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Massively Distributed Graph Distances
Armin Moharrer, Jasmin Gao, Shikun Wang, José Bento, Stratis Ioannidis

Abstract—Graph distance (or similarity) scores are used in
several graph mining tasks, including anomaly detection, nearest
neighbor and similarity search, pattern recognition, transfer
learning, and clustering. Graph distances that are metrics and,
in particular, satisfy the triangle inequality, have theoretical
and empirical advantages. Well-known graph distances that
are metrics include the chemical or the Chartrand-Kubiki-
Shultz (CKS) distances. Unfortunately, both are computationally
intractable. Recent efforts propose using convex relaxations of
the chemical and CKS distances. Though distance computation
becomes a convex optimization problem under these relaxations,
the number of variables is quadratic in the graph size; this makes
traditional optimization algorithms prohibitive even for small
graphs. We propose a distributed method for massively paral-
lelizing this problem using the Alternating Directions Method
of Multipliers (ADMM). Our solution uses a novel, distributed
bisection algorithm for computing a p-norm proximal operator
as a building block. We demonstrate its scalability by conducting
experiments over multiple parallel environments.

Index Terms—Graph Matching, Optimization, ADMM, Dis-
tributed Algorithms

I. INTRODUCTION

Graphs are ubiquitous combinatorial objects, representing
real-world phenomena from social and information networks
to technological, biological, chemical, and brain networks.
Graph distance (or similarity) scores find applications in varied
fields, such as image processing [1], chemistry [2], [3], and
social network analysis [4], [5]. Graph distances are used
in several graph mining tasks, including anomaly detection
[6], [7], nearest neighbor and similarity search [6], [8]–[11],
pattern recognition [8], [11], transfer learning [12], and clus-
tering [13], to name a few. Distance scores that are metrics–
and satisfy the triangle inequality property–exhibit significant
computational advantages. From a theoretical standpoint, op-
erations such as nearest-neighbor search [14]–[16], outlier
detection [17], clustering [18]–[20], and diameter computation
[21] can be computed or approximated efficiently over objects
embedded in a metric space. Beyond theoretical guarantees,
in practice, metrics often significantly improve performance
and/or quality compared to non-metrics in a variety of tasks.
For example, graph clustering algorithms are better at detect-
ing clusters over metric spaces (see, e.g., [13]). Metric graph
distances are therefore highly desirable.
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Well-known graph distances that are metrics include
the so-called chemical [3] and the Chartrand-Kubiki-Shultz
(CKS) [22] distances. The chemical distance between two
graphs GA and GB with adjacency matrices A,B ∈
{0, 1}n×n, respectively, is defined as:

minP∈Pn ‖AP − PB‖2, (1)

where Pn is the set of permutation matrices, and ‖ · ‖2 is
the p = 2 (a.k.a. Frobenius) norm. Intuitively, the solution to
Prob. (1) counts the number of edges present in one graph
but not the other, under a node correspondence (mapping)
captured by permutation matrix P . The CKS distance has
the same formulation, replacing the adjacency matrices with
matrices comprising shortest path distances. Unfortunately,
both distances are computationally intractable [23].

To address this, Bento and Ioannidis [13] recently pro-
posed a convex relaxation of these distances, which attains
tractability while also naturally incorporating node features.
In a nutshell, the authors define the distance between two n-
node graphs GA and GB as the optimal value of the problem:

min
P∈Wn

‖AP − PB‖p + λ · tr
(
P>DA,B

)
, (2)

where Wn is the set of doubly stochastic matrices, ‖ · ‖p is
the entry-wise p-norm, DA,B ∈ Rn×n denotes dissimilarities
between the nodes of the two graphs, and λ ≥ 0 is a hyper-
parameter.

The relaxation of the chemical distance defined by Prob. (2)
has several advantages. First, it is tractable, as it involves solv-
ing a convex optimization problem. Second, Bento and Ioanni-
dis show that the distance resulting from solving Prob. (2) is a
metric and, in particular, satisfies the triangle inequality. This
yields the aforementioned benefits of metrics in downstream
tasks such as, e.g., graph clustering or nearest-neighbor search.
Third, it incorporates node features via the linear trace term.
This has computational advantages (which we discuss in
Section III-G), but is also important in practice: nodes in real-
life graphs often contain such information (e.g., demographic
information of users in a social network, atom properties in
a molecule, etc.). Finally, Prob. (3) encompasses multiple p-
norms and possible distance matrices DA,B , for which both the
metric property and convexity are maintained [13]. The ability
to span different norms is also very important in practice, as
the right value of p can be data dependent (see Tables III and
IV in Sec. VI-B).

Even though Prob. (2) is a convex optimization problem, the
number of variables is quadratic in the graph size n; this makes
traditional optimization methods for solving (2) prohibitive
even for small n. Nevertheless, for p = 1, the problem
can be solved in a distributed fashion via the Alternating
Directions Method of Multipliers (ADMM) [24], since its ob-
jective decomposes into a sum of simpler objective functions.
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Unfortunately, it is not clear how to efficiently distribute the
solution for p > 1; this is precisely because, for p > 1,
the objective of (2) cannot be written as a sum of distinct
terms. Our present work directly addresses this challenge: we
propose a distributed algorithm solving (2) for arbitrary p ≥ 1.
Our solution combines ADMM with a distributed proximal
operator for arbitrary p-norms, which is both novel and of
independent interest. Finally, we demonstrate the applicability
of our algorithm via massively distributed implementations
over OpenMP and Apache Spark, which we make publicly
available.1 In summary, we make the following contributions:
• We propose an ADMM-based distributed algorithm for

solving (3) for all p ≥ 1. Our solution for the case p > 1
uses a nested-ADMM (Alg. 1 and 2) in combination with a
distributed bisection algorithm (Alg. 3) as building blocks.

• We describe the algorithm’s parallel complexity in terms of
the sparsity of graphs GA, GB , and additional constraints
we introduce in the problem. In particular, we bound mes-
sage exchanges in terms of these sparsity parameters.

• We implement our algorithm in OpenMP [25] and
Spark [26]. Our publicly available implementation scales
to hundreds of CPUs. Over a 448 CPU cluster, we attain
speedups as much as 153×.

The remainder of the paper is organized as follows. We review
related work in Sec. II. We review basic definitions, convex
relaxation (2), and ADMM in Sec. III. We present our main
algorithm in Sec. IV, its computational complexity in Sec. V,
and our experiments in Sec. VI. We conclude in Sec. VII.

II. RELATED WORK

Graph Distances. A distance between two graphs can be
defined naturally when they are labeled, i.e., the correspon-
dence between their nodes is known (see, e.g., [5], [27], [28]).
Two classic examples are the edit distance [29], [30] and the
maximum common subgraph distance [31], [32]. Some recent
works focus on distances for labeled graphs that are easy
to compute (e.g in linear or quadratic time) [5], [27], [28]
without maintaining the properties of a metric. We study the
(harder) unlabeled setting, in which the node correspondence
between graphs is unknown. Examples of distances in this
setting include the chemical [3] and the Chartrand-Kubiki-
Shultz (CKS) [22] distances, while the edit and the maximum
common subgraph distances can also be extended to the
unlabeled setting. All four [31]–[34] are metrics and hard
to compute, while existing heuristics (e.g., [35], [36]) do not
satisfy the triangle inequality property. A simple approach to
induce a metric over unlabeled graphs is to embed them in a
common metric space and then measure the distance of these
embeddings. Riesen et al. [37], [38] embed graphs into real
vectors by computing their edit distances to a set of prototype
graphs. The same embedding is also used to compute a median
of graphs [39]. Other works [40]–[42] map graphs to spaces
determined by their spectral decomposition. Such approaches
are not as discriminative as the metrics considered here [13],
because embeddings only summarize the graph structure.

1https://github.com/neu-spiral/GraphMatching

Metrics. Metrics naturally arise in data mining tasks, including
clustering [43], [44], nearest neighbour search [14]–[16], and
outlier detection [17]. Some of these tasks become tractable,
or admit formal guarantees, precisely when performed over a
metric space. For example, finding the nearest neighbor [14]–
[16] or the diameter of a dataset [21] become polylogarithimic
under metric assumptions; similarly, approximation algorithms
for clustering (which is NP-hard) rely on metric assumptions,
whose absence leads to a deterioration of known bounds [18].
Our focus on metrics is motivated by these considerations.
Graph Matching. Graph matching has a long history in
machine learning and pattern recognition [1], [45], [46]. Given
two graphs, the graph matching problem amounts to finding a
node-to-node correspondence (or mapping) that preserves edge
relationships across two graphs. This relates to distance com-
putation, as the optimal mapping can be cast as the solution of
a minimum distance computation problem. For example, graph
matching is commonly formulated as a quadratic assignment
problem [1], [47]–[49], which is generally NP-hard [45].
There are many works solving this problem approximately
(see [1] for a thorough review). NetAlignMR [47] proposes
and solves an integer linear programming relaxation. For
the same linear relaxation, NetAlignBP [50] uses a more
efficient belief propagation (BP) method. Natalie [49] proposes
another integer linear programming relaxation. A different
approach via a graduated assignment was proposed by Gold
and Rangarajan [45]. IsoRank [51] finds a score matrix via a
spectral algorithm. Closest to us, Lyzinski et al. [52] propose
both a convex and non-convex relaxation over the set of doubly
stochastic matrices: their convex relaxation is Eq. (2) with
λ = 0 and p = 2, while the objective in the non-convex
relaxation is the quadratic function tr((AP )>PB). Schelle-
wald and Schnörr [53] propose a semi-definite programming
relaxation. Though highly efficient, these approaches generally
do not yield distances that are metrics (see [13]).
Proximal Operators. We use a bisection algorithm due to
Liu and Ye [54] to compute the proximal operator of p-norms.
The original presentation of the algorithm was serial; we show
(and exploit) in our work the fact that the algorithm can be
implemented in parallel via map-reduce operations. Beyond
this, we also provide a convergence guarantee (Thm. IV.3),
which was absent from their work. Sra [55] extends Liu and
Ye’s approach, proposing a bisection method for finding the
proximal operators of mixed `1,p norms. The same author
also provides a proximal operator algorithm for mixed `p,q
norms in a follow-up work [56]. Proximal operators can be
seen as generalizations of projection operators [57]; in the
case of norms, they are coupled to projections via Moreau’s
decomposition [58]. Exploiting the latter, some works solve
the problem in the dual domain via projections on the unit
ball of the dual norm [57] or via gradient methods [59]. These
methods are not readily parallelizable.
ADMM. The Alternating Direction Method of Multipliers
(ADMM) [60] is a convex optimization algorithm. Consensus
ADMM [24], which we use here, is a classic approach to
distribute optimization problems; its applications are numerous
[48], [61]–[66]. For strongly convex problems, its optimally-
tuned convergence rate is as fast as that of the fastest first-



