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1. Introduction

With the advent of high degrees of control over nanoparticle synthesis (Murray et al.,
1993; Hyeon et al., 2001; de Mello Donega et al., 2005) attention is turning to assem-
bling superlattices of them as metamaterials (Boles et al., 2016; Choi et al., 2016)
and applications of nanoparticle assemblies (NPA) based devices such as solar cells
and field effect transistors have been demonstrated (Talapin & Murray, 2005; Sar-

gent, 2008; Talapin et al., 2010). It is crucial to study the structures of these NPAs if
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their properties are to be optimized. For example, it has been shown that the mechan-
ical (Akcora et al., 2009), optical (Young et al., 2014), electrical (Vanmaekelbergh &
Liljeroth, 2005) and magnetic (Sun et al., 2000) properties can be further engineered
by controlling the spatial arrangement of the constituents in the NPA.

Getting detailed quantitative structural information from NPAs, especially in 3D,
is a challenging and largely unsolved problem. Small angle scattering and electron
microscopy (EM) have been the major techniques for studying the structure of NPAs (Murray
et al., 2000; Talapin et al., 2009). The technique of TEM yields high-resolution images
of NPAs. To obtain quantitative structural information it is necessary to either ana-
lyze the images manually (Wang, 2000) or match observed images with patterns that
are algorithmically generated from known structures (Shevchenko et al., 2006). This
approach can yield the structure types (Zhuang et al., 2008) but does not typically
result in the kind of quantitative 3D structural information we are used to obtaining
for atomic structures of crystals, including accurate inter-particle vectors and distri-
butions of inter-particle distances, or the range of structural coherence of the packing
order. It is desirable to explore scattering approaches that can yield that kind of
information.

The technique of small-angle x-ray or neutron scattering (SAS) has been an impor-
tant tool to study objects that have sizes from nano- to micrometer length-scales (Turkevich
& Hubbell, 1951; Glatter, 1977; Guinier, 1994; Koch et al., 2003), such as large
nanocrystals (Polte et al., 2010) and biological molecules (Koch et al., 2003), yield-
ing information about the intrinsic shape, size distributions and scattering density
of objects on these scales (Glatter, 1977; Beaucage, 1995; Pedersen, 1997; Volkov &
Svergun, 2003; Beaucage et al., 2004).

When these nanoscale objects aggregate, correlation peaks appear in the SAS data

resembling atomic-scale interference peaks (Diffuse scattering and Bragg peaks), but
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encoding information about particle packing rather than atomic packing (Murray
et al., 2000; Nykypanchuk et al., 2008). Obtaining structural information about the
NPAs from these correlation peaks appears to be a promising approach. Although the
recent developments in SAS modeling demonstrates the ability to account for phase,
morphology and orientations of NPs in a lattice (Yager et al., 2014; Lu et al., 2019),
fitting the SAS data with robust structural models to obtain quantitative information
about the structure has barely been explored (Macfarlane et al., 2011)

On the other hand, the atomic pair distribution function (PDF) analysis of x-ray and
neutron powder diffraction has proven to be a powerful tool for characterizing local
order in materials, and for extracting quantitative structural information (Proffen
et al., 2005; Egami & Billinge, 2012; Zobel et al., 2015; Keen & Goodwin, 2015) when
the atoms are not long-range ordered, as is the case in nanoparticles. Here we extend
PDF analysis to handle correlation peaks in the small angle scattering data, allowing
us to study the arrangement of particles in nanoparticle assemblies using the same
quantitative modeling tools that are available for studying the atomic arrangements in
nanoparticles themselves. We describe the extension of the PDF equations in the small-
angle scattering (SAS) regime and describe the data collection protocol for optimum
data quality. We also present the PDFGETS3 software package that can be readily
used to extract the PDF from small-angle scattering data. We then apply the SASPDF
method to investigate structures of some representative NPA samples with different

levels of structural order.

2. Samples

To test the method we obtained SAS data from the samples listed in Table 1. Synthesis

details of these NPA samples can be found in the references listed in the table.
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Table 1: Nanoparticle assemblies (NPA) considered in this study. Building block indi-
cates the NP and surfactant linkers used to build the assemblies. D is the particle
diameter (one standard deviation in parentheses) estimated from TEM images and
reported in the original publications listed in the Ref. column. Beamline is the x-
ray beamline where the SAXS data were measured (see text for details). PMA is
Poly(methyl acrylate) and DDT is dodecanethiol.

