimization by replacing all the phenyl groups by hydrogen atoms and fixing the positions of the Au, Cl, P, and ethyl groups of the $[Au_{13}(dppe)_5Cl_2]^{3+}$ cluster, allowing only the hydrogen atoms to optimize for $[Au_{13}(pe)_5Cl_2]^{3+}$. Figure S1 shows the orbital energy level diagram of this constrained $[Au_{13}(pe)_5Cl_2]^{3+}$ system. Four

of the superatomic D orbitals are quadruply degenerate and the 5th D orbital lies ~0.3 eV higher in energy. The HOMO and HOMO-1 are doubly degenerate superatomic P orbitals and the ligand and *d*-band orbitals lie close in energy to these. Overall, the MO diagram resembles the diagram of fully optimized [Au₁₃(pe)₅Cl₂]³⁺ more than the MO diagram of [Au₁₃(dppe)₅Cl₂]³⁺ shown in Figure 2. These observations imply that the large electronic structure changes are not due to the geometric changes from the simplified ligands, but rather to an electronic effect. In other words, the electronic structure of the phosphine and chloride-protected Au₁₃ system is considerably ligand-dependent. Therefore, the absorption and luminescence properties are discussed in detail in this work primarily for the [Au₁₃(dppe)₅Cl₂]³⁺ cluster. However, non-radiative relaxation calculations are performed for the [Au₁₃(pe)₅Cl₂]³⁺ cluster due to the required computational resources; this model is expected to be reasonable for these calculations because the density of states are broadened during simulations at finite temperature, and the model ligand provides similar orbitals and orbital ordering with only small effects on the energy gaps.

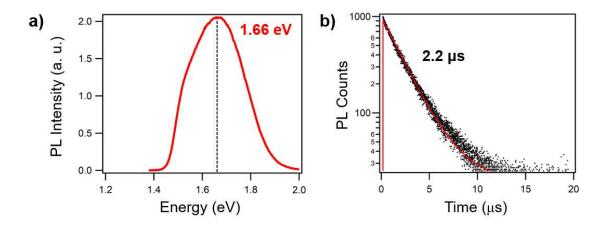
Optical absorption properties

TDDFT calculations have been performed on the two Au₁₃ clusters using the BP86/DZ level of theory and their optical absorption spectra are compared in Figure 3. Deviations between the two spectra are expected since their electronic structures are different. As shown in Figure 3(a), the calculated absorption spectrum of the [Au₁₃(dppe)₅Cl₂]³⁺ nanocluster consists of a shoulder peak at 2.07 eV and a prominent peak at 2.16 eV in excellent agreement with the experimental spectrum that exhibits shoulder and prominent peaks at 2.21 and 2.48 eV, respectively. GGA calculations generally

underestimate peak positions^{14, 85, 109} of ligand-protected gold and silver nanoclusters, and in this work the underestimation is ~ 0.3 eV for the first peak. Superatomic P to D transitions are found to be responsible for these peaks similar to the first peak of [Au₂₅(SR)₁₈]⁻¹⁴ Although the shoulder peak at 2.07 eV and the prominent peak at 2.16 eV are the lowest energy transitions with sufficient oscillator strength to observe experimentally, additional states arising from the P to D transitions are also present in [Au₁₃(dppe)₅Cl₂]³⁺ (see Supporting Information and Table S3 for more information). The experimental spectrum shows two other prominent peaks at 3.44 and 4.13 eV. In comparison, broad peaks centered around 2.95 and 3.66 eV (with multiple shoulder peaks) can be observed in the theoretical spectrum, which are underestimated by ~ 0.5 eV with respect to the experimental spectrum. Analysis of MO→MO transitions involved in these absorption peaks revealed that there are major contributions from orbitals arising from Cl_{3p} and Au_{5d} atomic orbitals into superatomic D orbitals as well as superatomic P→F transitions in the 2.95 eV peak. In a perfect icosahedral system, the superatomic P > F transitions would be dipole-forbidden. However, the approximate D_5 symmetry of this nanocluster is greatly reduced compared to the icosahedral symmetry of the core especially because of the two axial chlorides, and additional transitions are allowed. Figure S2 shows that the transition density corresponding to the P \rightarrow F transitions in the 2.95 eV peak is delocalized over the Au₁₃ core. The peak at 3.66 eV arises mainly due to interband $Au_{5d} \rightarrow F$ transitions.

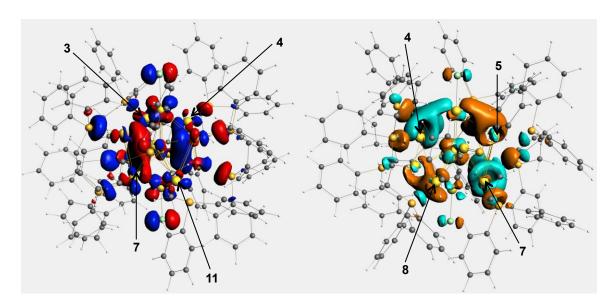
Figure 3. (a) Experimental optical absorption spectrum. Calculated spectra of (b) $[Au_{13}(dppe)_5Cl_2]^{3+}$ nanocluster and (c) $[Au_{13}(pe)_5Cl_2]^{3+}$ nanocluster at the BP86/DZ level of theory convoluted with a Gaussian with a full width at half-maximum of 0.15 eV.

Emission properties

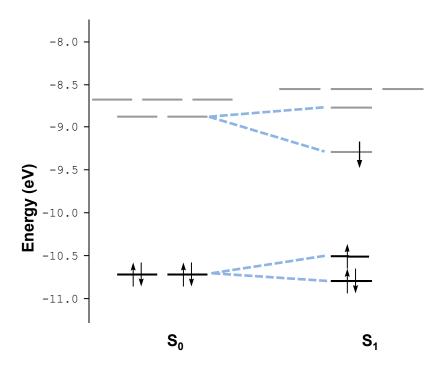

To understand the luminescence properties of the Au_{13} system, we optimized the first singlet excited state (S_1) of the $[Au_{13}(dppe)_5Cl_2]^{3+}$ nanocluster. The emission energy is calculated by taking the energy gap between the S_0 and S_1 states at the optimized S_1 geometry. The calculated emission energy of the $[Au_{13}(dppe)_5Cl_2]^{3+}$ cluster is 1.25 eV and the oscillator strength is two orders of magnitude higher than that of the first excitation at

the ground state geometry. Table 2 encapsulates this information for Au₁₃ systems and compares the data with that of the isoelectronic Au₂₅ nanocluster. The experimental photoluminescence (PL) emission spectrum and time-resolved emission decay of [Au₁₃(dppe)₅Cl₂]³⁺ are shown in Figure 4. The PL spectrum is centered at 1.66 eV (Figure 4a), which is comparable to the previous report⁵⁰ and agrees well with the theoretical value when the ~0.3 eV underestimation is considered. The calculated emission energy is much smaller than the absorption energy; i.e., the Stokes shift is significant (0.62 eV). The experimental Stokes shift is also large (~0.88 eV) and agrees fairly well with the calculated value. We have also computed the excitation and emission energies using the COSMO continuum solvent model. The excitation and emission energies calculated with TDDFT using a continuum acetonitrile solvent are 1.91 and 1.27 eV, respectively, which are in excellent agreement with the gas phase results of 1.87 and 1.25 eV shown in Table 2. For this nanocluster, inclusion of solvent effects in the calculations does not significantly change the results.

