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Abstract—Flexible loads are a valuable resource for the
power grid of the future to help with balancing demand and
generation. A balancing authority (BA) needs to know how
much flexibility a load has, meaning what type of power
deviation (from the baseline demand) signals are feasible for
the load. In this work we present a characterization of capacity
for a flexible load in terms of the power spectral density of
the power deviation. We then show how this characterization
can be used for resource allocation for the grid by determining
what portion of the grid’s needs can be met by a collection of
such loads. The key difference with prior work on flexibility
characterization is that ours is posed in terms of the statistical
properties grid’s net load and load’s demand deviation, not on
specific instances of these signals. The proposed characterization
can thus be used for long term planning.

I. INTRODUCTION

The inherent variability in renewable generation sources
such as solar and wind is a challenge for the power grid
operators to balance demand and generation. Ramp rate
constraints prevent conventional generation from handling
this mismatch between demand and generation completely,
while grid level storage from batteries is expensive. Thus a
new resource is being investigated to help fill the mismatch:
flexible loads. Flexible loads have the ability to vary power
consumption over a baseline level without violating their
Quality of Service (QoS). The baseline power consumption is
the power consumed without grid interference. The requested
amount from the grid authority, to deviate from baseline, is
the reference signal. The tracking of a zero-mean reference
signal guises, in the eyes of the grid operator, flexible
loads as batteries providing storage services. This battery-
like behavior of flexible loads is often referred as Virtual
Energy Storage (VES) [1]. VES from flexible loads can be
less expensive than energy storage from batteries [2]. Some
examples of flexible loads include residential air condition-
ers [3], water heaters [4], refrigerators, commercial HVAC
systems [5], pumps for irrigation [6] or pool cleaning [7].

For flexible loads to provide VES, the loads must track
accurately the reference signal for demand deviation. From
the viewpoint of the grid operator, flexible loads that do
not track the reference makes them unreliable. If the grid
operator expects this signal to be accurately followed, then
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tracking it must not cause the flexible loads to violate their
QoS. From the viewpoint of loads, reference signals that
continually require QoS violation are simply beyond their
ability and are unacceptable. Thus, reference signals must be
designed to respect the capacity of the collection of flexible
loads.

Informally, the capacity represents limitations in aggre-
gate behavior (e.g., the ability to track a power reference
signal) due to QoS requirements for the individual load.
Consequently, a key step in determining the capacity is
relating the QoS requirements of each load to the grid-level
power reference signal. Unfortunately, this is not a straight
forward task and many varying approaches are present in
the current literature [8]–[13]. The most popular approach
is to develop ensemble level necessary conditions [8], [10];
reference signals that satisfy these conditions ensure the
ability of all loads in the collection to satisfy QoS while
tracking the reference. Other approaches include geometry
based characterizations [14] and load-centric characteriza-
tions [15].

One major limitation of the above mentioned works is
that the capacity characterizations are based on constraints
of the reference signal rather than statistical properties of
the reference signal. Thus a grid authority requires a specific
reference signal to perform resource allocation; only post-
facto checking if the BA’s needs are within the capacity of the
resource is possible. That is, these capacity characterizations
cannot be used for planning. The BA’s needs are exogenous,
so a useful capacity characterization should allow the BA to
determine the portion of its needs that can be provided by a
specific class and number of loads ahead of time.

Contrarily, if one develops constraints on the statistics of
the reference signal, then a notion of capacity that is useful
for longer term planning can be developed. For instance,
consider Figure 1 where the Power Spectral Density (PSD)
of the grid level net demand is allocated to resources. This
frequency based allocation does not require knowledge of
a specific reference signal, but only its statistics. To avoid
possible confusion with power in kW, we use Spectral
Density (SD) instead of Power Spectral Density (PSD) in
the rest of the paper.

