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GRAPHS THAT ARE COSPECTRAL FOR THE DISTANCE LAPLACIAN*

BORIS BRIMKOV', KEN DUNA#, LESLIE HOGBENS, KATE LORENZENY, CAROLYN REINHARTY
SUNG-YELL SONGY AND MARK YARROWI

Abstract. The distance matrix D(G) of a graph G is the matrix containing the pairwise distances between vertices, and the
distance Laplacian matrix is DX (G) = T(G) — D(G), where T(G) is the diagonal matrix of row sums of D(G). Several general
methods are established for producing D¥-cospectral graphs that can be used to construct infinite families. Examples are
provided to show that various properties are not preserved by DL-cospectrality, including examples of DL-cospectral strongly
regular and circulant graphs. It is established that the absolute values of coefficients of the distance Laplacian characteristic
polynomial are decreasing, i.e., [6] > -+ > |6L|, where 6& is the coefficient of z*.
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1. Introduction.

Spectral graph theory is the study of graphs via the eigenvalues of a matrix defined from the graph. Often
information about the graph can be recovered from the spectrum of an associated matrix M(G), but the
existence of M-cospectral graphs implies there is information that cannot be recovered from the spectrum.
Nonisomorphic graphs G and H are said to be M -cospectral if spec(M(G)) = spec(M(H)). Constructions
that switch certain edges to produce adjacency cospectral graphs and distance cospectral graphs have been
introduced by Godsil and McKay [13] and Heysse [17]. Aouchiche and Hansen give a thorough discussion of
the history of M-cospectrality for various types of matrices M defined from a graph in [3, Section 2].

This paper focuses on the distance Laplacian matrix of a graph, which was introduced in [3] and is defined
from the distance matrix in analogy with the way the Laplacian matrix is defined from the adjacency matrix
(precise definitions of graph theory terms are provided below). The distance matriz D(G) of a connected
graph G is the matrix indexed by the vertices {vi,...,v,} of G having i, j-entry equal to the distance
between the vertices v; and vj. For v € V(G), the transmission index of v is t(v) = 3_, cy (g d(v,w). The
distance Laplacian matriz is DX (G) = T(G) — D(G) where T(G) = diag(t(v1), ... ,t(vy)). Distance matrices
were introduced [16] for analysis of the loop switching problem in telecommunications, which involves finding
appropriate addresses so that a message can move efficiently from its origin to its destination, choosing the
best route at each switching point. Recently there has been renewed interest in the loop switching problem
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and extensive work on distance spectra; see [4] for a survey. The spectrum of D¥(G) has been related to
various graph parameters such as the connectivity of the complement of G [3].

In Section 2, we provide examples to show that various graph properties are not preserved by DE-
cospectrality. We establish some general methods for producing D*-cospectral graphs and apply one to
construct an infinite family of D¥-cospectral bipartite pairs in Section 3. These constructions do not generally
produce cospectral distance matrices because they rely on the fact that D (G) is positive semidefinite with
all row sums equal to zero. It is clear that if T(G) is a scalar matrix, then there are formulas that determine
the eigenvalues of D*(G) from the eigenvalues of D(G) (and vice versa). Thus, the study of the distance
spectrum and the study of the distance Laplacian spectrum are the same for transmission regular graphs;
we apply this to D -cospectral strongly regular and circulant graphs in Section 4. In Section 5, we establish
that the absolute values of coefficients of the distance Laplacian characteristic polynomial are log-concave,
unimodal, and in fact decreasing, i.e., |§F| > -+ > |§L| where |§L| is the coefficient of 2*. The remainder of
this introduction contains additional definitions and terminology.

All graphs in this paper are simple (no loops or multiedges) and undirected. For a graph G, the set
of vertices is denoted by V(@) and the set of edges (2-element subsets of vertices) is denoted by E(G); an
edge {u,v} is also denoted by uv. The order of G is the number n = |V(G)| of vertices. The edge e = uv is
incident to vertices u and v, and u and v are said to be adjacent. Adjacent vertices are called neighbors, and
the neighborhood of vertex v, N(v), is the set of all neighbors of v. The degree of a vertex v is degv = |N(v)].
If there exists a k such that k = deg(v) for all v € V(G), then G is said to be k-regular or regular. A w,v-path
in G is a list of vertices that start at « and end at v such that any two consecutive vertices in the list form
an edge in E(G) and no vertex is repeated. A graph is connected if for every pair of vertices u, v there exists
a u, v-path. The length of a path is one less than the number of vertices (i.e., is the number of edges), and
the distance between two vertices d(u,v) is the length of the shortest u, v-path. A graph must be connected
in order for the distance or distance Laplacian matrix to be defined. An isomorphism from graph G to graph
H is a bijection f: V(G) — V(H) such that wv € E(G) if and only if f(u)f(v) € E(H) for all u,v € V(G).

A subgraph of G is a graph H such that V(H) C V(G) and E(H) C E(G). If G is a graph, u,v € V(G),
and uwv € E(G), then G + uv is the graph obtained from G by adding edge uv, i.e., V(G + uv) = V(G) and
E(G+ w) = E(G) U{uv}; G is a subgraph of G + uv. Given S C V(G), the induced subgraph G[S] is the
subgraph of G with vertex set S and edge set consisting of all edges of G that have both endpoints in S. A
graph G is bipartite if V(G) = AU B, AN B = {), and for every e € E, exactly one vertex of e is in A and
exactly one vertex is in B; in this case, A and B are called parts. A graph is planar if it can be drawn in the
plane without any edges crossing. The diameter of G, denoted by diam(G), is the greatest distance between
any two vertices in G. A cycle is a list of vertices in G such that any two consecutive vertices in the list form
an edge in E(G) and no vertex is repeated except that the last vertex equals the first vertex. The girth of
G is the length of the shortest cycle in G. A dominating vertex is a vertex adjacent to every other vertex. A
cut-vertez in a connected graph is a vertex whose deletion disconnects the graph (to delete a vertex from a
graph means to delete the vertex and all edges incident with it).