3

x,y Vectors A, B Adjacency matrices
Q Mapping constraint set aij , bij Matrix elements in A and B
[n] Set {1, . . . , n} R(i), C(j)Simplex sets
DA,B Matrix of node distances dij Fi local objectives
‖ · ‖0 support size, i.e., | supp(·)| ‖ · ‖p p-norm, entrywise, for p ≥ 1
G(V, E)Graph, vertex set, and edge set z, xi Consensus/local variable
AS Matrix Projection on coordi-

nate set S
xS Vector Projection on coordi-

nates set S
P Doubly stochastic matrix I Set of non-empty subsets Sij
P ij ,yij Local/dual variable pair qij , ξij Local/dual variable pair
ri,ψi Local/dual variable pair cj ,φj Local/dual variable pair
S(·) Subset of coordinates on

which the objectives depend
Pn,Wn Sets of permutation and dou-

bly stochastic matrices
xi, yi Coordinates of vectors x, y ER(n, q) Erdős Rényi graph with n

nodes and edge probability q

Table I: Summary of Notation

order method [67]. Though we focus on the simplest setting,
extensions include asynchronous [64] and stochastic [66]
versions, adaptive ways of updating parameter ρ [65], and
faster variants that solve subproblems inexactly [68]. Applying
such optimizations to our work is an interesting open question.

III. TECHNICAL PRELIMINARY

A. Basic Definitions and Notations

Graphs. We represent a graph G(V, E) with node set V =
[n] ≡ {1, . . . , n} and edge set E ⊆ [n]× [n] by its adjacency
matrix, i.e., A = [aij ]i,j∈[n] ∈ {0, 1}n×n s.t. aij = 1 iff
(i, j) ∈ E . A graph is bipartite if its node set can be partitioned
into two disjoint sets VL and VR such that no edges exist
within the same partition, i.e., E ⊆ VL × VR. We denote
bipartite graphs by G(VL,VR, E).

Matrix Norms and Projections. Given a matrix A =
[aij ]i,j∈[n] ∈ Rn×n and p ∈ R+, where p ≥ 1, its entry-wise
p-norm is ‖A‖p = (

∑n
i=1

∑n
j=1 |aij |p)1/p. We use ‖A‖0 to

indicate the number of non-zero elements (a.k.a. the size of the
support) of A, i.e., ‖A‖0 ≡ |{(i, j) : aij 6= 0}| = | supp(A)|.
Given a vector x ∈ Rn and an ordered set S ⊆ [n], we
denote the projection of x on a subset S of its coordinates by
xS ∈ R|S|. Similarly, given a matrix A = [aij ]i,j∈[n] ∈ Rn×n
and a set S ⊆ [n] × [n], we define AS ∈ R|S| to be the
projection of A on its coordinates in S; that is, AS is the |S|-
dimensional vector comprising the elements aij , (i, j) ∈ S.
We denote by Pn = {P ∈ {0, 1}n×n : P1 = 1,P>1 = 1}
the set of permutation matrices and by Wn = {P ∈
[0, 1]n×n : P1 = 1,P>1 = 1} the set of doubly-stochastic
matrices (i.e., the Birkhoff polytope).

B. Chemical Distance

Let A,B ∈ {0, 1}n×n be the adjacency matrices of two
graphs GA(V, EA) and GB(V, EB). Graphs GA and GB are
isomorphic iff there exists P ∈ Pn s.t. P>AP = B or,
equivalently, AP = PB. The chemical distance extends the
latter relationship to capture graph distances. The chemical dis-
tance between GA and GB is defined via Prob. (1). Intuitively,
Prob. (1) counts the number of edges present in one graph but
not the other, under a node correspondence (mapping) captured
by permutation matrix P . Unfortunately, there is no poly-time
algorithm for solving (1) [23].

C. Convex Relaxation

Bento and Ioannidis [13] introduce a tractable family of
distances that generalizes the chemical distance. The family
can be expressed via convex optimization problems, that can
be solved via, e.g., barrier methods; nevertheless, the number
of variables is quadratic in the graph size n, which motivates
our exploration of a distributed implementation.

Formally, given the n-node graphs GA(V, EA) and
GB(V, EB), where V = [n], Bento and Ioannidis suggest
computing the distance between graphs as the minimum of
the following problem:

Minimize ‖AP − PB‖p + λ · tr
(
P>DA,B

)
, (3a)

subj. to: P ∈ Wn, pij = 0 for all (i, j) /∈ Q, (3b)

where Q ⊆ [n]× [n] is a set of pairs constraining the support
of P , DA,B = [dij ](i,j)∈[n]×[n] is a matrix, s.t., dij measures
the dissimilarity between some features of the nodes i ∈ V
and j ∈ V , and λ ≥ 0 is a tuning parameter.

Intuitively, Prob. (3) finds a stochastic mapping between
nodes that minimizes edge discrepancy, while also taking into
account node feature distances as well as hard constraints.
More specifically, the doubly-stochastic matrix P can be
interpreted as a stochastic mapping, where pij ∈ [0, 1] shows
the probability that node i in GA is mapped to node j in GB .
Prob. (3) thus seeks a stochastic mapping P that (a) minimizes
the edge discrepancy between adjacency matrices, captured by
term ‖AP−PB‖, (b) penalizes mappings between nodes i in
GA and node j in GB that have distinct features, captured by
linear term tr

(
P>DA,B

)
, and (c) further restricts mappings

to have support in Q.
We discuss examples illustrating different feature distance

matrices DA,B and constraints Q below, in Sec. III-D. In
short, node features can be incorporated in a soft manner,
through the linear term in objective (3a), or as hard constraints
in Q (requiring, e.g., nodes with different categorical features
to never be mapped to each other).

Computing distances via Prob. (3) has several important
advantages. First, under mild conditions on DA,B and Q, the
distance computed by Prob. (3) is a metric; this is proved by
Bento and Ioannidis [13]. Second, for arbitrary p-norms, (3)
is a convex optimization problem. As a result, a solution can
be computed using standard methods [69]. Third, the linear
term tr

(
P>DA,B

)
and the constraints Q allow us to capture

auxiliary information that often exists in practice, such as node
features or labels. Beyond this expressive power, both have
significant computational advantages, as we show in Sec. VI.

D. Constraints and Node Features

In practice, graph nodes are often endowed with features or
attributes that we can leverage in graph distance computations.
Here, we explain how node features can be incorporated in
Prob. (3) via either the linear term or the constraint set Q.
Node Features in Rd. Node attributes can be represented
as, e.g, k-dimensional feature vectors in Rd. Having access
to such features, we can compute the elements of the
dissimilarity matrix DA,B = [dij ]i,j∈[n] by taking, e.g., the
`2 (or other vector) norm of the difference between these
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vectors: that is dij = ‖xi − xj‖2, where xi, xj ∈ Rk are
the k-dimensional feature vectors for i in GA and j in GB .

Node features can be exogenous, e.g., the demographic
attributes of a user in a social network, the atomic number
of an atom in a molecule, etc. Alternatively, features can be
endogenous, i.e., computed directly from the adjacency matrix:
these include, e.g., a node’s degree, it’s centrality, its pagerank
[70], node2vec representation [71], [72], or some other vector
computed via graph signal processing [71], [73]. Exogenous
features are often available in practical settings, while endoge-
nous features can have computational advantages: we observe
this in Sec. VI, where adding a linear term often accelerates
convergence but also produces higher quality solutions.
Categorical Features (Colors/Labels). Rather than including
categorical node features as soft constraints, via the trace
penalty, such features can also be used to produce hard
constraints, captured by Q. Suppose that we are given a
categorical node feature, referred to as a node’s color. We can
construct the constraint set Q by including only pairs (i, j) s.t.
the nodes i and j across the two graphs have the same color.

Colors can again be either exogenous or endoge-
nous/structural. As examples of exogenous colors, if the graph
represents an organic molecule, the color can be the node’s
atomic number; then, constraintQ requires that identical atoms
are mapped to each other across the two graphs. If the graph
represents a social network, colors can correspond to different
demographic attributes, (e.g., gender, age group, etc.) Struc-
tural/endogenous colors, on the other hand, can be categorical
variables capturing the local neighborhood structure around
a node. These can be, e.g., node degrees, the number of
triangles that pass through a node, or some other discrete
statistic generated from a node’s k-hop neighborhood. One
such statistic is the output of the so-called Weisfeiler-Lehman
(WL) algorithm [74], executed after k iterations.

Using categorical variables of the above nature to construct
constraint set Q has several advantages. First, Bento and
Ioannidis show that Prob. (3) remains a metric, even when
incorporating such constraints. Most importantly, introducing
constraints can significantly decrease the number of optimiza-
tion variables and, hence, the computational complexity of
Prob. (3). As we discuss in Section V, the sparsity of Q also
dictates the communication complexity our parallel algorithm
for solving Prob. (3).

