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Abstract—Flexible loads are a resource for the Balancing
Authority (BA) of the future to aid in the balance of supply
and demand in the power grid. Consequently, it is of interest
for a BA to know how much flexibility a collection of loads
has, so to successfully incorporate flexible loads into grid
level resource allocation. Loads’ flexibility is limited by all
their Quality of Service (QoS) requirements. In this work we
present a characterization of capacity for a collection of flexible
loads. This characterization is in terms of the Power Spectral
Density (PSD) of the reference signal. Two advantages of our
characterization are: (i) it easily allows for a BA to use the
characterization for resource allocation of flexible loads and
(ii) it allows for precise definitions of the power and energy
capacity for a collection of flexible loads.

I. INTRODUCTION

The inherent variability in renewable generation sources
such as solar and wind is a challenge for the power grid
operators to balance demand and generation. Ramp rate
constraints prevent conventional generation from handling
this mismatch between demand and generation completely,
while grid level storage from batteries is expensive. Thus a
new resource is being investigated to help fill the mismatch:
flexible loads. Flexible loads have the ability to vary power
consumption over their baseline demand without violating
their Quality of Service (QoS). The baseline power consump-
tion is the power consumed without interference from the
grid. The amount of deviation from the baseline demand,
requested from the grid, is the reference signal. The tracking
of a zero-mean reference signal guises, in the eyes of the
grid operator, flexible loads as batteries providing storage
services. This battery-like behavior of flexible loads is often
referred to as Virtual Energy Storage (VES) [1]. VES from
flexible loads can be less expensive than energy storage from
batteries [2]. Examples of flexible loads include residential
air conditioners [3], water heaters [4], refrigerators, com-
mercial HVAC systems [5], pumps for irrigation [6], pool
cleaning [7] or heating [8].

If the grid operator expects the flexible loads to track
the reference signal accurately, then the reference must not
cause the loads to violate their QoS. From the viewpoint
of the grid operator, flexible loads not tracking a reference
makes them appear unreliable. From the viewpoint of the
load, reference signals that continually require QoS violation
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provide incentive for loads to stop providing VES. In either
case, avoidance of the above scenarios is paramount to the
long term success of VES. That is, reference signals must be
designed to respect the capacity of the collection of flexible
loads.

Informally, the capacity of an ensemble represents lim-
itations in ensemble behavior (e.g., the ability to track a
reference signal) due to QoS requirements at the individual
loads. Consequently, a key step in determining the capacity
is relating the QoS requirements to requirements for the
reference signal. Unfortunately, this is not a straight forward
task and many varying approaches are present in the current
literature [9]–[15]. A popular approach is to develop ensem-
ble level necessary conditions [9], [11]; reference signals that
satisfy these conditions ensure the ability of all loads in the
collection to satisfy QoS while tracking the reference. Other
approaches include geometry based characterizations [16],
characterizations through distributed optimization [17], and
characterizations that approximate the Minkowski sum of
individual loads’ “resource polytopes” [18]–[20].

A limitation of some of the currently available capacity
characterization results is that a balancing authority (BA)
requires a specific reference signal trajectory to utilize the
characterization. This is because these approaches charac-
terize the capacity in terms of a set of constraints on the
ensembles time domain power consumption [9], [11], [18]–
[20]. Using these characterizations for long term planning
would then require the BA to predict its needs many months
in advance. In the rare case that this is possible, the BA
would have to generate a new predicted trajectory every time
it wants to ensure flexible loads can meet its needs.

This paper is about capacity characterization for long term
planning, which allows answering questions of the form
“how many flexible loads are required to offset the volatility
in its investment in a solar farm”. That is, will the BA require
10000 or 5000 flexible loads?

It turns out that if one develops constraints on the statistics
of the reference signal, then a notion of capacity that is
also useful for long term planning can be developed. More
specifically, consider Figure 1 where the Power Spectral Den-
sity (PSD) of a grid’s net demand is allocated to resources
(precise definition of PSD is provided later). This frequency
based allocation does not require knowledge of a specific
reference signal, but only of the statistics of the reference
signal. This is because one single PSD represents infinitely
many potential realizations of reference signal trajectories
that share the same statistics. If a BA can describe its needs
through statistical quantities, such as the PSD of the net



Fig. 1: An example spectral allocation of resources to meet
the grids needs.

demand in Figure 1, then it can determine the required
PSD from its resources. That is, the needs of the BA can
be described without having to specify a specific reference
signal. To avoid possible confusion with electrical power
(in Watt) we use Spectral Density (SD) instead of Power
Spectral Density (PSD) in the rest of the paper.

In order for the above argument to hold, it must be possible
to express the flexibility of loads in terms of statistical
properties, such as the SD. In fact, in [15], [21] it was
shown that the QoS requirements of flexible loads can be
characterized as constraints in the frequency domain. That
is, while primarily an illustrative example, it is possible to
quantitatively develop the regions shown in Figure 1.

In addition to [15], [21], there are many works that advo-
cate for the frequency-domain specification of loads’ abilities
(e.g., [5], [22]) and for resource allocation (e.g., [23]). The
results of real world VES experiments also suggest that
specifying the spectral content of a reference signal is a
feasible way to encapsulate the limitations in flexibility of
a load [24]. A simplification of this concept is also widely
used in today’s power grid; ancillary services are classified
by their response times and ramp rates [25].

