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Abstract—In this work we propose a macroscopic model for
studying routing on networks shared between human-driven and
autonomous vehicles that captures the effects of autonomous
vehicles forming platoons. We use this to study inefficiency
due to selfish routing and bound the Price of Anarchy (PoA),
the maximum ratio between total delay experienced by selfish
users and the minimum possible total delay. To do so, we
establish two road capacity models, each corresponding to an
assumption regarding the platooning capabilities of autonomous
vehicles. Using these we develop a class of road delay functions,
parameterized by the road capacity, that are polynomial with
respect to vehicle flow. We then bound the PoA and the bicriteria,
another measure of the inefficiency due to selfish routing, for
general networks with multiple source-destination pairs. We
find these bounds depend on: 1) the degree of the polynomial
in the road delay function and 2) the degree of asymmetry,
the difference in how human-driven and autonomous traffic
affect road delay. We demonstrate that these bounds recover
the classical bounds when no asymmetry exists. We show the
bounds are tight in certain cases and that the PoA bound is
order-optimal with respect to the degree of asymmetry.

I. INTRODUCTION

In recent years, automobiles are increasingly equipped
with autonomous and semi-autonomous technology, which
has potential to dramatically decrease traffic congestion [1].
Specifically, autonomous technologies enable platooning, in
which these vehicles automatically maintain short headways
between them via adaptive cruise control (ACC) or cooperative
adaptive cruise control (CACC). ACC uses sensing such
as radar or LIDAR to maintain a specific distance to the
preceeding vehicle with faster-than-human reaction time, and
CACC augments this with vehicle-to-vehicle communications.

When all vehicles are autonomous, the use of platooning has
the potential to increase network capacity as much as three-
fold [2] by enabling synchronous acceleration at green lights
[3]. However, the presence of human-driven vehicles — leading
to mixed autonomy — makes much of these benefits unclear.

Moreover, even in the absence of autonomous capabilities,
it is well known that if drivers route selfishly and minimize
their individual traffic delays, this does not in general min-
imize overall traffic delay. Understanding the extent of this
phenomenon can help city planners — if selfish routing does
not adversely affect travel delay too much, then it may not be
necessary to try to control vehicle flow using schemes such
as tolling. Alternatively, if selfishness can lead to much worse
road delay, then a city planner may wish to try to control
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Fig. 1: A social planner can decrease overall travel times by make routing
decisions that utilize autonomous vehicles’ ability to platoon, and choosing
different routes for human-driven vehicles (blue) and autonomous vehicles
(purple). When vehicles route selfishly (a), vehicles pack onto a congested
road. In optimal routing (b), only autonomous vehicles are sent onto the road
most amenable to platooning.

human routing decisions. See Figure 1 for an example of
selfish routing and optimal routing in mixed autonomy.

The ratio between traffic delay under worst-case selfish
routing and optimal routing is called the Price of Anarchy
(PoA) and is well understood for networks with only human-
driven vehicles [4]-[8]. Many such works also bound the bi-
criteria, which quantifies, for any given volume of vehicle flow
demand, how much additional flow can be routed optimally
to result in the same overall latency as the original volume of
traffic routed selfishly. Other studies have bounded the PoA
with multiple modes of transportation [9], [10]. However, these
prior works require assumptions that do not capture vehicle
flow on roads shared between human-driven and autonomous
vehicles, leaving open the question of the Price of Anarchy in
mixed autonomy. In fact, we show that these previous results
do not hold, and the PoA for roads with mixed autonomy can
in general be unbounded!

Motivated by this observation, in this paper we provide
novel bounds on the PoA and bicriteria that depend on the
extent to which platooning affects road delay, as well as the
degree of the polynomial describing road delay. To do so,
we use two models that describe road capacity as a function
of the fraction of vehicles on the road that are autonomous;
each model corresponds to a different assumption regarding
the technology that enables platooning. We use these capacity
models with a known polynomial road delay function, and, for
this class of latency functions, we bound the Price of Anarchy
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Fig. 2: Road network with price of anarchy and bicriteria that grow unbound-
edly with ¢ when considering 1/¢ units of human-driven flow and 1 unit
of autonomous flow demand, with ¢ > 1. Function arguments x and y
respectively denote human-driven and autonomous vehicle flow on a road.

and bicriteria. We develop two mechanisms for bounding
the PoA, which yield bounds that are tighter depending on
platoon spacing and polynomial degree. In our development
we provide the main elements of our proofs and defer proofs
of the lemmas to the appendix.

In our formulation, the benefit due to the presence of
autonomous vehicles is limited to platoon formation, and the
probability that each vehicle is autonomous is independent
of the surrounding vehicles. While we acknowledge that
autonomous vehicles yield other benefits such as smoothing
traffic shockwaves, we consider platooning because it is a
mature technology that is commercially available. Further, if
autonomous vehicles actively rearrange themselves to form
platoons, the resulting capacity falls between the two capacity
models presented here [11].

Motivating Example. To show that the PoA bounds previ-
ously developed for roads with only one type of vehicle (i.e.
no autonomous vehicles) do not hold, we present an example
of a road network with unbounded PoA (Fig. 2). Consider
a network of two parallel roads, with road latency functions
c1(z,y) = 1 and co(z,y) = Cx. On each road the latency is
a function of the human-driven flow (z) and the autonomous
flow (y) on that road. Suppose we have % units of human-
driven vehicle flow and 1 unit of autonomous traffic demand
to cross from node s to node ¢, with ¢ > 1.

Optimal routing puts all human-driven cars on the top road
and all autonomous cars on the bottom road; when vehicles
route selfishly they all end up on the bottom road. This yields
a price of anarchy of (4 1. The bicriteria is also (+1, as (+1
times as much traffic, optimally routed, yields the same total
cost as the original amount of traffic at Wardrop Equilibrium.!
This examples leads us already to our first proposition, which
lays the foundations for the contributions of this paper:

Proposition 1. The Price of Anarchy and bicriteria are in
general unbounded in mixed autonomy.

Motivated by this proposition, we develop the notion of the
degree of asymmetry of a road and use this, in conjunction with
the degree of the polynomial cost function, to parameterize the
bound on the Price of Anarchy. To summarize, we

1) show that previous PoA results do not hold for mixed

autonomy,

IThough in this case autonomous vehicles do not affect road delay, other
examples in Section V also yield an unbounded PoA with both vehicle types
affecting road delay.