The time-resolved PL probed at 1.66 eV gave a lifetime of 2.2 microseconds (Figure 4b), which is about a factor of 10 shorter than the calculated radiative lifetime (Table 2). Since the time-resolved PL was measured in solution, the experimental PL lifetime could be shortened compared to that in gas phase simulations due to solvation induced non-radiative decay. Tables S2 and S4 report the geometric structural data for the S_1 state of phosphine-protected Au_{13} systems. The average bond lengths calculated for $[Au_{13}(dppe)_5Cl_2]^{3+}$ are only $\sim 0.3\%$ longer than those of the corresponding ground state structure.


Table 2. The lowest excitation and emission energies (to/from S_1), oscillator strengths, Stokes shifts, and excited state lifetimes for $[Au_{13}(dppe)_5Cl_2]^{3+}$, $[Au_{13}(pe)_5Cl_2]^{3+}$ and $[Au_{25}(SR)_{18}]^-$ (Data for $[Au_{25}(SR)_{18}]^-$ from Ref. 76)

		[Au ₁₃ (dppe) ₅ Cl ₂] ³⁺	[Au ₁₃ (pe) ₅ Cl ₂] ³⁺	[Au ₂₅ (SH) ₁₈] ⁻
Excitation	Energy (eV)	1.87	1.67	1.32
	Oscillator	1.05 × 10 ⁻⁵	5.72 × 10 ⁻⁶	4.54 × 10 ⁻⁴
	Strength (au)			
Emission	Energy (eV)	1.25	0.99	0.83
	Oscillator	6.30×10^{-4}	5.00 × 10 ⁻⁴	2.46 × 10 ⁻³
	Strength (au)	0.30 ^ 10	3.00 ^ 10	2.40 ^ 10
Stokes Shift (eV)		0.62	0.68	0.49
Excited State Lifetime (µs)		23	48	14


Figure 4. (a) Photoluminescence spectrum of [Au₁₃(dppe)₅Cl₂]³⁺ nanoclusters with 2.5 eV excitation; (b) Time-resolved photoluminescence decay probed at 1.66 eV and fit. Data in (a) and (b) are adapted from Ref. 105.

Our previous photoluminescence studies suggest that a large Stokes shift can be associated with noteworthy geometric and electronic structure alterations upon photoexcitation. ^{76, 110-111} Thus, we examined the individual Au-Au bonds in the Au₁₃ core of each cluster (Table S2). The [Au₁₃(dppe)₅Cl₂]³⁺ system show a maximum bond elongation of 0.16 Å with lengthening of three other Au_{shell}–Au_{shell} bonds by ~0.1 Å. Two of the Au_{shell}-Au_{shell} bonds are shortened by ~0.1 Å as well. These individual bond alterations are smaller compared to the 0.25 Å bond elongations observed with $[Au_{25}(SH)_{18}]^{-.76}$ In going from the S₀ to the S₁ state, one electron is excited out of the HOMO, which is a superatomic P orbital, and populates the LUMO, which is a superatomic D orbital. The Au₃-Au₄ and Au₇-Au₁₁ bonds that decrease by 0.10 and 0.14 Å in the S₁ geometry lie across the nodal plane of the HOMO, whereas the Au₄-Au₅ and Au₇-Au₈ bonds that elongate by 0.16 and 0.13 Å in the S_1 geometry instead lie across a nodal plane of the LUMO as shown in Figure 4. Thus, the excited state bond alterations arise at least in part as a consequence of the bonding/antibonding character of the orbitals involved in the transition.

Figure 5. The HOMO and LUMO of the $[Au_{13}(dppe)_5Cl_2]^{3+}$ cluster. The Au_3 - Au_4 and Au_7 - Au_{11} bonds shrink and the Au_4 - Au_5 and Au_7 - Au_8 bonds elongate noticeably upon photoexcitation.

Next, we investigated how the electronic structure transforms upon photoexcitation in the phosphine-protected Au_{13} cluster. Figure 6 exhibits how the frontier orbitals of $[Au_{13}(dppe)_5Cl_2]^{3+}$ change in energy as the geometry changes from the S_0 to the S_1 state structure. The initial HOMO and HOMO-1 orbitals are no longer degenerate and the HOMO is destabilized by 0.25 eV in the S_1 state compared to S_0 . Moreover, the LUMO and LUMO+1 orbitals that were also doubly degenerate in the S_0 state are significantly split by 0.50 eV in the S_1 state. This stabilization of the LUMO and destabilization of the HOMO orbitals cause the ground state HOMO-LUMO gap to be reduced by 0.66 eV upon photoexcitation. The nearly triply degenerate, unoccupied, superatomic D orbitals are destabilized by ~ 0.1 eV in the excited state.

Figure 6. Comparison of energy levels of the frontier orbitals in the ground state (S_0) and excited state (S_1) of $[Au_{13}(dppe)_5Cl_2]^{3+}$. The S_1 state is shown in a cartoon representation with a single electron in one of the D orbitals. Dashed lines are drawn to show the splitting of nearly doubly degenerate HOMO/HOMO-1 and nearly doubly degenerate LUMO/LUMO +1 orbitals of the ground state upon photoexcitation.

The nuclear rearrangements and orbital energy splittings can be considered to arise from a Jahn-Teller effect. In the first excited state, only three electrons populate the P_x and P_y orbitals (HOMO-1/HOMO), so a geometrical distortion must occur from the ground state equilibrium geometry so that these orbitals will differ in energy. Similarly, the presence of a single electron in the D_{xz} and D_{yz} orbitals (LUMO/LUMO+1) also indicates that a Jahn-Teller distortion must occur. After nuclear relaxation, the P_x and D_{xz} orbitals lie lower in energy than the P_y and P_{yz} orbitals. In comparison with $[Au_{25}(SR)_{18}]^-$, a smaller change in the Au-Au bond distances in $[Au_{13}(dppe)_5Cl_2]^{3+}$ is associated with a larger

change in the orbital energies, which may be a result of how the P and D orbitals align with the natural axes of the nanoparticle. In $[Au_{13}(dppe)_5Cl_2]^{3+}$, orbitals naturally align such that some (the P_z and D_{z2} orbitals) lie along the Cl-containing axis; the Jahn-Teller distortion in the S_1 excited state splits the degeneracy of the orbitals in the x and y directions. In contrast in $[Au_{25}(SR)_{18}]^-$, the x, y, and z axes are equivalent but the P and D orbitals do not align with the same set of axes. ¹¹²

Even though [Au₁₃(pe)₅Cl₂]³⁺ showed much larger geometric structure modifications upon excited state optimization (Tables S2 and S4), its electronic structure exhibits similar changes as [Au₁₃(dppe)₅Cl₂]³⁺ in the excited state. As demonstrated in Figure S3, the HOMO of [Au₁₃(pe)₅Cl₂]³⁺ is destabilized by 0.19 eV whereas its LUMO is stabilized by 0.52 eV in the S₁ state. Overall, more dramatic orbital splittings are observed for the phosphine-protected gold nanoclusters as compared to our previous studies on thiolate-protected systems.

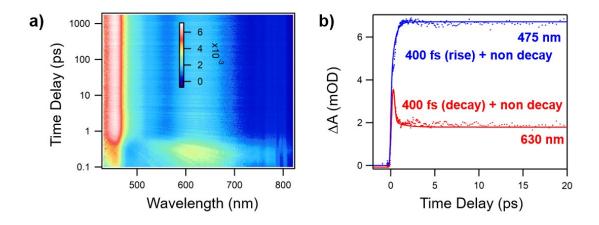
Non-radiative relaxation dynamics

We studied the first peak at \sim 2 eV and the shoulder peak at \sim 2.8 eV (Figure 3c) to understand the non-radiative electronic relaxation of the lowest energy states in $[Au_{13}(pe)_5Cl_2]^{3+}$. The first peak at \sim 2 eV corresponds to HOMO-4 through LUMO+4 transitions, the shoulder peak at \sim 2.8 eV arises from HOMO-10 through LUMO+5 transitions, and the second strong peak at 3.2 eV originates from HOMO-14 through LUMO+8 transitions. The orbital energies at 300 K are obtained from the MD simulation (Figure S4). The degeneracies of the orbitals obtained from the optimized geometries

(Figure 2) and from the MD calculation (Figure S4) do not match exactly because the optimizations are performed at 0 K while the MD calculations include the effects of nuclear motion at 300 K. Nonetheless, the HOMO levels are still nearly doubly degenerate. The average HOMO-LUMO gap obtained from the MD simulation is 1.21 eV.