While primarily an illustrative example, it is possible
to quantitatively develop the regions shown in Figure 1.
There are many works that advocate for the specification of
loads’ abilities and/or resource allocation in the frequency
domain [5], [16]–[18]. The results of real world VES ex-



Fig. 1: An example spectral allocation of resources to meet
the grids needs.

periments also suggest that specifying the spectral content
of a reference signal is a feasible way to encapsulate the
limitations in flexibility of a load [19]. A simplification
of this concept is also widely used in today’s power grid:
ancillary services are classified by their response times and
ramp rates [20]. Motivated by the limitations of past work
and the advantages of working in frequency domain we
extend the work in [16] and characterize the capacity of a
flexible load in terms of the SD of reference signal for this
load. The QoS constraints considered here are quite general
and encapsulate operating constraints for: (i) Commercial
HVAC systems, (ii) batteries, and (iii) Thermostatically Con-
trolled Loads (TCLs). The contribution over past work is
threefold: (i) we characterize capacity through constraints on
the statistics of the reference signal, rather than the reference
signal itself, (ii) our characterization of capacity allows for
a BA to easily perform resource allocation and (iii) the time
invariant SD allows for the grid authority to use our capacity
characterization for long term planning.

We corroborate the advantages of our capacity character-
ization through numerical experiments. A convex optimiza-
tion problem is setup that ‘projects’ the needs of the grid
authority onto the set of feasible SD’s. The needs of the grid
is quantified as the SD of net-demand, as seen in Figure 1.
The capacity characterization presented is for continuously
varying loads, that is loads that can vary power consumption
freely within an interval. The capacity characterization can be
extended to handle discrete loads (e.g., TCLs), by applying
it to the work [10].

The paper proceeds as follows, Section II describes the
load model and operating constraints, Section III describes
mathematical prerequisites and a characterization of indi-
vidual load capacity, Section IV describes a method for
determining the grid’s need spectrally and how much flexible
loads can contribute to grid’s need using our capacity char-
acterization. Numerical results for the method in Section IV
are given in Section V.

II. LOAD MODEL AND OPERATING CONSTRAINTS

Let the power consumption of a flexible load at time t be
given as P (t). Associated with the load is the notion of a

“storage” variable θ that is related to the power consumption
as follows,

θ̇(t) = γ (θ0(t)− θ(t))− βP (t), (1)

where γ > 0 and β 6= 0 are parameters whose interpretation
depends on the load and θ0(t) is an exogenous signal. In case
of an HVAC system, θ0(t) is the ambient temperature and the
storage variable is the internal temperature. The model (1),
while simplistic, has been shown to agree quite well with
many realistic models for certain flexible loads [21]. The
nominal operation of the load is then to consume P ∗(t) of
power to maintain the storage of the load at a fixed value θ∗.
Since we are concerned with the flexibility of the load, we
linearize (1) about θ∗, yielding:

˙̃
θ = −γθ̃ − βP̃ , (2)

where P̃ and θ̃ are the power and storage deviation, respec-
tively, and are defined as:

P̃ (t) , P (t)− P ∗(t), and θ̃(t) , θ(t)− θ∗. (3)

The values in (3) are obtained by comparing (2) to (1). The
dynamics (2) have transfer function from P̃ to θ̃:

H(s) = − β

s+ γ
. (4)

The concern now is, what is a feasible power deviation
signal P̃ (t)? To determine this we consider four general QoS
requirements that limit the power consumption of the load:
(i) power magnitude bounds, (ii) power increment bounds,
(iii) load storage bounds, and (iv) energy bill bounds. By
defining power change P̃δ(t) and energy deviation Ẽ(t) as:

P̃δ(t) , P̃ (t+ δ)− P̃ (t), and Ẽ(t) =

∫ t

0

P̃ (σ)dσ, (5)

the QoS constraints are, in the order listed above:

QoS-1:
∣∣∣P̃ (t)

∣∣∣ ≤ c1, (6)

QoS-2:
∣∣∣P̃δ(t)∣∣∣ ≤ c2, , (7)

QoS-3:
∣∣∣θ̃(t)∣∣∣ ≤ c3, , (8)

QoS-4:
∣∣∣Ẽ(T )

∣∣∣ ≤ c4, (9)

where {ci}4i=1 are user defined QoS limits for the respective
constraints and T represents a fixed time interval, such as the
length of a billing period. The constraint (9) then represents
keeping the energy consumed during a period of length
T close to the nominal energy consumed. Otherwise the
consumer may have to pay a penalty in the form of an
increase in energy bill.

Comment 1. The constraint (9) is equivalent to constraining
the moving averaged power deviation with window T, for all
time. However, in order to avoid the notation from becoming
too complicated, we utilize the form in (9).