Motivated by the advantages of working in the frequency
domain we extend the work in [21], [26] and characterize
the capacity through the SD of the reference signal, for
an entire collection of flexible loads, based on the QoS
requirements of each flexible load. Capacity characterization
in terms of a SD, S, means that any signal whose SD is
below S is feasible: the ensemble can track it without any
load violating its local QoS. The QoS constraints considered
here are quite general and encapsulate operating constraints
for: (i) commercial HVAC systems, (ii) batteries, and (iii) a
collection of thermostatically controlled loads (TCLs).

The contribution over past work is threefold. First, we
characterize capacity through constraints on the statistics of
the reference signal, rather than the reference signal itself.

Second, our characterization of capacity allows for a BA
to easily perform long term resource allocation. That is,
as we will see, our capacity characterization will allow for
the BA to answer questions such as: what is the benefit of
investing in 10000 over 5000 flexible water heaters? Our
third contribution is that our capacity characterization allows
for precise definitions of the power (Watt) and energy (Watt-
hour) capacity for a collection of flexible loads. The third
contribution allows direct comparison between capacity of
a real (e.g., electrochemical) energy storage device and a
collection of flexible loads providing VES, using common
terminology (MW and MWh).

We corroborate the advantages of our capacity charac-
terization through numerical experiments. A convex opti-
mization problem is posed that ‘projects’ the needs of the
BA onto the set of feasible SD’s. The needs of the BA is
quantified as the SD of net-demand, as seen in Figure 1. To
illustrate this process and our capacity characterization, as an
example, we consider an ensemble of flexible HVAC systems
in commercial buildings. In each simulation scenario, we
determine the power and energy capacity of the ensemble
of HVAC systems based on the obtained SD.

The capacity characterization presented is for continuously
varying loads, that is loads that can vary power consumption
freely within an interval. The capacity characterization can be
extended to handle discrete loads (e.g., TCLs), by applying
it to the work [11].

A preliminary version of this work is published in [26],
which dealt with a single load. In this work we extend the
results to a heterogeneous collection of loads.

The paper proceeds as follows, Section II describes the
QoS constraints of loads, Section III describes mathematical
prerequisites and a characterization of individual load capac-
ity, Section IV describe the spectral characterization of the
constraints for the ensemble. Section V describes the method
for determining how much of a BA’s needs can be satisfied by
flexible loads. Numerical results are provided in Section VI.

II. QOS CONSTRAINTS OF INDIVIDUALS

Denote by P (t) the power consumption of a flexible load
at time t, and let P b(t) its baseline demand. The demand
deviation is P̃ (t) := P (t) − P b(t). The load provides VES
service by controlling the deviation P̃ (t) to track a desired
deviation signal, called a reference, while maintaining its
own QoS. The first QoS constraint is simply an actuator
constraint:

QoS-1:
∣∣∣P̃ (t)

∣∣∣ ≤ c1, ∀ t, (1)

where the constant c1, the maximum possible deviation
of power consumption, depends on the rated power and
the baseline demand. Second, define the demand increment
P̃δ(t) := P̃ (t) − P̃ (t − δ), where δ > 0 is a predetermined
(small) time interval. The second constraint is a ramping rate
constraint:

QoS-2:
∣∣∣P̃δ(t)∣∣∣ ≤ c2, ∀ t. (2)



Third, define the additional energy use during any time
interval of length T :

Ẽ(t) =

∫ t

t−T
P̃ (σ)dσ. (3)

The third QoS constraint is that

QoS-3:
∣∣∣Ẽ(t)

∣∣∣ ≤ c3, ∀ t. (4)

The parameter T in (3) can represent the length of a billing
period. Ensuring (4) ensures that the energy consumed during
a billing period close to the nominal energy consumed,
although it is stronger than what is necessary. Eq. (3) has
a representation in Laplace domain as Ẽ(s) = G(s)P̃ (s)
where the BIBO stable transfer function G is given by
G(s) = 1−e−sT

s .
To define the fourth and last QoS constraint, we associate

with the VES system a storage variable θ̃(t) that is related to
the demand deviation through a stable linear time invariant
system H(s) as follows:

θ̃(s) = H(s)P̃ (s), (5)

and impose the constraint

QoS-4:
∣∣∣θ̃(t)∣∣∣ ≤ c4, ∀ t. (6)

The user-specified constants c1, c2, c3, c4 are called equip-
ment bounds in the sequel.

1) Understanding QoS-4: To understand the storage vari-
able, imagine a flexible HVAC system providing VES. A
simple model of the indoor temperature θz of the building
this HVAC system serves is:

Cθ̇z(t) =
1

R
(θa(t)− θz(t)) + q̇int(t) + ηCOPP (t), (7)

where C and R are thermal capacitance and resistance,
θa(t) is the ambient temperature, ηCOP is the coefficient of
performance, and q̇int(t) is an exogenous disturbance. The
quantity P (t) is the total electrical power consumption of
the HVAC system.