The adjacency matriz of a graph G is the matrix indexed by the vertices {vy,...,v,} of G having i, j-
entry equal to one if {i,j} is an edge and zero otherwise, and is denoted by A(G). The Laplacian matriz of
G is L(GQ) = diag(degvy,...,degvy,) — A(G). The eigenvalues of D(G) are called distance eigenvalues and
are denoted by 0y > 02 > -+ > 9,. The distance spectrum of G is the multiset of distance eigenvalues of
G and is denoted by specy(G). The distance Laplacian eigenvalues OF = 0 < 0k < ... < 9L = p(DH(Q))
are eigenvalues of DY(G), where p denotes the spectral radius. The distance Laplacian spectrum of G is the
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multiset of distance Laplacian eigenvalues of G and is denoted by specp.(G). For a graph G of order n,
the average transmission of G is t(G) = L 31" | #(v;). We say G is transmission regular if t(v) = t(u) for all
v,u € V(G). If G is a transmission regular graph, then the transmission of G is the average transmission of
G, or equivalently t(G) = t(v) for any vertex v of G. Observe that the ordering of the distance Laplacian

eigenvalues is reversed, so 9 = t(G) — 9; if G is transmission regular.

2. Preservation of parameters by D’-cospectrality. A graph parameter ( is preserved by D-
cospectrality if specpr(G) = specpr (H) implies ((G) = ((H); note that we allow true-false as possible
values of ( in addition to numerical values. In this section, we list some parameters that are preserved by
DX -cospectrality and give examples showing others are not preserved.

The order of a graph is preserved because it is the number of eigenvalues. The trace of DL(G)
is preserved because the trace of a matrix is the sum of its eigenvalues. Therefore, the Wiener index
W(G) == 51, Y0y d(vi,v;) = 5 trace(D*(G)) and the average transmission are preserved, since #(G) =
LS t(v;) = L trace(DF(G)). Furthermore, Aouchiche and Hansen have shown that the number of com-

ponents of the complement G is preserved by D¥-cospectrality [3].

A computer search for small DY-cospectral graphs is effective for finding examples that show certain
parameters are not preserved by DZ-cospectrality, and also for finding examples of D¥-cospectral graphs
that illustrate a family. A list of D¥-cospectral graphs of order at most ten in graph6 format is presented in
[12] and the Sage code used to find these graphs is given in [11]. Verification of the D¥-cospectrality of the
examples that follow is given in [10].

Let G be a graph of order n. If the degrees of the vertices of G are dy < --- < d,, then the n-tuple

(di,...,dy) is the degree sequence of G. If the transmission indices of the vertices of G are t; < -+ < ¢,
then the n-tuple (¢1,...,t,) is the transmission sequence of G.
Gl G2

Figure 2.1: D¥-cospectral graphs that have different degree and transmission sequences (see Example 2.1).

EXAMPLE 2.1. The graphs G; and Go shown in Figure 2.1 are D%-cospectral because specpr(G1) =
specpr (G2) = {0,7,10 — v/2,9,10,10 + v/2,12}. Since the degree sequences are (3,3,3,3,4,4,6) for G; and
(2,3,3,4,4,5,5) for Go, the degree sequence is not preserved by D%-cospectrality. Since the transmission
sequences are (6,8,8,9,9,9,9) for Gy and (7,7,8,8,9,9, 10) for G2, the transmission sequence is not preserved
by DE-cospectrality.

EXAMPLE 2.2. The graphs G, and G5 shown in Figure 2.2 are DZ-cospectral because the characteristic
polynomials are the same: ppr(g,)(z) = ppr(e,)(x) = 2 — 1302% + 736927 — 23791225 + 478541525 —
614117182* 4 49106909123 — 223720306422 + 44461518122. Observe that G has 13 edges, girth 3, and 6
pairs of vertices at distance 3 from each other, whereas Go has 12 edges, girth 4, and 5 pairs of vertices
at distance 3. Thus, the number of edges, the girth, and the multiset of distances are not preserved by
DE-cospectrality.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society I I
Volume 36, pp. 334-351, June 2020.

337 Graphs that are Cospectral for the Distance Laplacian

G1 GQ

Figure 2.2: Dl-cospectral graphs that have different numbers of edges, girths, and multisets of distances
(see Example 2.2).

Figure 2.3 presents a pair of DX-cospectral graphs showing that D¥-cospectrality does not preserve the
diameter. Figures 2.4, 2.5, 2.6, and 2.7 present pairs of D¥-cospectral graphs that establish D-cospectrality
does not preserve the following properties: having a leaf, having a dominating vertex, having a cut-vertex,
and having a nontrivial automorphism.

Gl G2

Figure 2.3: Observe that diam(G1) = 3, diam(G2) = 2, and ppr(g,)(z) = ppr(e,)(z) = ' — 13227 +
77202% —26255827 +5722578x° —828911022° 479794281624 — 492252805823 4 1765875888522 — 28066657350

Gl G2

Figure 2.4: Observe that specp.(G1) = specpr (G2) = {0,8,10,12,12,13,14,15} and G; has a leaf whereas
G4 does not.

A cliqueis aset S C V(@) such that z,y € S and & # y implies « and y are adjacent, and an independent
set is a set S C V(G) such that z,y € S implies = and y are not adjacent. The cligue number w(G) is the
maximum cardinality of a clique of G, and independence number a(G) is the maximum cardinality of an
independent set of G. Example 4.5 below shows that the clique number and independence number are
not preserved by DE-cospectrality. Example 4.8 shows that the property of being a circulant graph is not
preserved (see Section 4.2 for the definition of a circulant graph). The bipartite cospectral pair on eight
vertices shown in Figure 2.8 establishes that planarity is not preserved, because B; + vivs is planar but
By + vavy is not planar. Their DY-cospectrality is proved in Theorem 3.14 below.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society I I

Volume 36, pp. 334-351, June 2020.
B. Brimkov, K. Duna, L. Hogben, K. Lorenzen, C. Reinhart, S.-Y. Song, and M. Yarrow 338

Gl G2

Figure 2.5: Observe that specpr (G1) = specpr (G2) = {0,7,9,10,10,12,12} and G has a dominating vertex
whereas G5 does not.

Gl G2

Figure 2.6: Observe that ppr (g, ) (%) = Ppr(c,)(®) = 2° — 8427 +30002° —590722° +6928162* — 48411522° +
1866624022 — 30643200z and G; has a cut-vertex whereas Go does not.

Gl GQ

Figure 2.7: Observe that ppr(g,)(2) = ppr(a,)(x) = 27 —582° 4+ 13952° — 17810x* + 1273012° — 48301622 +
760060z and (G; has symmetry, i.e., it has a nontrivial automorphism, whereas G2 does not, i.e., it only has
the trivial automorphism.

<= K&

By +viv3 By + vavy

Figure 2.8: Observe that ppr (g, 4v,0s)(T) = PDL(B, 4veus) (T) = 28 — 982" + 40872 — 940202 + 1288463z —
1051784223 + 4734949722 — 90671880z and B; + vyvs is planar whereas B + vv4 is not.