III. LOAD CAPACITY CHARACTERIZATION

A. Stochastic Setting

To develop our capacity characterization, we switch from a
deterministic to a stochastic setting. In this setting we model
the power deviation, P̃ , as a stochastic process. The mean
and autocorrelation function of P̃ are:

µP̃ (t) , E[P̃ (t)], and RP̃ (s, t) , E[P̃ (s)P̃ (t)], (10)

where E[·] denotes mathematical expectation. We make the
following assumptions about the stochastic process P̃ :

A0: RP̃ (τ) is continous for all τ, (11)
A1: µP̃ (t) = 0, for all t, (12)

A2: P̃ is Wide Sense Stationary (WSS), (13)

where τ = t − s. The assumption A0 is technical and
required for analysis. The assumption A1 comes from the
fact that since P̃ is expressed as the difference of the power
consumption from a baseline value its expectation should
be set to zero. Otherwise, loads are not providing storage
services. The assumption A2 is key to facilitate analysis. A2
requires the variance and mean of the process P̃ to be time
invariant and the autocorrelation function to be a function of
τ , as reflected in A0. We denote the time invariant variance
as σ2

P̃
; the time invariant mean is already specified in A1.

For a WSS stochastic process {X(t)}, the (power) spectral
density SX(ω) is the Fourier transform of the autocorrelation
function [22]:

RX(τ) =

∫ ∞
−∞

SX(ω)e(jωτ)d
ω

2π
, (14)

SX(ω) =

∫ ∞
−∞

RX(τ)e(−jωτ)dτ, (15)

The above is referred as the Wiener-Khinchin theorem. When
X has zero mean, the variance is

σ2
X = RX(0) =

∫ ∞
−∞

SX(ω)d
ω

2π
. (16)

Proposition 1. [22] Let X be a WSS and m.s. continuous
stochastic process, then for all t ≥ 0,

(i) E

[ ∫ t

0

X(σ)dσ

]
=

∫ t

0

µX(σ)dσ = tµX .

(ii) E

[(∫ t

0

X(σ)dσ

)2 ]
= 2

∫ t

0

RX(σ) (T − σ) dσ.

Proposition 2. [22] Let X be a WSS stochastic process and
input to the linear time invariant BIBO stable system G(s)
with output Y , then Y is WSS, X and Y are jointly WSS,
and

(i) E[Y ] = G (jω)
∣∣∣
ω=0

E[X],

(ii) SY (ω) = |G(jω)|2 SX(ω),

where SX is the SD of X , SY is the SD of Y , and G(jω)
is the frequency response of G(s).

Furthermore, the Chebyshev inequality for a random vari-
able X will be useful:

P
(
|X − µX | ≥ k

)
≤ σ2

X

k2
, ∀ k > 0, (17)

where P(·) denotes probability.

B. Inequality Constraints: Spectral Characterization

The QoS constraints (6)-(9) are characterized probabilis-
tically in the following way. The inequalities in (6)-(9) turn
into probabilistic inequalities; the probability of the QoS
constraint not being met is required to be small:

P
(∣∣∣P̃ (t)

∣∣∣ ≥ c1) ≤ ε1, (18)

P
(∣∣∣P̃δ(t)∣∣∣ ≥ c2) ≤ ε2, (19)

P
(∣∣∣θ̃(t)∣∣∣ ≥ c3) ≤ ε3, (20)

P
(∣∣∣Ẽ(T )

∣∣∣ ≥ c4) ≤ ε4. (21)

The quantities {εi}4i=1 set the tolerance level for satisfying
the respective constraint and are chosen to be small.

In order to pose the inequality constraints (18)-(21) in
terms of SP̃ , two steps are taken. The first step is to utilize
the Chebyshev inequality (17) to bound the probabilities
in (18)-(21) as a function of the variance of the given random
variable. The second step is then to use the Wiener-Khinchin
theorem (14) to express the variance as the integral of SP̃ .

Lemma 1. Let P̃ satisfy A0-A2, then for all t

E[Ẽ(T )] = 0, E[P̃δ(t)] = 0, E[θ̃(t)] = 0.

Proof. Apply the result of Proposition 1 and 2 for E[Ẽ(T )]
and E[θ̃(t)], respectively. The linearity of expectation suffices
for E[P̃δ(t)].