In general, the baseline power consumption for a HVAC
system is the value P b(t) that keeps the internal temperature
of the load at a fixed value θ̄, which for (7) is

P b(t) = −
(
θa(t)− θ̄

)
ηCOPR

− q̇int(t)

ηCOP

. (8)

Since we are concerned with the flexibility in the load, we
linearize (7) about the thermal setpoint θ̄ and the baseline
power P b(t) yielding,

˙̃
θz(t) = −γθ̃z(t) + βP̃ (t), γ =

1

RC
, β =

ηCOP

C
, (9)

where θ̃z , θz(t) − θ̄ is the internal temperature deviation
and P̃ is as defined at the beginning of this Section.

Taking the Laplace transform of (9), we get θ̃z(s) =
β
s+γ P̃ (s). So, for the HVAC system example, the storage
variable is simply the indoor temperature deviation from the
baseline value, i.e., θ̃(t) := θ̃z(t) and H(s) = β

s+γ . A more
complex model of HVAC dynamics would lead to a higher

order H(s). The model (7), while simplistic, has been shown
to agree quite well with more realistic models for certain
flexible loads [27].

Also, when the VES system is in fact a battery, θ̃(t)
can be thought of as the amount of energy stored in the
battery at time t, i.e., θ̃(t) = E0xSoC(t), where E0 is
the nominal energy capacity in kWh and xSoC is the state
of charge. A simple dynamic model of this variable is
˙̃
θ(t) = −αθ̃(t) + P̃ (t), where −αθ̃(t) accounts for the
leakage, self degradation, and non-unity round trip efficiency
of the battery. In this case H(s) = 1

s+α

The four constraints QoS 1-4, with parameters Qi ,(
{ci}4i=1, T, δ

)i
specify the QoS set for the VES system.

The question is, what is a feasible power deviation signal
P̃ (t)?

III. INDIVIDUAL LOAD CAPACITY

A. Preliminaries
To develop our capacity characterization we will require

a few preliminaries, which we list in this section. First, we
switch from a deterministic to a stochastic setting. In this
setting we model the power deviation, P̃ as a continuous time
stochastic process. The mean and autocorrelation function for
P̃ are,

µP̃ (t) , E[P̃ (t)], ∀ t, (10)

RP̃ (σ, t) , E[P̃ (σ)P̃ (t)], ∀ σ, t, (11)

where E[·] denotes expectation. We make the following
assumption about the stochastic process P̃ .

Assumption 1. The stochastic process P̃ is wide sense
stationary (WSS) with mean µP̃ (t) = 0 for all t.

Since P̃ is the difference of the power consumption from a
baseline value, it is intuitive that its mean is zero. Otherwise,
loads are not providing storage services. Furthermore, WSS
requires the variance and mean of the process P̃ to be time
invariant and the autocorrelation function to be a function of
τ = σ − t. We denote the time invariant variance as σ2

P̃
.

In addition, for a continuous time WSS stochastic process
{X(t)} we have, through the Fourier transform, an alterna-
tive expression for the autocorrelation function [28],

RX(τ) =

∫ ∞
−∞

SX(ω)e(jωτ)d
ω

2π
, and (12)

SX(ω) =

∫ ∞
−∞

RX(τ)e(−jωτ)dτ, (13)

where ω ∈ R is frequency, and j is the imaginary unit, and
SX(ω) is the (power) Spectral Density (SD) of X:

SX(ω) , lim
T→∞

1

T
E

[∣∣∣∣ ∫ T

0

X(t)e−jωtdt

∣∣∣∣2]. (14)

The equivalence of definitions (14) and (13) for a zero-mean
WSS process is the Wiener-Khinchin theorem. Letting τ = 0
in (12) results in,

RX(0) =

∫ ∞
−∞

SX(ω)d
ω

2π
, (15)



where, if the mean of X is zero, RX(0) is the variance of the
process X . We introduce the following proposition from [28]
that will be useful in the developments to follow.

Proposition 1. [28] Let X(t) be zero-mean WSS stochastic
process and input to the linear time invariant BIBO stable
system M(s) with output Y (t). Then Y is WSS, X and Y
are jointly WSS, and

(i) E[Y ] = M (jω)
∣∣∣
ω=0

E[X],

(ii) SY (ω) = |M(jω)|2 SX(ω),

where SX , SY are the SD’s of X and Y .

Furthermore, the Chebyshev inequality for a random vari-
able X , will be useful:

P
(
|X − E[X]| ≥ k

)
≤ σ2

X

k2
, ∀ k > 0, (16)

where P(·) denotes probability.

B. Inequality Constraints: Spectral Characterization

The QoS constraints QoS 1-4 are characterized probabilis-
tically in the following way. The inequalities in QoS 1-4
turn into probabilistic inequalities; the probability of the QoS
constraint not being met is required to be small:

P
(∣∣∣P̃ (t)

∣∣∣ ≥ c1) ≤ ε1, ∀ t, (17)

P
(∣∣∣P̃δ(t)∣∣∣ ≥ c2) ≤ ε2, ∀ t, (18)

P
(∣∣∣Ẽ(t)

∣∣∣ ≥ c3) ≤ ε3, ∀ t, (19)

P
(∣∣∣θ̃(t)∣∣∣ ≥ c4) ≤ ε4, ∀ t, (20)

The quantities {εi}4i=1 set the tolerance level for satisfying
the respective constraint and are chosen to be small.