E. Consensus ADMM

Consensus ADMM is an iterative optimization algorithm
well-suited for solving convex optimization problems in a dis-
tributed fashion. Problems amenable to a distributed solution
via consensus ADMM have a specific form: their objective
can be written as a sum of functions, each depending only on
a few variables. Formally, consider the optimization problem:

Minimize F (x) =
∑N
i=1 Fi(xSi), (4)

where x ∈ Rn and each term Fi : R|Si| → R is convex and
depends on a subset Si ⊆ [n] of the coordinates of x. Prob. (4)

can be re-written with N local variables xi ∈ R|Si|, i ∈ [N ]
and a single consensus variable z ∈ Rn as:

Minimize
∑N
i=1 Fi(xi) (5a)

subj. to: xi = zSi i = 1, . . . , N, (5b)

where zSi is the projection of z on the subset Si. The k-th
iteration of consensus ADMM for (5) is as follows:

xk+1
i = arg min

xi

Fi(xi)+ ρ
2‖xi−z

k
Si +yki ‖22, ∀i ∈ [N ], (6a)

zk+1
j =

∑
i:j∈Si((x

k+1
i )`i(j)+(yk

i )`i(j))
|{i∈[N ]:j∈Si}| , ∀j ∈ [n], (6b)

yk+1
i = yki + (xk+1

i − zk+1
Si ), ∀i ∈ [N ], (6c)

where ρ > 0 is a tuning parameter and yi ∈ R|Si|, i ∈ [n],
are dual variables corresponding to the constraints (5b). and
`i : Si → {1, . . . , |Si|} maps coordinates in Si to their “local”
representations in xi.
Incorporating Constraints. We can include constraints in
ADMM by adding them to the objective (5a) via their char-
acteristic functions: a constraint x ∈ D, where D is a convex
set, is added to (5a) as a term χD(x), where χD is the
characteristic function of D (0 if x ∈ D, +∞ o.w.). Then,
the corresponding step (6a) becomes a Euclidean projection
onto convex set D.
A Parallel Implementation. All the above steps in (6) can
be parallelized. To see this, suppose that we have N + n
processors, as illustrated in Fig. 1. The N processors in
Vobj ≡ [N ] are responsible for solving problems (6a) and
performing the dual variable adaptation (6c), in parallel. To
do so, they store functions Fi as well as “local” primal and
dual variables xi,yi, i ∈ [N ]. The remaining n processors
Vvar = [n] store the coefficients zj , j ∈ [n], of the consensus
variable z and perform the averaging (6b). In each iteration,
the processors in Vvar send the consensus variables to the
corresponding processors in Vobj. Subsequently, the latter
perform adaptations (6c) and (6a), and then send their new
local variables to the processors in Vvar for averaging.

The communication complexity of each step (6), as well as
the dependencies between steps, are determined by the bipar-
tite graph G(Vobj,Vvar, EG) shown in Fig. 1: each processor
i ∈ [N ] on the left needs to receive the |Si| consensus variables
zj , j ∈ Si to perform (6a) and (6c), while processors j ∈ [n]
on the right need to collect |{i ∈ [N ] : j ∈ Si}| local variables
(xi)`i(j). As a result, the number of messages exchanged is
proportional to the number of edges in G, namely,

∑
i∈[N ] |Si|.

F. Map-Reduce

Given an N -dimensional vector x ∈ XN , for some domain
X , a map operation applies a function to every element x.
That is, given f : X → X ′, the operation x′ = x.map(f)
creates a vector x′ in which every element xi, i ∈ [N ], is
replaced with f(xi). A reduce operation aggregation over
x; a canonical example is, e.g., computing the sum of x’s
coordinates. Formally, let ⊕ be a commutative, associative,
binary operator ⊕ : X × X → X . Then, x.reduce(⊕)
iteratively applies the binary operator ⊕ on x, returning⊕

i∈[N ] xi = x1 ⊕ . . .⊕ xN .
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Figure 1: A bipartite graph G(Vobj,Vvar, EG) showing the depen-
dencies of the functions Fi on the coordinates of the global consensus
variable z, as well as communication pattern during parallelism. Each
node in the graph corresponds a processor. Processors in Vobj store
Fi, xi, yi, i ∈ [N ], and perform steps (6a) and (6c), while processors
in Vvar store zi, i ∈ [n], and perform (6b).

Both map and reduce operations are “embarrassingly par-
allel”. Presuming that x is distributed over N processors, a
map can be executed without any communication among pro-
cessors, other than the one required to broadcast the code that
executes f . This broadcast can be done in log2N rounds via
the transmission of N−1 messages, when the N processors are
connected in a hypercube network. Again, under a hypercube
network, reduce operations have the same parallel complexity
(can be computed in log2N rounds via N−1 messages) [75].

G. Importance of p-norms and Linear Term

Given the size of both the input graphs, our goal is to
produce a distributed algorithm for solving Prob. (3). As we
discuss in Sec. IV, the main challenge arises from presence of
the p-norm in combination with the linear term. One possible
solution is to limit objective (3a) to the case p = 1. This
leads to an objective paralellizable via consensus ADMM.
This, on the other hand, is unsatisfactory, as the ideal norm
may depend on the underlying graphs; we elaborate on this
in Sec. VI, where we see how inherent noise can effect our
norm choice (see p-norms in Sec. VI-B). Another solution is
to modify objective (3a), replacing ‖ · ‖p with ‖ · ‖pp. This has
two significant drawbacks. First, under this modification, the
distance is no longer a metric; in particular, it fails to satisfy
the triangle inequality, which is a significant disadvantage for
downstream applications, as mentioned earlier. Second, from
an optimization standpoint, it is important to keep the two
terms in objective (3a) balanced; this is harder in this case as
‖ · ‖pp is not absolutely homogeneous (in contrast to both the
trace and norms).

A final alternative is to remove the linear term altogether.
In this case, minimizing ‖ · ‖p is equivalent to minimizing
‖·‖pp. This annuls any benefits of incorporating features, both in
terms of modeling, e.g., exogenous node attributes, but also in
terms of efficiency: as our experiments demonstrate (see, e.g.,
Fig. 2 in Sec. VI-B), including the linear term can significantly
accelerate convergence.

IV. MAIN RESULTS

We now turn our attention to solving (3) via ADMM. We
incorporate constraints (3b) in (3a), yielding objective:

‖AP−PB‖p+λ tr
(
P>DA,B

)
+ χR(P ) + χC(P ), (7)

where the sets

R = {P ∈ [0, 1]n×n : P1 = 1, pij = 0 ∀(i, j) /∈ Q}, and

C = {P ∈ [0, 1]n×n : P>1 = 1, pij = 0 ∀(i, j) /∈ Q},

correspond to the (doubly stochastic) constraints on the rows
and columns, respectively. With the exception of the first term,
all remaining terms in (7) can be written as sums. Indeed, the
following lemma holds:

Lemma IV.1. There exists a set I ⊆ [n]× [n] as well as sets
Sij ⊆ [n]× [n], Si ⊆ [n]× [n], Sj ⊆ [n]× [n], for i, j ∈ [n],
such that the terms in (7) can be written as:

‖AP − PB‖p =
(∑

(i,j)∈I |fij(P Sij )|p
) 1

p , (8a)

tr(P>DA,B) =
∑

(i,j)∈Q pijdij , (8b)

χR(P ) =
∑
i∈[n] χR(i)(P Si), (8c)

χC(P ) =
∑
j∈[n] χC(j)(P Sj ), (8d)

where fij(·), (i, j) ∈ I, are affine functions and

R(i) = {p ∈ [0, 1]|Si||1>p = 1}, (9)

C(j) = {p ∈ [0, 1]|Sj ||1>p = 1}, (10)

for i ∈ [n], j ∈ [n], are the |Si|-dimensional and |Sj |-
dimensional simplices, respectively.

The proof can be found in Appendix A. Under this charac-
terization, Prob. 3 becomes:

min
P∈Wn

[( ∑
(i,j)∈I

|fij(P Sij )|p
) 1

p +
∑

(i,j)∈Q

pijdij (11a)

+
∑
i∈[n]

χR(i)(P Si) +
∑
j∈[n]

χC(j)(P Sj )

]
. (11b)

The first term in (11a) (i.e., (8a)) cannot be written as a
sum of functions, except when p = 1. Hence, it is not
immediately obvious how to parallelize ADMM when p 6= 1.
For p = 1, however, the entire objective can be written as
a sum of constituent “local” objectives; hence, in this case,
algorithm (6) can be directly parallelized. In all other cases
however, we need a specialized implementation to parallelize
the optimization of the term (8a).

The application of ADMM (6) to all the terms in Prob. (11)
is summarized Alg. 1; primal-dual variable pairs:

(pij ,yij)(i,j)∈I , (qij , ξij)(i,j)∈Q, (ri,ψi)i∈[n], (cj ,φj)j∈[n],

correspond to terms (8a)-(8d), respectively. We note that Alg. 1
requires special care to handle term (8a) in the case p > 1; we
describe how to address this case in the next two subsections.

A. Distributing Consensus ADMM for p > 1.
Applying consensus ADMM directly on (7) stumbles on the

fact that the first term in the objective cannot be written as a
sum; although the “local” optimization step (6a) of ADMM
can be parallelized for all other terms, (6a) for this term (i.e.,
Line 12 of Alg. 1) takes the following form:

min
pij ,i,j∈[n]

(∑
(i,j)∈I

|fij(pij)|p
) 1

p+
ρ

2

∑
(i,j)∈I

‖pij−ZkSij +ykij‖22

(12)
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Algorithm 1 Outer ADMM

1: Input: A,B ∈ {0, 1}n×n, D = DA,B ∈ Rn×n+ , Q ⊆ [n]× [n]
2: Local primal & dual variables at processors in Vobj:

(pij ,yij)(i,j)∈I , (qij , ξij)(i,j)∈Q, (ri,ψi)i∈[n], (cj ,φj)j∈[n]
3: Consensus variables at processors in Vvar: Z = [zij ](i,j)∈Q
4: Initialize consensus variables and local/dual variables to 0;
5: Send copies of consensus variables zij to processors in Vobj
6: while not converged do
7: if p = 1 then
8: for all (i, j) ∈ I in parallel do
9: pij ← arg min

pij∈R
|Sij |

(
|fij(pij)|+ ρ

2
‖pij −ZSij + yij‖22

)
10: end for
11: else if p > 1 then
12: Compute pij , (i, j) ∈ I, by solving (12) via Alg. 2
13: end if
14: for all (i, j) ∈ Q in parallel do
15: qij ← arg minqij∈R

(
λ · qijdij + (qij − zij + ξij)

2
)

16: end for
17: for all rows i ∈ [n] and all columns j ∈ [n] in parallel do
18: ri ← arg min

ri∈R|Si|
(
χR(i) (ri) + ρ

2
‖ri −ZSi +ψij‖22

)
19: cj ← arg min

cj∈R
|Sj |

(
χC(j) (cj) + ρ

2
‖cj −ZSj + φij‖22

)
20: end for
21: Send local variables to processors in Vvar
22: Update zij , (i, j) ∈ Q, via averaging (6b)
23: Send copies of consensus variables zij to processors in Vobj
24: Update all dual variables via (6c)
25: end while
26: return consensus variables Z

