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Abstract

An aggregate model is a single-zone equivalent of a multi-zone building, and is useful for many purposes, including model
based control of large heating, ventilation and air conditioning (HVAC) equipment. This paper deals with the problem
of simultaneously identifying an aggregate thermal dynamic model and unknown disturbances from input-output data of
multi-zone buildings. The unknown disturbance is a key challenge since it is not measurable but non-negligible. We first
present a principled method to aggregate a multi-zone building model into a single zone model, and show the aggregation
is not as trivial as it has been assumed in the prior art. We then provide a method to identify the parameters of the
model and the unknown disturbance for this aggregate (single-zone) model. Finally, we test our proposed identification
algorithm to data collected from a multi-zone building testbed in Oak Ridge National Laboratory. A key insight provided
by the aggregation method allows us to recognize under what conditions the estimation of the disturbance signal will
be necessarily poor and uncertain, even in the case of a specially designed test in which the disturbances affecting each
zone are known (as the case of our experimental testbed). This insight is used to provide a heuristic that can be used
to assess when the identification results are likely to have high or low accuracy.

Keywords: building thermal dynamics modeling, system identification, disturbance estimation, data-driven modeling
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A dynamic model of a building’s temperature is useful
*Corresponding author in several applications involving heating, ventilation, and
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Preprint submitted to Elsevier January 18, 2021



control for improving indoor climate and reducing energy
use [1, 2], limiting peak demand [3, 4], or providing an-
cillary services to the power grid [5, 6]. There are many
different model structures for modeling the thermal dy-
namics of a building zone. A general review of the state
of the art can be found in [7]. To be used in a control al-
gorithm, especially real-time control, the model should be
of low order. The Resistance-Capacitance (RC) network
is a commonly used low-order model structure; use of such
models goes back a long way [8].

A common way of obtaining low order models is identi-
fication from input-output measurements. There is a rich
literature on identification of the parameters of a RC net-
work model for single zone commercial buildings [9-14].
Thermal parameters are obtained through a max likeli-
hood estimator in [10, 11]. Parameter identification is
performed by minimizing the root mean square prediction
error, by using the extended Kalman filter in [12] and by
a genetic algorithm in [9]. A primal-dual interior point
method is used to minimize the weighted quadratic pre-
diction error in [13]. Minimization of the multi-time step
ahead prediction error with partial least square regression
is used in [14].

For a single zone model, the output is the zone tem-
perature, while the inputs are the heating (or cooling) rate
injected by the HVAC system, ambient air temperature,
solar irradiance and the internal heat load. All inputs can
be easily quantified except the internal heat load. The in-
ternal heat load is a sum of all sources of heat inside the
building, such as occupants’ metabolism, and lights and
appliances used by occupants. The internal heat load is
an exogenous disturbance that is typically unknown and
not measurable. Since this disturbance can be comparable
in magnitude to the cooling provided by the HVAC sys-
tem, it poses a challenge in model identification from mea-
sured input-output data [15]. Earlier works have mostly
ignored this disturbance; see [16] for a discussion of earlier
approaches. Some approaches to estimating this internal
heat load use occupant-related information such as CO;
concentration or occupancy measurements [17, 18]. How-
ever, works on identifying the model and the unknown dis-
turbance without using occupant-related information are
quite recent [15, 16, 19]. In [15], the effect of the unknown
disturbance is modeled by an additive output disturbance
that is the output of a filter that is driven by standard
white noise. For a given plant and filter parameters, the
model and filter parameters are estimated by minimizing
the prediction error. The method proposed in [16] trans-
forms the inputs disturbance to a model state by assum-
ing it varies slowly, and estimates it using a Kalman filter.
The parameter identification problem is solved by an outer
loop minimization of the prediction error. In [19] a linear
black black box model structure is used, and the effect
of the heat gain is incorporated by an input disturbance
that is a transformation of the unknown heat gain. The
plant parameters and the transformed disturbance signal is
estimated by minimizing an ¢;-regularized quadratic pre-

diction error, with the ¢; penalty added to encourage a
sparse solution to the transformed disturbance.