In order to pose the inequality constraints (17)-(20) in
terms of SP̃ , two steps are taken. The first step is to utilize
the Chebyshev inequality (16) to bound the probabilities
in (17)-(20) as a function of the variance of the given random
variable. The second step is to then use the Wiener-Khinchin
theorem (12) to express the variance as the integral of SP̃ .

Lemma 1. Let P̃ satisfy Assumption 1, then for all t,

E[Ẽ(t)] = 0, E[P̃δ(t)] = 0, and E[θ̃(t)] = 0.

Proof. Apply the result of Proposition 1-(i) for E[Ẽ(t)] and
E[θ̃(t)]. The linearity of expectation suffices for E[P̃δ(t)].

With the result in Lemma 1 and Chebyshev’s inequal-
ity (16) we formulate sufficient conditions for the inequality
constraints (17)-(20) as follows,

σ2
P̃
≤ c21ε1, σ2

P̃δ
≤ c22ε2, (21)

σ2
Ẽ
≤ c23ε3, σ2

θ̃
≤ c24ε4, (22)

so that the probability of exceeding the inequality con-
straints (17)-(20) will be less than the respective specified
amount, {εi}4i=1. The variance σ2

P̃δ
is equivalently,

σ2
P̃δ

= E

[(
P̃δ(t)

)2
]

= 2 (RP̃ (0)−RP̃ (δ)) . (23)

Now applying the Wiener-Khinchin theorem (12) to the
LHS of each inequality in (21)-(22) we have,∫ ∞

0

SP̃ (ω)d
ω

π
≤ c21ε1, (24)∫ ∞

0

SP̃ (ω) (2− 2 cos (ωδ)) d
ω

π
≤ ε2c22, (25)∫ ∞

0

SẼ(ω)dω =

∫ ∞
0

|G(jω)|2SP̃ (ω)d
ω

π
≤ c24ε4, (26)∫ ∞

0

Sθ̃(ω)d
ω

π
=

∫ ∞
0

|H(jω)|2SP̃ (ω)d
ω

π
≤ c23ε3. (27)

Definition 1. (Individual load constraint set) Let ε =
[ε1, ε2, ε3, ε4], the set of feasible SDs is then

Sε = {SP̃ : SP̃ ≥ 0, and (24)− (27)}.

That is, if P̃ has SD in the set Sε, then the load’s power
deviation can match P̃ while satisfying the constraints (17)-
(20). The set Sε is given explicit dependence on ε to reflect
the dependence of constraints (24)-(27) on ε.

C. Power and energy capacity: the capacity of a SD
The past subsection culminated in the definition of the

constraint set for an individual load in Definition 1. The
next natural thing to define then, is the energy and power
capacity for each SD that is in this constraint set. We now
do this. Utilizing the concept of SD we can define not only
the power and energy capacity, but also the temperature and
rate capacity. All of these definitions will be in terms of the
SD of the power deviation.

Definition 2. Let Sε be as defined in Definition 1, then for
a given SD S ∈ Sε denote the following,

Pow(S) =

√
1

πε1

∫ ∞
0

S(ω)dω (W ),

Rate(S) =

√
1

πε2

∫ ∞
0

(2− 2 cos (ωδ))S(ω)dω (W ),

Eng(S) =

√
1

πε3

∫ ∞
0

|G(jω)|2 S(ω)dω (Wh),

ThEng(S) =

√
1

πε4

∫ ∞
0

|H(jω)|2 S(ω)dω (◦C),

which are the power, rate, energy, and temperature capacity
for the given SD S ∈ Sε.

The reason for these definitions is that for a signal P̃ (t)
with SD S, the following inequalities follow:

P
(∣∣∣P̃ (t)

∣∣∣ ≥ Pow(S)
)
≤ ε1, ∀ t, (28)

P
(∣∣∣Ẽ(t)

∣∣∣ ≥ Eng(S)
)
≤ ε4, ∀ t, (29)
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Fig. 2: An example control architecture for flexible loads to
assist the grid.

where Ẽ(t) is related to P̃ (t) through (26). This is an
application of the Chebyshev inequality (16) with k =
Pow(S) (respectively, Eng(S)). The definitions ThEng(S)
and Rate(S) have the same interpretation. Practically, Defini-
tion 2 through the Chebyshev inequality yields a connection
between the capacity of the SD and upper/lower bounds
in the time domain in equations (28)-(29). As an example,
if a signal has SD S, then for a given ε1 the probability
of the signal being above Pow(S) is less than ε1. This
suggests that the quantities in Definition 2 will serve as tight
probabilistic bounds for time series with the specified SD.
Section VI-D provides further investigation of our capacity
definition (Definition 2) through numerical experiments.