Algorithm 2 Inner ADMM
1: Input: {z̄ij : (i, j) ∈ I}
2: Local primal & dual variables at |I| processors in Vobj:

(pij , uij , vij)(i,j)∈I ,
3: Initialize pij to their previous values at the outer iteration, and dual

variables vij to 0
4: while not converged do
5: Compute u by solving (14a) via Alg. 3
6: for all (i, j) ∈ I in parallel do

7: pij ← arg min
pij∈R

|Sij |

(ρ
2
‖pij−z̄ij‖22 +

ρ′

2
(uij−fij(pij) + vij)

2
)

8: Update dual variable vij via (14c).
9: end for

10: end while
11: return consensus variables Z

where pij ∈ R|Sij | is the local vector containing coefficients
corresponding to ZSij and ykij ∈ R|Sij | is the dual variable
corresponding to pij = ZSij . We rewrite this as:

Minimize: ‖u‖p +
ρ

2

∑
(i,j)∈I ‖pij − z̄ij‖22 (13a)

subj. to: uij = fij(pij), for (i, j) ∈ I, (13b)

where u = [uij ](i,j)∈I ∈ R|I| is a vector of auxiliary
variables corresponding to the the affine terms fij(pij), and
z̄ij ≡ ZkSij − y

k
ij ∈ R|Sij |, for (i, j) ∈ I. As fij(·) are affine

functions, so are the set of constraints. Then, we can also solve
(13) w.r.t. u and pij via ADMM, where the steps are

uk = arg min
u∈R|I|

‖u‖p+
ρ′

2

∑
(i,j)∈I

(uij−fij(pkij)+vkij)
2 (14a)

pk+1
ij = arg min

pij∈R|Sij |

ρ

2
‖pij−z̄ij‖22+

ρ′

2
(uk+1
ij −fij(pij) + vkij)

2

(14b)

vk+1
ij = vkij + (uk+1

ij − fij(pk+1
ij )) (i, j) ∈ I, (14c)

Algorithm 3 p-norm Prox. Operator

1: Input: w ∈ Rd, p ≥ 1, ρ > 0, ε > 0
2: Set ŵi ← ρ|wi| for i = 1, . . . , d.
3: if ‖ŵ‖q ≤ 1 then
4: return u∗ ← 0
5: end if
6: Set u← 0, sL ← 0, and sU ← ‖ŵ‖p
7: for k = 1, . . . , log2

⌈
1
ε

⌉
do

8: Set s← (sL + sU )/2

9: Compute ui ← ŵig

(
s · (ŵi)

2−p
p−1

)
for all i ∈ supp(ŵ);

10: Compute ‖u‖p;
11: if ‖u‖p < s then
12: Set sU ← s
13: else
14: Set sL ← s
15: end if
16: end for
17: Set u∗i ←

signwi
ρ

ui for i = 1, . . . , d.
18: return u∗

where ρ′ > 0 is a tuning parameter and vij ∈ R, i, j ∈ [n],
are the dual variables corresponding to linear constraints (13b).
Step (14b) comprises |I| quadratic problems, while (14c) is a
simple adaptation; both can be executed in parallel across the
|I| processors that store pij , yij , and which have received
ZSij from the (outer) consensus ADMM step (line 23 of
Alg. 1). In contrast, it is not apriori clear how to parallelize
step (14a); as in the case of the outer ADMM, this is due
to the ‖ · ‖p term: we present our algorithm solving (14a) in
parallel (Alg. 3) next.

The pseudocode for this inner ADMM step is presented
in Alg. 2. The code is executed in parallel across the |I|
machines described above. Note that steps (14b) and (14c)
are executed in parallel but require no communication; hence,
all communication in Alg. 2 is the one needed by Alg. 3 to
compute u; as we discuss in the next section, this amounts to
a logarithmic number of map and reduce operations.

B. Parallel p-norm Proximal Operator
For p > 1, motivated by (14a), we consider the problem:

minu∈Rd ‖u‖p + ρ
2‖u−w‖

2
2, (15)

for a given w ∈ Rd where d ≡ |I|. In doing so, we assume
that, as is the case in (14a), the elements of vector w are
distributed across d machines, that need to collectively solve
(15) in parallel. Following Liu and Ye [54], we define first a
non-negative vector ŵ via

ŵi = ρ|wi|. (16)

We then consider the following simpler problem:

minu∈Rd
+
‖u‖p + 1

2‖u− ŵ‖
2
2. (17)

Note that this differs from Prob. (15) in that (a) ρ = 1 and
(b) vector w ∈ Rd replaced with non-negative vector w ∈
Rd+, and (c) optimization happens over u ∈ Rd+. Nevertheless,
Prob. (15) is equivalent to Prob. (17) (see Lemma B.4 below).
In particular, if û is the optimal solution of (17), the optimal
solution to (15) is given by u∗ such that:

u∗i =
sign(wi)

ρ
ûi, for i ∈ [d]. (18)
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We therefore turn our attention to solving Prob. (17). To do
so, we define first an auxiliary function. Given α ∈ (0,∞),
define the function α 7→ g(α), as the unique solution of the
following equation over x ≥ 0:

(x/α)
p−1

+ x− 1 = 0, (19)

We extend g to [0,∞) by setting g(0) ≡ 0 for α = 0, by
definition. Function g is hard to express in closed form,2 but
it is well-defined. This is because, for α > 0, the l.h.s is −1
for x = 0 and positive for x = min(1, α). Hence, by the
intermediate value theorem, Eq. (19) always has a positive
solution between 0 and min(1, a); uniqueness is implied by
the strict monotonicity of the l.h.s. of Eq. (19) in x. Hence,
g : R+ → [0, 1] is indeed well-defined.

Having defined g, given a vector ŵ ∈ Rd+, we define
functions gi : R+ → R+, i ∈ [d] as:

gi(s) = ŵi · g
(
s · (ŵi)

2−p
p−1
)
, (20)

as well as function h : R+ → R as:

h(s) =
(∑d

i=1 gi(s)
p
) 1

p − s. (21)

The optimal solution to Prob. (17) can be determined w.r.t. a
root of equation h(s) = 0. In particular, the following holds:

Theorem IV.2 (Liu and Ye [54]). Given ŵ ∈ Rd+ and p > 1,
let û ∈ Rd+ be an optimal solution to Prob. (17). Let also
q ∈ R+ be such that 1

p + 1
q = 1. Then, û is unique, and:

• If ‖ŵ‖q ≤ 1, then û = 0.
• If ‖ŵ‖q > 1, then

ûi = gi(s
∗), for i ∈ [d], (22)

where s∗ is the unique value in (0, ‖ŵ‖p] s.t. h(s∗) = 0.

Intuitively, the above theorem suggests that there are two
cases we need to consider. The first, “easy” case, is when
‖ŵ‖q ≤ 1: then, the optimal solution is 0. If ‖ŵ‖q > 1, i.e.,
on the “hard case”, solving Prob. (17) is tantamount to finding
the unique, scalar root s∗ ∈ (0, ‖ŵ‖p] of the equation:

h(s) = 0, where h is given by Eq. (21).

This is because, once this root s∗ is computed, the optimal
solution û ∈ Rd can be constructed via Eq. (22), by computing
gi(s

∗) for every i ∈ [d].
Crucially, a root of h can be found with a simple bisection

algorithm, the steps of which can be easily parallelized via
map and reduce operations. This bisection algorithm, sum-
marized in Alg. 3, proceeds as follows: given ŵ ∈ Rd+, we
test whether the condition ‖ŵ‖q ≤ 1 holds; if so, we return
u∗ = 0. Otherwise, we find s∗ via bisecting [0, ‖ŵ‖p]. That
is, at each iteration, we maintain an upper (sU ) and lower (sL)
bound on s∗, initialized at the above values. By construction,
function h alternates signs on each of the two bounds: i.e.,
h(sL)h(sU ) ≤ 0; at each iteration, we (a) compute the average
s = 0.5(sL+sU ), between the two bounds, (b) find the sign of
h on this average, and then (c) update the bounds accordingly.

2Though its inverse g−1 is easy to describe explicitly; see Eq. (31).

As signs alternate, by the intermediate value theorem, s∗ is
guaranteed to be in [sL, sU ] at all times.

Another way to get some intuition behind how Alg. 3
behaves in the “hard” case is the following. At any iteration,
s is compared to p-norm of the current solution u ∈ Rd.
If ‖u‖ < s, then s is too big, and we search at a smaller
value; if the opposite is true, we search for a larger value,
always adjusting the bounds accordingly. At all times, we set
u by following the trajectory in Rd determined by functions
gi, linking the current s to the u.

Since Alg. 3 ensures that the root s∗ is be within [sL, sU ] at
all times; Liu and Ye show that the algorithm thus approximate
s∗ within ε accuracy by performing log2 ε

−1 bisections [54].
We show this implies the following convergence guarantee:

Theorem IV.3. Alg. 3 outputs a solution u ∈ Rd such that
‖u− û‖p ≤ p−1

√
‖ŵ‖q · ‖ŵ‖p · ε.

Hence, Alg. 3 can approximate the optimal solution within
arbitrary accuracy within a logarithmic number of iterations.
Finally, it is easy to see that the computations involved in
Alg. 3 can be parallelized across the d processors that store
the values wi, i ∈ [d]. Given an s, the computation of values
ûi can happen in parallel via an application of Eq. (22) at
each ŵi (Line 9). Moreover, the p-norm of u (Line 10),
needed to compute the sign of h(s), can be computed via a
reduce; the updated value of s can subsequently be broadcast
to processors, to initiate the next iteration. We further elaborate
on parallelism in Section V, where we discuss the computation
and communication complexity of the entire process, com-
bining Algorithms 1,2, and 3. For completeness, we provide
proofs of Theorems IV.2 and IV.3 in Appendix B.