With the result in Lemma 1 and Chebyshev’s inequal-
ity (17) we formulate sufficient conditions for the inequality
constraints (18)-(21) as follows,

σ2
P̃
≤ c21ε1, σ2

θ̃
≤ c22ε2, (22)

σ2
ẼT
≤ c23ε3, σ2

P̃δ
≤ c24ε4, (23)

so that the probability of exceeding the inequality con-
straints (18)-(21) will be less than the respective specified
amount, {εi}4i=1. Before transforming the LHS of (22)-(23)
in terms of SP̃ it is necessary to compute the variance σ2

P̃δ
and σ2

Ẽ
, for which we partly rely on Proposition 1, the

linearity of expectation, and the Wiener-Khinchin theorem:

σ2
P̃δ

= E

[(
P̃δ(t)

)2
]

= 2 (RP̃ (0)−RP̃ (δ)) , (24)

σ2
ẼT

(T ) = E

[(
ẼT (T )

)2
]

= 2

∫ T

0

RP̃ (τ) (T − τ) dτ

= 2

∫ T

0

(T − τ)

(∫ ∞
−∞

SP̃ (ω)e(jωτ)d
ω

2π

)
dτ, (25)

=

∫ ∞
−∞

SP̃ (ω)

(∫ T

0

(T − τ) cos (ωτ)dτ

)
d
ω

π
. (26)



The integrands in (25) are positive, so that the integrability
and absolute integrability are equivalent and the integrand
satisfies both conditions for a fixed T . Thus the change
of the order of integration is valid according to Fubini’s
theorem [23]. Furthermore, the inner integral in (26) can
be evaluated by parts. Now applying the Wiener-Khinchin
theorem (14) to the LHS of (22)-(23), the constraints (18)-
(21) are converted into constraints on the SD of P̃ :∫ ∞

0

SP̃ (ω)d
ω

π
≤ c21ε1, (27)

2

∫ ∞
0

SP̃ (ω) (1− cos (ωδ)) d
ω

π
≤ ε2c22, (28)∫ ∞

0

Sθ̃(ω)d
ω

π
=

∫ ∞
0

|H(jω)|2SP̃ (ω)d
ω

π
≤ c23ε3, (29)

2

∫ ∞
0

SP̃ (ω)
1− cos(Tω)

ω2
d
ω

π
≤ c24ε4, (30)

where (27) is achieved from (16), and (29) is achieved
through Proposition 2. The above integrals have been trans-
formed from (−∞,∞) to [0,∞) due to the symmetry of the
above integrands about the point ω = 0.

The capacity of a load is then characterized by the set

S ,
{
SP̃

∣∣∣SP̃ satisfies constraints (27)− (30)
}
. (31)

The load is capable of tracking any P̃ whose SD is in S.

IV. RESOURCE ALLOCATION FOR FLEXIBLE LOADS

We illustrate here how the capacity of a flexible load
characterized by (27)-(30) can be used by a Balancing Au-
thority (BA) for resource allocation. We consider a collection
of homogeneous loads to be used as a resource to provide
grid support, which is equivalent to a larger flexible load.
Conceptually, our proposed method projects the need of a BA
onto the constraint set of this one large flexible load. First,
we describe how a BA can determine its needs spectrally
and how to define the constraint set for this larger flexible
load. Second, we combine the constraint set for this flexible
load and the BA’s spectral needs into a resource allocation
optimization problem.

A. Spectral Needs of the BA

In the following we provide an example procedure for
a BA to spectrally determine its needs, as illustrated in
Figure 1. The BA first estimates the SD, ΦND, of its net
demand, i.e., demand minus renewable generation. It can
estimate this quantity from time series data of demand and
renewable generation, or through a modeling effort, or a
combination thereof. The next step for the BA is to fit
a parameterized model to ΦND, which is termed SND.
All controllable resources, including generators, flywheels,
batteries, and flexible loads, together have to supply ΦND (or
its parameterized model SND). The third step is obtain the
portion of SND that flexible loads have to provide (similar
to what is shown in Figure 1) by “filtering” SND. Letting

F (jω) be an appropriate filter, then the SD of the signal the
grid authority would like flexible loads to contribute is:

SL(ω) = |F (jω)|2SND(ω). (32)

In the numerical example in this paper, we empirically
estimate ΦND from time series data (from BPA, a balancing
authority in the Pacific Northwest), and then obtain SND by
fitting an ARMA(p, q) model to ΦND. An example of SND

is shown as the red line in Figure 1, with SL being any of
the shaded regions in Figure 1.