More challenges arise when we extend the identification
problem from single-zone to multi-zone buildings [20]. The
multi-zone model is much more complicated since there
are more inputs, outputs, parameters, and states. The
internal heat load is already hard to identify in a sin-
gle zone building. The problems gets much more chal-
lenging in a multi-zone building: there can be as many
internal heat loads (unknown disturbances) as there are
zones. The plant and disturbance identification problem
of a multi-zone model is thus more challenging than that of
a single zone model. Many works on model based control
for multi-zone buildings instead use a “single-zone equiv-
alent” model of the building, in which the average build-
ing temperature (averaged over the zones) and the sum of
zone-level inputs are used as outputs and inputs [21-23].
Such a model is useful in determining building-level con-
trol commands for large equipment such as a chiller or an
air handling unit that serves a multi-zone building.

In this paper we address the problem of identification of
such an aggregate model. A principled approach to aggre-
gating a multi-zone building into a single zone equivalent is
proposed first. We then provide a method to identify ther-
mal parameters and the unknown disturbance for this ag-
gregate (single-zone) model. Lastly, we test our proposed
identification algorithm to data generated from simulation
and data collected from a multi-zone building testbed at
the Oak Ridge National Laboratory in which disturbances
are known. Evaluation from both datasets shows that the
proposed method performs quite well. The insight on the
difference between the average internal heat loads and the
aggregate heat load is useful in evaluating the estimation
results.

1.1. Contribution over prior art

The concept of an aggregate model is not new in build-
ing modeling and control literature. Many Model Predic-
tive Control (MPC) formulations use an aggregate model
to determine building-level control commands [23, 24]. A
common practice is averaging/summing the inputs and
outputs over all zones to form a single set of input and
output signals. These signals are then assumed to be re-
lated by an arbitrary RC network model, which is then set
up as a system identification problem to determine the pa-
rameters of the chosen RC network structure [9, 10, 12, 13].
Other works, e.g., [23, 25], aggregate a multi-zone model
into a single zone model using knowledge of each zone’s
thermal parameters and inter-zone interactions, which are
usually unknown, limiting their applicability.

There are four contributions of our work. The first
contribution is a principled method of aggregating a high-
dimensional multi-zone model into a low-order single zone
equivalent model which is termed an “aggregate model”.
One advantage of our aggregate model is that the defini-
tion of the aggregate: (i) thermal parameters, (ii) inputs,
(iii) outputs, and (iv) internal heat load are all crisply



specified in terms of respective individual zone quantities.
Our second contribution is a novel method to estimate
both model parameters and the aggregate internal heat
load from measurable input-output data. This identifica-
tion method is inspired by the Kalman-filter based method
n [16]. The difference is that the method proposed here
allows for the incorporation of prior knowledge in the form
of constraints (such as non-negativity of the internal heat
load) while that in [16] does not. The third contribution is
a heuristic that allows one to predict - based purely on the
data used for identification - when the estimated aggregate
internal heat load is likely to be accurate (or not). The
fourth contribution is assessment of the proposed method
with data collected from a special test building in which
the internal heat loads are carefully controlled and mea-
surable. To the best of our knowledge, no other works have
reported results from such experiments; data is typically
collected from a building during regular operation where
the ground truth disturbance is not known. The lack of
ground truth makes their results challenging to assess. In
contrast, with the known ground truth, our results can be
assessed far more clearly.

A preliminary version of this paper is presented in [26].
While [26] only presented simulation evaluation, this pa-
per presents evaluation of the proposed method with data
from a real building. The second contribution over [26] is
the heuristic to predict when the identification results are
likely to be accurate.