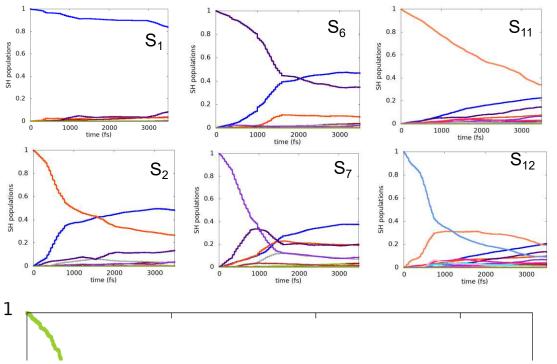
Electronic relaxation dynamics are performed for the states S₁ through S₂₅, which correspond to the first absorption peak, to see their relaxation trends and time constants. Excited states for which the non-adiabatic dynamics is performed, along with their respective transitions and decay time constants of excited state populations are listed in Table 3. We also obtained the relaxation dynamics for all 66 states that contribute to the shoulder peak (HOMO-10 through LUMO+5 transitions). Population relaxation for the first 25 states follow the same trends regardless of whether 25 or 66 states are included in the calculation.

Table 3. Excited states S_1 - S_{25} , corresponding transitions, and decay times of excited state electronic populations of the $[Au_{13}(pe)_5Cl_2]^{3+}$ cluster


Excited State	Transition	Decay time (ps)
S_1	HOMO → LUMO	20.3
S_2	HOMO → LUMO+1	2.0
S_3	$HOMO \rightarrow LUMO+2$	1.6
S ₄	$HOMO \rightarrow LUMO+3$	1.3
S ₅	HOMO → LUMO+4	0.9
S ₆	$HOMO-1 \rightarrow LUMO$	2.9
S ₇	HOMO-1 → $LUMO+1$	1.0

S_8	HOMO-1 → LUMO+2	1.0
S_9	HOMO-1 → $LUMO+3$	0.8
S_{10}	HOMO-1 → $LUMO+4$	0.7
S_{11}	$HOMO-2 \rightarrow LUMO$	3.6
S_{12}	HOMO-2 → LUMO+1	1.2
S_{13}	$HOMO-2 \rightarrow LUMO+2$	1.1
S_{14}	HOMO-2 → $LUMO+3$	0.8
S ₁₅	HOMO-2 → $LUMO+4$	0.7
S ₁₆	$HOMO-3 \rightarrow LUMO$	1.5
S ₁₇	HOMO-3 → LUMO+1	0.8
S_{18}	HOMO-3 → LUMO+2	0.8
S ₁₉	HOMO-3 → LUMO+3	0.6
S_{20}	HOMO-3 → $LUMO+4$	0.6
S_{21}	$HOMO-4 \rightarrow LUMO$	1.0
S_{22}	HOMO-4 → LUMO+1	0.6
S_{23}	HOMO-4 → $LUMO+2$	0.6
S ₂₄	HOMO-4 → $LUMO+3$	0.5
S ₂₅	$HOMO-4 \rightarrow LUMO+4$	0.5

The ground state growth times and the decay times are calculated in the presence of all 25 excited states. Decay time constants are in the range of 0.5 ps to 20.3 ps. The


highest decay time occurs for S₁ because of the wide HOMO-LUMO gap; this decay time represents the time required for population in this state to decrease either by relaxation to the ground state (which is slow due to the large HOMO-LUMO gap) or by excitation into a higher excited state (S₂ or above). It should be noted that these NA-MD simulations are less quantitatively accurate for S₁ state decay compared to higher energy states due to the necessity to relax over a large HOMO-LUMO gap. For the other states, decay times are small (0.5-3.6 ps) due to the presence of other nearby intermediate states. The decay time constants obtained for the [Au₁₃(pe)₅Cl₂]³⁺ and the time constants obtained by Senanayake et al.⁷⁸ for the Au₂₅ system are similar, although the S₁ state decay time constant is longer due to the larger HOMO-LUMO gap in the Au₁₃ system. Both systems have long decay time constant values for the S₁ state compared to other higher excited states.

We further studied the photophysics of [Au₁₃(dppe)₅Cl₂]³⁺ nanoclusters by femtosecond transient absorption (TA) spectroscopy (Figure 7). From the transient absorption data map (pumped at 360 nm), one can observe that the excited state absorption (ESA) band at ~630 nm decays in less than 1 ps to give rise to ESA at around 475 nm (Figure 7a and b), which is similar to the result in our previous study.¹⁰⁵ Between 1 ps and 1.7 ns, there is no significant decay in the TA signal (Figure 7a), which indicates a very long lived excited state lifetime (>>1 ns). Global fitting of the TA data gave two decay components (400 fs and >1 ns). The 400 fs decay component should correspond to the relaxation from higher excited states (with 3.45 eV pump) to the S₁ state. The relaxation times obtained from TA and time-resolved PL measurements agree well with our decay constant values except for S₁.

Figure 7. (a) Transient absorption (TA) data map with 360 nm (3.45 eV) excitation; (b) TA decay traces and fittings at selected wavelengths.

Excited state population relaxation dynamics of some of the states that correspond to the first absorption peak are shown in Figure 8. It can be observed how the population in each initially excited state relaxes to other state before going to the ground state. For example, S_6 quickly transfers some population to the S_1 state and then a small amount to the S_2 state while the ground state is populated slowly.

Figure 8. Evolution of populations of S_1 , S_2 , S_6 , S_7 , S_{11} , and S_{12} states of $[Au_{13}(pe)_5Cl_2]^{3+}$ over time

For [Au₁₃(pe)₅Cl₂]³⁺, the S₁₁ (HOMO-2 to LUMO) state has a comparatively longer decay time than the decay time of other higher lying states, which could be due to the gap between HOMO-1 and HOMO-2. Similarly, a longer decay time was obtained for the S₇ state (HOMO to LUMO+2) of Au₂₅ which was also attributed to the large gap between LUMO+1 and LUMO+2. Population relaxation to the intermediate states leads to smaller decay time constant values for the higher energy states. Similarly, the ground state growth times are in the range of 81.6 ps to 375.5 ps (Table S5). Decay times of excited states are faster than the corresponding ground state repopulation times because the electron population moves quickly between the excited states. For example, the decay time for S₁ is 20.3 ps (Table 3) whereas the ground state growth time for the S₁ is 96.9 ps (Table S5)

because the electron population that is initially excited into S_1 can also move into the S_2 and higher states. For states higher than S_1 , the population decay times usually decrease and the ground state repopulation times increase. For example, for S_{10} the decay time is 0.7 ps while the ground state growth time is 375.5 ps. Ground state repopulation lifetimes (Table S5) are higher for the higher lying states as the population typically relaxes throughout the manifold of intermediate states before falling back to the ground state. The Au_{25} system also yielded similar trends for the ground state growth times.