3. Constructions of D’-cospectral graphs. In this section, we provide constructions of D¥-cospec-
tral graphs that use sets of twin vertices, or sets of vertex pairs with a relaxation of the twin structure. One
of these constructions explains the only pair of cospectral bipartite graphs on eight vertices and provides a
way to build large bipartite DL-cospectral graphs on an even number of vertices.
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Let vy, v2 be vertices of graph G such that N(v;) = N(vg). Such vertices are called twins (technically,
these are independent or non-adjacent twins, but we use the term twins to mean independent twins). Note
that twins have the same transmission.

DEFINITION 3.1. If v; and w9 are twins, vz and vs are twins, and t(v;) = t(vs), then we say that
{{v1,v2}, {vs,v4}} is a set of co-transmission twins.

In [22], the authors prove that if v; and v are twin vertices in graph G where specpr (G) and specpr (G+
v1v2) differ only by one eigenvalue of G decreasing by 2 while the others remain the same, then the changed
eigenvalue of G is t(v1) + 2. We establish a stronger statement that we use to prove our first construction.

PROPOSITION 3.2. Suppose v1 and vy are twin vertices in a connected graph G. Then there is an or-
thogonal basis of eigenvectors of DY(G) that includes [1,—1,0,...,0]T, which is associated with eigenvalue
ta(v1) +2, and all other eigenvectors in the basis are of the form [a,a,ys, ..., yn]t for some a,y; € R. Fur-
thermore, this basis of eigenvectors for DX (G) is also a basis of eigenvectors for DX (G +vyvy), the eigenvalue
of DE(G + vivg) for eigenvector [1,—1,0,...,0]T is tg(v1), and the eigenvalues of DL(G + viva) for other
etgenvectors are unchanged.

Proof. Since vy and vy are twins, it follows that (DX(G));1 = (DX(G))jo for all j = 3,...,n and
t(v1) = t(v2). In addition, vivy ¢ E(G) and there exists a path of length two between v; and vy because
they have the same neighborhood. Therefore, the 2 x 2 principal submatrix associated with vy and vy is of

-2
the form [tG(z;) to(w )] . For x = [1,-1,0,...,0]T, DL(G)x = [ta(v1) +2, —tg(v2) — 2,0, ...,0]T because
- alv2

after the first two rows, all the entries of the first two columns are equal. Since tg(vi) = tg(v2), it follows
that x is an eigenvector with eigenvalue tg(v1) + 2. Since DL(G) is a real symmetric matrix, it has a basis
of orthogonal eigenvectors. Thus, there is a basis of eigenvectors in which every eigenvector y # x is of the
form y = [a,a,y3,...,ys]T for some a € R.

Since v, v9 share a neighborhood, it follows that adding the edge viv2 to G changes only the distance
between v; and vy. Therefore,

DY(G + viv2) = DH(G) + ({_11 _11} @ Ong,,m) .

For x = [1,—1,0...,0]%,
DL(G + U1U2)X = [tG(Ul) + 27 7tG(U1) - 23 Oa R O]T + [723 2707 B O]T = [tG(Ul)a 715@(1)1),0, s 70}T'
Thus, x is an eigenvector of G + vjvo with eigenvalue tg(v1). Let y = [a,a,ys3, ..., yn|T be an eigenvector of

DL(G). Since DL(G + viv3) = DE(G) + ([_11 _11} ® On2,7l2>7 DE(G + v1v2)y = DE(Q)y. Therefore,
the eigenvalues of DI(G + v1v3) associated with other eigenvectors in the orthogonal basis of eigenvectors
of DX(G) are unchanged. d

COROLLARY 3.3. Let G and H be D¥-cospectral connected graphs, and let vy, vy € V(G), vz, vy € V(H)
be such that vy,ve are twins, vs,vy are twins and t(vy) = t(vs). Then G + vivy and H + vzvy are DL-
cospectral. In particular, if G is a graph with a set of co-transmission twins {{v1,va}, {vs,v4}}, then G+vivy
and G + vsvy are DY -cospectral.

EXAMPLE 3.4. The construction of D'-cospectral graphs starting with a single graph and adding edges
as described in Corollary 3.3 is illustrated in Figure 3.1. With G, G; = G 4+ vive, and G = G + v3vy as
shown, v; and vy are twins, vz and vy are twins, and tg(vi) = 15 = tg(vs). Furthermore, ppr(g,)(z) =
Ppr (G (@) = 2 — 10427 + 460125 — 1122242° 4 16295712 — 140838402° + 6706573122 — 135702840z
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V3 V3 V3
Y Vi Vi
Vs V4 4 v vy v
G G1=G+U1U2 G2:G+U3U4

Figure 3.1: The graphs G; = G 4 v1v2 and G2 = G + v3v, produced as in Corollary 3.3.

Next we show how to create a graph G that has a set of co-transmission twins by twinning a vertex v in
G, which adds a new vertex v’ to G such that N(v') = N(v).

PROPOSITION 3.5. Let G be a connected graph with distinct vertices w and v such that t(u) = t(v).
Let G’ be the graph obtained from G by twinning each of u and v to obtain u' and v', respectively. Then
{{u, v}, {v,v'}} is a set of co-transmission twins of G'.

Proof. Let d = dg(u,v). We know that «' is distance two away from u and d away from v, and v’ is
distance d away from v and two away from v. Therefore, we have increased the transmissions of v and v
from G to G’ by d + 2. By construction, t(u’) = t(u) and t(v') = t(v). Therefore, {{v,v'}, {u,u'}} are
co-transmission twins. O

Next we extend the construction of DX-cospectral graphs from a set of co-transmission twins to sets of
vertices called cousins that satisfy somewhat more relaxed conditions.

DEFINITION 3.6. Let G be a connected graph of order at least five with v1,ve,v3,v4 € V(G). Let
C = {{v1,v2}, {v3,v4}} and U(C) = V(G) \ {v1,v2,v3,v4}. Then C' is a set of cousins in G if the following
conditions are satisfied:

1. For all w € U(C), dg(u,v1) = dg(u,v2) and dg(u,vs) = dg(u,vq).
2. Yuev(o) dau,v1) = 32, cuy oy dau, v3).

Note that no structure is assumed between v, va, v3,v4. In the case when vive,v3v4 ¢ E(G), it follows
directly from the definition that N(v1) \ {vs,v4} = N(v2) \ {vs,vs} and N(v3) \ {v1,v2} = N(vg) \ {v1,02}.

PROPOSITION 3.7. Let G be a connected graph with a set of cousins C = {{v1,va},{vs,va}}. Then
N(v1) N N(ve) # 0 and N(vs) N N(vq) # 0.