Comment 2. We have introduced a procedure for the BA to
determine its needs in the spectral density domain. This pro-
cedure is completely independent from our characterization
of capacity presented. The next step is to use the results of
the procedure, the BA’s spectral needs, to find the closest SD
of the loads to the grid’s need.

B. Capacity of a collection of homogeneous loads
We aggregate a collection of smaller homogeneous loads

to develop a larger (aggregate) flexible load. Homogeneous
loads, by definition, have identical models (4), QoS con-
straints (6)-(9) and parameters, and consequently have the
same SD SP̃ (ω). The total power deviation of a collection
of N homogeneous loads is P̄ (t) , NP̃ (t), and the SD of
the larger flexible load specified in terms of the common SD:

S̄P̃ (ω) = N2SP̃ (ω). (33)

where S̄P̃ (ω) is the SD of P̄ (t). To develop the con-
straints (27)-(30) on the SD S̄P̃ (ω) it suffices to multiply the
constraints (27)-(30) by N2 and substitute in S̄P̃ (ω) using
its representation. This results in a set of constraints on the
SD for the larger flexible load,

Sagg ,
{
S̄P̃

∣∣∣ S̄P̃ (ω) ≥ 0,

∫ ∞
0

S̄P̃ (ω)d
ω

π
≤ N2c21ε1,

(34)∫ ∞
0

2S̄P̃ (ω) (1− cos (ωδ)) d
ω

π
≤ N2ε2c

2
2,∫ ∞

0

|H(jω)|2S̄P̃ (ω)d
ω

π
≤ N2c23ε3,∫ ∞

0

2S̄P̃ (ω)
1− cos(Tω)

ω2
d
ω

π
≤ N2c24ε4,

}
.

Comment 3. Sagg is the capacity of the aggregate of N
homogeneous flexible loads.

C. Allocation through projection
Resource allocation is performed by projecting the SD

SL(ω) - what the grid needs - onto the set S - what the
load can provide. The solution of the projection problem
determines the SD S̄P̃ for the flexible load. The projection
problem is,

min
{S̄P̃ }

∫ ∞
0

(
S̄P̃ (ω)− SL(ω)

)2
dω (35)

s.t. S̄P̃ ∈ Sagg, (36)

S̄P̃ (ω) ≤ SL(ω), ∀ ω ∈ [0,∞). (37)



Doing so allocates the needs of the grid to the flexible loads;
the loads will cover as much of the BA’s needs as they can
while maintaining their QoS. In other words, the projection
computes the regions shown in Figure 1 corresponding to
constraints of the flexible loads. Constraint (37) is included
to ensure that the capacity is not over scheduled, i.e., the
load should contribute more than the BA requires.

In order to implement (35) on a computer, two steps
are taken: (i) the problem is converted from continuous to
discrete time and (ii) the resulting discrete time integrals
in the objective and constraints are approximated with the
trapezoidal integration. The first step converts the region of
integration from [0,∞) to [0, π]. The second step casts the
problem to a finite dimensional convex optimization problem.

D. Long term resource allocation

The problem (35) can be utilized by a BA for long
term resource allocation. To do so, the BA can solve the
problem (35) for varying system conditions (e.g., number of
loads or type of filter F in (32)). This allows the BA to
answer questions such as: (i) What is the VES capacity of
50000 HVAC systems, or (ii) How many flexible loads would
be required to meet the energy storage needs of the grid?

V. NUMERICAL EXAMPLES

Here we consider N homogeneous commercial building
HVAC systems. The baseline power consumption for each
building is time varying, but the nominal value 40kW. For
such an example, θ̃, γ, and β in (2) represent internal tem-
perature deviation, time constant of temperature dynamics
in response to change in power consumption, and a scaled
coefficient of performance, respectively. Table I shows the
parameters used to model HVAC systems and their QoS.

We present two numerical experiments: (i) solving the
problem (35) with for a fixed N = 3600, and (ii) a
parametric study that varies N over a range. The purpose of
(i) is to illustrate the solution process of the problem (35).
The purpose of (ii) is to illustrate how much of the grids
requirements are met with a varying number of loads.