2) develop a realistic class of polynomial cost functions for
traffic of mixed autonomy,

3) develop two mechanisms for bounding the PoA using this
cost function with both capacity models, and

4) bound the Price of Anarchy and bicriteria and analyze
the tightness of our bounds.

Some of these contributions relate to our previous work. In
[12], we use similar capacity models and a latency function
based on M/M/1 queues to find optimal routing for a network
of two parallel roads. In another work, we consider maximiz-
ing capacity, using the second capacity model in this paper,
via a sequence of vehicle reorderings in which autonomous
vehicles influence human drivers [11].

This paper also relates to [13], which presents a special case
of the bounds presented in the current paper. [13] considers the
PoA and bicriteria in mixed autonomy only with affine latency
functions. The bounds presented there are very loose; in fact,
if autonomy increases the capacity of any road in the network
by a factor of four or more, the bound doesn’t hold at all.
In contrast, the current paper uses a new method to derive an
entirely new bound which holds for arbitrarily large capacity
increase due to autonomy. Further, in the current work we
base our considered latency functions on two capacity models
which are based on different assumptions of the platooning
capabilities of autonomous vehicles. Moreover the bounds are
not limited to networks or roads with affine latency functions;
the current work considers a class of latency functions which
incorporates arbitrary polynomial degree.

II. RELATED WORK
A. Congestion Games and Wardrop Equilibria

Our work is related to the optimal traffic assignment prob-
lem, e.g. [14], which studies how to optimally route vehicles
on a network when the cost (i.e. delay) on a road link is a
function of the flow of vehicles that travel on that link. We are
concerned specifically with the relationship between optimal
traffic assignment and Wardrop Equilibria, which occur when
drivers choose their paths selfishly. For a survey on literature
on Wardrop Equilibria, see [15]; [16] describes other notions
of equilibria. Classic works on Wardrop Equilibria and the
associated tools for analyzing them include [17]-[19].

In an important development, Smith [17] establishes the
widely used Variational Inequality and uses it to describe flows
at Wardrop Equilibrium, in which all users sharing an origin
and destination use paths of equal cost and no unused path
has a smaller cost. For any feasible flow z and equilibrium
flow 2FQ, the variational inequality dictates that

(c(z%9),2"2 —2) <0, (1)

where z is a vector describing vehicle flow on each road, ¢(z)
maps a vector of flows to a vector of the delay on each road,
and (-,-) denotes the inner product of two terms. Note that
in the absence of an assumption about the monotonicity of
c (see the following section for a definition), the Variational
Inequality is a necessary but not sufficient condition for
equilibria [16]. The Variational Inequality is fundamental for
establishing our PoA bound.



B. Multiclass Traffic

Some previous works consider traffic assignment and
Wardrop Equilibria with multiclass traffic, meaning traffic with
multiple vehicle types and transportation modes that affect and
experience road latency differently (e.g. [20]-[22]).

Florian [22] demonstrates how to calculate equilibria for a
multimodal system involving personal automobiles and public
transportation. They use a relaxation that assumes public
transportation will take the path that would be shortest in the
absence of cars. In the case of mixed autonomy, this is not a
fair assumption.

Dafermos [20] assumes the Jacobian of the cost function is
symmetric and positive definite. Similarly, Hearn ez. al. [21]
deal with a monotone cost function, i.e. satisfying the property

(c(z) —elg)z—q) =20 2)

for flow vectors z and q.

However, traffic networks with mixed autonomy are in gen-
eral nonmonotone. To see this, consider a network of two roads
with costs ¢1(z,y) = 3z +y+t; and co(x,y) = 3x+ 2y +to,
where t; and ¢, are constants denoting the free-flow latency on
roads 1 and 2. This corresponds to a road in which autonomous
vehicles can platoon closely and another road on which they
cannot platoon as closely. The Jacobian of the cost function
is as follows:
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which is not symmetric, and the vector z = [-1 2 0 O]T
demonstrates that it is also not positive semidefinite. Mono-
tonicity is closely related to the positive (semi-) definiteness
of the Jacobian of the cost function. To show that the mono-
tonicity condition is violated as well, consider that there are 2
units of human-driven flow demand and 3 units autonomous
flow demand. With one routing in which all human-driven
flow is on the first road and all autonomous flow is on the
second and another routing with these reversed, we find that
the monotonicity condition is violated.

Similarly, Faroukhi ez. al. [23] prove that in heterogeneous
routing games with cost functions that are continuously dif-
ferentiable, nonnegative for feasible flows, and nondecreasing
in each of their arguments, then at least one equilibrium is
guaranteed to exist. These mild conditions are satisfied in our
setting. For heterogeneous games with two types, they further
prove a necessary and sufficient condition for a potential
function (and therefore unique equilibrium) to exist. However,
the condition required can be considered a relaxation of the
condition that the Jacobian of the cost function be symmetric.
While broader than strict symmetry, this condition is still not
satisfied in mixed autonomy. Notably, they describe tolls that,
when applied, yield a cost function that satisfies this condition.

As described above, these previous works in multiclass
traffic require restrictive assumptions and therefore do not
apply to the case of mixed autonomy. In fact, in the case of
mixed autonomy, the routing game is not formally a proper

congestion game, as it cannot be described with a potential
function. Nonetheless, in this paper we adapt tools developed
for such games to derive results for mixed autonomous traffic.

C. Price of Anarchy

There is an abundance of research into the Price of Anarchy
in nonatomic congestion games, codified in [4]-[8]. In [8], the
authors develop a general tool for analyzing Price of Anarchy
in nonatomic congestion games. Though their development is
specific to monotone cost functions, in this paper we broaden
it to cost functions that are not necessarily monotone. Also
relatedly, we find that in the case of no asymmetry, our Price
of Anarchy bound for polynomial cost functions simplifies to
the classic bound in [5], [6].

The previously mentioned works consider primarily single-
type traffic. Perakis [9] considers PoA in multiclass traffic
using nonseparable, asymmetric, nonlinear cost functions with
inelastic demand. However, they restrict their analysis to the
case that the Jacobian matrix of the cost function is positive
semidefinite. Similarly, Chau and Sim [10] consider the PoA
for multiclass traffic with elastic demand with symmetric cost
functions and positive semidefinite Jacobian of the cost func-
tion. As demonstrated earlier, these assumptions are violated
in the case of mixed autonomy.

