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Spatiotemporal processes commonly exist in manufacturing. Modeling and monitoring such processes are crucial
for ensuring high-quality production. For example, ultrasonic metal welding is an important industrial-scale
joining technique with wide applications. The surfaces of ultrasonic welding tools evolve in both spatial and
temporal domains, resulting in a spatiotemporal process. Close monitoring of tool surface progression is
imperative since degraded tools often lead to low-quality joints. However, it is generally expensive and time-
consuming to acquire fine-scale surface measurement data, which is not economically viable. This paper de-
velops a multi-task learning method to enable data-efficient spatiotemporal modeling. A Gaussian process-based
hierarchical Bayesian inference structure is constructed to transfer knowledge among multiple similar-but-not-
identical measurement tasks. Meanwhile, a spatiotemporal kernel is developed based on squared sine expo-
nential damping (SSED) function to characterize the periodic trend of anvil surfaces. The proposed method is
able to improve interpolation accuracy using limited measurement data compared with state-of-the-art tech-
niques. Data collected from lithium-ion battery production are employed to demonstrate the effectiveness of the
proposed method. Additionally, the influence of training data size and hyperparameter selection on the modeling

performance is systematically investigated.

1. Introduction

Spatiotemporal processes widely exist in manufacturing. Modeling
and monitoring spatiotemporal processes are of great interest to man-
ufacturers and industry practitioners. For instance, in ultrasonic metal
welding, which is an important industrial-scale solid-state joining
technique, the surfaces of welding tools change both spatially and
temporally, as shown in Fig. 1, and the surface degradation leads to low-
quality joints [1-6]. Modeling and monitoring the tool surface degra-
dation are crucial for improving the process robustness [7] and online
monitoring of product quality [8,9,1]. In automotive machining pro-
cesses, spatial and temporal changes in tool geometry result in machined
parts with different surface patterns and quality [10,11]. In addition, the
geometry modeling of surface spatial variation [12] and time-varying
deviations [13] have been conducted for monitoring the quality of
machined parts.

Fine-scale measurement data of spatiotemporal processes is crucial
in manufacturing applications to enable effective modeling, monitoring,
and control. The acquisition of fine-scale measurement data, however, is
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often expensive and time-consuming [2,4]. For instance, it may take a
three-dimensional (3D) microscope around 8 hours to scan an anvil
surface with a dimension of 43 mm x 8 mm in ultrasonic metal welding
[2], which brings prohibitive production downtime. Additionally, mul-
tiple factors may limit the availability of measurement data. For
example, the surface measurement processes are subject to the distur-
bances including measurement table vibration, dissipated heat, and
surface contamination [14].

In light of the challenges brought by the high cost of the measure-
ment process and limited measurement data, researchers and practi-
tioners have developed various interpolation techniques to predict the
values at unmeasured locations using available data. The interpolation
methods can be generally categorized into deterministic and stochastic
methods. The former includes inverse distance weighted interpolation
[15], B-spline methods [16], and artificial neural networks [17]. The
representative stochastic models include ordinary kriging [18] and its
variants such as co-kriging [19] and kriging with external drift [20].
Different kernels, such as Bessel additive variogram [21], have been
developed to extend the capability of kriging methods to model different
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spatial variation patterns. These methods have been widely adopted in
manufacturing applications, including wafer profile monitoring in
semiconductor industry [22], quality control in additive manufacturing
[23], and tool condition monitoring in ultrasonic metal welding [2,4,3].
Because these methods estimate missing values from nearby locations,
their effectiveness relies on adequate measurement data. As the data of
nearby locations become limited, their performance quickly degrades.

Spatiotemporal modeling overcomes such limitation by leveraging
both spatial and temporal correlations to infer on unmeasured locations.
The addition of temporal information often leads to improvements in
modeling performance. Recent methods on spatiotemporal modeling
and prediction include shapelet based spatial-temporal feature extrac-
tion [24] and evolutionary algorithm based spatiotemporal prediction
[25]. As an example, in automotive machining processes, Babu et al.
adopted a state-space spatiotemporal modeling to improve the quality
inspection by predicting the deviations of the entire part from partial
measurements [26]. However, when data scarcity is more severe, the
effectiveness of spatiotemporal modeling methods is impaired, because
the consistent data deficiency across all time stages prohibits trans-
ferring information among time stages.