Conclusions

A theoretical investigation has been performed on a phosphine and chloride protected Au_{13} nanocluster to understand its photoluminescence and non-radiative relaxation properties. Unlike the isoelectronic, thiolate-protected $[Au_{25}(SH)_{18}]^-$ system, the ligand effect appears to be significant on the electronic structure of the Au_{13} clusters and hence the optical properties. The lowest emission energy of $[Au_{13}(dppe)_5Cl_2]^{3+}$ is calculated to be 1.25 eV, which agrees fairly well with the experimental emission ~ 1.6 eV when the theoretical underestimation of ~ 0.3 eV for excitation/emission energies is taken into account. In agreement with experimental results, the photoluminescence lifetime is calculated to be in the microsecond range. A Stokes shift of 0.62 eV is obtained, which is larger than the Stokes shifts calculated for the $[Au_{25}(SH)_{18}]^-$ systems. Conversely, the geometrical alterations upon photoexcitation are found to be smaller compared to the 0.25 Å bond elongations of $[Au_{25}(SH)_{18}]^-$. However, larger electronic structural modifications are observed for Au_{13} compared to Au_{25} . Regardless of the differences in ligand layer, the

lowest energy emission of Au_{13} originates due to superatomic $P \rightarrow D$ transitions, which are core-based orbitals analogous to those of Au_{25} .

From the nonradiative relaxation dynamics study, decay time constants for the states that correspond to the first peak were found on the time scale of 0.5 ps to 20.3 ps while the ground state repopulation times were from 81.6 ps to 375.5 ps. The ground state recovery lifetimes are longer for the higher lying states due to the relaxation of population to the intermediate states before relaxing to the ground state. The S_1 state has the longest excited state decay time constant due to the large gap between HOMO and LUMO energy levels. The decay time constants for higher lying states are in good agreement with experiment. The obtained ground state growth times of $[Au_{13}(pe)_5Cl_2]^{3+}$ are longer than the growth times for the corresponding states of Au_{25} . In comparison with Au_{25} , the decay time of S_1 of $[Au_{13}(pe)_5Cl_2]^{3+}$ is longer due to its larger HOMO-LUMO gap. The decay time for the higher excited states of $[Au_{13}(pe)_5Cl_2]^{3+}$ are smaller than the lifetimes of the corresponding states of Au_{25} due to the presence of the excited states close to each other in $[Au_{13}(pe)_5Cl_2]^{3+}$.

Supporting Information

Orbital energy level diagram of constrained-optimized $[Au_{13}(pe)_5Cl_2]^{3+}$ nanocluster by replacing all the phenyl groups by hydrogen atoms; symmetry analysis of the optical absorption spectrum of $[Au_{13}(dppe)_5Cl_2]^{3+}$; transition densities for the 2.98 eV excitation of $[Au_{13}(dppe)_5Cl_2]^{3+}$; comparison of Au_{shell} — Au_{shell} bond lengths in relaxed geometries of the S_0 and the S_1 state of the $[Au_{13}(dppe)_5Cl_2]^{3+}$ and $[Au_{13}(pe)_5Cl_2]^{3+}$ nanoclusters; comparison of energy levels of the frontier orbitals in S_0 and S_1 states of $[Au_{13}(pe)_5Cl_2]^{3+}$; variation of orbital energies of the $[Au_{13}(pe)_5Cl_2]^{3+}$ cluster with time; excited states, corresponding transitions, and ground state growth times of the $[Au_{13}(pe)_5Cl_2]^{3+}$ cluster.

Acknowledgement

This material is based on work supported by the National Science Foundation under Grant No. CHE-1507909. The computing for this project was performed on the Beocat Research Cluster at Kansas State University, which is funded in part by NSF Grants CHE-1726332, CNS-1006860, EPS-1006860, and EPS-0919443.

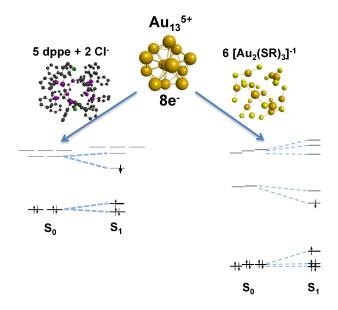
References

- 1. Yang, X.; Yang, M.; Pang, B.; Vara, M.; Xia, Y., Gold Nanomaterials at Work in Biomedicine. *Chem. Rev.* **2015**, *115*, 10410-10488.
- 2. Liu, J.; Yu, M.; Zhou, C.; Yang, S.; Ning, X.; Zheng, J., Passive Tumor Targeting of Renal-Clearable Luminescent Gold Nanoparticles: Long Tumor Retention and Fast Normal Tissue Clearance. *J. Am. Chem. Soc.* **2013**, *135*, 4978-4981.
- 3. Luo, Z.; Zheng, K.; Xie, J., Engineering Ultrasmall Water-Soluble Gold and Silver Nanoclusters for Biomedical Applications. *Chem. Commun.* **2014**, *50*, 5143-5155.
- 4. Chang, W. H.; Lin, C.-A. J.; Lee, C.-H.; Hsieh, J.-T.; Wang, H.-H.; Li, J. K.; Shen, J.-L.; Chan, W.-H.; Yeh, H.-I., Review: Synthesis of Fluorescent Metallic Nanoclusters toward Biomedical Application: Recent Progress and Present Challenges. *J. Med. Biol. Eng.* **2009**, *29*, 276-283.

- 5. Herzing, A. A.; Kiely, C. J.; Carley, A. F.; Landon, P.; Hutchings, G. J., Identification of Active Gold Nanoclusters on Iron Oxide Supports for CO Oxidation. *Science* **2008**, *321*, 1331-1335.
- 6. Turner, M.; Golovko, V. B.; Vaughan, O. P. H.; Abdulkin, P.; Berenguer-Murcia, A.; Tikhov, M. S.; Johnson, B. F. G.; Lambert, R. M., Selective Oxidation with Dioxygen by Gold Nanoparticle Catalysts derived from 55-atom Clusters. *Nature* **2008**, *454*, 981-983.
- 7. Liu, Y.; Tsunoyama, H.; Akita, T.; Xie, S.; Tsukuda, T., Aerobic Oxidation of Cyclohexane Catalyzed by Size-Controlled Au Clusters on Hydroxyapatite: Size Effect in the Sub-2 nm Regime. *ACS Catal.* **2011**, *1*, 2-6.
- 8. Li, G.; Jin, R., Atomically Precise Gold Nanoclusters as New Model Catalysts. *Acc. Chem. Res.* **2013**, *46*, 1749-1758.
- 9. Yamazoe, S.; Koyasu, K.; Tsukuda, T., Nonscalable Oxidation Catalysis of Gold Clusters. *Acc. Chem. Res.* **2014**, *47*, 816-824.
- 10. Higaki, T.; Li, Y.; Zhao, S.; Li, Q.; Li, S.; Du, X.-S.; Yang, S.; Chai, J.; Jin, R., Atomically Tailored Gold Nanoclusters for Catalytic Application. *Angew. Chem. Int. Ed.* 0.
- 11. Chen, Y.-S.; Choi, H.; Kamat, P. V., Metal-Cluster-Sensitized Solar Cells. A New Class of Thiolated Gold Sensitizers Delivering Efficiency Greater than 2%. *J. Am. Chem. Soc.* **2013**, *135*, 8822-8825.
- 12. Abbas, M. A.; Kim, T.-Y.; Lee, S. U.; Kang, Y. S.; Bang, J. H., Exploring Interfacial Events in Gold-Nanocluster-Sensitized Solar Cells: Insights into the Effects of the Cluster Size and Electrolyte on Solar Cell Performance. *J. Am. Chem. Soc.* **2016**, *138*, 390-401.
- 13. Jadzinsky, P. D.; Calero, G.; Ackerson, C. J.; Bushnell, D. A.; Kornberg, R. D., Structure of a Thiol Monolayer-Protected Gold Nanoparticle at 1.1 Å Resolution. *Science* **2007**, *318*, 430-433.
- 14. Zhu, M.; Aikens, C. M.; Hollander, F. J.; Schatz, G. C.; Jin, R., Correlating the Crystal Structure of A Thiol-Protected Au₂₅ Cluster and Optical Properties. *J. Am. Chem. Soc.* **2008**, *130*, 5883-5885.
- 15. Heaven, M. W.; Dass, A.; White, P. S.; Holt, K. M.; Murray, R. W., Crystal Structure of the Gold Nanoparticle [N(C₈H₁₇)₄][Au₂₅(SCH₂CH₂Ph)₁₈]. *J. Am. Chem. Soc.* **2008**, *130*, 3754-3755.
- 16. Zhu, M.; Qian, H.; Jin, R., Thiolate-Protected Au₂₀ Clusters with a Large Energy Gap of 2.1 eV. *J. Am. Chem. Soc.* **2009**, *131*, 7220-7221.
- 17. Zeng, C.; Li, T.; Das, A.; Rosi, N. L.; Jin, R., Chiral Structure of Thiolate-Protected 28-Gold-Atom Nanocluster Determined by X-ray Crystallography. *J. Am. Chem. Soc.* **2013**, *135*, 10011-10013.
- 18. Das, A.; Li, T.; Nobusada, K.; Zeng, C.; Rosi, N. L.; Jin, R., Nonsuperatomic [Au₂₃(SC₆H₁₁)₁₆] Nanocluster Featuring Bipyramidal Au₁₅ Kernel and Trimeric Au₃(SR)₄ Motif. *J. Am. Chem. Soc.* **2013**, *135*, 18264-18267.
- 19. Jiang, D.-e.; Overbury, S. H.; Dai, S., Structure of Au₁₅(SR)₁₃ and Its Implication for the Origin of the Nucleus in Thiolated Gold Nanoclusters. *J. Am. Chem. Soc.* **2013**, *135*, 8786-8789.