D. Autonomy

In one line of research, autonomous vehicles are con-
trolled to locally improve traffic by smoothing out stop-and-go
shockwaves in congested traffic [24]-[32], optimally sending
platooned vehicles through highway bottlenecks [33], [34], and
simultaneously accelerating platooned vehicles at signalized
intersections [2], [3]. Other papers investigate fuel savings
attained using autonomous vehicles [35]-[38] or jointly con-
trolling vehicles on a highway to localize and eliminate traffic
disturbances [39]. Some works consider optimally routing and
rebalancing a fleet of autonomous vehicles [40], though these
generally consider a simpler model for road latency, in which
capacitated roads have constant latency for flows below their
capacity, and all roads are considered to be in this regime.

Some previous works have related models for road capacity
and throughput under mixed autonomy, in particular [3], [41],
[12], [13]. [42] provides a capacity model which assumes that
all autonomous vehicles are platooned in periodic platoons,
each with the same number of vehicles and the same number
of human-driven vehicles between platoons. In contrast, we
consider two capacity models: one in which autonomous
vehicles can maintain a short headway behind any vehicle
they follow, and one in which autonomous vehicles are placed
randomly as the result of a Bernoulli process and only platoon
opportunistically. Another work shows that autonomy can
increase the total delay experienced by users [43].

In our previous work [13], we found the PoA for affine
latency functions, incorporating the first capacity model. This
is a special case of the results in this paper, which goes
beyond the previous work by considering polynomial cost
functions and incorporating both capacity models, resulting
in a much broader class of functions. Further, we introduce



a novel mechanism for finding the PoA in mixed autonomy,
leading to a tighter bound than the one previously found.

III. NETWORK MODEL

Consider a congestion game on a network of N roads,
with nonatomic drivers (meaning each control an infinitesi-
mally small unit of vehicle flow) traveling across m origin-
destination pairs, each pair associated with §; units of human-
driven vehicle flow demand and +; units of autonomous
vehicle flow demand. We use [N] = {1,2,..., N} to denote
the set of roads. We fully describe driver behavior on a
network by using a vector of vehicle flows, which describes the
volume of vehicles of each type that travels on each road. This
vector has size equal to twice the number of roads and uses
alternating entries to denote human-driven and autonomous
vehicle flow on a road. We use x; and y; to refer to human-
driven and autonomous flow on road i, respectively. Then the
flow vector z is as follows:

_ T 2N
z=[r1 oy T2 Y ey yn] € RLY

We refer to this flow vector as a routing or a strategy. We
use X C R2Y to denote the set of feasible routings, meaning
routings that route all flow demand from their origin nodes to
their destination nodes while respecting conservation of flow
in the network.

When needing to distinguish between two vectors, we use
v and w in place of z and y and ¢ in place of z. We assume
that human-driven and autonomous vehicles experience road
delay identically. To capture the differing effects of each type
of flow on a road’s latency, we construct cost function ¢(z) :
R2Y — RZY as follows:

(xl,yl)
ci(z1,y1)
(xz,yz)
(x27y2)

CN(zNa yN)
_CN(xNv yN)_

where c¢;(xz;,y;) is the latency on road ¢ when x; units of
human-driven vehicles and g; units of autonomous vehicles
use the road. The social cost, which is the aggregate delay
experienced by all users of the network, is then C(z) :=
(e(2), z). A social planner then wishes to find the socially op-
timal routing, which is the feasible routing that minimizes the
social cost, and therefore solves the following optimization:
min C(z) .

In contrast, selfish users in a Wardrop Equilibrium do not
try to minimize the social delay. Instead, they selfishly choose
routes. This implies that if a route has positive flow on it,
all other routes between the same source-destination pair have
equal or greater delay. In the following sections we develop

models for road capacity and road delay in order to construct
the cost functions.

@@ - autonomous car

@ = human-driven car

Fig. 3: Capacity models 1 and 2. In capacity model 1 (left), autonomous
cars can platoon behind any vehicle, and therefore take up length A when
traveling at the free-flow velocity. In capacity model 2 (right), autonomous
vehicles can only platoon behind other autonomous vehicles; in that case they
take up length A, but if following a human-driven vehicle, they take up length
h. Human-driven vehicles always take up length h.

A. Capacity Models

We model the capacity of a road under two assumptions:
1) autonomous vehicles can platoon (follow closely) behind
any vehicle and 2) autonomous vehicles can only platoon
behind other autonomous vehicles. Let d; denote road length
times the road’s nominal velocity and let h; and h; denote
the nominal space taken up by a platooned and nonplatooned
vehicle, respectively. The capacity will be a function of the
autonomy level of the road, denoted a(x;,y;) = yi/(x; + yi)-
We define the capacity of a road as the number of vehicles
that can travel on a road at the road’s nominal velocity. This
is calculated by dividing the length of the road by the average
space taken up by a car on the road, which is a function of
autonomy level, and multiplying it by the free-flow velocity
of the road. We formalize this in the following proposition?.

Proposition 2. Assume that vehicles are placed on a road as
the result of a Bernoulli process. If autonomous vehicles can
platoon behind any vehicle, therefore occupying road length h;
when traveling at nominal velocity, and human driven vehicles
do not platoon (therefore occupying road length h; at nominal
velocity), then the capacity is
d;

(s 3:) a(zi, yi)hi + (1 — oz, y:))hi ' @
If autonomous vehicles only platoon behind other autonomous
vehicles and human driven vehicles cannot platoon, then the
capacity is

d;

mi (i, yi) = TR S L T L “4)
Proof. We first justify the proposition for the first capacity
model. Autonomous vehicles follow any vehicle with the
same headway (occupying total space h;), as do human-driven
vehicles with a different headway (occupying h;). The space
taken up by an average vehicle, as the number of vehicles
grows large, is a weighted combination of those two spacings
that depends on the autonomy level. Note that this capacity
model does not depend on the ordering of the vehicles.

For the second capacity model, we assume the vehicles are
placed as the result of a Bernoulli process with parameter «;.
Consider M vehicles, each with length L, with s, denoting

2Found in [12], contemporaneously in [41].



the headway of vehicle m. Note that the front vehicle will
have s,, = 0. The expected total space taken up is, due to
linearity of expectation,

M M-—1
E[Y L+sp]=ML+ > Elsy]
m=1 m=1
= (M — 1)(a?(2i,yi)hi + (1 — &2 (24, y;))h) + L .