To cope with this challenge, this paper develops a multi-task learning
method for data-efficient spatiotemporal modeling. It is motivated by
the fact that in factories, manufacturing tasks are often performed by
multiple machines in parallel, which share much similarity. High stan-
dardization of modern manufacturing further enforces this similarity
[27]. Therefore, it is potentially more cost-effective if spatiotemporal
processes can be jointly learned by transferring information among
them.

To realize the joint learning, this paper develops a method called
spatiotemporal kernel based multi-task learning (STK-MTL). Each
spatiotemporal process is modeled from a kernel perspective, and
domain knowledge can be integrated into customized kernels. This
kernel view also provides an access to the variogram method, which has
been extensively studied in the geostatistics community [28]. Finally,
we note that the proposed method is readily applicable to a wide range
of scenarios in manufacturing.

The main contributions of this paper can be summarized as follows:

1. A new spatiotemporal modeling approach is developed by combing a
spatiotemporal kernel and hierarchical multi-task learning. It pro-
vides a solution for cost-effective spatiotemporal modeling and
monitoring in data scarce situations. This method is demonstrated to
be more effective than learning each process separately.

. A framework is developed to formulate a customized kernel function
that can account for the periodic spatial patterns of the tool surfaces
in ultrasonic metal welding. Compared with the conventional kernel
used in the multi-task learning for Gaussian process, our kernel
captures both periodic spatial variations and temporal correlations
well.

. The characteristics of the proposed STK-MTL approach are system-
atically studied, including its applicability and the effects of hyper-
parameters. Practical suggestions are also presented based on the
experimental results.

The rest of the paper is organized as follows. Section 2 presents the
STK-MTL model and its implementation. In Section 3, a case study is
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reported on the anvil surface to verify the effectiveness of proposed
method. In Section 4, the applicability of the proposed method and the
effects of hyperparameters are discussed. Finally, Section 5 concludes
the paper.

2. Method

In this section, the spatiotemporal modeling approach from the
kernel point of view and the kernel function construction are first
reviewed, and then, the multi-task learning algorithm and its imple-
mentation are introduced.

2.1. Spatiotemporal modeling

We use spatiotemporal coordinates to represent measurement data.
Each measurement can be denoted as (t, x, y, ), where t is the time when
the measurement happens, and x, y, and z specify its location in the 3D
space. The task of surface measurement/modeling is essentially to
obtain height z in a given spatiotemporal location p, where

@

These spatiotemporal locations are not independent, but instead
correlate with each other [28]. One way to explore these correlations is

pP= (t:x7Y)'

using kernel functions. The inner product «(p;,p;) = <¢(pi)7 ¢(pj)> pro-

vides a valid positive definite kernel, where ¢(p;) is the projection of p; in
a Hilbert space. According to the closure property of kernel functions, a
spatiotemporal kernel can be constructed as the product of a spatial
kernel and a temporal kernel [29] as shown below:

Kst(Php/') :Ks(PnPj)‘Kt(PhP/')‘ (2)

As a prime form of spatial kernel ks, Gaussian radial basis function
(RBF) kernel is popular in spatial statistics. It is given by
2
||(Xi,)’i) - (xja)’j)H
5 '

&:(pi,pj) = exp( - 3

where &2 is scaling factor. The intuitive interpretation for Gaussian RBF
kernel is that the nearest neighbors share the most similarities.