IV. ENSEMBLE CAPACITY

Section III constructed constraints on the SD SP̃ so to
respect the capacity requirements for an individual load. In
this section we do the same for n heterogeneous loads by
defining an “ensemble SD” and utilizing the constraints on
the individuals to develop constraints for the ensemble SD.
First, the ensemble power deviation is defined as

P̄ (t) ,
n∑
i=1

P̃ i(t). (30)

The ensemble SD is then the SD of P̄ (t), that is,

SP̄ (ω) =

∫ ∞
−∞

RP̄ (τ)e−jωτdτ, (31)

where RP̄ (τ) is the autocorrelation function of P̄ . With the
requirement that each P̃ i(t) is jointly WSS, the ensemble
power deviation (30) is also WSS and the definition (31) is
valid.

The SD of the sum, being the Fourier transform of the
autocorrelation of the sum, depends on how the component
signals P̃ i are correlated to one another. In the limiting case
when they are uncorrelated with one another, the autocorre-
lation of the sum is the sum of the autocorrelations since the
cross correlations are 0. In that case the SD of the sum is also
the sum of the SDs. Similarly, in the limiting cases of being
perfectly anti-correlated or correlated, one can come up with
precise relationship. However, the most interesting case from

a practical point of view is when they signals are positively
correlated but without having a perfect correlation of 1.
To understand the reason, let us imagine how these signals
P̃ i will be generated. It is reasonable to assume a control
architecture shows in Figure 2: a reference signal from the
balancing authority, r(t), is split into n distinct components,
ri(t), i = 1, . . . , n, so that ri(t) is within the capacity of
load i, and some control system is used to ensure that P̃ i

tracks ri. For instance, ri can be computed by band-pass
filtering r with a filter Fi(jω). In a well designed system,
these filters will ensure that the signals ri have sufficient
positive correlation. Otherwise, each load - assuming they
perfectly track their references - will be working against each
other instead of working collaboratively to supply the total
r. Although the design of the coordination architecture for
the loads is beyond the scope of this work, we make the
following assumption:

Assumption 2. For any pair of loads `,m, E[P̃`(t)P̃m(t +
τ)] =: R`,m(τ) ≥ 0 for every τ .

Lemma 2. The ensemble SD of n loads, under Assumption 2,
satisfies

ΣP̄ ≤ SP̄ ≤ nΣP̄ , (32)

where ΣP̄ :=
∑n
i=1 SP̃ i .

Proof. Since the signals in the sum are jointly WSS, we have

RP̄ (t),P̄ (t)(τ) =

n∑
`=1

n∑
m=1

R`,m(τ). (33)

The cross correlation R`,m(τ) when ` 6= m is non negative
by Assumption 2, RP̄ (t),P̄ (t)(τ) ≥

∑n
`=1R`,`(τ), from

which the lower bound follows due to linearity of the Fourier
transform. The upper bound is proven by considering the
definition (14) for SP̄ (ω). We have for all ω ∈ R: SP̄ (ω) =

lim
T→∞

1

T
E

[∣∣∣∣ n∑
i=1

∫ T

0

P̃ i(t)e−jωtdt

∣∣∣∣2] (34)

≤ lim
T→∞

n

T

n∑
i=1

E

[∣∣∣∣ ∫ T

0

P̃ i(t)e−jωtdt

∣∣∣∣2] = nΣP̄ (ω), (35)

where the bound is from Jensen’s inequality: |
∑n
i=1 xi|

2 ≤
n
∑n
i=1 |xi|

2 since |·|2 is convex.

Corollary 1. For a homogeneous collection of n loads
in which P̃`(t) = P̃m(t) for every `,m = 1, . . . , n, the
ensemble SD is

SP̄ = nΣP̄ .

The proof follows from the same argument used in estab-
lishing the upper bound case of Lemma 2.

In addition, for a heterogeneous ensemble the lower bound
in Lemma 2 will be loose as n increases. A better bound can
be obtained by ‘binning’ the heterogeneous collection into
several homogeneous ensembles and utilizing the result of
Corollary 1.



Corollary 2. For a heterogeneous collection of n loads with
nbin bins indexed by ` with n` loads in the `th bin, the
ensemble SD is bounded as,

nbin∑
`=1

n`ΣP̄ ` ≤ SP̄ ≤ nbin

nbin∑
`=1

n`ΣP̄ ` ,

with

ΣP̄ ` ,
∑

(i ∈ bin `)

SP̃ i .

Proof. Apply directly the same procedure as in Lemma 2,
except for nbin loads with the `th SD being nΣP̄ ` (Corol-
lary 1).

A. Ensemble constraint set

We now develop a constraint set on ΣP̄ ` based on the set
of constraints for the individual SDs that are in the definition
of ΣP̄ ` . In light of the results of Corollary 2, we assume a
homogeneous collection of loads. The idea is to sum the
individual constraints over n` so that the definition of ΣP̄ `
can be inserted. We do this for the rate constraint below,∑

(i ∈ bin `)

∫ ∞
0

(1− cos(ωδ))SP̃ i(ω)dω ≤ n`
πε2c

2
2

2
,

⇐⇒
∫ ∞

0

(1− cos(ωδ)) ΣP̄ `(ω)dω ≤ n`
πε2c

2
2

2
.