- 20. Zeng, C.; Chen, Y.; Li, G.; Jin, R., Synthesis of a Au₄₄(SR)₂₈ Nanocluster: Structure Prediction and Evolution from Au₂₈(SR)₂₀, Au₃₆(SR)₂₄ to Au₄₄(SR)₂₈. *Chem. Commun.* **2014**, *50*, 55-57.
- 21. Zeng, C.; Liu, C.; Chen, Y.; Rosi, N. L.; Jin, R., Gold–Thiolate Ring as a Protecting Motif in the Au₂₀(SR)₁₆ Nanocluster and Implications. *J. Am. Chem. Soc.* **2014**, *136*, 11922-11925.
- 22. Das, A.; Liu, C.; Zeng, C.; Li, G.; Li, T.; Rosi, N. L.; Jin, R., Cyclopentanethiolato-Protected Au₃₆(SC₅H₉)₂₄ Nanocluster: Crystal Structure and Implications for the Steric and Electronic Effects of Ligand. *J. Phys. Chem. A* **2014**, *118*, 8264-8269.
- 23. Nimmala, P. R.; Knoppe, S.; Jupally, V. R.; Delcamp, J. H.; Aikens, C. M.; Dass, A., Au₃₆(SPh)₂₄ Nanomolecules: X-ray Crystal Structure, Optical Spectroscopy, Electrochemistry, and Theoretical Analysis. *J. Phys. Chem. B* **2014**, *118*, 14157-14167.
- 24. Dass, A.; Theivendran, S.; Nimmala, P. R.; Kumara, C.; Jupally, V. R.; Fortunelli, A.; Sementa, L.; Barcaro, G.; Zuo, X.; Noll, B. C., Au₁₃₃(SPh-*t*Bu)₅₂ Nanomolecules: X-ray Crystallography, Optical, Electrochemical, and Theoretical Analysis. *J. Am. Chem. Soc.* **2015**, *137*, 4610-4613.
- 25. Das, A.; Liu, C.; Byun, H. Y.; Nobusada, K.; Zhao, S.; Rosi, N.; Jin, R., Structure Determination of [Au₁₈(SR)₁₄]. *Angew. Chem. Int. Ed.* **2015**, *54*, 3140-3144.
- 26. Yang, H.; Wang, Y.; Edwards, A. J.; Yan, J.; Zheng, N., High-Yield Synthesis and Crystal Structure of a Green Au₃₀ Cluster Co-Capped by Thiolate and Sulfide. *Chem. Commun.* **2014**, *50*, 14325-14327.
- 27. Yu, Y.; Luo, Z.; Chevrier, D. M.; Leong, D. T.; Zhang, P.; Jiang, D.-e.; Xie, J., Identification of a Highly Luminescent Au₂₂(SG)₁₈ Nanocluster. *J. Am. Chem. Soc.* **2014**, *136*, 1246-1249.
- 28. Chen, Y.; Liu, C.; Tang, Q.; Zeng, C.; Higaki, T.; Das, A.; Jiang, D.-e.; Rosi, N. L.; Jin, R., Isomerism in Au₂₈(SR)₂₀ Nanocluster and Stable Structures. *J. Am. Chem. Soc.* **2016**.
- 29. Crasto, D.; Barcaro, G.; Stener, M.; Sementa, L.; Fortunelli, A.; Dass, A., Au₂₄(SAdm)₁₆ Nanomolecules: X-ray Crystal Structure, Theoretical Analysis, Adaptability of Adamantane Ligands to Form Au₂₃(SAdm)₁₆ and Au₂₅(SAdm)₁₆, and Its Relation to Au₂₅(SR)₁₈. J. Am. Chem. Soc. **2014**, 136, 14933-14940.
- 30. Crasto, D.; Malola, S.; Brosofsky, G.; Dass, A.; Häkkinen, H., Single Crystal XRD Structure and Theoretical Analysis of the Chiral Au₃₀S(S-*t*-Bu)₁₈ Cluster. *J. Am. Chem. Soc.* **2014**, *136*, 5000-5005.
- 31. Das, A.; Li, T.; Li, G.; Nobusada, K.; Zeng, C.; Rosi, N. L.; Jin, R., Crystal Structure and Electronic Properties of a Thiolate-protected Au₂₄ Nanocluster. *Nanoscale* **2014**, *6*, 6458-6462.
- 32. Chen, Y.; Zeng, C.; Liu, C.; Kirschbaum, K.; Gayathri, C.; Gil, R. R.; Rosi, N. L.; Jin, R., Crystal Structure of Barrel-Shaped Chiral Au₁₃₀(p-MBT)₅₀ Nanocluster. *J. Am. Chem. Soc.* **2015**, *137*, 10076-10079.
- 33. Azubel, M.; Koivisto, J.; Malola, S.; Bushnell, D.; Hura, G. L.; Koh, A. L.; Tsunoyama, H.; Tsukuda, T.; Pettersson, M.; Häkkinen, H.; Kornberg, R. D., Electron Microscopy of Gold Nanoparticles at Atomic Resolution. *Science* **2014**, *345*, 909-912.
- 34. Qian, H.; Eckenhoff, W. T.; Zhu, Y.; Pintauer, T.; Jin, R., Total Structure Determination of Thiolate-Protected Au₃₈ Nanoparticles. *J. Am. Chem. Soc.* **2010**, *132*, 8280-8281.