However, the Gaussian RBF kernel fails to characterize the periodic
pattern of anvil surfaces in ultrasonic metal welding, which is docu-
mented as “hole effect” [21]. To capture the “hole effect”, we can
consider sinusoidal-function-based kernels, such as “waving model” and
squared sine exponential (SSE) model:

_sin(]] G ) = Goow)|/w)

Kwav\Pi, Pj) = 4
Pops) =1 H(xhy,-)f(x_,-,y/-)H/w @
Ksse(Pi, Pj) = exp( - s (H(thi)l; (x/7y1)||/w) >7 5)

where w is the wavelength of a periodic pattern. “Wave model” fits the
damping periodic trend but leads to nonzero kernel value among irrel-
evant locations. In fact, the affinity in these locations is expected to be
zero instead. The SSE model characterizes this attribute by coating an
exponential function out of the sinusoidal term, so the kernel value can
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Fig. 1. The spatiotemporal progression of anvil surface topography in an ultrasonic welding process.
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be kept ideally small in “inactivated” area.

Strictly speaking, the SSE model still fails to depict the damped trend
for different periods, meaning that compared with distant periods,
adjacent periods share more similar surface conditions with the inter-
esting location. One possible solution is to use radial basis to charac-
terize this trend. Popular radial basis functions with the damped trend
include inverse quadratics and inverse multiquadrics [30]. To overcome
this drawback, we propose an squared sine exponential damping (SSED)
model, which is shown by Eq. (6), by adding inverse quadratics to a
standard SSE model:

1 sin? (|| — x| /ws)

1 . sin? (i = yll/wy)
5

=1 /w21 =yl w2 + 1

KSSEDQ’iapj) = EXP[ - (6)

where wy and wy represent the periods in x and y directions, respec-
tively. In practice, w, and wy can be either obtained from the provided
tool geometry specifications or estimated from surface measurement
data using frequency domain analysis such as fast Fourier transform.

Following the work on multi-task time-series prediction [31], we
choose Gaussian RBF kernel for the temporal kernel:

s~ z,)|2>

5

The spatiotemporal kernel «(p;, pj) is then constructed by obtaining
the product of the spatial and temporal kernels, as shown in Eq. (2).

It is worth mentioning that modeling spatiotemporal processes from
the kernel perspective builds a connection to the variogram model. The
transformation from a variogram function to a kernel function is illus-
trated by:

k(P pj) = exp( - ()

& (pipr) = C( N pi—pi ) = v(e0) —r(l pi=pi Il). ®
where C(|| p; —p; ||) is the covariance function and y(|| p; — p; |)is the
variogram function. Practically, the variogram function can be esti-
mated using the following equation:

7(h) = m%{ [Z(p:) - Z(Pj)}z }a 9

where N(h) = {(s;,s;) : ||s: — ;|| = h } is the set of all pairs of locations
grouped by lag distance h. Z(p;) is the surface height in our context of
anvil surface monitoring. Expert knowledge is often incorporated in the
process of choosing variogram functions. Using Eq. (8), we can convert
an existing variogram function to a kernel function and use it in our STK-
MTL model.

2.2. Multi-task learning

Various approaches have been developed for multi-task learning,
such as transferring similar features, sharing hidden layers of neural
network, and introducing regularization terms as constraints [32]. Here,
we develop a hierarchical multi-task learning structure on top of the
methods of [33].

Given m similar tasks, each of them is denoted as task [, where [ =1,
2, 3, ..., m. The target of multi-task learning is to estimate latent func-
tions f; for each task based on training data D; = (P}, z;), where P; € R™*4
are the spatiotemporal locations of interest; z € R™ are the corre-
sponding measurement values, which is the surface height in anvil
surface monitoring; n; is the size of training data. In our application,
dimension d is 3, because a spatiotemporal location is characterized by
(t, x, ¥). UP denotes the set of distinguished p; in {D;}, and UP € R™¢,
where n is the size of distinctive training data for all tasks.

Fig. 2 illustrates the hierarchical structure for the Gaussian process
multi-task learning. The estimated values in task [ are obtained by the
following steps:
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Fig. 2. Graphic model for hierarchical multi-task learning.