Then, as the number of vehicles grows, the average space
occupied by a vehicle approaches o?(z;,y;)h; + (1 —
a?(z;,y;))h, yielding the above expression for capacity model
2. O

Figure 3 provides an illustration of the technology assump-
tions. To make the meaning of nominal vehicle spacing more
concrete, we offer one way of calculating spacing: let L denote
vehicle length, 75, ; and 7,; denote the reaction speed of
human-driven and autonomous vehicles, respectively. Let v; be
the nominal speed on road ¢, which is likely the road’s speed
limit. Then we consider h; = L + ViTq, and h; = L —H)ﬂh,i:%

B. FDT-based Delay Model

Fundamental Diagram of Traffic (FDT)-based models of
vehicle flow dictate a relationship between vehicle flow and
density in which flow increases with density until the critical
density is reached (uncongested regime), after which the flow
decreases as density increases (congested regime) [44]. We
consider a triangular FD with respect to the total flow, where
we model the critical density as the capacity functions in (3),
(4). This leads to a flow-density relationship as follows [45]

Qt((b}; (b;l) =
vi - (4 + 01, if 6+ 62 < mi(gh, 62)
;om (1, ) (hi— 171 H . . . ~
(le}hii((q;z,as(;; T i my (0, 0F) < @8 + 6 <
0, otherwise .

Here ¢; and ©; respectively denote the jam density and free-
flow velocity on road i, and ¢! and ¢? denote the human-
driven and autonomous vehicle density, respectively. Then,
using the relationship that vehicle flow is equal to the product
of the density and velocity, we find a relationship between
road delay and vehicle flow, where s; is a binary argument
which indicates whether the road is congested.

ds if 5,=0

ci(xi’ Yi, SZ) = { s bi mi(zi,yi)—di . _
d;i <T7+yz T ema @) ) if si=1.
&)

This leads to the following proposition [45].

Proposition 3. Using the FDT-based model for road latency
in mixed autonomy in (5), the PoA is infinite.

Proof. Consider a single road with a fixed autonomy level.
The worst-case cost has the road in a congested state, and the
best-case cost has it in an uncongested state. The ratio of these

3In general we consider h; > h;, but we do not formally make this
assumption. Our theoretical results hold even in the case that h; > h; on
some roads and h; < h; on others.

costs is ¢; (x4, yi, 1)/ci (x4, yi, 0). If we consider a flow demand
that approaches zero, this quantity grows unboundedly.* [

C. BPR-based Delay Model

We now propose a model, similar to Bureau of Public Roads
(BPR) model [22], [46], [47], for the road delay incurred by
mixed traffic resulting from the capacity models derived above.

Assumptions 1. In the remainder, we assume the following
relationship between the flow of vehicles on a road and the
delay on the road:

T +Yi
Cz(gjmyz) tl(1+pl(mi<xi7yi)
Here, t; denotes the free-flow delay on road ¢, and p; and
o; are model parameters. Typical values for p; and o; are 0.15
and 4, respectively [47]. However, our solution methodology is
valid for any parameters such that ¢; > 0, p; > 0 and o; > 1.

)7 - (©)

Remark 1. This model of delay function assumes that the
density of vehicles on a road remains low enough that the
vehicle flow does not enter the congested regime, in which
delay increases as flow decreases. In the absence of this
assumption the Price of Anarchy is trivially infinite, as shown
in Proposition 3.

Remark 2. This choice of cost functions implies that road
delay is separable, meaning that the vehicles on one road do
not affect those on another. In the conference version of this
paper [13], we bound the Price of Anarchy and bicriteria for
some nonseparable affine cost functions.

The class of cost functions we consider are not monotone,
meaning they do not necessarily satisfy (2), but are element-
wise monotone, defined below:

Definition 1. A cost function c : R2Y — R is elementwise
monotone if it is nondecreasing in each of its arguments, i.e.
deilz) > 0 vi, j € [2N].

Zj

IV. BOUNDING THE PRICE OF ANARCHY

In this section we bound the PoA and bicriteria of traffic
networks with mixed autonomy. As established in the intro-
duction, the PoA is in general unbounded in traffic networks
with mixed autonomy. However, we can establish a bound for
the PoA by parameterizing it as described below.

Definition 2. The degree of asymmetry on a road is the
maximum ratio of road space utilized by a car of one type
to a car of another type on the same road, while traveling
at nominal velocity. The maximum degree of asymmetry, k,
is the maximum of the above quantity over all roads in the
network. Formally, k := max;c[n) max(h;/hi, hi/h;).

Note that we do not assume that one vehicle type affects
delay more than another type on all roads. For example, au-
tonomous vehicles may require shorter headways than human-
driven vehicles on highways but longer headways on neigh-
borhood roads to maintain safety for pedestrians.

4A similar proof applies for a more general FDT that is not necessarily
triangular, as well as in the case of only a single vehicle type.



Definition 3. The maximum polynomial degree, denoted o,
for a road network with cost functions in the form (6) is the
maximum degree of a polynomial denoting the cost on all
roads in the network: o = max;c|nj 0.

We use Cy, » to denote the class of cost functions of the form
(6), with maximum degree of asymmetry k£ and maximum
polynomial degree o, with cost functions using m; from either
capacity mode 1 in (3) or capacity model 2 in (4). Let

&(o) :=0(oc+ 1)76Tﬂ . 7

Note that for ¢ > 1, £(0) < 1. With this, we present our first
bound.

Theorem 1. Consider a class of nonatomic congestion games
with cost functions drawn from Cy, ,, under Assumption I. Let
2FQ be an equilibrium and z°F" be a social optimum for
this game. Then,

EQ L oPT
C(E") < ¢ ig(a)(/‘(z )
Proof. Given any road cost function ¢ (and social cost C') and
equilibrium 2FQ, we define an aggregate cost function cA%¢
(and social cost CAG%) with corresponding equilibrium flow
fEQ, both parameterized by 2Q. This allows us to combine
human-driven and autonomous flow into one flow type in the
aggregate function so we can bound the Price of Anarchy
for the aggregate cost function. We then find the relationship
between the optimal routing for the aggregate cost function to
that of the original cost function. Formally, the steps of the
proof are:

C(2") = CA99(fQ) (®)
< %MCAGG(JCOPT) 9)
< %MkUO(ZOPT) . (10)

We begin by introducing the tool with which we bound the
PoA in (9). We then define ¢*%C and fEQ such that (8) holds
and show that fEQ is an equilibrium for ¢A%S. We discuss
the structure of the tool used to bound the PoA and provide
an intuitive explanation of how the chosen structure of ¢A%%
leads to a tighter PoA bound than an alternative choice. We
then provide lemmas corresponding to inequality (9), which
bounds the PoA of this new cost function, and (10), which
relates the social cost of optimal routing under ¢A9S to that of
the original cost function, c. We defer proofs of the lemmas
to the appendix.