V. PARALLEL COMPLEXITY

ADMM is a first-order method, and its convergence is O( 1
k )

[76]. All dual variable adaptations are linear in their input sizes
and so are averaging operations involved in consensus variable
computations; both are parallelized. All primal variable adap-
tations are convex optimization problems with self-concordant
objectives, either unconstrained or linearly constrained; as
such, they can generically be solved within accuracy ε by
interior point methods in steps that are polylogarithmic in 1/ε,
with each step being polynomial in the input size. In particular:
• When p = 1, updating pij , (i, j) ∈ I involves solving a

generalized lasso regression problem (Line 9 of Alg. 1),
which can be solved using the algorithm proposed by
Tibshirani [77]. Alternatively, the inner ADMM Eq. (14)
can again be applied; Eq. (14a) then amounts to |I| soft-
max operations (each at O(n) cost for computing fij). All
all trivially parallelizable via a map.

• The row and column updates (Lines 18 and 19 of Alg. 1)
amount to orthogonal projections on the simplex; we use
the strongly polynomial algorithm by Michelot [78], which
has complexity O(n log n). There are a total of n (one per
row/column) such operations, all of which can again be
parallelized via a map applying Michelot’s algorithm.

• The optimization of the trace term involves |Q| one-
dimensional quadratic problems (Line 15 of Alg. 1), which
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have a closed form and can be computed in O(1) time.
Again, these operations can be parallelized via a map; in
practice, however, we avoid these computations altogether
by “completing the squares” and incorporating these terms
along with the column and row projections, as adjustments
to the vectors projected to the simplices.

• The update of pij in Alg. 2 is an unconstrainted con-
vex quadratic program that has a closed form solution.
Each of these |I| such operations can be computed in
O(|Sij |) = O(n) time; again, they can be parallelized over
|I| processors via a map.

• The norm computations in Alg. 3 (Lines 3 and 10) depend
on vector size |I| and can be parallelized via a reduce.
Updates in Line 9 are O(1) for each of the |I| coordinates;3

this is parallelizable over |I| processors, via a map.
• There are a total of |I|+ |Q|+ 2n outer and |I| inner dual

adaptations, they are all O(1) and parallelizable via a map.
• The consensus averaging step involves |Vvar| = |Q|

scalar summations, adding in total of |EG | terms, where
G(Vobj,Vvar, EG) is the bipartite graph (illustrated in Fig. 1)
induced by our problem. Parallelizing this involves message
passing between the nodes storing all Vobj objectives and
the |Q| processors storing the consensus values, with the
total number of messages passed being |EG |. Below, we
establish bounds on all these quantities.
Putting everything together, assuming the number of it-

erations of the outer and inner ADMM are k1, k2 ∈ N,
respectively, and that the accuracy used in Alg. 3 is ε, the
serial complexity of our algorithm is:

k1k2
[
O
(
|I|
(
n+ log

1

ε

))
+O

(
n2 log n

)]
+ k1O(|EG |). (23)

Assuming access to max(|I|, n, |Q|) processors, each inner
iteration (first term in Eq. (23)) can be fully implemented via a
constant number of map and reduce operations over these pro-
cessors, with maps involving operations of at most O(n log n)
complexity, and reduces terminating within O(log |I|) rounds.
On the other hand, the consensus step (second step in Eq. (23))
can be done via message passing between the processors
corresponding to nodes of graph G. The parallel complexity of
the algorithm depends on the size of set EG . In particular, we
would like to determine conditions under which G is sparse.
We therefore turn our attention to bounding the sparsity of G
of the problem input size.

A. Characterizing the Sparsity of G
The induced bipartite graph G(Vobj,Vvar, EG), as illustrated

in Fig. 1, depends on the number of terms that appear in the
problem objective (determining Vobj) as well as on the number
of times each variable appears in each such term (determining
EG). We first bound the size of Vobj:

Lemma V.1. Let E ∈ {0, 1}n×n be the binary matrix whose
support is Q, and let m0 ≡ ‖AE + EB‖0. Then, the
summation inside the first term (8a) of objective (7) contains

3Function g can be computed efficiently at an arbitrary accuracy as it is
strictly monotone and g−1 has a closed form.

|I| ≤ m0 terms; collectively, the remaining three terms (8b)-
(8d) contain at most |Q|+ 2n terms.

The proof is in Appendix C-A. Lemma V.1 immediately
implies that the bipartite graph G(Vobj,Vvar, EG) satisfies:

|Vobj| ≤ m0 + |Q|+ 2n and |Vvar| = |Q|. (24)

Our next lemma characterizes |EG |:

Lemma V.2. The supports of fij(·), χR(·), χC(·) satisfy:∑
(i,j)∈I |Sij |≤min(n|EA|,n|Q|)+min(n|EB |,n|Q|), (25a)∑
i∈[n] |Si| ≤ |Q|,

∑
j∈[n] |Sj | ≤ |Q|. (25b)

The support of functions fij(·) is also bounded by:∑
i,j∈[n] |Sij | ≤ m0 (max(dA, dQ) + max(dB , dQ)) , (25c)

where dA, dB , and dQ denote the maximum degrees of graphs
GA, GB , and G([n], [n],Q), respectively.

The proof is in Appendix C-B. Lemma V.2 implies that the
number of edges in G is:

|EG | ≤M + 3|Q|, (26)

where M is the minimum among the bounds in (25a) and
(25c). Hence, Eq. (24) and (26) together provide conditions
under which when G is sparse. This happens if, e.g., m0 =
O(n2) and both GA and GB are sparse: by Eq. (25a), graph
G would then have a number of edges that is O(Vobj +Vvar).
Alternatively, the same occurs when dA, dB , and dQ are
bounded (by Eq. (25c)).

VI. EXPERIMENTS

A. Experimental Setup

Implementation. We implemented Alg. 1 over Spark (version
2.3.2), an open-source cluster-computing framework [26], via
its Python interface (version 2.7.15). We also implemented
Alg. 1 in Ansi C (glibc version 2.23), using OpenMP (version
4.0) and Atlas (version 3.10.2).
Execution environment. We run Spark on a local cluster that
comprises 8 machines. Each machine has 2 Intel(R) Xeon(R)
CPUs (E5-2680 v4) with 14 cores, and the cluster has 8 ×
28 = 224 cores in total. We run OpenMP on the Google
Cloud Platform4 and on a n1-standard-96 machine with
96 (virtual) cores and 360GB RAM.
Metrics. We report the objective as well as the primal and
dual residuals as the iterations of our ADMM algorithm
progress. The latter measure convergence. We evaluate the
optimality of our solution by a parameter ε ∈ R defined as:

ε = max

(
‖rK‖2√
|I|

, ‖s
K‖2√
|I|

)
, where rK and sK are the primal

and dual residuals [24] at the last iteration . The smaller ε is,
the closer the solution is to the optimal.
Datasets. We experiment on several real graphs from the
Network Repository5 and the Stanford Large Network Dataset
Collection6, which we summarize in Table II. Four graphs
bnm1, bnm2, bnc1, and bnc2 are brain networks. ptn1

4https://cloud.google.com
5http://networkrepository.com
6https://snap.stanford.edu/data/index.html
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pair (GA, GB) |VA|, |VB | |EA|, |EB | Q |Q| |I|
cortex (bnc1, bnc2) 91, 93 1.9K, 2.6K all 8.6K 8.6K
monkey (bnm1, bnm2) 242, 91 4K, 628 all 58.5K 58.5K
protein (ptn1, ptn2) 1.5K, 1.8K 2K, 4K degree 3.3M 3.3M
retweet (rt1, rt2) 3.2K, 3.2K 3.4K, 3.9K degree 5.9M 2.7M
deezer (dzr1, dzr2) 41.8K, 47.5K 125.8, 222.8K WL2 1.1M 2.9M
slashdot (sld1, sld2) 77K, 82K 828K, 870K WL3 98K 2M

Table II: A summary of real graph pairs along with the preprocessing method for generating Q.
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Figure 2: Effects of adding the linear term on the convergence. The plot shows the traces for the objective and the primal and dual residual
throughout ADMM iterations (Alg. 1 for p = 2) for different λ. We observe that giving a larger coefficient to the linear term makes the
convergence considerably faster.
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(a) p = 5, λ = 0.0, DPM=0.097
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(b) p = 5, λ = 0.1, DPM=0.31
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(c) p = 5, λ = 1.0, DPM=0.36
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Figure 3: Effects of adding linear term on solutions for p = 5 and BRN noise. We assess that adding the linear term λ = 0.1 increases the
values on the diagonal. However, increasing λ further to 1.0 makes solution highly biased on the extracted node features; this is obvious
from the non-diagonal gray elements.

BRN OUT1 OUT2
(p, λ) DPM DPMP DPM DPMP DPM DPMP
(1, 0.0) 0.99 1.0 0.32 1.0 0.08 0.98
(1, 0.1) 0.99 1.0 0.33 1.0 0.05 0.45
(1, 1.0) 0.97 0.97 0.33 1.0 0.05 0.45

(1.5, 0.0) 0.14 1.0 0.42 1.0 0.24 0.99
(1.5, 0.1) 0.27 0.98 0.43 1.0 0.23 0.98
(1.5, 1.0) 0.49 0.97 0.38 1.0 0.10 0.82
(2, 0.0) 0.12 1.0 0.35 1.0 0.18 0.98
(2, 0.1) 0.25 0.97 0.08 0.97 0.06 0.90
(2, 1.0) 0.3 0.95 0.04 0.45 0.06 0.91
(3, 0.0) 0.11 1.0 0.25 0.98 0.04 0.24
(3, 0.1) 0.29 0.97 0.01 0.03 0.01 0.05
(3, 1.0) 0.42 0.82 0.01 0.02 0.01 0.05
(5, 0.0) 0.097 0.98 0.3 1.0 0.04 0.24
(5, 0.1) 0.31 0.92 0.01 0.006 0.01 0.04
(5, 1.0) 0.36 0.58 0.01 0.01 0.01 0.04

(N/A, 1.0) 0.32 0.32 0.02 0.02 0.01 0.009

Table III: Comparison of different p-norms and λ coefficients for the
linear term for BRN, OUT1, and OUT2. When considering only the
linear term, we denote p value by N/A and report the corresponding
results in the last row.

and ptn2 are biological networks, while rt1 and rt2
are re-tweet networks. The nodes in dzr1 and dzr2 are
users of the music streaming service Deezer for two different
countries, where edges show friendship. The graphs sld1

GSS LPC MIX
(p, λ) DPM DPMP DPM DPMP DPM DPMP
(1, 0.0) 0.12 0.99 0.08 0.87 0.16 1.0

(1.5, 0.0) 0.14 1.0 0.8 1.0 0.19 1.0
(2, 0.0) 0.15 1.0 0.09 1.0 0.20 1.0
(3, 0.0) 0.16 1.0 0.09 0.98 0.21 1.0
(5, 0.0) 0.163 1.0 0.1 1.0 0.22 1.0

Table IV: Comparison of different norms for GSS, LPC, and MIX.
Here we do not report results for λ 6= 0, as the second graph is
weighted and fully connected.

and sld2 represent social interactions between the users of
the website Slashdot. We also experiment on synthetic Erdős
Rényi, ER(n, q), graphs with n nodes and edge probability q,
where n ranges from 26 to 217.