Proof. Since |[V(G)| > 5, U(C) # 0. Since G is connected, there must be some vertex u € U(C) adjacent
to at least one of vy, v9,v3,v4. Without loss of generality, suppose u € N(v;). Since w must also be the
same distance from vy, u is also adjacent to vq, and thus, N(v1) N N(ve) # 0. Suppose to the contrary that
N(vs) N N(vq) =0, which implies N(v3) NU(C) = 0 and N(vq) NU(C) = . Since G is connected, it follows
without loss of generality that vs is adjacent to v;. Then for all u € U(C), the shortest path between u
and vz uses the edge vivs. Thus, d(u,vs) = d(u,v1) +1 and - o) d(u,v3) = (R —4) + 32, () A, v1),
which is a contradiction. ]

LEMMA 3.8. Let G be a connected graph with set of cousins C' = {{vy,va}, {vs,va}} such that viva, v3vy &
E(G). Then dgiv v, (U, v) = da(u,v) = dgtvge, (4, v) for allu € U(C) and v € V(G).

Proof. Let u € U(C) and v € V(G). If a shortest path between v and v in G 4 v1v2 does not contain
edge v1v9 and a shortest path between w and v in G + v3v, does not contain edge v3vy, then the distance
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between u and v is the same in G, G 4+ vyve, and G + v3vy. We show that if a shortest path P from u to v in
G + vyvo contains v1vs, then there is a shorter path between u and v in G 4 vyv2, contradicting the choice
of P. The argument for G + vzv, is similar.

Suppose a shortest path P from u to v in G 4 vyve contains the edge viv9; without loss of generality,
vy precedes vy in the path order starting from u. Since u € U(C), there is a predecessor w of vy in P, i.e.,
P contains the subpath (w,v1,v2). If w € U(C), then w € N(v1) N N(vz) and so replacing (w,v1,v2) by
(w,vy) produces a shorter subpath. So w is one of v3 or vy, without loss of generality let w = v3. Since
vy ¢ U(C), P contains the subpath (u/,vs,v1,v2) for some v’ € V(G). Since vsvy ¢ E(G + v1va), ' # vy.
Thus, v' € U(C). If v'v; € E(G) there would be a shorter path between v and v obtained by replacing
(u',v3,v1) by (u/,v1) in P. Since this would contradict the choice of P, v'vy ¢ E(G). Thus, dg(v',v1) = 2,
which implies dg(u', v2) = 2 by the definition of a set of cousins. So there exists 2 € N(u’) N N(v3). Then
there is a shorter path between u and v obtained by replacing (v, vs, v1,v2) by (v, x, va). 0

LEMMA 3.9. Let H be a connected graph with V(H) = {u1, u2,us, us} such that uyus,usus ¢ E(H) and
suppose H + ujug is isomorphic to H + usus. Then at least one of the permutations o1 = (ujug)(ugus) or
o9 = (ujus)(ugug) = (urug)or(uiug) in the symmetric group on V(H) is an isomorphism of H + ujus and
H + uzuy.

Proof. This lemma was verified by exhaustively checking every labeling of every graph on four vertices
using Sage [10]. O

THEOREM 3.10. Let G be a connected graph with a set of cousins C = {{v1,va}, {vs,va}} satisfying the
following conditions:

e Vertices v1,vo are not adjacent and vs, vy are not adjacent.
o The subgraph of G+wvyvs induced by {v1, va, v3,v4} is isomorphic to the subgraph of G +vsv4 induced

bZ/ {’Ula V2, V3, U4}-
If Gy = G + v1vy and Gy = G + v3vy are not isomorphic, then they are D -cospectral.

Proof. By Lemma 3.8, we know that the entries of D(G1), DX(Gz), and DX(G) are equal everywhere
except the 4 x 4 principal submatrix corresponding to v1,vs,v3,v4. Let My = DL(G1)[{1,2,3,4}] and
My = DE(G2)[{1,2,3,4}]. Then we can partition DX (G1) and DL (Gs) as block matrices:

M1 Q M2 Q
(3.1) DL(Gy) = [ o B ] and DL(G,) = [ o B
where @ is a 4 X (n — 4) matrix and B is an (n — 4) X (n — 4) matrix.
From the definition of a set of cousins, 3, i) d(u,v1) = X, cpo) dw,v2) = X, cp o) du,v3) =
ZueU(C) d(u,v4). Thus, the row sums of @ are constant. Since every row sum of a distance Laplacian

matrix is equal to zero, it follows that the row sums of M; are constant, the row sums of My are constant,
and these constants are equal; denote the constant row sum of M;,i = 1,2 by a. Thus, M; has the form

a+1+c+d -1 —c —d
-1 a+1+f+h —f —h
M, =
—c —f a+c+ f+2 —2
—d —h -2 a+d+2+h

for some ¢, d, f,h € Z. The induced subgraph G1[{v1, va,vs,v4}] is isomorphic to the induced subgraph of
G2 [{v1,v2,v3,v4}] by hypothesis. By Lemma 3.9, we can choose the isomorphism to be either oy or o3. So
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M5 has one of the forms

[a+d+h+2 -2 —h —d ]

Mo — -2 a+c+ f+2 —f —c

2 —h —f a+1l+f+h -1
L —d —c -1 a+1l+c+d |

or

[a+d+h+2 -2 —c —f ]

1o -2 a+c+ f+2 —d —h

2 —c —d a+1+f+h ~1
i —f —h -1 a+1l+4+c+d |

corresponding to o7 or o, respectively.

Define
/2 12 1/2 -1/2 /2 12 -1/2 1/2
o _| V2 12 12 172 o | V2 12 12 12
T2 —12 12 12 |0 TP =12 12 12 12 |
—-1/2 1/2 12 1/2 /2 —1/2 1/2  1/2

and S; = S; ® I,,—4 for i = 1,2. Observe that each of Si,.S3,81, and Ss is its own inverse and transpose (S
and Sy are scalar multiples of Hadamard matrices). Suppose o1 maps G1[{v1, va, v3,v4}] to Ga[{v1, v2,v3,v4}]
and consider

S1M1S1 51Q
Si1DE(GY)S) =
OS] sor B
By direct computation [10], we can verify that S1M;S1 = My*. Every column of @ is of the form
[_p7 —-b, —4q, _q]T’ and Sl[_pa —D, _Q7_q]T = [_p7 —-b,—4q, _q]T Therefore, SlQ = Q We have shown
that S$;DE(G1)S) = DE(G3), and thus, the graphs are cospectral. The proof that similarity by Sy trans-
forms DX(G4) to DE(G2) when oy is the isomorphism is analogous. |

Using a set of co-transmission twins to construct D¥-cospectral graphs (as in Corollary 3.3) is a special
case of Theorem 3.10: A straightforward computation shows that set {{v1,v2}, {vs,v4}} of co-transmission
twins is a set of cousins. The twins relationships require that the subgraph G[{v1,vs, v3,v4}] is four isolated
vertices or the complete bipartite graph with parts {vi,ve} and {vs,v4}, which implies the subgraph of
(G 4 v1v2)[{v1, v2, v3,v4}] is isomorphic to (G + vsvg)[{v1, ve, v3, v4}].