Sample Building block D (nm) Beamline Ref.

Au NPA DNA-capped Au NP 11.4(1.0) X21 (Nykypanchuk et al., 2008)
CugS NPA DDT-capped CuS NP 16.1(1.3)  11-BM (Han et al., 2008)
SiO NPA  PMA-capped SiOy NP 14(4) 11-BM (Bilchak et al., 2017)

3. sasPDF method

The data were collected using a standard SAXS setup at an x-ray synchrotron source,
with a 2D area detector mounted perpendicular to the beam in transmission geometry.
Both the CusS NPA and the SiO, NPA samples were measured at beamline 11-
BM at the National Synchrotron Light Source-II (NSLS-II). The CusS NPA powders
were sealed between two rectangular Kapton tapes with a circular deposited area of
diameter about 3 mm and thickness about 0.2 mm. The SiOy NPA formed a circular,
free-standing stable film of diameter about 5 mm and thickness about 1 mm which
was mounted perpendicular to the beam and no further sealing was carried out. The
scattering data of the CusS NPA and SiOo NPA samples were collected with a Pilatus
2M (Dectris, Switzerland) detector with a sample-detector distance 2.02 m using an
x-ray wavelength of 0.918 A. An example of the diffraction image from the CusS NPA

is shown in the inset of Fig. 1.
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Fig. 1. Example of the 1D diffraction pattern I,,,(Q) from the CusS NPA sample. The
data were collected with the spot exposure time and scan exposure time reported
in the text. The inset shows the corresponding 2D diffraction image. The horizontal
stripes in the image are from the dead zone between panels of the detector. The
diagonal line is the beam-stop holder.

The scattering from these samples is isotropic as the sample consists of powders
of randomly oriented NPA crystallites, and the 2D diffraction images can be reduced
to a 1D diffraction pattern, I,,(Q), by performing an azimuthal integration around
rings of constant scattering angle on the detector. This was done using PYFAT (Kieffer
et al., 2015). This requires a calibration of the experiment geometry described below,
but the integrated 1D pattern from the 2D diffraction image is shown in Fig. 1.
The relative positions and intensities of sharp peaks in the I,,(Q) originate from the
Debye-Scherrer rings in the 2D image.

We need to use a data acquisition strategy that mitigates effects of x-ray beam-
damage to the sample. The linkers that connect nanoparticles in the assemblies play

a crucial role for the NPA structure formed but are susceptible to degradation in the
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intense x-ray beam that may result in changes in the NPA structure. To describe
the strategy we separate the concepts of a “spot exposure time” and the “scan expo-
sure time”. The latter is the total integrated exposure time to obtain a dataset with
sufficient statistics. The former is the length of time that any spot on the sample is
exposed. The scan exposure then consists of multiple spot exposures, where the sam-
ple is translated after each spot exposure so that a fresh region of sample is exposed.
For ease of experimentation we would like to determine a spot exposure time that is as
long as possible whilst ensuring that the sample has not degraded significantly during
that exposure. We have found that the maximum safe spot exposure time depends
on the nature of the NPA sample, as well as experimental conditions such as x-ray
energy, flux and sample temperature. It therefore requires a trial-and-error approach
to determine it. To choose the optimal spot exposure time we locate the beam on
a fixed spot of the sample and take a sequence of short exposures, monitoring for
significant changes in the intensity of the strongest correlation peak in I,,,(Q). The
spot exposure time determined this way for our experimental setup was 30 s for both
CugS NPA and SiO2 NPA samples and the scan exposure time was 5 minutes (30 s,
10 spots) for the CuaS NPA sample and 10 minutes (30 s, 20 spots) for the SiO2 NPA
sample.

The scan exposure time is estimated based on an assessment of noise in the PDF
given a desired Qmqz, but it depends sensitively on the counting statistics in the high-
Q region of the diffraction pattern, which is easiest to assess by looking in the high-Q)
region of the reduced structure function F(Q). For illustration purposes, the effect of
scan exposure time on the F'(Q) (and the resulting PDF) is illustrated in Fig. Al of
Appendix section.