The other constraints are obtained in a similar fashion, and
the full constraint set for ΣP̄ ` is: S(nbin, n`, `) ,{

ΣP̄ ` : ΣP̄ ` ≥ 0,∫ ∞
0

ΣP̄ `(ω)dω ≤ nbinn`

(
πε1c

2
1

)
,∫ ∞

0

(1− cos (ωδ))ΣP̄ `(ω)dω ≤ nbinn`

(
πε2c

2
2

2

)
,∫ ∞

0

|G(jω)|2 ΣP̄ `(ω)dω ≤ nbinn`

(
πε3c

2
3

)
,∫ ∞

0

|H(jω)|2 ΣP̄ `(ω)dω ≤ nbinn`

(
πε4c

2
4

)}
.

We use S(1, n`, `) and S(nbin, n`, `) to denote the constraint
sets for the `th SD in the lower and upper bounds in
Corollary 2, respectively. Additionally, S(1, n, 1) exactly
represents the constraint set for the single ensemble SD in
Corollary 1 of a homogeneous ensemble with n loads.

V. RESOURCE ALLOCATION FOR FLEXIBLE LOADS

We illustrate here how the ensemble constraint set in
Section IV can be used by a Balancing Authority (BA)
for resource allocation. Conceptually, our proposed method
“projects” the needs of the BA onto the ensemble constraint
set. We first describe how a BA can incorporate the ensemble
constraint set into an optimization problem for resource
allocation and then how a BA can determine its needs
spectrally.

A. Allocation through projection

We denote by SBA a SD that represents the BA’s needs.
Computation of this SD will be discussed in the next
section. Resource allocation is performed by projecting the
SD SBA - what the grid needs - onto the Cartesian product
×nbin
`=1S(nbin, n`, `) - what the ensemble of loads can provide.

The projection problem for a given value of nbin is,

min
{Σ

P̄ `
}nbin

1

∫ ∞
0

(
Σagg(ω)− SBA(ω)

)2
dω (36)

s.t. ∀ ` ∈ {1, . . . , nbin}, ΣP̄ ` ∈ S(nbin, n`, `),

Σagg =

nbin∑
`=1

ΣP̄ ` (37)

Doing so allocates the needs of the grid across all loads; the
loads will cover as much of the needs of the BA as they can
while maintaining their QoS. In other words, the projection
computes the regions shown in Figure 1 corresponding to
each class of flexible loads.

Comment 1. The problem (36) encapsulates resource allo-
cation for both heterogeneous and homogeneous ensembles.
If the ensemble of loads is heterogeneous, the BA can
solve (36) twice. If the BA uses n̂ bins, the first time the
BA will set nbin = n̂ (upper bound) and the second time
using nbin = 1 (lower bound). Consequently, for a purely
homogeneous collection the BA only needs to solve (36) once
with nbin = 1, and n1 = n (see Corollary 1). The LHS of (37)
evaluated at the optimal solution of (36) then represents a
bound on SP̄ for a heterogeneous ensemble, or is exactly SP̄
for a homogeneous ensemble.

B. Computation

In order to solve the problem (36), the integrals appearing
will have to be approximated. The approximation is obtained
easily by going from continuous time t to discrete time
index k = 0, 1, . . . , so that functions such as P̃ (t) are
replaced by their sampled-data analog P̃k := P̃ (k∆t), with a
constant sampling period ∆t. In that case, the corresponding
Fourier transforms are replaced by the DTFT (discrete time
Fourier transform), and integrals of the form

∫∞
0
SP̃ (ω)dω

are replaced by
∫ π

0
SD
P̃

(Ω)dΩ, where SD
P̃

(Ω) (D superscript
for discrete/sampled time) is the SD of the sampled version of
P̃ . The resulting integral on [0, π] can then be approximated
through any numerical integration technique. For example,
consider the N points indexed by j, Ωj = 0, π

N , . . . ,
N−1
N π

then the decision variable for the finite dimensional problem
is the SD SD

P̃
(Ω) evaluated at these N points. The resulting

finite dimensional problem will be a strictly convex optimiza-
tion problem, and hence can be easily solved using readily
available software.

C. Spectral Needs of the BA

In the following we provide an example procedure for
a BA to spectrally determine its needs, as illustrated in
Figure 1. The BA first estimates the SD, ΦND, of its net



demand, i.e., demand minus renewable generation. It can
estimate this quantity from time series data of demand
and renewable generation, or through a modeling effort,
or a combination thereof. The next step for the BA is to
fit a parameterized model to ΦND, which is termed SND.
All controllable resources, including generators, flywheels,
batteries, and flexible loads, together have to supply ΦND (or
its parameterized model SND). The third step is obtain the
portion of SND that flexible loads have to provide (similar
to what is shown in Figure 1) by “filtering” SND. Letting
F (jω) be an appropriate filter, then the SD of the signal the
grid authority would like flexible loads to contribute is:

SBA(ω) = |F (jω)|2SND(ω). (38)

The quantity SBA is the frequency domain analog of the
reference signal r(t) that will be asked from the loads, and
will be referred to as the reference SD in the sequel. In
the numerical example in this paper, we empirically estimate
ΦND from time series data obtained from Bonneville Power
Administration (BPA), a balancing authority in the Pacific
Northwest, and then obtain SND by fitting an ARMA(p, q)
model to ΦND. An example of SND is shown as the orange
line in Figure 1, with SBA being any of the shaded regions
in Figure 1.