Preprocessing. For real graphs we use 4 node features: the size
of the first-hop and second-hop neighborhoods, the number of
paths of length 2, and their pagerank. For synthetic graphs,
in addition to these 4 features, we also compute the number
of paths and cycles of length 3 along with the size of the
third-hop neighborhood. Given two graphs, we construct the
dissimilarity matrix DA,B using the `2 distance between
features. We construct the constraint set Q for real graphs
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Dense Sparse
n 210 211 212 213 214 215 216 217

|EA|,|EB | 5.2K,5.2K 20.9K,21K 84K,83.8K 49K,48.7K 103K,104K 220K,221K 464K,465K 980K,981K
|Q|,|I| 10.4K,194.9K 42K,1.4M 168K,9.4M 48.7K,1.1M 103K,2.5M 219K,5.8M 465K,13M 979K,29M

CPUs tSU(s) tIT(s) tSU(s) tIT(s) tIT(s) tIT(s) tSU(s) tIT(s) tSU(s) tIT(s) tSU(s) tIT(s) tSU(s) tIT(s) tSU(s) tIT(s)
OpenMP

1 8 4 126 39 1076 412 4 - - - - - - - -
10 10 0.4 145 4 1074 43 4 - - - - - - - -
20 9 0.23 121 2 1045 19 4 - - - - - - - -
30 9 0.17 121 1 953 12 4 - - - - - - - -

Spark
1 803 680 6095 9570 � 4173 2891 11155 6339 22183 15250 � �

10 288 88 639 1139 � 2147 357 6419 769 12009 1896 � �
20 257 56 370 688 � 2029 216 6208 463 11435 1175 � �
30 257 56 302 559 � 1984 177 5869 392 10762 975 � �
56 294 79 293 402 � 1963 154 6000 338 10713 910 � �
448 75 26 52 62 1123 437 290 34 806 67 1409 135 4200 250 10990 790

Table V: Scaling results for Alg. 1 and ‖AP −PB‖22 objective (λ = 0). In this case Alg. 1 skips the inner loop Alg. 2 as the objective is
separable. We run our ADMM algorithms using both OpenMP and Spark implementations on the synthetic graphs. tIT is the average over
5 iterations. We denote the cases that the execution ran out of memory by � and ones that produced a segmentation fault with 4.

Dense Sparse
n 210 211 212 213 214 215 216 217

|EA|,|EB | 5.2K,5.2K 20.9K,21K 84K,83.8K 49K,48.7K 103K,104K 220K,221K 464K,465K 980K,981K
|Q|,|I| 10.4K,194.9K 42K,1.4M 168K,9.4M 48.7K,1.1M 103K,2.5M 219K,5.8M 465K,13M 979K,29M

CPUs tSU(s) tIT(s) tSU(s) tIT(s) tSU(s) tIT(s) tSU(s) tIT(s) tSU(s) tIT(s) tSU(s) tIT(s) tSU(s) tIT(s) tSU(s) tIT(s)
56 63 642 1566 11468 � 101 3040 218 6475 495 15359 � �

448 21 222 60 1490 584 5463 35 455 44 907 98 2070 196 4327 565 9121

Table VI: Scaling results for Alg. 1 and ‖AP − PB‖2 objective (λ = 0). In comparison to Table V, we see that in general the iteration
time is longer because each iteration of Alg. 1 executes the inner ADMM loop Alg 2 (for 60 iterations).
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Figure 4: Traces of our ADMM algorithm for p = 2 and real graphs pairs. For cortex, retweet, deezer, and slashdot pairs λ
is set to 0.001, while for monkey and protein it is 0.1. We run the inner loop (Alg. 2) for 60 iterations. The average iteration time (of
Alg. 1) for cortex, monkey, protein, retweet, deezer, and slashdot is 364(s), 712(s), 3836(s), 4375(s), 3797(s), and 2290(s),
respectively.

by one of the following methods, which we report along with
the size of the set Q in Table II.
• all: Q includes all pairs (i, j) ∈ V2, i.e., |Q| = n2.
• degree: Q includes pairs (i, j) ∈ V2, s.t., the nodes i and
j have the same node degree.

• WLk: Q includes pairs (i, j) ∈ V2, s.t. i, j have the same
color: we generate node colors by running the Weisfeiler-
Lehman (WL) algorithm [74] (see also Sec. 2 in [13]) for
k iterations.

For synthetic graphs we use all for generating Q.

B. Experimental Results

Linear Term. We begin by studying the effects of the linear
term in (3) on convergence. GA is an ER(64, 0.1) and GB is a
random permutation of GA. We show the trace of residuals and
the norm throughout iterations of ADMM for λ = 0, 0.1, 10
in Fig. 2. We run ADMM for each λ value for a fixed number
of iterations (160). In all cases the optimal solution is the

permutation matrix used to generate GB from GA, so the
optimal objective value is 0. Note that in Fig. 2 all of the
objective values as well as the residuals indeed converge to
zero. We see that non-zero λ values significantly accelerate
convergence, as the linear term directs the algorithm faster
to the correct solution. The logarithm-scaled plot accentuates
the faster linear convergence of ADMM for λ = 0.1, 10 in
comparison with slower sub-linear convergence for λ = 0.
p-norms. We next assess the quality of the computed doubly
stochastic matrix P w.r.t. p-norms. We let again GA be
ER(64, 0.1). We generate another graph GB by adding dif-
ferent noise types to GA according to the following scenarios:
• Bernoulli noise (BRN): We flip each element in A with

probability 0.01.
• Outliers (OUTk): We choose k nodes (outliers) from GA

uniformly at random and make them connected to every
other node in GB . We experimented with k = 1, 2
outliers, (i.e, OUT1 and OUT2, respectively).
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• Gaussian noise (GSS): We add i.i.d. zero-mean Gaussian
noise with variance 0.01 to the elements of A.

• Laplacian noise (LPC): We add i.i.d. zero-mean Laplacian
noise with variance 0.01 to the elements of A.

• Mixture of Gaussian and Laplacian noise (MIX): We add
a mixture of i.i.d. zero-mean Gaussian and Laplacian ran-
dom variables with 0.01 variance; the mixture coefficients
are equally set to

√
0.5 so that the variance is 0.01.

We obtain the matrix P by solving (3) for different pair
(p, λ) values. As GB is a perturbed version of GA, i.e.,
generated via the addition of noise, we measure the quality of
the resulting solution by how far it deviates from the identity.
As metrics, we report the Diagonal Probability Mass (DPM)
of P , defined as the sum of the diagonal elements normalized
by n = 64, and the Diagonal Probability Mass after Projec-
tion (DPMP) on the set of permutation matrices Pn, i.e.,
DPM = 1

n

∑
i∈[n] Pii and DPMP = 1

n

∑
i∈[n] P

π
ii , where

Pπ = arg minP ′∈Pn ‖P − P ′‖22.
We report results for the first three cases with unweighted

edges, i.e., BRN, OUT1, and OUT2 in Table III. Note that
for other cases, i.e., GSS, LPC, and MIX, the edges in GB
are weighted and thusly GB is fully connected, so we do
not add the linear term (λ = 0). We report results for the
latter in Table IV. The reported results are averaged over
5 random runs; graphs GA are generated independently at
random for each run, then GB is generated following the
scenarios outlined above.

We make the following observations from Table III. We first
concentrate on BRN, reported in the first column of the table.
We see that in the absence of the linear term (λ = 0), p = 1 has
a superior performance and recovers the identity matrix. We
further observe that for other p values adding the linear term
(λ = 0.1, 1) improves the solution. For instance, by comparing
metrics for λ = 0 and λ = 0.1 in the first column (BRN case)
we see that adding the linear term generally increases DPM,
while DPMP stays almost the same (above 0.9). However,
increasing λ further to 1 decreases DPMP significantly. The
reason is that increasing λ makes the solution highly biased on
the extracted features. Motivated by this observation we also
tested the case with only the linear term, where p is denoted
by N/A, we see that DPM and DPMP values are grossly
inferior, in comparison to other cases. These observations
suggest that there is a trade-off between the first norm term,
and the second linear term in (3); the linear term can improve
the solution by incorporating node features; however, using
a high λ values makes the results highly dependent on the
crafted node features.

To make this point more vivid we visualize solutions as
heatmaps for p = 5 and different λ values and the case
with only linear term in Fig. 3; from the figure we see that
increasing λ from 0 to 0.1 increases the overall diagonal
values (see Fig 3a and 3b). We see that increasing λ further
to 1 slightly increases the diagonal mass but also increases
non-diagonal values (see Fig. 3c); by comparing Fig. 3c and
Fig. 3d we see that the non-diagonal elements in the former
corresponds to the solution generated by adding the linear term
(see the non-diagonal elements in Fig. 3c and Fig. 3d).

For the two types of outliers (OUT1 and OUT2) reported in
next columns of Table III, we see that p = 1.5 outperforms
other p values. This is in contradiction to the previous case
(BRN), where p = 1 outperformed other p values. We further
observe that despite the case of BRN adding the linear term
only deteriorates solutions. The reason is that adding outlier
nodes adversely interfere with the extracted node features that
are all dependent on degree and neighborhood information.