For the calibration of the experimental geometry, such as sample-detector dis-

tance and detector tilting we use the calibration capability in the Python pack-
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age PYFAI (Kieffer et al., 2015). We first measured silver behenate (AgBh) (Gilles
et al., 1998) as a well characterized calibration sample. The d-spacing of the calibra-
tion sample, the x-ray wavelength and the pixel dimensions of the detector are known,
which allows the geometric parameters to be refined in PYFAI. We found that select-
ing the strongest few rings (even just two or three work well) in the image allowed a
stable refinement of the calibration parameters.

Finally, in this study we also consider legacy data from measurements carried out
previously (Nykypanchuk et al., 2008). The data of the Au NPA sample were collected
at beamline X21 at the National Synchrotron Light Source (NSLS) from a sample
loaded into a wax-sealed 1 mm diameter quartz capillary. The scattering data were
collected with a MarCCD (Rayonix, USA) area detector using an x-ray wavelength of
1.55 A. Details of the measurements are reported in (Nykypanchuk et al., 2008).

The PDF, denoted G(r), is a truncated sine Fourier transform of the reduced struc-

ture function F'(Q) = Q[(S(Q) —1)] (Egami & Billinge, 2012)

Qmax
G =2 [ F(Q)sin(@r) de. (1)

™ min
Since F(Q) can be easily computed once S(Q) is available, we will first focus on
describing the precise definition of S(Q) and its relation to the measured diffraction
pattern I,,,(Q). The measured intensity, I,,(Q), depends on experimental details such
as the flux, and beam size of the x-ray source, the data collection time and the sample
density. From the point of developing the SASPDF formalism, we will focus on the
coherent scattering intensity I.(Q) (Egami & Billinge, 2012) which is obtained after
correcting I,,(Q) for the experimental factors as we describe below.

The coherent scattering intensity I.(Q) from a unit cell with Ny atoms is (Egami
& Billinge, 2012; Guinier, 1963)

N; N,

Q)= > m(Qfa(Qexp Q- (rm —1a)], (2)

m=1n=1
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where Q is the scattering vector, f,,(Q) and r,, are the atomic form factor amplitude
and position of m-th atom in the unit cell, respectively.

If the scattering from a sample is isotropic, for example, it is an untextured powder
or a liquid with no anisotropy, the observed scattering intensity will depend only on
the magnitude of Q, |Q| = @ and not its direction in space. The observed scattering
intensity in this case will depend on the orientationally averaged I.(Q),

Ns N
1(Q) = < YD i Q)fa(Q)exp [iQ - (rim — rn)]> : (3)
m=1n=1
where (-) denotes the orientational average.

This formalism is readily extended to the case where the scattering objects are
not atoms, but are some other finite-sized object, for example, nanoparticles. In this
case, the atomic form-factor would be replaced with the form-factor for the scattering
objects in question. The form factor f(Q) for a generalized scatterer, with volume V'

and its electron density as a function of position p(r) is (Guinier, 1963)

1@ = [ o) = ] exp (iQ 1) r, (4)

where pg is the average electron density of the ambient environment of the scatterers.
In situations where there is only one type of scatterer we pull the form factors out
of the sum (Egami & Billinge, 2012). Further, if the form factors and the
structure factors are separable Eq. 3 may be further simplified to
Ns N
1(@Q) = N (F@) + (1@ < S expliQ- (r - rn>]> . (5)
m=1n#£m
This is valid for spherical or nearly spherical shaped particles, and may
be more broadly true (Guinier et al., 1955; Kotlarchyk & Chen, 1983; Li
et al., 2016) , though if the shape of the particle results in an orientation
that depends on the packing, for example a long axis lies along a particular

crystallographic direction in the nanoparticle assembly, this approximation
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will not be ideal and Eq. 3 would have to be used. We have not tested how
badly the approximation breaks down in these circumstances.