(10) pgq, C, are generated from

1
P> Co) :N<Ma O.ECa)IW(CaIr, K1) 10)
(11) For each task f;
' ~ Ny, Co). an
(12) The estimated function in task [ is given by
Z(p) = adx(p,p;) +e, (12)
i=1

where K is an R™" kernel matrix (also called Gram matrix), con-
taining kernel x(p;, pj) of every input pair from UP, wherei=1,2,...,
nandj=1,2,...,n Inanvil surface monitoring, x(p;, p;) is replaced
with the spatialtemporal kernel k(p;, p) obtained in Section 2.1. ¢ is
the output noise, following ¢ ~ N(O, 62).

The rationale of sharing similarity among tasks is to assume that the
ap for each task [ is sampled from the same multivariate Gaussian dis-
tribution as shown by Eq. (11), whose parameters are sampled from an
upper layer of normal-inverse-Wishart distribution, which is given by
Eq. (10).

In the above-mentioned framework, the model parameters are
0 ={liqg, Cq, 02}, whose estimation can be achieved with an Expectation
Maximization (EM) algorithm. Details of the EM algorithm are provided
in Appendix I. Then a series of estimated o' are plugged into Eq. (13) and
the estimated measurement value at p, is given by:

21(”;1) = Zaﬁ’(sl(pmpi)a (13)
i=1

where p, denotes the spatiotemporal location that we are interested in.
kst(Pu, pi) is the kernel value between p, and each p; in UP.

The implementation of the above procedure is illustrated by Fig. 3.
The hyperparameters 532, 5[2, 7, and r are predetermined and can be used
to tune the STK-MTL model. Then, spatialtemporal kernels xs(p;, pj) are
formulated for every pair of training data. These kernels xu(p;, pj)
constitute the kernel matrices K and Kj, which are subsequently used in
the EM algorithm. The mathematical formulations on kernel matrices
and EM algorithm are detailed in the Appendix. The EM algorithm is
used to find maximume-likelihood estimates for model parameters yu,, C,.
Finally, the estimated p, is plugged in the Eq. (13) for predicting test
data.

The complexity of the EM algorithm is O(kmn®), where k is the
number of iterations in EM. The computation could be more time-
consuming with the increase of k, m, and n. Here, we suggest two
ways to accelerate the algorithm.
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Test Data
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Step

Model
Parameters
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Fig. 3. Flowchart for the spatiotemporal kernel based multi-task learning.

e Use parallel LU decomposition in graphics processing unit or other
multi-cores processors to accelerate matrix inversion [34] which

contributes most complexity O(n®) in the EM algorithm.

e Check the log-likelihood trace and reset initial conditions, when
convergence cannot be achieved after k reaches a predetermined

threshold.

There are four hyperparameters in the STK-MTL model, namely, 62,
52 from spatiotemporal kernel, and 7, 7 from the normal-inverse-Wishart
distribution. The selection of these hyperparameters affects the
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prediction accuracy, which will be discussed in Section 4.

3. Case study
3.1. Data acquisition and experimental setup

Ultrasonic metal welding is a solid-state joining technique. A
bonding between thin metal sheets clamped under pressure is created
with oscillating shears generated by ultrasonic vibration [35]. It is well
suited for various applications such as lithium-ion battery assembly [35,
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3] and joining of hybrid heat exchangers [36-38]. However, ultrasonic
metal welding has relatively large process variability because its quality
is influenced by a variety of uncontrollable process conditions such as
surface contamination [35,7] and tool degradation [1,2,4-6]. As such,
quality monitoring for ultrasonic welding has been widely investigated
[3,8,9,38]. Ultrasonic welding tools, including horn and anvil, are
directly involved in the bonding formation mechanism and its geometry
significantly affects the joining quality [5,1,6,7]. Therefore, the tool
surface degradation is a major concern in the quality control of ultra-
sonic metal welding.