The rest of the paper is organized as follows: Section 2
describes the process of modeling the thermal dynamics of
multi-zone buildings. Section 3 formulates the identifica-
tion problem and proposes our identification method along
with a heuristic to predict the accuracy of estimated dis-
turbance. Section 4 shows the identification results for: (i)
simulation data and (ii) data collected from a real building.
We conclude in Section 5. The quantities in the paper are
summarized in the nomenclature at the end of this paper.

2. Building Thermal Modeling Structure

2.1. Single-zone Model

We start with a single zone and its model. A floor plan
for a single zone is presented in Figure 1. A Resistance-
Capacitance (RC) network model, particularly a 2R2C
model, is overlaid on the floor plan. The 2R2C model
refers to the following coupled differential equations that
describe the evolution of temperature of the zone, T, in
response to various inputs:

T,(t) — T.(¢) 1

T.(t) = TR + E(th(t) — qac(t))
Tw(t) —T.(t) A,
+ w + @nsolar(t)a (1)
. T,(t) — Ty (t T.(t) — Ty (t Ay
Tw(t) = (,R) C ( ) (]{) C ( ) Fﬁsolar(t)v

(2)

Figure 1: 2R2C network on top of a single zone building.

where T, is a fictitious state (temperature of the wall, if
you must), ¢u. is the cooling load due to the HVAC system,
and Nsolars Lu, and g;n¢ are non-controllable inputs, which
are the solar irradiance, ambient (outside) temperature,
and internal heat load, respectively. The parameters in
this model are {R.4,C., Row, Cw, Az, Aw }-

2.2. Aggregate Multi-zone Model

Here we describe how a model of a multi-zone building
can be aggregated into a single-zone model of the type
described in the previous section. An example of multi-
zone building is shown is Figure 2. In the sequel, we call
the resulting single-zone model as the aggregate model for
the multi-zone building.

To start the derivation, let N, be the number of zones
in the building, and each zone is modeled by a 2R2C net-
work model using (1)-(2). We now define the average in-
put/output quantities as follows:

A

), ac(t) & — anc (3)
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N,
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znt nsolar - F solar

A

N,

N.
(jint - Z q
where TJ is the temperature of p** location for the jt*
zone. For example, T? represents the zone temperature of
the 2nd zone. In the sequel, the bar is used to distinguish
an average quantity.

By summing the N, individual thermal models (1)-(2)
over the j index and dividing by the number of zones, we
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Figure 2: Example floor plan for a multi-zone commercial building.
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Notice that above we have assumed that the zones have
no thermal interactions with each other. We have done so
only in the interest of saving space; later we comment on
the changes if thermal interactions among zones exist.

Now we can construct the aggregate model by substi-
tuting definitions (3)-(4) into equations (5)-(6). Two ap-
proaches are possible, leading to a time varying model or
a time invariant model, respectively.

2.2.1. Time Varying Model

If we define a model from (5)-(6) whose structure is
exactly the same as that of the single-zone model (1)-(2) in
terms of the average signals defined in (3)-(4), the thermal
model becomes:

2 Tat) = Te(t) Gae(t) | Gime(t)
FO="5w " oee "o

N Tw(?zw—(gz(t) + A, (Disotar(t), (7)
Tw(t) N Ta(?w:(z;w(t) + = (?w:(z;w(t) + Aw(t)ﬁsdar(t),

(8)

where 7 £ RC represents the time constant. The expres-
sion for the thermal parameters are:

N.(T,(t) — Tp(t))

Tom (t) £ ; R (9)
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which are time varying. To save space, the sub/superscripts
on the LHS values denote the relevant location (like the z

subscript in (3)). The right hand side of these equations

become time-invariant only if either thermal parameters or

input variables are completely homogeneous over the zone

index j. Otherwise, these defined “thermal parameters”

will be time-varying depending on each zone’s individual
inputs and states, which is not an appealing situation.