The procedure described above - for the BA to determine
its needs in the spectral density domain - is completely
independent from our characterization of capacity presented.
The next step is to use the results of the procedure, the BA’s
spectral needs, to find the closest SD of the loads to the grid’s
need.

VI. NUMERICAL EXAMPLES

An example of determining the capacity of a collection
of HVAC systems in commercial buildings is illustrated in
this section. For the numerical experiments we construct
homogeneous and heterogeneous ensembles from two types
of HVAC systems. The parameters of each type are displayed
in Table I, and are chosen so that the HVAC systems
are representative of those in small and large commercial
buildings (hence the large and small superscripts in Table I).

To aid exposition of the results, we define the following
power and energy capacity indices,

ζP =
Pow(Σagg)

Pow(SBA)
× 100%, (39)

ζE =
Eng(Σagg)

Eng(SBA)
× 100%, (40)

so as to show the percentage of power and energy capacity
required by the BA that can be covered by the loads. In
the above, the numerator SD abstractly represents the LHS
of (37) at the optimal solution of problem (36). In all sce-
narios we solve the discrete time finite dimensional version
of the convex optimization problem (36) with CVX [29]. All
relevant simulation parameters, if not specified otherwise, can
be found in Table I.

TABLE I: Simulation parameters

Par. Unit Value Par. Unit Value

cSmall
1 kW 4 γSmall 1/hour 2.78

cSmall
2 kW 0.8 βSmall ◦C/kWh 0.3597

cSmall
4 , c

Large
4

◦C 1.11 γLarge 1/hour 177.6

cSmall
3 kWh 0.5 βLarge ◦C/kWh 0.0450

c
Large
1 kW 40 T Day 1

c
Large
2 kW 8 {εi}4i=1 N/A 0.05

c
Large
3 kWh 5 δ Sec 10

1/day 1/6 hour 1/hour 1/10min 1/2min
101

103

105

107

Fig. 3: Empirical net demand SD, modeled SD for BPA’s
net demand, and the two reference SD’s for the high and
low frequency passband.

A. BA’s spectral needs

The net demand data is collected from BPA (a BA in the
pacific northwest United States). The SD of the net demand is
determined using the method described in Section V-C. The
empirical net demand SD ΦND is estimated by the pwelch
command in MATLAB. We choose an ARMA(2,1) model
to fit to the empirically estimated SD. Since the estimate
ΦND will cap out at the Nyquist frequency 1/10min, we
extrapolate the net demand SD to the higher frequencies.
The empirical SD (denoted ΦND) and the extrapolated net
demand SD (denoted SND) are shown in Figure 3.

We then choose two passbands to filter SND: (i) a low pass-
band [1/6,1/2] (1/hour) and (ii) a high passband [1/30,1]
(1/min). The results of “filtering” SND (see eq. (38)) are also
shown in Figure 3. The low passband SD is termed SBA

Low and
roughly corresponds to the region for TCLs in Figure 1. The
high passband SD is termed SBA

High and roughly corresponds
to the region for HVAC systems in Figure 1.

B. Meeting the BA’s needs with large buildings

In this scenario we consider a homogeneous collection
of large commercial buildings. The idea is to illustrate how
many of these large commercial buildings would be required
to meet the grids needs as a function of frequency. To do this,
the two reference SDs obtained from the previous section are
projected (by solving (36)) onto the same ensemble constraint
set with a varying number of large commercial buildings.



TABLE II: Equivalent Battery Capacity

Num. of Loads High Passband Low Passband

3000 120 MW & 12.6 MWh 19 MW & 15 MWh

6000 120 MW & 12.6 MWh 37 MW & 30 MWh

9000 120 MW & 12.6 MWh 55 MW & 45 MWh

12000 120 MW & 12.6 MWh 73 MW & 60 MWh

15000 120 MW & 12.6 MWh 90 MW & 75 MWh

First, we show the results for n = 15000 large commercial
buildings in Figure 3. For the reference SD with high
passband, the loads are able to meet the requirements of the
grid, with an aggregate power and energy capacity index of
ζP ≈ 100% and ζE ≈ 100%. However, for the reference
SD with low passband the loads are unable to meet the grids
needs, with an aggregate power and energy capacity index
of ζP = 43% and ζE = 26%.

For a varying number of loads the power and energy
capacity index are recorded and plotted as a function of n in
Figure 5. These results indicate that the BA would require ≈
3000 large commercial buildings in the higher passband and
≈ 32000 large commercial buildings for the low passband,
to fulfill its needs. We also see that the BA’s energy capacity
requirement is met with fewer loads (compared to its power
capacity requirement) at the higher frequency range. In the
lower frequency range, this conclusion is reversed.

Additionally, we compute the power and energy capacity
values in Definition 2 for both the low and high passband
over a subset of the varying number of loads considered
in the preceding experiment. These values are displayed in
Table II.

In summary, this numerical experiment suggests that the
commercial HVAC systems considered here are more suitable
to assist the grid by tracking signals with SD in the higher
passband. If a BA wanted the commercial HVAC systems
to track reference signals in the lower frequency range, than
significantly more large commercial HVAC systems would
be required.