Following the Faber-Ziman formalism (Faber & Ziman, 1965),

L@ (@) - Q)
S@Q =707 @ ©)

we plug in (f2(Q)) = (f(Q))? and Eq. 6 becomes

I(Q) = Ns(f*(Q))S(Q)- (7)

This expression is equivalent to representing the scatterers as points at the position
of their scattering center, convoluted with their electron distributions. The resulting
structure function, S(@), yields the arrangement of scatterers in the sample. This

expression is often expressed in the SAS literature as (Guinier, 1963)

A
Q) = NPy ®

Where P(Q) is equivalent to (f?(Q)) (Guinier, 1963), the orientational average of
the square of the form-factor. We note that, as with the atomic PDF, the above
analysis can be generalized to the cases of scattering from multiple types of scat-
terers (Kotlarchyk & Chen, 1983; Yager et al., 2014; Senesi & Lee, 2015) and in
the SAS case approximate corrections for asphericity of the electron density (Jones
et al., 2010; Ross et al., 2015; Zhang et al., 2015), may be applied.

To determine S(Q) we need to have P(Q). P(Q) can be computed from a given
electron density, or directly measured. For the case of a NPA sample, the precise
scattering properties of the NP ensemble in the sample, including any polydispersity
or distribution of geometric shapes, are not always known, therefore it is best to
measure the form factor directly, as described below. In general we do not know N,
and all of the experimental factors (for example, the incident flux, multiple scattering

and so on). The algorithm (Billinge & Farrow, 2013) that is widely used for carrying
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out corrections for these effects in the atomic PDF literature (Juhds et al., 2013) is
also suitable for the SAS data. It takes advantage of our knowledge of the asymptotic
behavior of the S(Q) function to obtain an ad hoc but robust estimation of S(Q) from
the measured I,,(Q). This is described in detail in (Juhds et al., 2013). The resulting
scale of the PDF is not well determined, but when fitting models to the data this is
not a problem (Peterson et al., 2003), and in practice it gives close to a correct scale
for high quality measurements. Here we show that we can take the same approach to
obtain the PDF from the measured SAS data here.

In the test experiments we describe here, in each case the form factor of the nanopar-
ticles was obtained from a measurement. The NPs are suspended in solvent at a
sufficient dilution to avoid significant inter-particle correlations. If the NPs start
aggregating in the solution, a plateau appears in the low-() region of the
scattering intensity, and observation of such a plateau may indicate a prob-
lem with the form factor sample. The SAS signal of the dilute NP solution is
measured with good statistics over the same range of ) as the measurement of the
nanoparticle assemblies themselves, and ideally on the same instrument. The signal of
the solvent and its holder is also measured and then subtracted from the SAS signal of
the dilute NP solution to obtain the correct particle form factor signal. We emphasize
that it is important to measure exactly the same batch of NPs to have an accurate
form factor for the NPA sample considered.

A form factor measured with high statistics is crucial as the signal in 1.(Q) is weak
in the high-@ region and noise from the P(()) measurement can be significant in this
region. Fig. A2 shows the effect on F(Q) (and the resulting PDF), when processed
using P(Q) from different scan exposure times. It is clear that the statistics of the
form-factor measurement has a significant effect on the results. In cases where any

signal in P(Q) does not change rapidly it may be smoothed to reduce the effects of
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limited statistics, at the cost of possibly introducing bias if the smoothing is not done
ideally. This will be particularly relevant when the nanoparticles are not monodisperse,
as is somewhat common.

The experimental PDF G(r) is then obtained via the Fourier transformation, Eq. 1.
The success of the SASPDF method depends heavily on the good statistics (high signal-
to-noise ratio) throughout the entire diffraction pattern I.(Q) and the form factor
P(Q), as important information about the structure may reside in the high-Q region
where the signal intensity is weak. It is recommended to use intense radiation sources
such as synchrotrons. A comparison in data quality from an in-house instrument and

a synchrotron source is shown in Fig. A3 of Appendix section.

4. Software

To facilitate the SASPDF method, we implemented a PDFGETS3 software program
for extracting the sasPDF from experimental data. Information about obtaining the
software is on the DIFFPY organization website (https://www.diffpy.org). The software
is currently supported in Python 2 (2.7) and Python 3 (3.4 and above). It requires a
license and is free for researchers conducting open academic research, but other uses
require a paid license.