- 35. Zeng, C.; Chen, Y.; Kirschbaum, K.; Appavoo, K.; Sfeir, M. Y.; Jin, R., Structural Patterns at All Scales in a Nonmetallic Chiral Au₁₃₃(SR)₅₂ Nanoparticle. *Sci. Adv.* **2015**, *I*, e1500045.
- 36. Song, Y.; Wang, S.; Zhang, J.; Kang, X.; Chen, S.; Li, P.; Sheng, H.; Zhu, M., Crystal Structure of Selenolate-Protected Au₂₄(SeR)₂₀ Nanocluster. *J. Am. Chem. Soc.* **2014**, *136*, 2963-2965.
- 37. Kurashige, W.; Yamazoe, S.; Kanehira, K.; Tsukuda, T.; Negishi, Y., Selenolate-Protected Au₃₈ Nanoclusters: Isolation and Structural Characterization. *J. Phys. Chem. Lett.* **2013**, *4*, 3181-3185.
- 38. Xu, Q.; Wang, S.; Liu, Z.; Xu, G.; Meng, X.; Zhu, M., Synthesis of selenolate-protected Au₁₈(SeC₆H₅)₁₄ nanoclusters. *Nanoscale* **2013**, *5*, 1176-1182.
- 39. Song, Y.; Cao, T.; Deng, H.; Zhu, X.; Li, P.; Zhu, M., Kinetically Controlled, High-Yield, Direct Synthesis of [Au₂₅(SePh)₁₈]⁻TOA⁺. *Sci China Chem* **2014**, *57*, 1218-1224.
- 40. Gutiérrez, E.; Powell, R. D.; Furuya, F. R.; Hainfeld, J. F.; Schaaff, T. G.; Shafigullin, M. N.; Stephens, P. W.; Whetten, R. L., Greengold, A Giant Cluster Compound of Unusual Electronic Structure. *Eur. Phys. J. D.* **1999**, *9*, 647-651.
- 41. Chen, J.; Zhang, Q.-F.; Bonaccorso, T. A.; Williard, P. G.; Wang, L.-S., Controlling Gold Nanoclusters by Diphospine Ligands. *J. Am. Chem. Soc.* **2014**, *136*, 92-95.
- 42. Wan, X.-K.; Yuan, S.-F.; Lin, Z.-W.; Wang, Q.-M., A Chiral Gold Nanocluster Au₂₀ Protected by Tetradentate Phosphine Ligands. *Angew. Chem. Int. Ed.* **2014**, *53*, 2923-2926.
- 43. Chen, J.; Zhang, Q.-F.; Williard, P. G.; Wang, L.-S., Synthesis and Structure Determination of a New Au₂₀ Nanocluster Protected by Tripodal Tetraphosphine Ligands. *Inorg. Chem.* **2014**, *53*, 3932-3934.
- 44. McKenzie, L. C.; Zaikova, T. O.; Hutchison, J. E., Structurally Similar Triphenylphosphine-Stabilized Undecagolds, Au₁₁(PPh₃)₇Cl₃ and [Au₁₁(PPh₃)₈Cl₂]Cl, Exhibit Distinct Ligand Exchange Pathways with Glutathione. *J. Am. Chem. Soc.* **2014**, *136*, 13426-13435.
- 45. Shichibu, Y.; Konishi, K., HCl-Induced Nuclearity Convergence in Diphosphine-Protected Ultrasmall Gold Clusters: A Novel Synthetic Route to "Magic-Number" Au₁₃ Clusters. *Small* **2010**, *6*, 1216-1220.
- 46. Shichibu, Y.; Kamei, Y.; Konishi, K., Unique [Core+two] Structure and Optical Property of a Dodeca-Ligated Undecagold Cluster: Critical Contribution of the Exo Gold Atoms to the Electronic Structure. *Chem. Commun.* **2012**, *48*, 7559-7561.
- 47. Zhang, Q.-F.; Williard, P. G.; Wang, L.-S., Polymorphism of Phosphine-Protected Gold Nanoclusters: Synthesis and Characterization of a New 22-Gold-Atom Cluster. *Small* **2016**, *12*, 2518-2525.
- 48. Zhang, S.-S.; Feng, L.; Senanayake, R. D.; Aikens, C. M.; Wang, X.-P.; Zhao, Q.-Q.; Tung, C.-H.; Sun, D., Diphosphine-Protected Ultrasmall Gold Nanoclusters: Opened Icosahedral Au₁₃ and Heart-Shaped Au₈ Clusters. *Chem. Sci.* **2018**, *9*, 1251-1258.
- 49. Zhang, S.-S.; Senanayake, R. D.; Zhao, Q.-Q.; Su, H.-F.; Aikens, C. M.; Wang, X.-P.; Tung, C.-H.; Sun, D.; Zheng, L.-S., [Au₁₈(dppm)₆Cl₄]⁴⁺: A Phosphine-Protected Gold Nanocluster with Rich Charge States. *Dalton Trans.* **2019**, *48*, 3635-3640.
- 50. Shichibu, Y.; Suzuki, K.; Konishi, K., Facile Synthesis and Optical Properties of Magic-Number Au₁₃ Clusters. *Nanoscale* **2012**, *4*, 4125-4129.