We first introduce a general tool that we use for our results
by extending the framework established by Correa et. al. [8],
which relies on the Variational Inequality to bound the PoA.
We use the following parameters:

Ble,q) = Zgl@g RO
B(C) = sup Bl(c,q), (11)
ceC,qeX

where 0/0=0 by definition, and C is the class of network cost
functions being considered. Then,

Lemma 1. Let 2% be an equilibrium of a nonatomic con-

gestion game with cost functions drawn from a class C of

elementwise monotone cost functions.

(a) If z9FT is a social optimum for this game and 3(C) < 1,
then

C(zP9) < (1-B(C)) 107" .

(b) If ¢°FT is a social optimum for the same game with 1 +
B(C) times as much flow demand of each type, then

O(=79) < C(¢?™).

The lemma and proof are nearly identical to that of Correa
et. al. [8], extended to encompass nonmonotone, yet elemen-
twise monotone, cost functions.

We now explain our choice of ¢ASC and fOFT that yields
(8) then provide an intuitive explanation for this choice. Recall
that we define

EQ EQ EQ EQ1T
To~ Ygo .. Ty yN] .

o [0 g0

We define a new flow vector which aggregates the regular
and autonomous flows: fEQ = 2EQ 4 yEQ where :FQ € RZY
and xBQ yEQ fEQ ¢ RY . We define a new cost function cASC
that is a mapping from flow vector (with one flow for each
road) to road latencies, i.e. "% : RY, — RY,. We define
c*0G 5o that it has the same road costs with flow fFQ as ¢
does with flow 2PQ. Note, however, that ¢ is a mapping from
flows, with two flow types per road, to road latencies, again
with each road represented twice (c : R2} — R2Y). However,
cASC represents each road once. - -

We formally define ¢A9Y, which depends on the equilibrium
flow being considered, zFQ. This cost function is defined below
for both capacity models. In general terms, ¢A%C adds the
“costly” type of vehicle flow first, then adds the “less costly”
vehicle flow. If h; < h;,

o (fi) = (12)
ti(1+ pi(2Le)7) fi <2t

{ti(l "‘Pz‘(ﬁlfﬁ(h;i_m)x’ )oY fi > x?Q

a0 (fi) = (13)
ti(1+ Pz(hdfl)a) fi <af?

{tz(l + pi(hiﬁ*(h"’;?}?(ﬁ*z?ﬁ )7 fi > apQ

If h; > h;, then swap h; and h; above, and replace zfQ

with yiEQ. In all cases, C?GG(fZEQ) =cj (x];Q,y;:Q), where j €
[2N] and ¢ = [j/2] € [N]. Since the road latencies under
cAOG(fEQ) are the same as under ¢(25Q), fEQ is an equilibrium
for ¢AGC,

To provide some intuition as to why we add the “costly”
vehicle type first, consider the affine case with the first capacity
model. Correa etf. al. give a geometric interpretation of the
parameter 3(CASC) when cost are separable, meaning road
latency only depends on one element of the flow vector. They
show that for any cost function drawn from CA%G, 3(CAGY)
provides an upper bound on the ratio of the area of a rectangle
above the cost function curve to the area of a rectangle
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Fig. 4: Tllustration of the geometric interpretation of the parameter 3(CA90)

where CACC represents the class of aggregate cost functions. Parameter

B(CASO) is an upper bound on the ratio between the size of the shaded

rectangle and the dashed rectangle. This is an upper bound over all choices

of C?GG € CAGG and zFQ and yFQ > 0.

enclosing it, where the enclosing rectangle has one corner at
the origin. See Figure 4 for an illustration.

This interpretation provides the intuition that the more
convex a function can be, the greater 3(CA9Y) can grow.
Thus, to make our bound as tight as possible in our case,
we add the costly vehicle type first. In the affine case with
the first capacity model, this makes the class of cost functions
concave. Then the element of this class that maximizes the
size of the interior rectangle relative to the exterior rectangle
minimizes the concavity of the function by setting F? = 0 or
yFQ = 0. Thus, the PoA bound does not depend on the degree
of asymmetry. Though this exact interpretation does not apply
for o > 1 or for the second capacity model, the intuition is
nonetheless useful.

With this intuition, we now present inequalities (9) and (10)
as a lemmas, which we prove in the appendix.

Lemma 2. Consider a nonatomic congestion game with
road cost functions of the form (12) or (13), with maximum
polynomial degree o. Then,

ot
1—¢(0)

+1

where £(0) = o(o +1)" % .

CAGG (fEQ) S CAGG (fOPT)

Lemma 3. Let ¢ be a cost function composed of road costs
of the form (6) with maximum degree of asymmetry k and
maximum polynomial degree o. Let ¢*°C be an aggregate cost
function of ¢, as defined in (12) and (13). Let the flow vector
29PT be a minimizer of C and f°F" be a minimizer of C4%C,

Wlth ZiE[QN] Z,L-OPT = Z?E[N] inPT. ThEn,
CAGG(fOPT) < kaC(ZOPT) )

We prove Lemma 2 by bounding S(C) for the class of
aggregate cost functions and applying Lemma 1. We analyze
the structures of ¢ and ¢A9C to prove Lemma 3. With these
lemmas, the theorem is proved.

O

Note that for £ = 1 (i.e. no asymmetry), the PoA bound
simplifies to those in [5], [6]. If the cost functions are affine
and there is no asymmetry, this reduces to the classic %
bound [4]. We characterize the tightness of this bound in the

following corollary:

Corollary 1. Given a maximum polynomial degree o, the PoA
bound is order-optimal with respect to the maximum degree
of asymmetry k.

We provide an example proving the corollary in Section V.
When considering road networks with low asymmetry, we can
establish another bound.