The PDFGETS3 program takes in a measured diffraction pattern [,,(Q) and a form
factor, P(Q), as the inputs and applies a series of operations such as subtraction of
experimental effects and form factor normalization and outputs the PDF, G(r). If
the square of the orientationally averaged form-factor {f(Q))? is available, both P(Q)
and (f(Q))? can be specified in the program, and the S(Q) will be computed based
on Eq. 6 which accounts for the anisotropy of scatterers in the material. Processing
parameters used in PDFGETS3 operations, such as the form-factor file, the Q-range

of the Fourier transformation on F(Q) and the r-grid of the output G(r), can be set
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in a configuration file in the same way detailed in (Juhds et al., 2013). Similar to
PDFGETX3, an interactive window for tuning these processing parameters, is also
available in PDFGETS3. An illustration of such interactive interface is shown in the

Fig. 2.
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Fig. 2. Illustration of the interactive interface for tuning the process parameters in the

PDFGETS3 program.

Sliders for each processing parameter allow the user to inspect the effect on the
output PDF data immediately.

Once the optimal processing parameters are determined based on the quality of
the PDF, those parameter values will be stored as part of the metadata in the out-
put G(r) file. The final values of Qumin and Quax should be used when calculating
PDF from a structure model, as these parameters contribute to the ripples in the

PDF (Peterson et al., 2003). Full details on how to use the program is available on
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the DIFFPY organization website.

5. PDF method

The PDF gives the scaled probability of finding two scatterers in a material a distance
r apart (Egami & Billinge, 2012). For a macroscopic object with N scatterers, the

atomic pair density, p(r), and G(r) can be calculated from a known structure model

using
1 (@@ 5
o= G 2 2 T, T “)
and
G(r) = 477 [p(r) — po). (10)

Here, pg is the number density of scatters in the object. f,(Q) = (fin(Q)) is the orien-
tationally averaged form-factor of the m-th scatterer. (f(Q)) , = S (N £ (Q)
denotes the sample average of f(Q) over all scatterers in the material, where N, is
the number of scatterers that are of the same kind as the m-th scatter. Finally, 7.,
is the distance between the m-th and n-th scatterer. We use Eq. 10 to fit the PDF
generated from a structure model to a PDF determined from experiment.

PDF modeling, where it is carried out, is performed by adjusting parameters of
the structure model, such as the lattice constants, positions of scatterers and particle
displacement parameters (PDPs), to maximize the agreement between the theoretical
and an experimental PDF. In practice, the delta functions in Eq. 10 are Gaussian-
broadened to account for thermal motion of the scatterers and the equation is modified
with a damping factor to account for instrument resolution effects. The modeling
of sASPDF can be done seamlessly with tools developed in the atomic PDF field,
with parameter values scaled accordingly. We outline the modeling procedure using
PDFqGul (Farrow et al., 2007), which is widely used to model the atomic PDF. In

PDFqui, the nanoparticle arrangements can simply be treated analogously as atomic
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structures, with a unit cell and fractional coordinates, but the lattice constants reflect
the size of the NPA, which is usually at the order of 100 nm = 1000 A. The atomic
displacement parameters (ADPs) defined in PDFGUI can be directly mapped to the
particle displacement parameters (PDPs) in the SASPDF case and, empirically, we
find the PDP values are roughly four to five orders of magnitude larger than the
values of its counterpart on the atomic scale, therefore starting values of 500 A? are
reasonable. These will be adjusted to the best-fit values during the refinement.

The measured SASPDF signal falls off with increasing r. The damping may orig-
inate from various factors, for example, the instrumental @)-space resolution (Egami
& Billinge, 2012) and finite range of order in the superlattice assembly. In PDFGUI

there is a a Gaussian damping function B(r),

2
B(r) = exp [—Oﬂ@d;mp)] . (11)
We define a rgqmp parameter
1
Tdamp = Qd s (12)
amp

which is the distance where about one third of the SASPDF signal disappears com-
pletely. It is also possible to generalize the modeling process to the case of a cus-
tomized damping function and non-crystallographic structure with Diffpy-CMI (Juhds
et al., 2015), which is a highly flexible PDF modeling program. In the following sec-
tion, we use PDFcuI for modeling data from more ordered samples (Au NPA and

CugS NPA) and Diffpy-CMI for modeling data from a disordered sample (SiOg NPA).