C. Effects of heterogeneity

We present a numerical experiment to illustrate the bounds
in Corollary 2. We consider nbin = 2 bins with, n1 = nS =
900 small and n2 = nL = 2100 large commercial buildings.
We solve the problem (36) twice, with the appropriate
parameters detailed in Comment 1 for both times, so to obtain
the upper and lower bounds in Corollary 2. The SD that
represents the grid’s needs in this experiment is the same
SD with high passband for the experiments in section VI-B.

The results for this scenario are shown in Figure 6, where
‘upper bound’ and ‘lower bound’ represent the upper and
lower bounds in Corollary 2, respectively. Additionally, the
shaded region in Figure 6 represents the region where the true
ensemble SD lives. For this example, the results indicate that
the power capacity index is bounded as 17% ≤ ζP ≤ 69%

1/day 1/6 hour 1/hour 1/10min 1/2min

102

103

104

105

Fig. 4: The two reference SDs and the ensembles SD
(boundary of the shaded regions) obtained by solving (36)
for a homogeneous collection of n = 15000 loads.
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Fig. 5: The aggregate power and energy capacity index
for the two different reference SDs with a homogeneous
collection of loads plotted against n.

1/hour 1/10min 1/3min

100

200

300

400

500

600

Fig. 6: The upper and lower bounds on the ensemble SD for
a heterogeneous ensemble.

and the energy capacity index is bounded as 30% ≤ ζE ≤
86%.

D. Time domain results

To illustrate how our definition of capacity given in
Definition 2 is useful in the time domain, we estimate the
probabilities (28)-(29) for a given ε and SD S ∈ Sε. To
do this, we use the SD SHigh

P̄
that was obtained from the



numerical experiment in section VI-B for n = 4200 large
commercial HVAC systems. From the SD we independently
generate M = 1× 104 time series that are indexed by i and
each denoted as {P̃i(tk)}k. We use the notation P̃ , since we
will show the results for the time series (and consequently
the bounds) normalized by n. From each of these time series,
the following estimate of the probability (28) is obtained:

P̂i
(∣∣∣P̃ ∣∣∣ ≥ Pow(S)

)
=

1

N

N∑
k=1

I
(∣∣∣P̃i(tk)

∣∣∣ ≥ Pow(S)
)
,

(41)

where I(·) is the indicator function. The same computation
is done for (29) as well, where the time series {Ẽi(tk)}k
is obtained by using {P̃i(tk)}k and the dynamics (3). Our
overall estimate is then the average over all of the P̂i(·), and
for the computation (41) this is

P̂
(∣∣∣P̃ ∣∣∣ ≥ Pow(S)

)
=

1

M

M∑
i=1

P̂i
(∣∣∣P̃ ∣∣∣ ≥ Pow(S)

)
.

Similarly, the same computation is done for (29) as well. The
estimates P̂i(·) are each shown in Figures 7-8 as a histogram.
The average estimates are displayed in each figure and both
are well below their respective thresholds. In all scenarios,
the quantities P̂i(·) are never above the respective threshold.

In addition, we also plot two sample paths of the time
series, used to compute the probabilities, for all four of the
QoS metrics. The result of this is shown in Figure 9, where
we also plot the capacity bounds from Definition 2 and the
equipment bounds c1, c2, c3, c4 from (17)-(20). Similarly, the
time series for the rate and temperature quantities are ob-
tained by using the time series {P̃i(tk)}k and the respective
linear system. Since the SD SHigh

P̄
is for n homogeneous

loads, we normalize the time series and capacity bounds by
n so that the plots in Figure 9 can be interpreted for a single
load. We show the sample paths for a subset of the total
horizon for clarity. Long run information is captured in the
histograms, since each data point in the histogram is over
the entire horizon.

For all four QoS, the two time series are typically well
within capacity as defined in Definition 2 (the black horizon-
tal lines in the figures) and any violations satisfy the desired
probabilistic bound. In fact, in all scenarios Definition 2 is
tighter than the equipment bounds, which for some of the
QoS are quite loose. The equipment bounds play a large part
in the capacity characterization of some past works, e.g., [9].
The numerical experiment here illustrates the dangers in
quoting directly equipment bounds as capacity: in this simple
experiment the actual energy capacity is ≈ 3 KWh for
a single load, and not 5 KWh as the equipment bound
indicates.

VII. SUMMARY AND CONCLUSION

Our characterization of virtual energy storage capacity of
flexible loads allows a balancing authority to quantify which
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Fig. 7: Empirically estimated probability bounds for the
power capacity with ε1 = 0.05.
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Fig. 8: Empirically estimated probability bounds for the
energy capacity with ε4 = 0.05.

loads can contribute how much to mitigating supply demand
mismatch. In contrast to past work, our method can be used
for long term planning. The key insight is to characterize
capacity through statistics of the reference signal rather than
on specific instances of the signal. This framework also has
another benefit: it enables us to define power and energy
capacity of virtual energy storage in language of real energy
storage: kW’s and kWh’s.

An open problem is to extend the framework to non-
stationary statistics of the grid’s demand-supply mismatch
and/or loads’ demand deviation. Another open problem is
the extension to the case of on/off loads. A key challenge for
on/off loads will be to characterize their cycling constraint.
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