Theorem 2. Consider a class of nonatomic congestion games
with cost functions drawn from Cy, ,, under Assumption 1. Let
2PQ be an equilibrium and z°FT a social optimum for this
game. If k(o) < 1, then
EQ 1

ST
Proof. To prove this theorem, instead of going through an
aggregate cost function we directly find §(C) for our class of
cost functions and apply Lemma 1. We do this in two two
lemmas: we first find a relationship between the parameter
B(c,v) and the road capacity model m;(x;,y;), then we bound
the resulting expression.

C(ZOPT) )

Lemma 4. For cost functions of the form (6), the parameter
B(C) is bounded by
i + Y

C) < max 1
ple) < i€[N],qi,z:€RE | Vi + wl(

o m (v, wi) (@i + yi)
mi (@3, yi) (v + wi)

)7) -
Lemma 5. For capacities of the forms (3) or (4),
Ti +Yi

max (1
i€[N],q:,2:€R2 , Vi + W

_ o mi(vi, wi) (@i +4i) o i

These lemmas, together with Lemma 1, prove the theorem

as well as Theorem 3 below.
O

Note that this bound may not necessarily be tighter in
all regimes so our new PoA bound is min( %, ﬁg(a))
Though we cannot in closed form determine the region for
which it is tighter, we can do so numerically. For example,
for affine cost functions with k 2, % = % and
#ﬁ(o’) = 2. In Section V we show via example that the
bound in Theorem 2 is tight in this case.

The method used for establishing Theorem 2 also gives a

bound on the bicriteria, stated in the following theorem.

Theorem 3. Consider a class of nonatomic congestion games
with cost functions drawn from Cy, ,, under Assumption 1.
Let zPQ be an equilibrium for this game. If ¢°F" is a social
optimum for the same game with 1 + k&(o) times as much
flow demand of each type, then

C(=50) < C(¢”™) .

As an example, if road delays are described by polynomials
of degree 4, and the maximum asymmetry between the spacing
of platooned and nonplatooned vehicles is 3, then the the cost



of selfishly routing vehicles will be less than optimally routing
14+ 3&(4) =~ 2.61 times as much vehicle flow of each type.

V. ESTABLISHING LOWER BOUNDS BY EXAMPLE

In this section we provide examples that give a lower bound
on the PoA for this class of networks and serve to illustrate the
tightness of the bounds. The examples are shown in Fig. 5 and
the comparison of the PoA and bicriteria are shown in Fig. 6.
We discuss notions of one-sided and two-sided asymmetry:
a network has one sided asymmetry if h; < h; Vi € [N]
(human-driven cars always contribute more to road delay than
autonomous cars) or h; > h; Vi € [N] (human-driven cars
always contribute less to road delay than autonomous cars);
otherwise the network has two-sided asymmetry. We provide
two example networks (Fig. 5), one with two-sided asymmetry
and one with one-sided asymmetry. We compare the PoA and
bicriteria in those networks to the upper bounds established
earlier.

Through the first example we prove Corollary 1. In this
example, we consider two roads, one of which is well-suited
for autonomous vehicles (such as a highway) and the other is
well-suited for human-driven vehicles (such as an urban road).

Example 1. Consider the network of parallel roads in
Fig. 5 (a), where one unit of human-driven and one unit of
autonomous flow wish to cross from node s to t. The roads
have costs c¢1(xz,y) = (kx +y)? and ca(x,y) = (x + ky)°,
where k > 1. In worst-case equilibrium, all human-driven
cars are on the top road and all autonomous cars are on the
bottom road. In the best case, these routing are reversed. This
vields a PoA of k°. To find the bicriteria, we calculate how
much traffic, optimally routed, yields a cost equal to 2k°, the
cost of the original traffic volume at worst-case equilibrium.
We find that k5T as much traffic, optimally routed, yields this
same cost.

We now analyze the setting in which autonomous vehicles
always increase the capacity of a road. In this case, the
tightness of our bound (which holds for two-sided asymmetry
as well) remains open.

Example 2. Consider the network of parallel roads in
Fig. 5 (b), where ik unit of human-driven and one unit of
autonomous flow wish to cross from node s to t. The roads
have costs c¢1(z,y) = 1 and co(z,y) = \/Z]-CHQU + ﬁy
At equilibrium, all vehicles take the bottom road; optimally
routed, human-driven vehicles takes the top road and au-
tonomous vehicles take the bottom. This yields a PoA of

1+ —E—. Calculations similar to that in Example 1 yield a

2vVk+1
bicriteria of 1y 1;%%)(1+ﬂ).

For affine cost functions, ¢ = 1 so £ = 1/4. The PoA bound
is then min( 4%, 4k) and the bicriteria bound is 1+k/4. With
o = 1, the first example has PoA k and bicriteria \/E, and the
second example has PoA of order vk and bicriteria of order
K/, Accordingly, the first example shows that the PoA bound
is tight for £ = 2 and the bicriteria bound is tight for k = 4.

Note that a realistic range for k is between 1 and 4.

Further, for affine cost functions, the bound in Theorem 2 is
tighter than that of Theorem 1 when the degree of asymmetry
is low. However, the bound in Theorem 1 scales much better
for high degrees of asymmetry. This effect is accentuated for
cost functions that have higher order polynomials — the regime
for which the bound in Theorem 2 is tighter shrinks as the
maximum polynomial degree grows.

As stated in Corollary 1, our bound is order-optimal with
respect to the maximum degree of asymmetry, k. Comparing
the bound (%) with the PoA in Example 1 (k%) shows
that for a fixed o, the PoA upper bound is within a constant
factor of the lower bound, implying that the upper bound is
order-optimal in k.

It is also worth noting that under the construction used in
Theorem 2, the bicriteria is related to the PoA through the
quantity 8(C) [8]. Observe that Example 1 provides a bicriteria
of 2 for k = 4, implying 3(C4) > 1. Since the PoA is greater
than or equal to ﬁ, this mechanism cannot bound the PoA
for k > 4. This leads us to rely on the mechanism developed
for Theorem 1 for networks with large asymmetry.