6. Application to representative structures

To illustrate the SASPDF method we have applied it to some representative nanoparti-
cle assemblies from the literature (Nykypanchuk et al., 2008; Han et al., 2008; Bilchak

et al., 2017). The first example is from DNA templated gold nanoparticle superlattices,
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originally reported in (Nykypanchuk et al., 2008). The measured intensity, 1,,(Q), the
reduced total structure function F(Q) = Q[S(Q) — 1], and the PDF G(r) are shown

in Fig. 3(a), (b) and (c), respectively.

0.01

-0.01F ~ b

50 100 150 200 250 300 350
r (nm)

Fig. 3. Measured (a) scattering intensity I,,(Q) (grey) and form factor P(Q) (blue),
(b) reduced total structure function F(Q) (red) and (¢) PDF (open circle) of Au
NPA. In (c), the PDF calculated from body-center cubic (bcc) model is shown in
red and the difference between the measured PDF and the bcc model is plotted in
green with an offset.

It is clear that the data corrections and normalizations to get F'(Q)) result in a more
prominent signal in the high-@) regime of the scattering data, and a highly structured

PDF after the Fourier transform (Fig. 3(c)).
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Table 2: Refined parameters for NPA samples. Model column specifies the structural
model used to fit the measured PDF. a is the lattice constant of the unit cell, PDP
stands for particle displacement parameters, which is an indication of the uncertainty
in position of the nanoparticles. 744, is the standard deviation of the Gaussian damp-
ing function defined in Eq. 12. Scale is a constant factor being multiplied to the calcu-
lated PDF. R, is the residual-function, commonly used as a measure for the goodness
of fit.

Au NPA CusS NPA

Model bece fce
a (nm) 34.73 26.55
PDPs (nm?)  4.78 0.253
Tdamp (D) 83.3 61.4
Scale 0.537 0.361
Ry, 0.172 0.221

The PDF signal dies off around 350 nm, which puts a lower bound on the size of
the NPA. The first peak in the PDF is located at 30.07 nm which corresponds to the
nearest inter-particle distance in the assembly. This distance is expected because the
shortest inter-particle distance can be approximated as the average size of Au NPs
(11.4 nm) plus the average surface-to-surface distance (dss) between nearest neighbor
NPs (18 nm) (Nykypanchuk et al., 2008). Peaks beyond the nearest neighbor give an
indication of characteristic inter-particle distances in the assembly and codify the 3D
arrangement of the nanoparticles in space.

A semi-quantitative interpretation of conventional powder diffraction data suggested
the Au NPA forms a body-centered cubic (bcc) structure (Nykypanchuk et al., 2008).
We therefore test the bcc model against the measured PDF. The fit is shown in
Fig. 3(c) and the refined parameters are reproduced in Table 2. The agreement between
the bce model and the measured data is good. We refine a lattice parameter that is
~3 % smaller than the value reported from the semi-quantitative analysis. Addi-
tionally, the PDF gives information about the disorder in the system in the form
of the crystallite size (~350 nm) and the particle displacement parameter (PDP),

the nanoparticle assembly version of the atomic displacement parameter (ADP) in
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atomic systems. The PDF derived crystallite size is drastically smaller than the value
(~500 nm) estimated from the FWHM of the first correlation peak (Nykypanchuk
et al., 2008) and it is clear by visual inspection of the PDF that the ~500 nm value is
an overestimate. These results suggest that even in the case where it is straightforward
to infer the geometry of underlying assembly using qualitative and semi-quantitative
means there is an advantage to carrying out a more fully quantitative SASPDF anal-
ysis.