Our next main result uses a set of cousins C' = {{v1, v}, {vs, v4}} but toggles edges vivs and vovy rather
than vivy and vsvs. We need a preliminary lemma.

LEMMA 3.11. Let G be a connected graph with a set of cousins C = {{v1,va},{vs,va}} such that
v1v3,v9vs € E(G), for every x € N(vi) N N(ve) there exists y € N(vs) N N(vsa) such that zy € E(G),
and for every y € N(vs) NN (vq) there exists x € N(v1) NN (va) such that xy € E(G). Then dgipyvs (U, v) =
de(u,v) = dgtvaw, (u,v) for alluw € U(C) and v € V(G).

Proof. Let u € U(C) and v € V(G). If a shortest path between v and v in G 4 v1v3 does not contain
edge vivs and a shortest path between w and v in G + vsv4 does not contain edge vsv4, then the distance
between u and v is the same in G, G 4 vivs, and G + vovy. We show that there is a shortest path that does
not include viv3 between v and v in G + vyvs; analogously, there is a shortest path in G + vovy that does
not contain edge vsvy.
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Suppose a shortest path P from u to v in G + vyvsg contains the edge vyvs; without loss of generality,
vy precedes vz in the path order starting from u. Since u € U(C'), there is a predecessor z of v in P, i.e.,
P contains the subpath (z,v1,v3). We first show that © € U(C). Since P is a path, z # vy,vs3. Since
(z,v1,v3) is a subpath of a shortest path between w and vs, it cannot be replaced by a shorter subpath. For
u’ € U(C), a subpath of the form (u/,vs,...,v1,v3) can be replaced by (u/,v1,v3), and a subpath of the
form (u',vy,...,v1,v3) can be replaced by (u',vs). Thus, x # vg,v4, so x € U(C). Because z € U(C), there
exists y € N(v3) N N(vy) such that xy € F(G), the subpath (z,v1,v3) can be replaced by (x,y,vs3), creating
a path of equal length that avoids edge vivs. ]

THEOREM 3.12. Let G be a connected graph with a set of cousins C = {{v1,va}, {vs,v4}} satisfying the
following conditions:
o Vertices v1,vs are not adjacent and vo, vy are not adjacent.
e The subgraph of G+wvyvs induced by {v1,va,v3,v4} is isomorphic to the subgraph of G+wvovy induced
by {v1,v2,vs,v4} via the permutation o = (14)(23).
e For every x € N(v1) N N(vg) there exists y € N(vs) N N(vyq) such that zy € E(G), and for every
y € N(v3) N N(vy) there exists x € N(v1) N N(v2) such that vy € E(QG).

If G = G 4+ vyvs and G2 = G + vavy are not isomorphic, then they are DL -cospectral.

Proof. By Lemma 3.11, the entries of D(G1) are equal to DY (G3) everywhere except the 4 x 4 principal
submatrix corresponding to vy, ve,v3,v4. The 4 X 4 principal submatrices have structure analogous to M;
and to My with o1, and the remainder of the proof follows the same method. ]

The reason we assume that the isomorphism of G1[{v1,v2,v3,v4}] and Ga[{v1,v2,v3,v4}] is 01 = (14)(23)
is because isomorphic graphs are not cospectral by definition. Applying Lemma 3.9 with vy = wug and
v3 = ug produces o1 = (v1 v4)(ve v3) and oo = (vy v2)(v3 v4). Suppose Gi[{v1,vs,vs,v4}] is isomorphic
to Ga[{v1, va,v3,v4}] via 02. Let P,, denote the 4 x 4 permutation matrix representing oo = (12)(34) and
Py = P,, ® I,,_4. With the partition of DL(G) as in (3.1), P,,Q = Q. Thus, P,DX(G,)P, = DX(G3) and
(' is isomorphic to Gs.

We now discuss an example of Theorem 3.12 on a family of cospectral bipartite graphs. This family
contains the only bipartite pair of cospectral graphs on eight vertices.

DEFINITION 3.13. For k € Z, By, is the graph defined as follows (B is shown in Figure 3.2(a)): Five
vertices are denoted by vg, v1, v, v3, and vy, and the set of edges of the induced subgraph By [vg, v1, va, U3, V4]
is {vov1,vov2,v2v3}. There are k twin leaf vertices adjacent to wp; the set of these vertices is denoted by
L. There are k 4+ 1 twin vertices of degree three each adjacent to vg,vs, and wvy; the set of these vertices is
denoted by R.

THEOREM 3.14. The graphs By, + vivs and By, + vovy are DY -cospectral, and both are bipartite.

Proof. By construction, By, is a bipartite graph with parts {vg,vs,vs} and V(By) \ {vo, vs,v4}. The
edges vivs or vavy each have endpoints in different parts, so adding these edges keeps the graph bipartite.

We show that Bj, satisfies Theorem 3.12. First we show that {{vi,v2},{vs,v4}} are a set of cousins.
By inspection, we see that for all w € L, d(u,v1) = 2 = d(u,v2) and d(u,vs) = 3 = d(u,v4). For all
u € R, d(u,v1) = 2 = d(u,v2) and d(u,v3) = 1 = d(u,v4). Additionally d(vg,v1) = 1 = d(vg,v2) and
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L R L R L R

Figure 3.2: (a) shows the bipartite graph B;. (b) and (c) show By 4+ v1v3 and Bj + vavy, which are bipartite
DE-cospectral graphs. The sets and L and R can be expanded to contain k and (k + 1) twin vertices,
respectively.

d(vo,v3) = 2 = d(vg, v4). Finally,

> d(u,v) =) d(u,vr) +d(vo,v1) + > d(u,vr) =2k + 1+ 2(k+1) = 4k + 3,
ueU(C) u€L uER

> d(u,vs) =Y d(u,vs) +d(vo,v3) + Y d(u,vs) =3k +2+ (k+1) =4k + 3.
uelU(C) ueL uER

Therefore, C' = {{v1,v2}, {vs,va}} is a set of cousins. In By, we have that v; is not adjacent to vs and v is
not adjacent to vy. The subgraph of By, + v1vs induced by {v1, v, v3,v4} is isomorphic to the subgraph of
By, + vavy4 induced by {v1,v2,vs,v4}. Additionally, the only vertex in N(vy) N N(v2) = {vo} is adjacent to
every vertex in R = N(v3) N N(vs). Thus, By, + vivs and By, + vavy are DP-cospectral by Theorem 3.12. O

The family By, grows by increasing k, or twining two vertices (one in L and one in R) at the same time to
preserve the cousin property. This growth is not unique to this cospectral family: We can change the set of
edges between the vertices {v1,v2,v3,v4} provided the cousin property and the induced graph isomorphism
are preserved. Furthermore, L and R can have arbitrary structure since it does not affect the cousin property
nor the induced graph isomorphism; however adding edges within L or R will result in the graphs that are
not bipartite.