This case study aims to model the spatiotemporal progression of
anvil surfaces in ultrasonic metal welding and compares the perfor-
mance of our method with state-of-the-art modeling approaches. The
anvil surface measurement data was obtained using Keyence VK-9700
laser scanning confocal microscope. The original dataset contains fine-
scale measurement of three similar-but-not-identical anvil surfaces in
consecutive time stages.

The missing measurement values at the target task are selected by
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random sampling, while data sampled out are used as testing data. In the
case study, the sampling rate is set as 25%. For an anvil surface, this
sampling strategy results in 405 training data points and 135 testing
data points at each time stage. A detailed discussion about the appli-
cability of the proposed method at different sampling rates can be found
in Section 4. Considering that the prediction performance can fluctuate
due to the randomness of sampling, the sampling-and-prediction process
is repeated 10 times to obtain a range for prediction accuracy.

The prediction for missing measurement values is conducted over
time, which means that STK-MTL is progressively applied, each time
with previous stages as already measured. For example, when we are
predicting surface height in stage t, the measurement data in earlier
stages 1, 2, ..., t— 2, t— 1 are available, while later stages t+ 1, t+ 2, ...
are treated as unknown. After finishing the stage t, we continue to
predict stage t + 1 with the same premise. In total, 16 consecutive stages
are predicted in the case study.
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Fig. 4. Comparison of four candidate methods with regard to fused data: (a) SK-STL, (b) STK-STL, (c) SK-MTL, (d) STK-MTL. The color and grey-scale images
represent anvil surfaces that are used and unused for predicting the target surface, respectively. Target surfaces are indicated by yellow stars. Different colors in target
surfaces indicate different height values and a similar color scale with that of Fig. 1 is used.
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3.2. Performance comparison

The performance of the proposed STK-MTL method is compared with
three other methods. The differences of these methods are summarized
in Fig. 4 and Table 1. The setting of these methods aims to test the
effectiveness of introducing temporal and similar-task information. A
highlight of the differences is given below:

1. Spatial kernel based single-task learning (SK-STL) uses data from the
target surface at the current time stage as shown in Fig. 4(a). In other
words, neither spatiotemporal kernel nor multi-task learning are
involved. This method is essentially the same as simple kriging, a
common algorithm in geostatistics which models spatial variation
using Gaussian process [28].

. Spatiotemporal kernel based single-task learning (STK-STL) uses
data from the target surface at recent three time stages as shown in
Fig. 4(b). The key difference from SK-STL is that a spatiotemporal
kernel is formulated by extending the spatial kernel with time
domain. This method can also be referred as spatiotemporal
Gaussian process.

. Spatial kernel based multi-task learning (SK-MTL) introduced in [14]
leverages data from multiple surfaces, but uses data from the current
time stage only. This method is also known as multi-task Gaussian
process learning. In our scenario, it essentially uses three surfaces at
a certain time stage, as shown in Fig. 4(c).

Root mean squared error (RMSE), the definition of which is given by
Eq. (14), is selected as an evaluation metric for prediction performance.
Because RMSE varies in each run due to random sampling, we calculate
the mean RMSE to measure the accuracy. Another important metric is
standard deviation (STD) of RMSE during all repeated runs, which is
given by Eq. (15). STD indicates the robustness of the prediction per-
formance. A lower STD value indicates better robustness).

Ser(Z(p) = Z(p))*

RMSE =
N )

14)

where N denotes the size of P. Recall that P is the set of spatiotemporal
location.

1 & —_\2
STD = |2 > (RMSE,- 7 RMSE) ,

i=1

(15)

where K is the total number of experiments repeated for each prediction
method. Since we have repeated sampling-and-prediction process 10
times, K is 10 in this case.

Fig. 5 displays the comparison of four methods. In general, it is
observed that the RMSEs of multi-task learning (including SK-MTL and
STK-MTL) stay lower and more stable. In contrast, there are some out-
liers with significantly higher RMSEs in single-task learning (including
SK-STL and STK-STL), which indicates their poor robustness and that
they are influenced by sampling much more significantly. This evidence
proves sharing information among similar tasks can be beneficial.