2.2.2. Time Invariant Aggregate Model

Since the thermal parameters and inputs for individual
zones are unlikely to be homogeneous over each zone, we
modify our interpretation of the average signals (3)-(4)
so that the aggregate model becomes a RC network model
with time invariant thermal parameters. Doing so requires
defining the following deviation variables:

~ A . _ i A i B
ng = Tg - Tpa Qéc = Qéc — Gac;

1A g = ~J A L7 =

Tint = Dint — int, nsolar - nsolar — Nsolar; (12)

where p is the same as (3). The interpretation of (12) is
that all individual inputs and states can be represented
as the average quantity (zonal average) plus some devi-
ation. With some tedious algebra, it can be shown that
with the help of these definitions, the ODEs (7)-(8) can be
transformed to:
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The thermal parameters of the aggregate model are 7.y,
C,, and A, and are time invariant. The signals W, W,
are additive time-varying terms that represent model mis-
match due to the asynchronous inputs and states for each
zone and wall, respectively. We term these additive terms
as “aggregation errors” and they will be zero only if all de-
viation variables are synchronous. We define the aggregate
internal heat load as:

AL

(jagg(t) Gint (t) + "Dz (t)027 (18)

which leads to the final construction of the aggregate model:
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Comment 1. The derived model (19)-(20) represents the
time evolution for “average” quantities of building zones.
That is, if data is collected from individual zones in a
building and is aggregated according to (3)-(4), then equa-
tion (19)-(20) describes how these states should change
over time. Furthermore, if this average data is utilized
in system identification of an equivalent single-zone RC-
network model, then (15) informs us how the thermal pa-
rameters of such a model are related to thermal param-
eters of each individual model. FEqually important, (18)
shows that the aggregate disturbance @agg is not the average
internal heat load Gint, but incorporates an additive term
(W) that is related to all the other states and inputs in a
complex manner. This additive term is amplified when the
inputs and the states of each zone vary in an asynchronous
manner.

Comment 2. Although we have neglected thermal inter-
actions in the derivation of the aggregate model, those in-
teractions only affects additive terms. The RC network

structure and the thermal parameters of the aggregate model
(15) remain the same.

Thermal interactions between the zones az"e modeled as
an additional term to T? in (5)-(6), doiti P R”CJ . If each

CI = Cy for all j, the thermal interactions will cancel
completely in the aggregate model, since RY = RI by def-
inition. If each CI is distinct then the aggregation error
W, changes to W', where

', = NZZ R’JCJ . (21)

=1 j=1

3. System Identification

3.1. Problem Statement

We now turn to the problem of identifying the ag-
gregate model (19)-(20) from input-output data collected
from multiple zones. That is, given the individual input-
output data of each zone in a multi-zone building, we wish
to identify the thermal parameters and internal heat load
of an aggregate model which is of the same type as the
individual model. Note that (i) the aggregate model takes
average inputs and output which are computed from indi-
vidual inputs and output, (ii) the presence of the unknown
disturbances in the model, Jagg(t) and w,(t), presents a
serious hurdle, especially gags since it is large; sometimes
comparable to the cooling provided by the HVAC sys-
tem [15].

Our proposed approach is inspired by that in [16], in
which a simple dynamic model of average internal heat
load is proposed by assuming it is slowly time varying.
Then estimation of this unknown signal is cast as a state
estimation problem. Recall that Gage = Gint + w0,C,. In
this work we assume that G, > 10,C,, that is the average
internal heat load is much larger than the scaled aggrega-
tion errors. Due to this, we adapt the following dynamic
model used for i, in [16] t0 Gagg:

lagslt) = 0 (22)

The justification for this model comes from the usual pat-
tern of occupancy in commercial buildings, in which occu-
pants typically enter and exit the building in bulk. This
bulk transfer of people would correspond to a piece-wise
constant occupant-induced heat load signal, which would
consequently make its time-derivative be 0 for the most of
time. Then the dynamic model for the aggregate internal
heat load can be coupled with the aggregate RC network
model (19)-(20) to form the aggregate model:

T -1 -1 1 1 T
Lw _ za ‘T—wz zw ‘T—:vi iu %Ulz 0 7u)
Lagg 0 0 0 _agg
1 A 1 7
= filz ol T,
+ Twa Aw 0 'F]solm“ ) (23)
0 0 0 Qac



where we have dropped w,, for wall temperature is not
of our interest. This can then be expressed in compact
continuous time state space notation as,

&(t) = A(0)x(t) + B(0)u(d),
z(t) = Fa(t),

(24)
(25)

where the definitions of z(t),u(t), A(6), and B(f) follow
from comparison to (23); 0 = [Toa, Tows Twa, Twzs Czs Az Ay
is the unknown parameter vector and F = [0, 0, 1].

The aggregate level identification problem can be posed
as follows: given Ny time-samples of the average measured
inputs ulk] = [T.[k], fisolar k], Guc[k]]T € R and the mea-
sured average output z[k] = T.[k] for k = 0,..., Ny — 1,
identify the unknown thermal parameter § € R”, and the
aggregate internal heat load signal samples Gagg[k] € R for
k‘ZO,...,Nt—Q.

We emphasize that the average signals (defined in (3)-
(4)) that are used as input data for the system identifica-
tion problem can be computed from measurable zone-level
signals. Note that g, is not a input for this identification
problem.

T

3.2. Proposed Identification Method

Our proposed method involves solving a constrained
non-linear optimization problem in order to obtain esti-
mates for the aggregate thermal parameters and the ag-
gregate internal heat load. Since gags has been recast as a
state variable, estimation of the state produces an estimate
for this quantity.

If the thermal parameters were already known, a Kalman
filter would be adequate to estimate the state since the
model is linear [27]. However, since the thermal parame-
ters are unknown the problem turns into a nonlinear state
estimation problem. There are many available choices for
non-linear state estimation, such as particle filtering, the
extended Kalman filter, or moving horizon/batch estima-
tion approaches [28, 29]. In this work we choose the batch
estimation approach because it allows for an easy incor-
poration of inequality constraints on the state estimates.
Particularly, the aggregate internal heat load is enforced
to be positive since it usually adds heating.

To setup the batch optimization problem, the contin-
uous time aggregate model (23) is discretized using a first
order forward Euler method with a sampling time ¢,. Ad-
ditionally, process and measurement noise are included to
account for modeling error. The corresponding discrete
time model is then,

wlk + 1] = z[k] + ts (A(0)z[k] + B(O)u[k]) + GE[K], (26)
z[k] = Fa[k] + v[k], (27)

where {¢[k]} o2 and {v[k]}n*; " are white noise sequences
that capture the modeling error and sensor noise. We only
let Gagg have process noise (i.e., G = [0,0,1]7). The reason
is that since we are also identifying system parameters,
adding noise to the other states would greatly increase the

number of degrees of freedom and likely produce spurious
results.
The batch estimation problem is now posed as:

min <(m0 —x3)" P (mo — )
9@0,{5[“};@;5

Ny—2
+(O0— 0PSO —0")+ A > [¢[R]|
1 Ny—1 N,—2 =
+ = STVEP+ o> qagg[kP),
k=1 k=0
st. Vke{0,..,N, —1},
v[k] = T.[k] — Fal[k],

(28)
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where xf; and 0* are guesses of initial state and thermal
parameters. Prior knowledge of building temperatures and
thermal parameters can be incorporated through z§ and 6*
to aid the identification. The matrix P, L and Py Dare the
weighting matrices for the differences between estimated
values and guesses of initial state and parameters, respec-
tively. The scalar values A, 1/r, o represent the cost for the
process noise, measurement noise, and aggregate internal
heat load, respectively. The sets X and © correspond to
inequality (box) constraints on the state and parameters
based on the apriori knowledge of them.