To aid exposition of the results, we define aggregate
capacity index ζ as:

ζ =

∫∞
0
S̄P̃ (ω)dω∫∞

0
SL(ω)dω

× 100%, (38)

so as to show the percentage of capacity required by the BA
that can be covered by the loads.

In all scenarios we solve the discrete time finite dimen-
sional version of the convex optimization problem (35) with
CVX [24]. All relevant simulation parameters, if not specified
otherwise, can be found in Table I.

A. BA’s spectral needs

The net load data is collected from Bonneville Power
Administration (BPA: www.bpa.gov ). The SD of the net
demand is determined empirically from time series data; see

TABLE I: Simulation parameters

Par. Unit Value Par. Unit Value
c1 kW 40 γ 1/hour 177.6
c2 kW 8 β ◦C/kWh 0.0450
c3 ◦C 1.11 T Day 1
c4 kWh 5 ωH 1/hour 60
δ Sec 10 ωL 1/hour 2
{εi}4i=1 N/A 0.05

1/day 1/hour 1/10min 1/min
Freq

100

105
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o
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Fig. 2: Empirical net demand SD and modeled SD for BPA.

Section IV-A. We choose an ARMA(2,1) model to fit the
empirically estimated SD. Note that because the sampling
rate of the data is 5 min, the highest frequency of the
empirical SD is 1/10 minutes. Since we might expect HVAC
systems to provide ancillary service at frequencies higher
than 1/10min [19], we extrapolate the net load SD to
higher frequencies. The empirical SD (denoted ΦND) and
the modeled SD (denoted SND) are shown in Figure 2.

B. Meeting the BA’s needs with 3600 buildings
The reference SD, denoted SL, is obtained by “filtering”

SND obtained from the previous subsection. We choose the
lower band of this filter as ωL = 1/30min, so to reflect the
large penetration of hydroelectric generation in the pacific
northwest; hydro has minimal ramping constraints so that
VES from flexible loads is required at higher frequencies.

The SD SL is then projected onto S by solving (35) and
the resulting SD for the flexible load considered is S̄P̃ . All
three SDs, SL, SND, and S̄P̃ are shown in Figure 3. At
N = 3600, the buildings are able to meet the requirements
of the grid at that frequency band.

C. Parametric Study
To examine the effect of number of loads on the VES

capability, we vary N and solve problem (35) for each.
Effectively, this is varying the size of the equivalent larger
flexible load. We vary N from N = 1000 to N = 4500,
while the rest of the parameters are held fixed. We evaluate
the results by computing the aggregate capacity index (38)
for each N . The results are shown in Figure 4. As expected,
as N increases ζ increases too: if more flexible loads are
used, more of the BA’s requirements is fulfilled. In particular,
a collection of N = 3600 commercial building HVAC
systems is enough to fulfill the needs of the grid in the range
of time scales selected by the filter F .



1/3hours 1/15min 1/min
Freq.

10-9

10-5

102

107

S
D

 (
M

W
2 /(

1/
h

o
u

r)
)

Fig. 3: Net load SD, reference SD, and the load capacity for
problem (35) for N = 3600.
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Fig. 4: Capacity index as the number of commercial building
HVAC systems is varied.

VI. CONCLUSION

We present a characterization of capacity for flexible loads
that allows a balancing authority to quantify the amount of
its energy storage needs that a flexible load can meet. The
capacity is characterized as a set of constraints that the load’s
power spectral density of its demand deviation must satisfy
in order maintain the load’s quality of service. We then
use this capacity characterization to determine the “optimal
portion” of a grid’s energy storage needs that a collection of
homogeneous loads can provide.

In contrast to past works that largely focus on determining
if a power demand signal is feasible for a collection of loads,
our characterization is in terms of the statistics of the power
deviation signal. Our method is thus useful for long term
planning. In particular, the method allows one to answer
question such as “how many flexible HVAC systems does
a grid need to meet its requirements”, or “what fraction of
the grid’s needs can be met by 1000 water heaters”?

Extending the method to heterogeneous flexible loads is
the next task. Another avenue is to consider additional QoS
metrics, especially cycling or lockout constraints for on/off
loads.
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