- 51. Wan, X.-K.; Xu, W. W.; Yuan, S.-F.; Gao, Y.; Zeng, X.-C.; Wang, Q.-M., A Near-Infrared-Emissive Alkynyl-Protected Au₂₄ Nanocluster. *Angew. Chem. Int. Ed.* **2015**, *54*, 9683-9686.
- 52. Wan, X.-K.; Yuan, S.-F.; Tang, Q.; Jiang, D.-e.; Wang, Q.-M., Alkynyl-Protected Au₂₃ Nanocluster: A 12-Electron System. *Angew. Chem. Int. Ed.* **2015**, *54*, 5977-5980.
- 53. Wan, X.-K.; Tang, Q.; Yuan, S.-F.; Jiang, D.-e.; Wang, Q.-M., Au19 Nanocluster Featuring a V-Shaped Alkynyl–Gold Motif. *J. Am. Chem. Soc.* **2015**, *137*, 652-655.
- 54. Wang, T.; Zhang, W.-H.; Yuan, S.-F.; Guan, Z.-J.; Wang, Q.-M., An Alkynyl-Protected Au₄₀ Nanocluster Featuring PhC-C–Au–P[^]P Motifs. *Chem. Commun.* **2018**, *54*, 10367-10370.
- Wang, Y.; Wan, X.-K.; Ren, L.; Su, H.; Li, G.; Malola, S.; Lin, S.; Tang, Z.; Häkkinen, H.; Teo, B. K.; Wang, Q.-M.; Zheng, N., Atomically Precise Alkynyl-Protected Metal Nanoclusters as a Model Catalyst: Observation of Promoting Effect of Surface Ligands on Catalysis by Metal Nanoparticles. *J. Am. Chem. Soc.* **2016**, *138*, 3278-3281.
- 56. Lei, Z.; Li, J.-J.; Wan, X.-K.; Zhang, W.-H.; Wang, Q.-M., Isolation and Total Structure Determination of an All-Alkynyl-Protected Gold Nanocluster Au₁₄₄. *Angew. Chem. Int. Ed.* **2018**, *57*, 8639-8643.
- 57. Jin, R.; Liu, C.; Zhao, S.; Das, A.; Xing, H.; Gayathri, C.; Xing, Y.; Rosi, N. L.; Gil, R. R.; Jin, R., Tri-icosahedral Gold Nanocluster [Au₃₇(PPh₃)₁₀(SC₂H₄Ph)₁₀X₂]⁺: Linear Assembly of Icosahedral Building Blocks. *ACS Nano* **2015**, *9*, 8530-8536.
- 58. Qian, H.; Eckenhoff, W. T.; Bier, M. E.; Pintauer, T.; Jin, R., Crystal Structures of Au₂ Complex and Au₂₅ Nanocluster and Mechanistic Insight into the Conversion of Polydisperse Nanoparticles into Monodisperse Au₂₅ Nanoclusters. *Inorg. Chem.* **2011**, *50*, 10735-10739.
- 59. Das, A.; Li, T.; Nobusada, K.; Zeng, Q.; Rosi, N. L.; Jin, R., Total Structure and Optical Properties of a Phosphine/Thiolate-Protected Au₂₄ Nanocluster. *J. Am. Chem. Soc.* **2012**, *134*, 20286-20289.
- 60. Song, Y.; Fu, F.; Zhang, J.; Chai, J.; Kang, X.; Li, P.; Li, S.; Zhou, H.; Zhu, M., The Magic Au₆₀ Nanocluster: A New Cluster-Assembled Material with Five Au₁₃ Building Blocks. *Angew. Chem. Int. Ed.* **2015**, *54*, 8430-8434.
- 61. Wan, X.-K.; Wang, J.-Q.; Nan, Z.-A.; Wang, Q.-M., Ligand Effects in Catalysis by Atomically Precise Gold Nanoclusters. *Science Advances* **2017**, *3*.
- 62. Gutrath, B. S.; Oppel, I. M.; Presly, O.; Beljakov, I.; Meded, V.; Wenzel, W.; Simon, U., [Au₁₄(PPh₃)₈(NO₃)₄]: An Example of a New Class of Au(NO₃)-Ligated Superatom Complexes. *Angew. Chem. Int. Ed.* **2013**, *52*, 3529-3532.
- 63. Huang, T.; Murray, R. W., Visible Luminescence of Water-Soluble Monolayer-Protected Gold Clusters. *J. Phys. Chem. B* **2001**, *105*, 12498-12502.
- 64. Negishi, Y.; Takasugi, Y.; Sato, S.; Yao, H.; Kimura, K.; Tsukuda, T., Magic-Numbered Au_n Clusters Protected by Glutathione Monolayers (n = 18, 21, 25, 28, 32, 39): Isolation and Spectroscopic Characterization. *J. Am. Chem. Soc.* **2004**, *126*, 6518-6519.
- 65. Wang, G.; Huang, T.; Murray, R. W.; Menard, L.; Nuzzo, R. G., Near-IR Luminescence of Monolayer-Protected Metal Clusters. *J. Am. Chem. Soc.* **2005**, *127*, 812-813.
- 66. Bigioni, T. P.; Whetten, R. L.; Dag, Ö., Near-Infrared Luminescence from Small Gold Nanocrystals. *J. Phys. Chem. B* **2000**, *104*, 6983-6986.

- 67. Negishi, Y.; Nobusada, K.; Tsukuda, T., Glutathione-Protected Gold Clusters Revisited: Bridging the Gap between Gold(I)—Thiolate Complexes and Thiolate-Protected Gold Nanocrystals. *J. Am. Chem. Soc.* **2005**, *127*, 5261-5270.
- 68. Link, S.; Beeby, A.; FitzGerald, S.; El-Sayed, M. A.; Schaaff, T. G.; Whetten, R. L., Visible to Infrared Luminescence from a 28-Atom Gold Cluster. *J. Phys. Chem. B* **2002**, *106*, 3410-3415.
- 69. Lee, D.; Donkers, R. L.; Wang, G.; Harper, A. S.; Murray, R. W., Electrochemistry and Optical Absorbance and Luminescence of Molecule-like Au₃₈ Nanoparticles. *J. Am. Chem. Soc.* **2004**, *126*, 6193-6199.
- 70. Shibu, E. S.; Muhammed, M. A. H.; Tsukuda, T.; Pradeep, T., Ligand Exchange of Au₂₅SG₁₈ Leading to Functionalized Gold Clusters: Spectroscopy, Kinetics, and Luminescence. *J. Phys. Chem. C* **2008**, *112*, 12168-12176.
- 71. Shibu, E. S.; Pradeep, T., Photoluminescence and Temperature-Dependent Emission Studies of Au₂₅ Clusters in the Solid State. *Int. J. Nanosci.* **2009**, *08*, 223-226.
- 72. Wu, Z.; Jin, R., On the Ligand's Role in the Fluorescence of Gold Nanoclusters. *Nano Lett.* **2010**, *10*, 2568-2573.
- 73. Devadas, M. S.; Kim, J.; Sinn, E.; Lee, D.; Goodson, T.; Ramakrishna, G., Unique Ultrafast Visible Luminescence in Monolayer-Protected Au₂₅ Clusters. *J. Phys. Chem. C* **2010**, *114*, 22417-22423.
- 74. Devadas, M. S.; Bairu, S.; Qian, H.; Sinn, E.; Jin, R.; Ramakrishna, G., Temperature-Dependent Optical Absorption Properties of Monolayer-Protected Au₂₅ and Au₃₈ Clusters. *J. Phys. Chem. Lett.* **2011**, *2*, 2752-2758.
- 75. Green, T. D.; Yi, C.; Zeng, C.; Jin, R.; McGill, S.; Knappenberger, K. L., Temperature-Dependent Photoluminescence of Structurally-Precise Quantum-Confined Au₂₅(SC₈H₉)₁₈ and Au₃₈(SC₁₂H₂₅)₂₄ Metal Nanoparticles. *J. Phys. Chem. A* **2014**, *118*, 10611-10621.
- 76. Weerawardene, K. L. D. M.; Aikens, C. M., Theoretical Insights into the Origin of Photoluminescence of Au₂₅(SR)₁₈ Nanoparticles. *J. Am. Chem. Soc.* **2016**, *138*, 11202-11210.
- 77. Hirata, K.; Kim, K.; Nakamura, K.; Kitazawa, H.; Hayashi, S.; Koyasu, K.; Tsukuda, T., Photoinduced Thermionic Emission from $[M_{25}(SR)_{18}]^-$ (M = Au, Ag) Revealed by Anion Photoelectron Spectroscopy. *J. Phys. Chem. C* **2019**, *123*, 13174-13179.
- 78. Senanayake, R. D.; Akimov, A. V.; Aikens, C. M., Theoretical Investigation of Electron and Nuclear Dynamics in the [Au₂₅(SH)₁₈]⁻¹ Thiolate-Protected Gold Nanocluster. *J. Phys. Chem. C* **2017**, *121*, 10653-10662.
- 79. Wen, F.; Englert, U.; Gutrath, B.; Simon, U., Crystal Structure, Electrochemical and Optical Properties of [Au₉(PPh₃)₈](NO₃)₃. Eur. J. Inorg. Chem. **2008**, 2008, 106-111.
- 80. Woehrle, G. H.; Warner, M. G.; Hutchison, J. E., Ligand Exchange Reactions Yield Subnanometer, Thiol-Stabilized Gold Particles with Defined Optical Transitions. *J. Phys. Chem. B* **2002**, *106*, 9979-9981.
- 81. Schmid, G.; Pugin, R.; Sawitowski, T.; Simon, U.; Marler, B., Transmission Electron Microscopic and Small Angle X-ray Diffraction Investigations of Au₅₅(PPh₃)₁₂Cl₆ Microcrystalst. *Chem. Commun.* **1999**, 1303-1304.