VI. CONCLUSION

In this paper we present a framework, similar to a con-
gestion game, for considering traffic networks with mixed
autonomy. To do so we present two models for the capacity
of roads with mixed autonomy, each corresponding to an
assumption about the technological capabilities of autonomous
vehicles, and we define a class of road latency functions that
incorporates these capacity models. Using this framework, we
develop two methods of bounding the Price of Anarchy and
show that these bounds depend on the degree of the poly-
nomial describing latency and the difference in the degree to
which platooned and nonplatooned vehicles occupy space on a
road. In addition, we present a bound on the bicriteria, another
measure of inefficiency due to selfish routing. We present
examples showing these bounds are tight in some cases and
recover classical bounds when human-driven and autonomous
vehicles affect congestion the same way. Moreover, we show
that our PoA bound is order-optimal with respect to the degree
to which vehicle types differently affect latency. Moreover, we
show the limitations of the PoA framework when considering
the congested regime of vehicle flow.

Some directions for future work are as follows. The capacity
models presented assume that vehicle types are determined as
a result of a Bernoulli process; a more general capacity model
could incorporate autonomous vehicles that actively rearrange
themselves as to form platoons. Further, autonomous vehicles
can affect vehicle flow in ways not limited to platooning.
In addition, our proposed latency function considers only the
effect of a vehicle on the road upon which it travels; a more
general latency function would consider interaction between
roads. Finally, the PoA bound is not shown to be tight but is
order-optimal in the degree of asymmetry &, and a future work
could aim to close this gap. Nonetheless, this paper presents
a framework that can be used in the future for studying traffic
networks in mixed autonomy.
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Fig. 5: From left to right: (a) Network from Example 1 with two sided asymmetry. One unit of human-driven and one unit of autonomous flow cross from

node s to t. (b) Network from Example 2 with two sided asymmetry.
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Fig. 6: From left to right: (a) comparison of the PoA of Example 1 with the upper bound, with & = 1. (b) comparison of the PoA of Example 2 with the
upper bound, with o = 1. (¢) Bicriteria of Examples 1 and 2 (with ¢ = 1), compared with the bicriteria bound.
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VIII. APPENDIX
A. Proof of Lemma 1

We prove Lemma 1, which offers a useful tool for bounding
the PoA. To prove part (a),

(e(q"), 2) = (e(2), 2) + (e(d™®) = e(2), 2)
(e(2), 2) + Ble, ") (c(q™?), 4"9)
< C(2) + B(C)C(¢™?)

and by the Variational Inequality, C'(¢5Q) < (c(¢®Q), 2) for
any feasible routing z. Completing the proof requires that
B(C) < 1, then replace the generic z with zOFT,

To prove part (b), element-wise monotonicity implies the
feasibility of (1+3(C))~'¢q°FT, which routes the same volume
of traffic as 2FQ. Using (1),

(e(279), 2%9) < (2

IN

(14)

), (14 8(C) ¢ . (15)

Then,

C(2"?) = (14 B(C))(c("?), 2"?)
B(C){c(z"?),2"?) (16)
(1+6(C))<c(zE ), (1+B(C)~¢°)
B(C)(c(2"9),2"9) (17)
< C(qo"T> , (18)

where (17) uses (15) and (18) uses (14).

B. Proof of Lemma 2

We prove Lemma 2, an intermediary step for bounding the
PoA. We use Lemma 1 and bound 3(C2SS), where CAC¢
denotes the set of aggregate cost functions with maximum
polynomial degree o. First we will show that
max é( — (ﬁ

,6 CAGG <
( i ) 1€[N], fi,9:>0 g4 gi

).

For the remainder of the proof of the lemma, we drop the
aggregate superscript from aggregate cost functions. Then,

(elg) — e(f). 1)

B8 C?GG = sup max
( ) cECACS gex fGJR[N] <C(g)7 g>
< sup max fz( — Ci(fi)) .

i €CASS g, >0 fi20 g; ci(9i)

Note that this expression equals 0 by definition when
fi = g; = 0; the supremum of this expression is therefore
at least 0. Moreover, consider the case that g; < f;. Since ¢;
is nondecreasing, (17%) < 0. Since g; > 0 and f; > 0, the
full expression is then bounded from above by 0, and is equal
to 0 when g; = 0. Since we are maximizing this expression,
we can rule out g; < f; and only consider g; > f;.

We will show that 5(C59C) < max;e(n), fi,g:50 L o L1 -

( £)7*) by showing that zg g > (%)" for either capacity
model. We will show this for a road in which Bi < h;, though
with the alterations discussed above, the same can be done for
a road on which h; > h;.

As mentioned above, we can neglect the case in which g; <
fi. Because of this, to bound the expression we only need to

bound the following six cases:

1) capacity model 1, g; < 25 and fi < xZQ,
2) capacity model 1, g; > a:ﬁQ and f; < I’EQ,
3) capacity model 1, g; > Z'EQ and f; > I'EQ
4) capacity model 2, g; < x%Q and f; < xﬁQ,
5) capacity model 2, g; > xéQ and f; < xéQ,
6) capacity model 2, g; > x, Q and fi> xiQ,
We will show that in all cases, cf(?g > (g—)"
In the first case,
hi
Ci,l(fi) 1+Pi( {) (fz) i
cinlg) 1—|—pl( 11 )0 gi©

d;

where the inequality follows from - 18 g < 1. In the follow-

ing cases we perform the same operatlon without comment.



In the second case,
Ci,l(fi) >
cin(gi) —

firo,
Z (7) ‘ 9
Gi

where (19) follows from h; < h;.
In the third case,

cia(fi)
Ci,l(gi) =

hifi
higi + (hi — hq)z}?

o hifi o,
o> (il
1g2

19)

hifi 4+ (hi — hi)at? )7 > (fz

)7

where the final inequality follows from h; > h; and f; < g;.
The fourth case is equivalent to the first case. In the fifth
case,

ci2(fi) S hi figi i
ci2(9:) = hi(9i)? — (hi — hi)(gi — 252)?
hifigi \o, i \os
> (8 = (dye o)

where (20) results from h; > h;.
In the sixth case,

cialf) o M) = (i =) =2 iy,
ci2(9:) ~ hi(gi)? = (hi = hi)(gs — 2792 i
hz(f2)2 gi o fl e
= Uit 1) (? ’ ey

where (21) results from (f 1_) > ( as g; > fi.