4. Cospectral transmission regular graphs. If two graphs are transmission regular and D-cospec-
tral, then they are D¥-cospectral (see Remark 4.3 for more detail). Thus, results for D-cospectrality can
be combined with characterizations of transmission regular graphs in order to obtain results about DE-
cospectrality. In this section, we discuss transmission regular D¥-cospectral graphs, including strongly
regular graphs, distance-regular graphs, and circulant graphs. We begin our discussion of transmission
regular graphs by generalizing a well-known example of a transmission regular graph that is not regular (the
graph in Figure 4.1) to an infinite family of graphs with this property.

Figure 4.1: The graph Hs, which is transmission regular but not regular.
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DEFINITION 4.1. Let H,, be the graph with vertex set V = {v1,...,v2,,u1,...,u,} and edge set E =
{vivigr 1 <@ < 2n — 1} U{vanv1 } U {uv2i-1, uive;, uivgi41 0 1 < i <m— 1} U {unvon—1, UnVan, Uty }.

PRrOPOSITION 4.2. For each n > 2, H,, is not reqular. For each odd n > 3, H,, is transmission reqular
and t(H,) = 3"2%1

Proof. Since H,, has vertices of degrees three and four, H,, is not regular. By the symmetry of H,, all
vertices u; and wvg; in the definition of H,, have the same transmission for 1 < i < n; likewise, all vertices
v9;_1 have the same transmission as v;. Thus, to show that H,, is transmission regular, it suffices to show
that t(uy) = t(vy). Using the identities 1 +3 4 --- +k = (%)2 and 244+ -+ k=% (% 4+1), we have

tu))=3(1)+4(2)+2B)+44)+20B)+ -+2(n—2)+4(n—1)+1(n)

(2 ) () e
:3n2+1

2
:4(n_§+1>2+2(n;1(ngl+&>)+2n
—4(1)+22)+4B3)+2(A) +4(B) + - +4(n—2)+2(n—1)+2(n)
= t(v1),

where the first and last equalities can be easily verified by inspection by counting the distances from w; and
v1 to all other vertices. O

REMARK 4.3. Suppose G is a transmission regular graph of order n. The spectral radius of the distance
matrix D(G) is the transmission of G and the trace of the distance Laplacian is tr(DL(G)) = nt(G). Observe
that specpr (G) = {0F = 0,0%,...,0L}, where OF = t(G) — 0y for k = 1,...,n (recall that distance
eigenvalues are ordered largest to smallest, whereas distance Laplacian eigenvalues are ordered smallest to
largest). Thus, two transmission regular graphs are D-cospectral if and only if they are D%-cospectral.

4.1. Strongly regular and distance-regular graphs. Strongly regular, and more generally distance-
regular graphs, provide important examples of transmission regular D -cospectral graphs. A k-regular graph
G of order n is strongly regular with parameters (n, k, A, u) if every pair of adjacent vertices has A common
neighbors and every pair of nonadjacent distinct vertices has g common neighbors. A connected strongly
regular graph G has diam(G) < 2. There are well known formulas for computing the adjacency eigenvalues
of G and their multiplicities from the strongly regular graph parameters (see [14, Section 10.2]). Formulas
for the distance eigenvalues and their multiplicities have also been determined [5, p. 262] and [1]. Thus, the
distance Laplacian eigenvalues can be readily determined, as done in the next remark.

REMARK 4.4. Let G be a strongly regular graph with parameters (n,k, A\, ). Then any vertex v has
k neighbors and n — k — 1 vertices at distance two, so G is (2n — k — 2)-transmission regular. Thus, the
distance Laplacian eigenvalues of G are

0 of multiplicity 1

1 1 2 DA —
2n—k+§(>\—u+\/(A—u)2+4(k—,u)) ofmultiplicity2<n—1— kit (-1 H))

VO = )2 4k - p)
2%+ (n—1)(A— p) )
VO +ak—p) )

1 1
2n—k‘—|—§(}\—u—\/()\—u)2+4(k—,u)) of multiplicity 3 <n—1—|—
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Furthermore, two strongly regular graphs with the same set of parameters are D”-cospectral.

There are examples, such as those presented next, of non-isomorphic strongly regular graphs with the
same parameters (n,k, A, i1); such graphs are therefore DY-cospectral and transmission regular (so neither
strong regularity nor transmission regularity implies a graph is spectrally determined). The notation A(™)
means that the multiplicity of eigenvalue A is m.

ExXAMPLE 4.5. The Shrikhande graph, shown in Figure 4.2, is the graph S = (V, FE) where
V ={0,1,2,3} x {0,1,2,3} and E = {{(a,b),(c,d)} : (a,b) — (¢,d) € {£(0,1),4+(1,0),£(1,1)}}. Both S
and the 24-Hamming graph H(2,4) := K,0OK, are strongly regular with parameters (16,6,2,2). They
are 24-transmission regular with distance spectrum specp(S5) = {24,009, (—4)®} and distance Laplacian
spectrum specpr (S) = {O, 2409) 28(6)}. Since S and H(2,4) are cospectral and strongly regular, so are their
complements S and H(2,4). Observe that w(S) =3 = «(S) and w(H(2,4)) =4 = a(H(2,4)).

Figure 4.2: The Shrikhande graph S.

EXAMPLE 4.6. Let ¢, j,k > 0 be integers. The graph G = (V| E) is distance-regular if for any choice of
u,v € V with d(u,v) = k, the number of vertices w € V such that d(u,w) = ¢ and d(v,w) = j is independent
of the choice of u and v. Distance spectra of several families of distance-regular graphs were determined in
[5] and the distance spectra of all distance-regular graphs having exactly one positive distance eigenvalue are
listed in [1]. A Doob graph D(m,n) of diameter 2m+n is the Cartesian product of m copies of the Shrikhande
graph with one copy of the Hamming graph H(n,4). It is known [1] that the Doob graph D(m,n) and the
Cartesian product of m copies of H(2,4) with H(n,4) are D-cospectral, and thus, D*-cospectral.