There is a penalty on aggregate heat load in the objec-
tive function because we do not want aggregate internal
heat load to make up for all of the model error, giving too
much degree of freedom for parameters estimation. Note
we incorporate an absolute value penalty on the process
noise for the aggregate internal heat load estimate. This
is because we expect the derivative of g.gz to be sparse;
similar technique is used in [30].

Mathematically, this problem represents the minimiza-
tion of a convex function over a non-convex set, making the
overall problem a non-convex optimization problem. We
solve this optimization problem with CasADi [31] and the
NLP solver IPOPT [32] on a i7-4770 12GB RAM desktop.
The problem is solved in 6.21 seconds with N; = 2304.

8.8. Heuristic to predict accuracy of estimated aggregate
disturbance

As is mentioned in Comment 1, since the proposed
method identifies @,ge instead of ¢, even if it performs
perfectly, the estimated disturbance is likely to be differ-
ent from average disturbance. The converse is also true.
Recalling (18), Gagg = Gint +W:C., Gagg Will differ from g
more if |w,| is larger. To compute |w,|, the knowledge of
the thermal parameters of each zone is required (see (16)),
which is usually not available in reality. Although the ex-
act |w,| is unknown, we can provide a surrogate metric for



Note that the sample mean and sample variance of the
“tilde” terms are defined as:

1 &
molk] = > k], (29)
z 50
1 &
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where k is the discrete time step, IV, is the number of
zones, and p represents the type of inputs or states, i.e., p €
{Tm T.,Tw, Nsolars Qac Qint}~ USing (12), (29) is reduced
to:
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Substituting (31) into (30), we have:

1 Qe
] = 5 k2. (3)
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According to (32), large o
D € {Ta, T2, T, Msolars Qacs Gint }- We see from (16) that
|w,| will be large if magnitudes of these “tilde” terms,
T\, |@,], etc., are large for j € {1,2,..., N, }; equivalently
speaking, || will be large if ngl(fg){ Zj.vzzl(qgc){ ete.,
are large. Therefore, JZ and |w,| are positively correlated
for each pe {Tav T27 Twa Tlsolar; dacs Qint}~

In summary, the variance of “tilde” terms, 012,, is a
surrogate metric for aggregation error, |w,|. Consequently,
Gage Will differ from @;,,; more as 012] becomes larger. Since
the proposed method identifies Gags instead of Gne, the
estimated disturbance, (fagg is expected to differ from G;n;

more as (7127 becomes larger.

4. Evaluation with simulation data and real build-
ing data

We present results for two datasets (i) data generated
from an open loop simulation of a multi-zone building
model (“virtual building”) and (ii) data collected from
a testbed located in the Oak Ridge National Laboratory
while the building operates under normal closed loop op-
eration. The open loop scenario is included to illustrate
some of the analytical concepts derived.

4.1. Evaluation with simulation data

The virtual building has 5 independent zones, each
modeled by a 2R2C network model (1)-(2) and is aggre-
gated according to (5)-(6). The simulation data is gener-
ated from a 2 day open loop simulation and is aggregated

Table 1: Parameter estimates from open loop simulation (virtual
building).

Parameter Estimate True Value units
Tza 0.7652 0.7899 hour(s)
Tow 0.5919 0.5869 hour(s)
C. 0.7050 0.7147 EWh/°C
A, 0.7884 0.5700 °Cm?/kWh
Twa 24.5098 19.3798 hour(s)
Twz 2.6795 2.8441 hour(s)
Ay 4.2955 4.5537 °Cm?/kWh
1 v — ~
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Figure 3: Aggregate disturbance estimate gagg and average internal
disturbance ;¢ for the simulated virtual building.

according to the aggregation method (3)-(4). This data is
used by the proposed identification method to estimate the
parameters of an aggregate 2R2C network model (19)-(20)
along with the aggregate internal heat load.