Next we consider a dataset from a dodecanethiol (DDT)-capped CusS NPA (Han
et al., 2008). In this case the form factor is measured on an in-house Cu K, instrument.
This was necessary in the current case because the instability of the nanoparticles
in suspension prevented a good measurement to be made at the synchrotron. As a
result the form factor measurement was somewhat noisy (Fig. A4(a), blue curve) and
we elected to smooth it by applying a Savitzky-Golay filter (Orfanidis, 1996). The
smoothing parameters of window size and polynomial order were selected as 13 and
2, respectively, based on a trial and error approach optimized to result in a good
smoothing without changing the shape of the signal. The smoothed curve is shown in
Fig. A4(a). It is worth noting that in general, a smoothing process may start failing
when the signal-to-ratio in the data exceeds a certain threshold, and so good starting
data is always desirable. A conventional semi-quantitative analysis on diffraction data
from the sample collected on an in-house Cu K, instrument is shown in Fig. A5. It
suggests the NPA forms a face-centered cubic (fcc) structure with an inter-particle
distance of 18.8 nm. The SAS PDF obtained from the same NPA sample is shown in
Fig. 4. It clearly shows that peaks die out at around 300 nm, which again signifies the
crystallite size of the assembly. The first peak of the measured PDF is at 18.5 nm,
corresponding to the inter-particle distance in the NPA. This value is about 1.6 %

smaller than the value estimated from the semiquantitative analysis.
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The best-fit PDF of a close-packed face-centered cubic (fcc) structural model is

shown in red in the figure and refined structural parameters are presented in Table 2.

0.04

0.00

G (nm~?)

-0.04

50 100 150 200 250 300 350
r (nm)

Fig. 4. Measured PDF (open circle) of a CuaS NPA sample with the best fit PDF
from the fcc model (red line). The Difference curve between the data aAs a result,
nd model is plotted offset below in green. The inset shows the region of the first
four nearest neighbor peaks of the PDF along with the best-fit fcc model.

The fcc model yields a rather good agreement with the measured PDF of CusS
NPA in the short-range (up to ~130 nm). Interestingly, the refined lattice parameter
of this cubic model is 26.55 nm, from which we can calculate an average inter-particle
spacing of 18.78 nm, which is much closer to the value estimated from the in-house
data than directly extracting the position of the first peak in the PDF. The first peak
in the PDF calculated from the model lines up with that from the data at 18.5 nm,
which means that the position of the peak, as extracted from the peak maximum,
underestimates the actual inter-particle distance by ~ 1.5%, which may be due to
the sloping background in the G(r) function (Egami & Billinge, 2012). Quatntiative
modeling is always preferred for obtaining the most precise determination of inter-

particle distance.
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The region of the first four nearest-neighbor peaks in the PDF, together with the fit,
is shown in the inset to Fig. 4. A close investigation of this region shows subtle shifts
in peak positions between the measured PDF and the refined fcc model. At around
26 nm (second peak), the peak from refined model is shifted to higher-r compared
to the measured data, while at around 33 nm (third peak), the relative shift in peak
position is towards the low-r direction. These discrepancies suggest the NPA structure
is more complicated than a simple fcc structure and may reflect the presence of internal
twined defects, for example (Banerjee et al., 2019). Furthermore, it is clear that signal
persists in the measured PDF in the high-r region that is not captured by the single-
phase damped fcc model. There is clearly more to learn about the structure of the
NPA by finding improved structural models and fitting them to the PDF, though this
is beyond the scope of the current paper.

It is worth noting that the refined PDP value of DDT-capped CusS NPA is signif-
icantly smaller than that of the DNA-templated Au NPA described above. A small
PDP means the positional disorder of the NPs is small which would be expected with
shorter, more rigid, linkers between the particles. The inter-particle distance (18.8 nm)
can be decomposed into the sum of the average particle diameter (16.1 nm) and the
particle-surface to particle-surface distance dss = 2.7 nm. Based on the chemistry the
linker would have length 1.7 nm in the fully stretched out state, which would result
in a maximal dss = 3.4 nm if the linkers were stretched out and oriented radially.
Half the observed surface-surface distance, dgs/2 = 1.4 nm. This result is reason-
able, suggesting the linkers are either not straight, or not radial, or possibly partially
interleaved. Nonetheless, this shorter linker would be expected to be more rigid and
therefore consistent with our observation of a smaller PDP value from the SASPDF
analysis.

Finally we consider a dataset from a more disordered system, poly(methyl acry-
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late) (PMA) capped SiO2 NPA sample. The molecular weight and density of the
capping polymers can be varied and in the current sample was 0.47 chains/nm? and
132 kDa, respectively. Studies had suggested that similar NPA samples exhibit no
structural order, based on an empirical metric using the height of the first peak in the
measured S(Q) (Bilchak et al., 2017). Here we apply the SASPDF method to obtain
a more complete understanding of the structure of this NPA.