EXAMPLE 4.7. The triangular graph Ty (which is the line graph of Kg) and the three Chang graphs are
all strongly regular with the parameters (28,12, 6,4) (see [20] for definitions of the Chang graphs). Thus, all
four have the same distance spectrum

4.2. Cospectral circulant graphs. The ring of integers mod n is denoted by Z,, with elements
0,...,n—1, and we view an element of Z,, as also having a meaningful interpretation as an integer, where
we can use the standard ordering of elements, although arithmetic is performed modulo n. For an integer
n > 3 and a set S C Z, that does not contain zero, the circulant graph defined by n and S is the graph
with vertex set Z,, and edges of the form ij where i — j or j — i is in \S; this graph is denoted by Circ,,(.5).
The set S is called the connection set of Circ,,(S). By convention we assume that 1 < z < L%J for every
x € S. If q is relatively prime to n then Circ,(S) is isomorphic to Circ,(¢S) where ¢S = {qz : € S}.
Thus, it is common to require that 1 € S if S contains any element relatively prime to n, and we make
this assumption also. Note that Circ,(S) is connected if and only if the greatest common divisor of the
elements of S together with n is one. A circulant graph is both regular and transmission regular. Circulants

are an interesting family of graphs that play an important role in some applications of graph theory such
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as computing and quantum spin networks [6, 19]. They also provide examples of distance Laplacian (and
distance) cospectral mates.

Table 4.1 lists the orders and connection sets for all sets of D¥-cospectral circulant graphs of order at
most 20; the data in the table were produced by computations in Sage [11]. The smallest order is 16, and
the DL-cospectral graphs Circig({1,2,8}) and Circi6({1,6,8}) are shown in Figure 4.3.

n S

16 {1,2,8}, {1, 6, 8}

18 (1,2, 9}, {1, 4, 9}

18 {1,6, 8}, {2, 3, 6}

20 {1, 2, 3,8}, {1, 2, 7, 8}
20 {1,2, 4,9}, {1, 6, 8, 9}
20 {1, 2,4, 10}, {1, 6, 8, 10}

20 | {1, 2, 4,09, 10}, {1, 6,8,09, 10}
20 | {1,238, 10}, {1,2,7,8, 10}
20 {1,2,4,5,9}, {1, 5, 6,8, 9}
20 {1,2,3,5, 8}, {1, 25,7, 8}
20 | {1,2,4,5,9, 10}, {1, 5, 6, 8, 9, 10}
20 | {1,2,3,5,8, 10}, {1,2,5, 7,8, 10}

Table 4.1: Order n and connection sets S for small circulant D¥-cospectral pairs.

W7
2

Figure 4.3: The circulant graphs Circy({1,2,8}) and Circi6({1,6,8}).

Although Table 4.1 contains only cospectral pairs of even order, by using Sage to perform a search we
found that the graphs Circar({1,2,9}) and Circar({1,4,9}) on 27 vertices are DL-cospectral.

The Sage search that produced Table 4.1 was restricted to circulant graphs, so it would not detect a
pair of D -cospectral graphs where one is a circulant and the other is not. Recall a result from [8, 18, 21]
that links strongly regular graphs and circulant graphs: If a connected circulant graph Cire,,(.S) is strongly
regular, then n must be a prime p satisfying p =1 mod 4 and Circ,(S) must be isomorphic to a Paley graph
on the field of order p (see [14] for the definition of a Paley graph).

EXAMPLE 4.8. The graph Circag({1,4,5,6,7,9,13}), which is shown in Figure 4.4, is a Paley graph on 29
vertices that is strongly regular with parameters (29, 14,6, 7). There are 40 additional nonisomorphic strongly
regular graphs on 29 vertices with the same strongly regular graph parameters [23] that are necessarily

14 14
DE-cospectral. The DI-spectrum of Circag({1,4,5,6,7,9,13}) is {0(1), 87_2‘/E( ), 874‘2@( )}; the DL-
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spectrum can be computed from the formulas for the D¥-spectrum of a strongly regular graph (see Remark
4.4 and [10]).

b

Figure 4.4: The circulant graph Circag({1,4,5,6,7,9,13}).

A circulant matriz is a square matrix in which each row is formed from the row above by a right cyclic
shift of plus one. A trivial example of a circulant matrix is that of the identity matrix I,, where this shift
pattern can be seen along the lead diagonal. The adjacency, distance, and distance Laplacian matrices of a
circulant graph are circulant matrices.

For j = 1,...,n — 1, define dy) as the distance between vertex 0 and vertex j in Circy,([r]). Thus,
dy) = (ﬂ for 1 < j < [%] and due to the symmetry of the circulant graphs dfﬁj = d;T). Define dg') =
t(Cire,([r])) = Z;le dy’). Then the first row of the circulant matrix D% (Circ,,([r])) is given by

(dg”, .. —dﬁﬁl) .

The remaining entries of the matrix DL (Circ,,([r])) are defined by using the circulant matrix property.

PROPOSITION 4.9. The transmission of any consecutive circulant graph Circ,([r]) is

#(Circn ([r])) = anrlJ +1> ((n 1) —r {"27&1J>

Proof. For any vertex v of Circ,([r]), there are 2r vertices at distance one from v, 2r vertices at distance
| vertices are at

n—1
2r

two, and so on, ending with 2r vertices at distance |1 |. The remaining n — 1 —2r |

2r
distance [ J + 1. Thus, the transmission is

n—1
2r

| S i (oo [P ) (75 )
(= 1) (0o 5]).

We can use Proposition 4.9 to easily calculate the Weiner index from the transmission.

n—1
2r

H
=
9]
b
Il
-
—~
<
~—"
Il

O
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COROLLARY 4.10. The Weiner index of a consecutive circulant is

W (Cirea (7)) = 54(G) = 5 Q”;J + 1) ((n 1) —r {”;D .

Since the pair (n,r) determines both the number of eigenvalues and the transmission (by Proposition 4.9),
and the transmission equals the distance spectral radius, the next result is immediate.

COROLLARY 4.11. Forr; < [%],j = 1,2, the consecutive circulants Circy, ([r1]) and Circy, ([r2]) are
distance cospectral (and hence, distance Laplacian cospectral) if and only if ny = ne and ry = ro.