- 82. te Velde, G.; Bickelhaupt, F. M.; Baerends, E. J.; Fonseca Guerra, C.; van Gisbergen, S. J. A.; Snijders, J. G.; Ziegler, T., Chemistry with ADF. *J. Comput. Chem.* **2001**, *22*, 931-967.
- 83. Becke, A. D., Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. *Phys. Rev. A* **1988**, *38*, 3098-3100.
- 84. Perdew, J. P., Density-Functional Approximation For the Correlation Energy of the Inhomogeneous Electron Gas. *Phys. Rev. B* **1986**, *33*, 8822-8824.
- 85. Aikens, C. M., Effects of Core Distances, Solvent, Ligand, and Level of Theory on the TDDFT Optical Absorption Spectrum of the Thiolate-Protected Au₂₅ Nanoparticle. *J. Phys. Chem. A* **2009**, *113*, 10811-10817.
- 86. Guidez, E. B.; Aikens, C. M., Time-Dependent Density Functional Theory Study of the Luminescence Properties of Gold Phosphine Thiolate Complexes. *J. Phys. Chem. A* **2015**, *119*, 3337-3347.
- 87. Chen, S.; Wang, S.; Zhong, J.; Song, Y.; Zhang, J.; Sheng, H.; Pei, Y.; Zhu, M., The Structure and Optical Properties of the [Au₁₈(SR)₁₄] Nanocluster. *Angew. Chem. Int. Ed.* **2015,** *54*, 3145-3149.
- 88. Bae, G.-T.; Aikens, C. M., Time-Dependent Density Functional Theory Studies of Optical Properties of Au Nanoparticles: Octahedra, Truncated Octahedra, and Icosahedra. *J. Phys. Chem. C* **2015**, *119*, 23127-23137.
- 89. Hulkko, E.; Lopez-Acevedo, O.; Koivisto, J.; Levi-Kalisman, Y.; Kornberg, R. D.; Pettersson, M.; Häkkinen, H., Electronic and Vibrational Signatures of the Au₁₀₂(p-MBA)₄₄ Cluster. *J. Am. Chem. Soc.* **2011**, *133*, 3752-3755.
- 90. Liao, M.-S.; Bonifassi, P.; Leszczynski, J.; Ray, P. C.; Huang, M.-J.; Watts, J. D., Structure, Bonding, and Linear Optical Properties of a Series of Silver and Gold Nanorod Clusters: DFT/TDDFT Studies. *J. Phys. Chem. A* **2010**, *114*, 12701-12708.
- 91. Aikens, C. M.; Li, S.; Schatz, G. C., From Discrete Electronic States to Plasmons: TDDFT Optical Absorption Properties of Ag_n ($n=10,\,20,\,35,\,56,\,84,\,120$) Tetrahedral Clusters. *J. Phys. Chem. C* **2008**, *112*, 11272-11279.
- 92. Malola, S.; Lehtovaara, L.; Häkkinen, H., TDDFT Analysis of Optical Properties of Thiol Monolayer-Protected Gold and Intermetallic Silver–Gold Au₁₄₄(SR)₆₀ and Au₈₄Ag₆₀(SR)₆₀ Clusters. *J. Phys. Chem. C* **2014**, *118*, 20002-20008.
- 93. Juarez-Mosqueda, R.; Malola, S.; Häkkinen, H., Stability, Electronic Structure, and Optical Properties of Protected Gold-Doped Silver $Ag_{29-x}Au_x$ (x=0-5) Nanoclusters. *Phys. Chem. Phys.* **2017**, *19*, 13868-13874.
- 94. Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.* **1996,** 77, 3865-3868.
- 95. Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J., Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. *J. Phys. Chem.* **1994**, *98*, 11623-11627.
- 96. Grimme, S., Accurate Description of van der Waals Complexes by Density Functional Theory including Empirical Corrections. *J. Comput. Chem.* **2004**, *25*, 1463-1473.
- 97. Ernzerhof, M.; Scuseria, G. E., Assessment of the Perdew–Burke–Ernzerhof Exchange-Correlation Functional. *J. Chem. Phys.* **1999**, *110*, 5029-5036.

- 98. Klamt, A.; Schuurmann, G., COSMO: A New Approach to Dielectric Screening in Solvents with Explicit Expressions for the Screening Energy and its Gradient. *Journal of the Chemical Society, Perkin Transactions 2* **1993**, 799-805.
- 99. Mori, K.; Goumans, T. P. M.; van Lenthe, E.; Wang, F., Predicting Phosphorescent Lifetimes and Zero-Field Splitting of Organometallic Complexes with Time-Dependent Density Functional Theory including Spin-Orbit Coupling. *Phys. Chem. Chem. Phys.* **2014**, *16*, 14523-14530.
- 100. Kresse, G.; Furthmüller, J., Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors using a Plane-Wave Basis Set. *Comput. Mater. Sci.* **1996**, *6*, 15-50.
- 101. Kresse, G.; Joubert, D., From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. *Phys. Rev. B* **1999**, *59*, 1758-1775.
- 102. Verlet, L., Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. *Phys. Rev.* **1967**, *159*, 98-103.
- 103. Hammes Schiffer, S.; Tully, J. C., Proton Transfer in Solution: Molecular Dynamics with Quantum Transitions. *J. Chem. Phys.* **1994**, *101*, 4657-4667.
- 104. C. Tully, J., Mixed Quantum-Classical Dynamics. *Faraday Discuss.* **1998**, *110*, 407-419.
- 105. Zhou, M.; Jin, R.; Sfeir, M. Y.; Chen, Y.; Song, Y.; Jin, R., Electron Localization in Rod-Shaped Triicosahedral Gold Nanocluster. *Proc. Natl. Acad. Sci. U. S. A.* **2017**, *114*, E4697-E4705.
- 106. Ivanov, S. A.; Arachchige, I.; Aikens, C. M., Density Functional Analysis of Geometries and Electronic Structures of Gold-Phosphine Clusters: The Case of $Au_4(PR_3)_4^{2+}$ and $Au_4(\mu_2-I)_2(PR_3)_4$. *J. Phys. Chem. A* **2011**, *115*, 8017-8031.
- 107. Tlahuice-Flores, A.; Whetten, R. L.; Jose-Yacaman, M., Ligand Effects on the Structure and the Electronic Optical Properties of Anionic Au₂₅(SR)₁₈ Clusters. *J. Phys. Chem. C* **2013**, *117*, 20867-20875.
- 108. Schaaff, T. G.; Whetten, R. L., Giant Gold-Glutathione Cluster Compounds: Intense Optical Activity in Metal-Based Transitions. *J. Phys. Chem. B* **2000**, *104*, 2630-2641.
- 109. Marques, M. A. L.; Castro, A.; Rubio, A., Assessment of Exchange-Correlation Functionals for the Calculation of Dynamical Properties of Small Clusters in Time-Dependent Density Functional Theory. *J. Chem. Phys.* **2001**, *115*, 3006-3014.
- 110. Weerawardene, K. L. D. M.; Guidez, E. B.; Aikens, C. M., Photoluminescence Origin of Au₃₈(SR)₂₄ and Au₂₂(SR)₁₈ Nanoparticles: A Theoretical Perspective. *J. Phys. Chem. C* **2017**, *121*, 15416-15423.
- 111. Weerawardene, K. L. D. M.; Aikens, C. M., Origin of Photoluminescence of Ag₂₅(SR)₁₈ Nanoparticles: Ligand and Doping Effect. *J. Phys. Chem. C* **2018**, *122*, 2440-2447.
- 112. Aikens, C. M., Origin of Discrete Optical Absorption Spectra of $M_{25}(SH)_{18}^{-1}$ Nanoparticles (M = Au, Ag). *J. Phys. Chem. C* **2008**, *112*, 19797-19800.

TOC GRAPHIC