To start we want to verify whether there is any evidence for close-packing of the
NPs so we start with face-centered cubic (fcc), hexagonal close-packed (hcp) and
icosahedral models (Baus, 1983) to see if any good agreement between the structural

model and the data can be achieved. The results are shown in Fig. 5.
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Fig. 5. Measured PDF (open circle) of the SiO2 NPA sample and calculated PDFs
(solid lines) from (a) fce, (b) hep, (c) icosahedral (d) damped sine-wave models. In
each panel, the line in red is the PDF calculated from the corresponding model with
optimum parameters. From (a) to (c), the line in grey is the PDF calculated from
the same model but with small PDPs. In (d), the line in grey is the PDF calculated
from the undamped sine-wave model. Dashed lines indicate maxima of the sharper
PDFs in each panel.
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A highly broadened version of the fcc model yields a reasonable agreement with the
data (Fig. 5(a)). The PDF of the fcc structure is shown in grey in the figure, and after
significant broadening it yields the red curve. - Other close-packed cluster models, hcp
and icosahedral, were also tried (Fig. 5(b) and (c)). Finally, a damped-sine wave model
that is appropriate for highly disordered systems where on average the packing around
a central atom is completely isotropic was tried (Fig. 5(d)) (Cargill, 1975; Konnert &
Karle, 1973; Doan-Nguyen et al., 2014). The fcc and hcp structures would be
expected for close-packed hard spheres. Interestingly, in the current case,
the very simple damped sine-wave model with only 3 parameters yields
a more satisfactory fit to the data than the more complicated (with 4-5
parameter) close-packed models, suggesting that we have soft-sphere like
packing in the current case. This finding is being explored in more detail
in another publication (Liu et al., in press). This example shows how inter-
particle packing may be examined using SASPDF method even when there is not long

or intermediate range order.
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Appendix A
Illustration of of data acquisition strategy

In this section, important effects related to the data quality are illustrated. In general,
for a successful SASPDF experiment, it is crucial to achieve a high signal-to-noise ratio
throughout the entire @)-range for both the form factor and sample measurements.
Figs. A1 and A2 show the effect of insufficient counting statistics in the sample and
form factor measurements, respectively. Fig. A3 compares the data quality from an in-
house instrument and a synchrotron source. Finally, Fig. A4 shows the remedial effect
of smoothing data from in-house measured form factor with insufficient statistics. The

proper remedy is to measure with sufficient statistics in the first place.
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Fig. Al. (a) Reduced structure functions F(Q) and (b) PDFs G(r) of the SiOy NPA
sample with different scan exposure times. Blue is from data with 1 s scan exposure
time and red is from data with 30 s scan exposure time. In both panels, data are
plotted with a small offset for ease of viewing. In both cases the form factor was
measured with an scan exposure time of 600 s.
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Fig. A2. (a) Reduced structure functions F(Q)) and (b) PDFs G(r) of the SiOy NPA
sample processed with form factor P(Q) from different scan exposure times. Blue is
made with a form-factor measured for 30 s and red is with a form factor collected
for 600 s. In both cases the scan exposure time for the NPA sample was 600 s. In
both panels, data are plotted with a small offset for ease of viewing.
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Fig. A3. (a) Reduced structure functions F(Q) and (b) PDFs G(r) of the SiOy NPA
sample. Blue is from data collected at Columbia University using a SAXSLAB
(Ambherst, MA) instrument with a 2-hour (7200 s) scan exposure time for both
I(Q) and P(Q) measurements. Red is from data collected at beamline 11-BM,
NSLS-IT with 30 s scan exposure time for both I,,(Q) and P(Q) measurements.
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Fig. A4. (a) Form factor signal from CusS NPs. Blue is the raw data collected at an
in-house instrument and red is the data smoothed by applying a Savitzky-Golay
filter with window size 13 and fitted polymer order 2. (b) reduced structure func-
tions, F'(@), and (c) PDFs, G(r) from the CusS NPA sample. In both panel, blue
represents the data processed with raw form factor signal and red represents the
data processed with smoothed form factor signal. Curves are offset from each other
slightly for ease of view.
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Fig. A5. Semi-quantitative structural analysis on CusS NPA sample.
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