Finally we report results for other noise types with weighted
edges, i.e., GSS, LPC, and MIX in Table IV. Here all p norms
have comparable performances; they all achieve DPMP = 1,
but DPM is slightly higher for higher p values.
Scalability. We evaluate the scalability of our proposed
ADMM algorithm w.r.t. the graph size n and the number
of CPUs. We report the results for two different objectives
‖AP − PB‖22 and ‖AP − PB‖2 with λ = 0, in Tables V
and VI, respectively. The two problems are mathematically
equivalent. However, ‖AP − PB‖22 has a separable form,
therefore, Alg. 1 skips the inner loop (Alg. 2); in this case,
Line 9 in Alg. 1 is an unconstrained quadratic problem, which
has a closed form solution. In particular, we report setup time
tSU and iteration time tIT. tSU includes the time spent creating
and initializing the variables, i.e., Lines 2 to 4 in Alg. 1.
tIT is the average iteration time of Alg. 1, i.e., Lines 7 to
24. ADMM is a first-order-method and it usually needs ≈100
iterations to converge. Therefore, the iteration time dominates
the setup time, but for completeness we report setup times
too. In this experiment GA, GB , and Q are Erdős Rényi
graphs. We experiment with two settings, i.e., (a) “dense”
graphs ER(n, 0.01) (n = 210 to 212) and (b) “sparse” graphs
ER(n, 1.1 log n/n) for n = 213 to 217.

For ‖AP −PB‖22 we use both the OpenMP (in C) and the
Spark (in Python) implementations. For Spark, when running
with 56 cores or less, we use a single machine out of the
cluster. From Table V we see that for dense graphs OpenMP
has excellent speedup; for example, we see that tIT for 30
CPUs is 30× smaller than tIT for 1 CPU, matching the level
of parallelism. However, the Spark implementation is slower
for these dense graphs. This is due to both the high-level
programming language (Python) and the Spark overheads,
e.g., the cost of communicating the consensus variables across
machines, which is more considerable in the dense graphs.
We report speedups for running over a Spark cluster with 480
CPUs based on Gustafoson’s law [79] that computes speedup
as follows, sspeedup = 1 − γ + γsparspeedup, where γ ∈ [0, 1]
is the portion of the serial program that can be parallelized
(ADMM iterations in Alg. 1) and sparspeedup is the speedup for
the portion of the program that benefits from parallelism. We
compute γ as the ratio of running time for ADMM iterations
(we consider 100 iterations) to the total running time for
serial execution (1 CPU), i.e., γ = 100×tIT

100×tIT+tSU , where tIT, tSU
correspond to 1 CPU in Table V. We compute sparspeedup by
comparing tIT values for 1 CPU and 480 CPUs. The speedups
for Table V are 26, 153, 84, 92, and, 110, respectively for
n = 210, 211, 213, 214, and 215.

As expected from Lemma V.2, the Spark scales better for
sparse graphs. For each n, by increasing the number of CPUs
from 1 to 56, on a single machine, we see a consistent speedup
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in both tIT and tSU. Moreover, when running over cluster
(448CPUs) it is 4.5, 5, and 6.7 times faster then a single
machine (56CPUs) for n = 213, 214, and 215, respectively.

For ‖AP − PB‖2 we only report the results for Spark
implementation in Table VI. By comparing the running times
for 448 CPUs and 56 CPUs we see speedups of 2.89 and
7.69, for the dense graphs with n = 210 and 211, respectively,
and speedups of 6.68, 7.13, and 7.41 for the sparse graphs
of size n = 213, 214, and 215, respectively. We again observe
that for sparse graphs our algorithm scales better than dense
graphs: for spares graphs the running times almost consistently
double as we double n. In comparison to Table V, we see that
setup times are lower as for the case of ‖AP − PB‖22 our
implementation pre-computes some matrices.
Real Graph Pairs. We use our proposed ADMM algorithm
to compute distances for the real graph pairs summarized in
Table II. We force a pair of graphs GA and GB to have
the same number of nodes n = max(|VA|, |VB |) by adding
isolated (degree 0) dummy nodes to the smaller graphs.

For brevity, we only report results for p = 2. Fig. 4 shows
the trace of residuals and norm. We see that our algorithm
converges for all these graph pairs; for cortex, monkey,
protein, retweet, deezer, and slashdot, the param-
eter ε is 0.01, 0.005, 0.0006, 0.001, 0.3, and 0.06, respectively.
The average iteration time of Alg. 1 for these pairs are 364(s),
712(s), 3836(s), 4375(s), 3797(s), and 2290(s), respectively,
scaling well with |Q| and |I|.

VII. CONCLUSIONS

We present a massively parallel algorithm for graph distance
computation via ADMM. We can consider penalty terms
beyond the trace. Accelerating this method further, via, e.g.,
optimally partitioning the data, are important open problems.
Our approach allows introducing additional penalty terms
beyond the trace we considered here. Identifying means of
accelerating this method further, as well as how to optimally
partition the data, are important open problems.
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APPENDIX A
PROOF OF LEMMA IV.1

For (i, j) ∈ [n]× [n] the (i, j)-th element of AP −PB is:

(AP−PB)ij =
∑
k:(k,j)∈S(i,j)

L

aikpkj−
∑
k:(i,k)∈S(i,j)

R

pikbkj ,

where S(i,j)L = {(k, j) ∈ Q|(i, k) ∈ EA} and S(i,j)R =
{(i, k) ∈ Q|(k, j) ∈ EB}. We can write (AP − PB)ij
as fij(P Sij ), where fij(P Sij ) ,

∑
k:(k,j)∈S(i,j)

L

aikpkj −∑
k:(i,k)∈S(i,j)

R

pikbkj , where Sij = S(i,j)L ∪ S(i,j)R and fij :

R|Sij | → R is a linear function. The entry-wise p norm
of AP − PB is thus (8a), where I comprises pairs (i, j)
for which Sij 6= ∅. On the other hand, tr(P>DA,B) =

∑
(i,j)∈Q pijdij by the fact that pij = 0 for (i, j) /∈ Q.

The function χR(P ) states that each row i of P belongs
to the set: R(i) = {p(i) ∈ [0, 1]|Si||1>p(i) = 1}, where
Si = ({i} × VB) ∩ Q. As a result, we can write χR(P )
as the sum of the corresponding characteristic functions.
Similarly, χC(P ) can be written as the sum of the characteristic
functions for the sets C(j) = {p(j) ∈ [0, 1]|Sj ||1>p(j) = 1},
corresponding to each column j ∈ [n] of P .

APPENDIX B
PROOFS OF THEOREMS IV.2 AND IV.3.

We present here the proofs of Theorems IV.2 and IV.3. We
first give high-level proofs as derived from key lemmas, and
then prove these lemmas.

A. Proof of Theorem IV.2

The objective of Prob. (17) is strongly convex. Hence, the
optimal solution û ∈ Rd+ is unique. We first show that û lies,
coordinate-wise, between 0 and ŵ ∈ Rd+:

Lemma B.1. Let û be the optimal solution of Prob. (17). Then
ûi ∈ [0, ŵi], for all i ∈ [d].

The proof can be found in Appendix B-D. The lemma
implies that we only need to look for a solution in a bounded
domain. Note also that, as an immediate implication of
Lemma B.1, if ŵi = 0, then necessarily also ûi = 0.

The optimal solution û satisfies the KKT conditions:

0 ∈ {g + u− ŵ −α|g ∈ ∂fp(u)}, (27a)
αiui = 0 for all i ∈ [d], u ≥ 0, α ≥ 0, (27b)

where ∂fp(u) is the subdifferential7 of the function fp(u) =
‖u‖p at the point u. Eq. (27a) implies a condition on ŵ under
which the optimal solution to (17) is the zero vector:

Lemma B.2. Given p ≥ 1, let q ≥ 1 be such that 1
p+ 1

q = 1. If
ŵ ∈ Rd+ satisfies ‖ŵ‖q ≤ 1, the optimal solution to Prob. (17)
is û = 0.

The proof can be found in Appendix B-E. Intuitively, we
prove this by verifying that if ‖ŵ‖q ≤ 1 then u = α = 0
satisfy the KKT conditions in Eq. (27). Lemma B.2 therefore
immediately implies the first (“easy”) case of Theorem IV.2.

We therefore turn to the case where ‖ŵ‖q > 1 (the “hard”
case). For u 6= 0, fp is differentiable and its subdifferential is
a singleton, i.e., ∂fp(u) = {∇fp(u)}, where

∂fp(u)/∂ui =

(
ui
‖u‖p

)p−1
,

for i ∈ [d]. Suppose that the i-th element of the optimal point
û is positive, i.e., ûi > 0. Then, αi = 0 by Eq. (27b), and
Eq. (27a) implies that û satisfies the following equation:(

ûi/‖û‖
)p−1

+(ûi−ŵi)=0, for all i s.t. ûi > 0. (28)

The optimality condition (28) can equivalently be written as

ûi = ŵig
(
‖û‖p(ŵi)

2−p
p−1

)
, for all i s.t. ûi > 0. (29)

7Note that fp is not differentiable at u = 0, hence the need to refer to its
subdifferential.
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where g : R+ → R+ is defined via Eq. (19). Recall that
Lemma B.1 implies that, if i /∈ supp(ŵ), then necessarily
ûi = 0. We can therefore consider w.l.o.g. a vector ŵ for
which supp(ŵ) = [d]; if not, we can compute the optimal
solution by setting ûi = 0 for i /∈ supp(ŵ), and focus on
what happens on the remainder of the coordinates, that have
full support. Not surprisingly, the optimal solution in this case
is characterized by Eq. (29). In particular, the following lemma
holds:

Lemma B.3. Consider a w ∈ Rd+ s.t. (a) supp(ŵ) = [d],
and (b) ‖w‖q > 1, where 1

p + 1
q = 1. Let gi : R → Rd,

i ∈ [d], and h : R+ → R be given by Eqs. (20) and (21),
respectively. Then, the unique solution û to Prob. (17) is given
by ûi = gi(s

∗), for all i ∈ [d], where s∗ is the unique value
in (0, ‖w‖p] s.t. h(s∗) = 0.

The proof can be found in Appendix B-F. Intuitively, we
show this by first establishing that h(0) = 0 and h(‖ŵ‖p) ≤ 0.
We show that, if ‖w‖q > 1, then h′(0) > 0; thus, h must
be strictly positive in the neighborhood of 0. As h(‖ŵ‖p) ≤
0, there must exist a root of h in (0, ‖ŵ‖p]; any such root
corresponds to an optimum of Prob. (17) via (29); uniqueness
is implied by strong convexity.