£)7% in all cases,

.t )2,
Now that we have shown that < E g > (
we find that

CcAGG) < ma; é — & it
A )< ie[N],fi)finO 9i (gi)

As this expression is concave with respect to f;, to max-
imize this with respect to f;, we set the derivative of this
expression with respect to f; to O:

(1) . v
gi ( +1) (g )o’+1 =0 = fi - (gz)(a+1)
Plugging this in,
1 1 _ot1
B < (o +1) "(1*07_’_1):(7(0+1) 7

This, combined with Lemma 1 and the definition of £(o),
completes the proof of the lemma.

C. Proof of Lemma 3

We prove the final intermediary step, bounding the dif-
ference in social cost between the optimal routing for
our intermediary latency functions and the optimal rout-
ing for our original latency function. As before, let z =
[1‘1 Yy T2 Y2 TN yN}T. Then,

ke (@, )

> max(c; (T + yO*T,0), ¢
> (AGG (L OPT |, OPT)

10,297 + 7))

CAGG(fOPT) for

and by definition of fOPT, CASG(f) >
= ZiE[N] fz‘OPT =

any feasible vector f with >, in f,
Zie[QN] Zi> 8O
kaC(ZOPT) > Z (I?PT + y;)PT) ?GG(:COPT + yOPT)
1€[N]
> (AGG ( fOPT)

D. Proof of Lemma 4

This Lemma and the following one together prove Theo-
rem 2. Using (11),

Ble,q)
mt}zvti;z) )Ui B (me:?ZZ/z) )Ui] (g% + yl)

> iem tipil(
X

=€RZY ey till + pi (e ey )7 (i + wi)
Pz[(mﬁfzwlfjl))gl - (mﬁ;y‘;l) )7 (s + vi)
< max Py .
i€[N],z€R, [1+ pi(Gtoresy) 7 (v + wi)
(22)
(Gien)” — (i) @i + )
<  max P :
IEIN] =i €R, (s toreuy) 7 (Vi + i)
= max Vg (mi(vi,wi)(xﬂryz-))m)
i€[N],zi €RE ) V; + W; mi(zi, yi) (vi +w;)
g max x2+y2 (17 (m’t(vl;wi)(x’b+y’b)) ) ’ (23)
€[N,z €RL ) V; + Wy mi(Ts, y;) (Vi 4 w;)

where the terms of the denominator being nonnegative imply
(22), since a term in the summation in the numerator that is
negative does not need to be accounted for in the upper bound.
Then, 5(c,q) > 0 implies (23), allowing us to consider only
the maximum allowable degree of polynomial.

E. Proof of Lemma 5

For capacity model 1:

B(c, q)

< max i T Yi
iE[N],zieR("zO v; + w;

(hi = (hi —_Bz')(xffﬁyi))(fi + i) )
(hi = (hi — ha) (5755)) (00 + wi)
Ti + i hizi + hiyi
(o +wi (1 B (hﬂ}z +BZ’LU1) )
kx; +y;
(1— (Vi) (25)

k’l}i + w;
= max f (@i yi, vi,wi)
z;€RY,

(24)

(1-

= max
i€[N],z;€RZ

T: 4+ y;
< max i T Yi
z €RZ ) U + w;

In (25) we use the Definition 2 of the maximum degree of
asymmetry. For ease of notation, we drop the subscripts for
f(x7 y’ ,U’ w) *

We now investigate this expression more closely, and show
that the maximum of this expression with respect to x and y
occurs at either x = 0 or y = 0. We do this by showing there
are no critical points with z > 0 and y > 0, and that outside



of a finite region, the function is decreasing with respect to
both x and y.

First we show that there exist no critical points, meaning
points for which g df =0, for £ > 1. We have

af kx +vy — (%)”(l{zwLerko(ery))

de (v+w)(kx+y)
af kx+y—(,ffig})"(kx+y+a(x+y))
dy — (v +w)(kx +y) '

Since k£ > 1, we conclude that % # % forx > 0 and y > 0.
To show the second component, we see that

df 1 kx 4y

< _ o
dx_v—l—w(l (kv—l—w)) and
df 1 kx+y

— < 1-— 7).
dy_v—l—w( (kv—i—w))

Therefore, for the region y > kv + w — kz, the function is
decreasing with = and y.

These two facts together imply the maximum of f in the
first quadrant lies on either the x or y axis. Checking these
two candidate functions,

w(1 — ()7)
U+ w

1-— o
f0,y,v,w) = W

These functions are concave with respect to x and y, with
L _(_1 \/ok _(_1y1

minima at = (537) fo kutw an.d v = (557) /7 (kv + w)

respectively. When plugging these in, we find that the solution

along the y-axis is greater, so

f(iC,O,U,U))

_ I iekv+w
mg @y vw) = o) T

We then find that when restricted to capacity model 1,

B(Cro) < max U(L)Hl/aw

v,w<0 o+ 1 v+w
1
< k' 1+1/0’
o( 7

=k&(o) .
For capacity model 2:
Ble,q)
< max Tty ( ka? + 2kay; + 7 g(’Ui + Wi\,

SR, v+ wp kvl 4 2kviw; +wi’ x4y
= g(@i, yi, vi, wi)

We again find that £ > 1 — g—g # S—Z. Further,

ﬂ< 1 _((v+w)kz2+2kxy+y2)a and
dz — v+w z+ vy’ kv? + 2kvw + w?
ﬂ< 1 7((v+w)km2+2kxy+y2)a
dy ~ v+ w z+y kv? 4+ 2kvw +w?’
S0
kx? + 2kxy + 2 <k‘v2+2kvw+w2
T +y v+ w
- g<0andﬂ<0

dx dy

Using the same reasoning as above, we now just search the x-
and y-axes. As above, g(z, 0, v, w) is concave with respect to x

and ¢(0,y,v,w) is concave with respect to y, with maxima at

_ 1 1 kv?+2kvw+w? _ 1 1 kv?+2kvw+w?
T = (g'+1) /o k(vtw) and y = (g+1) /07. vtw )
respectively. Comparing these, we find the maximum is the

latter, so
1 )1+1/ka2—|—2kvw—|—w2
o+1 (v + w)? '

gag%g(ﬂf Yy, v,w) = o

Then, for capacity model 2,

B(Ck,s) < max U(L)IH/J kv? 4 2kvw + w?

T o,w<0 o+1 (U+’IU)2
< 1+1/0

O’(O_+1) k
= k(o) .

Together, this shows that regardless of capacity model,
B(Ck,o) < k(o). The application of Lemma 1 completes the
proof.
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