Table 1 shows the parameter estimation results along
with their true values. As one can see from the table, the
parameters are estimated quite accurately. The estimated
aggregate internal heat load gage and the true average in-
ternal heat load @;,; are shown in Figure 3. We can see
obvious differences between (fagg and Gint-

Since all parameters and measurements in the simu-
lation are known, we can compute w, to obtain the true
aggregate internal heat load, Gages. Figure 4 shows the esti-
mated aggregate internal heat load gagg, the true aggregate

0.6 4‘_§agg === ngy —Gint }7
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Figure 4: Comparison of Gagg, its estimate gagg, and Fine-



Figure 5: ORNL test building

internal heat load g, and the true average internal heat
load G;nt. Recall from (18) that the aggregate internal heat
loads differs from the average heat load by w. (t)C.. In fact
this difference is clearly seen in Figure 4. Besides, we can
see the identification method is trying to estimate the ag-
gregate internal heat load (agg), nOt average internal heat
load (Gint). Therefore, even if the method performs per-
fectly there will be some non-vanishing difference between
the estimated quantity, (fagg, and the true average inter-
nal heat load, Gni. This observation should be kept in
mind in interpreting the estimation results. Otherwise the
estimation may appear to be poorer than it actually is.

4.2. BEvaluation with ORNL building data

The data for this evaluation is collected from a test

building located at Oak Ridge National Laboratory (ORNL),

Oak Ridge, TN, shown in Figure 5.

4.2.1. Data Collection

Data from 9-21-2018 to 10-03-2018 is used for iden-
tification. The building is unoccupied during this time.
To mimic the effects of occupancy (gint), space heaters
placed in each room are turned on and off synchronously.
Since the rating of each space heater is known, we have
the knowledge of ¢/, for all jth zone and therefore the
knowledge of G;,:. Additionally, the VAV for each zone is
controlled to maintain the temperature of each zone within
a preset range during daily operation. During nights, the
VAVs are shut off.

The inputs to the system (Gac, MsotarsTa and Gin:) are
shown in Figure 6. These inputs are computed from mea-
surements from individual zones using equations (3)-(4).
Since we have assumed that G.ge is primarily composed
of @int, we compare the estimation results of gags to the
measured G-

4.2.2. In-sample Results

We train our model on 8 days of collected training data.
Table 2 presents the estimated aggregate thermal param-
eters. Unlike the virtual building case study, there is no
ground truth to compare them to. Therefore we resort to
cross validation, which is discussed in Section 4.2.4.

Figure 7 shows the estimated aggregate internal heat
load cjagg and average internal heat load ¢;,:. To avoid
clutter we only present 2 days of data. The estimated
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Figure 6: Aggregated input sequences for the ORNL test building.

Table 2: Parameter estimates from closed-loop data collected from
ORNL test building.

Parameter Estimate units

Taa 2.08 hour(s)
Taow 0.2761 hour(s)
C. 0.1019 EWh/°C
A, 10.2 °Cm?/kWh
Twa 200 hour(s)
Twz 3.4722 hour(s)
Ay 0.7164 °Cm?/kWh

aggregate internal heat load is consistent with the average
internal heat load during nighttime while is sometimes sig-
nificantly different from the average internal heat load in
daytime. Unlike the simulation case, the true aggregate
internal heat load g,ge cannot be computed due to lack of
knowledge of parameters of each zone. Thus it is hard to
determine how close is the cfagg t0 agg, i.e., how well the
estimation of aggregate internal heat load is.

4.2.8. Use of heuristic to predict internal load estimation
accuracy

We now apply the heuristic described in Section 3.3.
We only compute sample variances of T: J and a ok because
the other terms incorporated in w, are either synchronous
across zones (such as the ambient temperature), unmea-
surable (such as the wall temperature), or their measure-
ment resolutions may not allow for their computation (such
as the solar irradiance). The sample variances are shown
in Figure 8.