Lemma B.3, along with our observation on cases where
i /∈ supp(ŵ), immediately imply Theorem IV.2. To see this,
note first that for i /∈ supp(ŵ), gi(s) = 0 for all s ∈ R+.
Moreover, these 0 coordinates do not contribute to ‖u‖p or
‖ŵ‖p; as such, they do not affect h and, thereby, the root s∗:
the latter is fully determined by only elements in supp(ŵ).
Hence, Eq. (22) holds for all coordinates in [d].

B. Proof of Theorem IV.3

We begin by showing the equivalence of Problems (15)
and (17):

Lemma B.4. Let û be an optimal solution to Prob. (17), where
ŵ is given by Eq. (16), then u∗, given by Eq. (18), is an
optimal solution to Prob. (15).

The proof can be found in Appendix B-C. Armed with this
result, we next show that Alg. 3 correctly bounds the root s∗,
whenever the corresponding for-loop is executed:

Lemma B.5. If ‖ŵ‖q > 1, at every iteration of Alg. 3, s∗ ∈
[sL, sU ].

The proof is in Appendix B-G. Observe that the distance
between the two bounds is halved at each iteration. Hence, at
the last (log2

⌈
1
ε

⌉
) iteration,

|s− s∗| ≤ |sL − sU | ≤ ‖ŵ‖pε. (30)

On the other hand, functions gi : R+ → R+ are Lipschitz:

Lemma B.6. Each function gi : R+ → R+ is Lipschitz

continuous with Lipschitz parameter ŵ
1

p−1

i .

The proof is in Appendix B-H. Lemma B.6 immedi-
ately implies that, for u the output of the algorithm, and
s the last estimate of the root:

(∑
i∈[d](ui − ûi)

p
)1/p ≤

(∑
i∈[d] ŵ

p
p−1

i

)1/p · |s − s∗|, and the theorem follows from
Eq. (30), as q = p

p−1 .

C. Proof of Lemma B.4

We have that: minu∈Rd ρ(‖u‖p + ρ
2‖u − w‖22) =

minu′∈Rd ‖u′‖p + 1
2‖u

′ − w′‖22 for u′ = ρu, w′ = ρw.
One can show that the coordinates of the optimal solution
to the latter problem will have the same sign as the coordi-
nates of w. Let � : Rd × R → Rd indicate the element-
wise multiplication between two vectors, and sign : Rd →
{−1,+1}d be the vector resulting from element-wise appli-
cation of the sign operator. Then, under the transformation
v = sign(w) � u′ ∈ Rd+, Prob. (15) is equivalent to:
minv∈Rd

+
‖ sign(w)�v‖p+ 1

2

∥∥ sign(w)�v−sign(w)�ŵ
∥∥2
2

=

minv∈Rd
+
‖v‖p + 1

2‖v − ŵ‖
2
2,as ‖e � y‖p = ‖y‖p for all

e ∈ {−1, 1}d, y ∈ Rd, and p ≥ 1. Hence, given an optimal
solution û to Prob. (17), the optimal solution to Prob. (15) is
given by u∗ = 1

ρ (sign(w)� û).

D. Proof of Lemma B.1

Suppose that û is an optimal solution of (17), s.t., ûi < 0
for some i ∈ [d]. Then, for the vector û′ with all elements
equal to the elements û except the i-th element with û′i = 0 we
have the following ‖û′‖p+ 1

2‖û
′−ŵ‖22 < ‖û‖p+ 1

2‖û−ŵ‖
2
2,

a contradiction. Similarly, if ûi > ŵi for some i ∈ [d], we
can construct a vector û′, s.t., all of its elements are the same
with the elements of û, except û′i = ŵi, then again ‖û′‖p +
1
2‖û

′ − ŵ‖22 < ‖û‖p + 1
2‖û− ŵ‖

2
2, a contradiction.

E. Proof of Lemma B.2

We show that u = 0,α = 0 satisfy the KKT conditions
(27). For u = α = 0 Eq. (27b) is obviously satisfied. Then
we need to show that 0 ∈ {g − ŵ | g ∈ ∂fp(0)}, or
equivalently, ŵ ∈ ∂fp(0). Formally, the subdifferential at zero
is the set ∂fp(0) = {g ∈ Rd | g>v ≤ ‖v‖p for all v ∈ Rd}.
By Holder’s inequality, for every v ∈ Rd we have ŵ>v ≤∑d
i=1 |ŵi||vi| ≤ ‖ŵ‖q‖v‖p ≤ ‖v‖p, where the last inequality

holds as ‖ŵ‖q ≤ 1. Hence, ŵ ∈ ∂fp(0), and u = α = 0
satisfy the KKT conditions, so û = 0 is optimal.

F. Proof of Lemma B.3

The inverse g−1 of function g is given by

g−1(x) = x(1− x)−1/(p−1). (31)

As g−1 is monotone and continuous in [0, 1), we have that
g is also monotone and continuous in R+. Hence, function
h is continuous in the interval [0, ‖ŵ‖p]. Given that, by
the intermediate value theorem, g(a) ∈ [0, 1], we have that
h(‖ŵ‖p) ≤ 0. Since, by definition, g(0) = 0, we also have
that h(0) = 0. Moreover,

dh(0)

ds
=lim
δ→0

(∑d
i=1(gi(δ))

p
) 1

p−δ

δ
=lim
δ→0

(∑d
i=1(gi(δ))

p

δp

) 1
p

−1.

By Taylor’s theorem, the first-degree Taylor approximation
of gi at 0 is gi(δ) = g′i(0)δ + o(δ2). The partial derivative
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g′i(0) is given by: g′i(0) = ŵ
1

p−1

i g′(0). Note that g′(0) =(
dg−1(0)
dx

)−1
= 1, and, as a result,

g′i(0) = ŵ
1

p−1

i . (32)

Therefore, we have:

∂h(0)

∂s
=lim
δ→0

( d∑
i=1

(ŵ
1

p−1

i δ +O(δ2))p/δp
) 1

p−1=‖ŵ‖
1

p−1
q −1>0,

as ‖ŵ‖q > 1 for q = p
p−1 by the hypothesis of the theorem.

Hence, h(s) is positive in a neighborhood of 0. As h is
continuous, and h(‖w‖p) ≤ 0, by the intermediate value
theorem h must contain an s∗ ∈ (0, ‖ŵ‖p] s.t, h(s∗) = 0.
Such a solution satisfies Eq. (29) for all i ∈ [d] and, as such,
it satisfies the KKT conditions of Prob. (17); therefore, it is an
optimal solution. Strong convexity implies its uniqueness.

G. Proof of Lemma B.5.

By Lemma B.3, there must exist a unique root of h(s) = 0
in (0, ‖ŵ‖p]. This, along with the strict positivity of h in the
vicinity of 0 when ‖ŵ‖q > 1, implies that if h(‖ŵ‖p) = 0,
all values h(s) for s ∈ (0, ‖ŵ‖p) are strictly positive, and the
bisection will repeatedly update the lower bound but never
the upper bound. The lemma therefore holds. If, on the other
hand h(‖ŵ‖p]) < 0, s∗ must be in (0, ‖ŵ‖p) by Lemma B.3,
so the lemma holds for the first iteration. We can show, by
induction on iterations, that h(sL) ≥ 0, with equality holding
only if sL = 0, and h(sU ) < 0. If h(sL) > 0, the lemma
follows from the intermediate value theorem. If h(sL) = 0,
the lemma again follows from the intermediate value theorem,
and the fact that h is strictly positive in the vicinity of 0.

H. Proof of Lemma B.6

The inverse of g is given by Eq. (31), which is strictly in-
creasing, differentiable, and convex in [0, 1); the latter follows
from the fact that the second derivative is non-negative for
p > 1, x ∈ [0, 1). Hence, g is strictly increasing, differen-
tiable, and concave. Each function gi, i ∈ [d], consists of a
composition of g with an affine function, and a multiplication
with a non-negative scalar, so it is also concave. Hence, it is
Lipschitz continuous with parameter given by g′i(0); the latter
is characterized by Eq. (32).

APPENDIX C
PROOFS OF PARALLEL COMPLEXITY RESULTS

A. Proof of Lemma V.1

The number of non-zero elements in the matrix AP −PB
is at most the number of the non-zero elements in AP +PB,
where P is a matrix has the full support under constraints G,
e.g., P = E. Each set Sij defines the support of the (i, j)-th
element of AP − PB; therefore, we conclude that the total
number of non-empty sets Sij is upper-bounded by m0. For
the terms (8c) and (8d), it is easy to see that we have |VA| = n
sets Si and |VB | = n sets Sj , each corresponding to the nodes
i ∈ VA and j ∈ VB , respectively.

B. Proof of Lemma V.2

Let S(i,j)L = {(k, j) ∈ Q} ∩ {(i, k) ∈ EA}
and S(i,j)R = {(i, k) ∈ Q} ∩ {(k, j) ∈ EB}.
Then

∑
i,j∈[n] |S

(i,j)
L | =

∑
j∈[n]

∑
i∈[n] |S

(i,j)
L | ≤∑

j∈[n] min(|EA|, ndj) ≤ min(n|EA|,
∑
j∈[n] ndj) =

min(n|EA|, n|Q|), where dj is the node degree for j ∈ VB .
Similarly, we can show that

∑
i,j∈[n] |S

(i,j)
R | ≤

min(n|EB |, n|Q|). As a result,
∑
i,j∈[n] |Sij | ≤∑

i,j∈[n] |S
(i,j)
L | + |S(i,j)R | ≤ min(n|EA|, n|Q|) +

min(n|EB |, n|Q|).
Now we prove (25c). For each set Sij we have that:
|Sij | ≤ |S(i,j)L | + |S(i,j)R | ≤ max(di, dQ) + max(dj , dQ) ≤
max(dA, dQ) + max(dB , dQ). From this and Lemma V.1,
which shows that I ≤ m, we get

∑
i,j∈[n] |Sij | ≤

mmaxi,j(|Sij |) ≤ m(max(dA, dQ) + max(dB , dQ)). For
Si, i ∈ [n] we have that:

⋂
i Si = ∅, and

⋃
i Si = {(k, j) ∈

Q|j ∈ VB} ⊆ Q. Therefore, for the total size we have:∑
i |Si| = | ∪i Si| ≤ |Q|.
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