5. Unimodality of the coefficients of the distance Laplacian characteristic polynomial. In
their study of distance spectra of trees, Graham and Lovész [15] showed that for a tree T and 0 (T") denoting
the coefficient of z* in det(D(T) — zI) = (=1)"pp(g)(x), the quantity dj(T) = (—=1)""16,(T)/2"*"2 is
determined as a fixed linear combination of the numbers of certain subtrees in T'; the values di(T) are

called the normalized coefficients of T. A sequence ag,a1,...,a, of real numbers is unimodal if there is a
k such that a;—1 < a; for i < k and a; > a;41 for ¢ > k. Graham and Lovész [15] conjectured that the
sequence do(T),...,dn—o(T) of normalized coefficients is unimodal with the maximum value occurring at

| %] for a tree T' of order n. Collins [9] showed that the location of the maximum for a path on n vertices is
approximately n (1 - %) and with modern computers it is straightforward to verify that this location of the

peak is strictly greater than |%| for n > 18 vertices (and for odd n > 9). Aalipour et al. [2] established the
unimodality of the normalized coefficients and also of the absolute values of the coefficients of the distance
characteristic polynomial. These ideas naturally suggest exploring the behavior of the coefficients of distance
Laplacian characteristic polynomial.

The unimodality of the sequence of absolute values of the coefficients of the distance characteristic
polynomial is equivalent to that of the normalized coefficients [2, 15], and the proof used log-concavity and
its connection to polynomials with real roots. A sequence ai,as,...,a, of real numbers is log-concave if
a? > aj_1a;41 forall j =2,...,n—1. A polynomial p is real-rooted if all roots of p are real (by convention,
constant polynomials are considered real-rooted). The next result describes the connections between real-
rootedness, log-concavity, and unimodality, and was the key to the proof.

LEMMA 5.1. [2, 7]

(a) If p(x) = anz™ + -+ + a1z + ag s a real-rooted polynomial, then the coefficient sequence a; of p(x) is
log-concave.

(b) If a sequence ag,ay,as,...,a, is positive and log-concave, then ag,a1,as,...,a, is unimodal.
COROLLARY 5.2. Let A be a real symmetric matriz. The coefficient sequence ag,aq,...,an_1,a, = 1
of pa(x) is log-concave. If a subsequence as,...,a; of ap,a1,...,an—1,a, is positive then this subsequence
is also unimodal. If all entries of a subsequence of ag,ay,...,an_1,a, alternate in sign or all are negative,
then the subsequence of absolute values |asl, ..., |at| is unimodal.
Proof. Since all the eigenvalues of A are real, the log-concavity of ay,...,a,_1,a, follows immediately
from Lemma 5.1, and any positive subsequence is unimodal. If the signs of the subsequence asg,...,as

alternate, or if all values are negative, then [a3| = a3 > a;j 1441 = |aj_1||aj1| for s +1 < j <t —1, 50 the
positive subsequence |as|, ..., |as| is also log-concave, and therefore unimodal. d
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The (th symmetric function of aa,...,a,, denoted by S¢(a,...,ay) is the sum over all products of
¢ distinct elements of {a1,...,a,}. Observe that if 0 = a3 = -+ = @ < @41 < -+ < Qp, then
Se(ar, ... an) = Se(@ert, ..., ap) for £ <n —cand Se(ay,...,a,) =0for £ >n—c.
THEOREM 5.3. Let G be a connected graph, and let ppr(g)(z) = 2" + SL jan=t ... 4 6w, Then the
sequence 0% ... 6L | 6L =1 is log-concave and |6¥|, ... |6 is unimodal. In fact, |6F| > --- > |6L|.

Proof. Tt is well known that the distance Laplacian is positive semidefinite (this follows immediately
from Gershgorin’s disk theorem), and that zero is a simple eigenvalue (see, for example, [3]). Since §& =
(=) kS, _k(OF, 0%, ..., 0L) = (=1)" kS, _r(0F,...,0L) and 0%,... OL are positive, all the nonzero co-

efficients alternate in sign. By Corollary 5.2 the sequence {|0%|}7_, is unimodal.

To show that [6F| > --- > |51, by unimodality it is sufficient to show that [0%| > |6Z]. Since 94 >n [3,
Corollary 3.6],

n n n

o51=>"T[ofy <tn-1)[Jor <[[of =16t ©

i=2 j£i j=3 =2

6. Concluding remarks. In this paper, we studied graph cospectrality with respect to the distance
Laplacian matrix. We showed that several global properties of a graph, such as degree sequence, transmission
sequence, diameter, and number of nontrivial automorphisms, and also several local properties, such as the
presence of a leaf, a dominating vertex, and a cut-vertex, are not preserved by DY-cospectrality. It would
be interesting to determine whether or not other properties, such as those listed in the next question, are
preserved by D¥-cospectrality.

QUESTION 6.1. Are the following properties preserved by D -cospectrality?

Acyclicity (being a tree).
Bipartiteness.
Transmaission reqularity.
Regularity.

Strong regularity.

U W=

It is not known whether trees are DL-spectrally determined [3]; if so, then the property of being a
tree would necessarily be preserved by DY-cospectrality. For each of the other properties in Question 6.1,
examples of a D¥-cospectral pair with both graphs having the property and a D¥-cospectral pair with neither
graph having the property have been presented (in Sections 2 and 4). However, we do not have examples of
DE-cospectral pairs where one member has the property and the other does not.

We also established several general methods for producing D¥-cospectral graphs based on sets of vertices
sharing common neighborhoods, transmissions, and partial transmissions. We used these constructions to
produce infinite families of DZ-cospectral graphs. Future work could include finding additional methods for
constructing D¥-cospectral graphs. Conversely, it would also be interesting to find certain local structures
or general properties of a graph that guarantee the graph has no D¥-cospectral mates; one conjectured such
property is acyclicity.

Since two transmission regular graphs are D-cospectral if and only if they are DZ-cospectral, results
about D-cospectrality of transmission regular graphs lead to results about DE-cospectrality. To this end, we
studied various families of strongly regular, distance-regular, and circulant graphs, and showed that many
of them have D¥-cospectral mates. We also constructed an infinite family of graphs which are transmission
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regular but not regular; it is an open question to determine whether this family of graphs is D¥-spectrally
determined.

Finally, we established that the absolute values of coefficients of the distance Laplacian characteristic
polynomial are unimodal, and in fact decreasing. It would be interesting to establish other structural
results about the coefficients of the distance Laplacian characteristic polynomial and their relation to DE-
cospectrality.
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