As we can see, the sample variances are considerably
larger during the day, which is exactly when |Gagg — Gint| is
also at its largest (Figure 7). The heuristic thus explains -
at least partly - why the differences between guge and int
are significant during nighttime and small during daytime.

Furthermore, the sample variances in Thursday day-
time is larger than them in Friday daytime, meaning the
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Figure 7: Evaluation with building data: estimated aggregate inter-
nal disturbance ¢agg and measured average internal disturbance G-
Top: results for 2 days; bottom: zoomed in for one day.

ORNL Building

Thur Fri
Time (days)

Thur Fri
Time (days)

Figure 8: Building data: sample variance in Thursday and Friday to
illustrate the level of asynchronicity of terms that contribute to w..
Top: sample variance of TY over zones; bottom: sample variance of
G2 over zones, where j is zone index.

\ﬁagg — Gint| in Thursday daytime should be larger than
it in Friday daytime, which is exactly what happens; see
Figure 7. Thus, one can use the heuristic to assess at
which time periods the load estimates are likely to be less
representative of the true load than at other times.

Comment 3. In [33] the authors apply similar definitions
of the aggregate input/output signals to collected data from
a multi-zone building. When the cooling load is predicted,
they observe that model errors were most sensitive to the
magnitude of the internal heat loads. The authors in [33]
provide one explanation for this. However, another possi-
ble explanation is that the additive terms due to aggrega-
tion were not accounted for.

4.2.4. Out of sample (O0S) results

The thermal parameters estimated (Table 2) from the
training dataset are used to predict aggregated zone tem-
perature for a testing dataset that is distinct from the
training data. Since we only have average internal heat
load, we utilize it along with the estimated parameters
and known inputs to compute these out-of-sample predic-
tions. The results are shown in Figure 9. The successful
out-of-sample prediction suggests that the thermal param-
eters identified are reasonably accurate.

As is discussed in Section 3.3, since we are using av-
erage internal heat load @;,; instead of aggregate inter-
nal heat load Gags, we would expect larger temperature
prediction errors when |Gags — int| is larger, which is the
time when the inputs and states are more asynchronous.
Similar to what we did in Section 4.2.3, we plot sample
variances of T/ and ¢, over zones to indicate the level of
asynchronicities of them. It is observed that the average
zone temperature prediction error is typically larger when
Tg and ¢, are more asynchronous, which accords with our
expectation.
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Figure 9: Out of sample aggregate zone temperature (T%) prediction
results for the ORNL building using the estimated aggregate RC
network model.

ORNL Building
2
&
o
~ 1
"
S
0
Sat Sun
Time (days)

Sat Sun
Time (days)

Figure 10: Building data: sample variance in Saturday and Sunday
to illustrate the level of asynchronicity of terms that contribute to
w,. Top: sample variance of TY over zones; bottom: sample variance
of ¢} over zones, where j is zone index.



5. Conclusion

We derive an aggregate (single-zone equivalent) model
of a multi-zone building. Our aggregation method shows
that unless all zones in the building are identical (i.e syn-
chronous inputs or identical thermal parameters) the ag-
gregate model will be affected by time varying additive
terms. These additive terms act as an additional heat-
ing/cooling source to the model.

One advantage of our work is that we can identify both
the parameters and the internal heat load of the derived
aggregate model without any information related to oc-
cupancy. Our analysis proves that the aggregate internal
heat load is fundamentally distinct from the average inter-
nal heat load, so that even with careful instrumentation a
ground truth cannot be established. The heuristic we pro-
posed provides one extra advantage in this context; it al-
lows one to assess time periods the internal load estimates
are likely to be error prone. The identification method is
then tested on data from a unique testbed in ORNL which
allows the internal heat load to be measured. The results
corroborate the effectiveness of our method and the utility
of the heuristic.

There are several avenues for future work, such as ex-
amination of the effect of latent heat on estimation ac-
curacy, analysis of data quality required to ensure high
quality estimation [34], and methods for identification of
a multi-zone building model without aggregation.
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