Fig. 6 compares the RMSE mean and standard deviation of the four
methods. By comparing spatiotemporal-kernel methods with spatial-

Table 1
Methods summary for the case study.

Method Transfer knowledge from other Use knowledge from historical
surfaces? measurement?
SK-STL No No
STK-STL No Yes
SK-MTL Yes No
STK- Yes Yes
MTL
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kernel ones, we can see from Fig. 6(a) that incorporating temporal in-
formation helps to reduce error of multi-task learning in every time
stage, and it also benefits single-task learning in 14 of 16 time stages.
Fig. 6(b) shows that including temporal information can reduce stan-
dard deviation of RMSE thus improving the modeling robustness.
Among four methods, the proposed STK-MTL outperforms others in
every time stage, with highest prediction accuracy and robustness.

4. Discussion

This section discusses the following two issues: (A). Model applica-
bility (with respect to data availability) and (B). Effects of
hyperparameters.

4.1. Model applicability w.r.t. data availability

In order to reveal the applicable scope of STK-MTL, its performance
is tested on different data availabitity. 40%-10% of original data are
randomly sampled to simulate the missing data. Thus, the available
training data in the target task vary from 60% to 90%. 10 runs are
repeated for sampling and prediction. The prediction is made to estimate
the missing data in the last time stage, which is stage 16, with the data
from previous two stages and other two surfaces available for STK-MTL.
The performance of STK-MTL is compared with other three methods, as
introduced in Section 3.

The results are presented by Fig. 7, where Fig. 7(a) shows the average
RMSE and Fig. 7(b) shows the STD of RMSE. It is seen that when
available (measurement) data are limited, the performance of single-
task learning (SK-STL and STK-STL) rapidly degrades, indicating that
traditional STL becomes unreliable with limited measurement. Mean-
while, multi-task learning methods (SK-MTL and STK-MTL) outperform
STL methods substantially. As more data in the target task are available,
the prediction accuracy of single-task learning methods continuously
improves, while the accuracy of multi-task learning methods is consid-
erably stable. When the data availability in the target task exceeds 80%,
the STK-STL method starts to outperform the STK-MTL method. In such
cases, the training data is sufficient in the target task and STK-STL can
better capture the specificity of the target task. This phenomenon in-
dicates that multi-task learning is more advantageous in data-scarce
scenarios. Model selection should be conducted in order to select the
best-performing method.

Fig. 7(b) shows the standard deviation of RMSE for each setting. It is
observed that spatiotemporal-kernel methods keep showing higher
robust than spatial-kernel methods, and multi-task learning shows
higher robust than single-task learning. Specifically, STK-MTL has the
lowest standard deviation in all levels of data loss.

In short, the above experiment results lead to the following
conclusions:

1. STK-MTL is applicable to a wide range of data loss scenarios and it
brings many benefits especially in a severely data-scarce
environment.

2. Bringing information from similar tasks can help to improve pre-
diction accuracy and robustness, especially when limited data is
available. However, multi-task learning should be carefully used
when data loss is minor because the dissimilarity among tasks can
manifest.

4.2. Effects of hyperparameters

There are two groups of hyperparameters in STK-MTL model: {552,
8%} come from spatiotemporal kernel and {z,7} come from normal-
inverse-Wishart distribution in multi-task learning structure. In this
section, experiments are conducted to study the effects of hyper-
parameters in these two groups.
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Fig. 6. Performance of four models in each time stage.

(1) Hyperparameters from spatiotemporal kernel: During the
experiment, 652 varies from 0.01 to 0.5, and 63 varies from 0.01 to 500,
while two other hyperparameters are set to be constant at 7 =1000,
7=0.01. Fig. 8(a) displays the trend of RMSE with respect to 62 and 2. It
is observed that with the increase of 52, the prediction error first sharply
decreases and then increases. It can be explained by the fact that
hyperparameter &2 scales the correlation for each data pair, thus
learning too much nor too little from relevant locations could be
harmful. Based on the experiment result, it is suggested to set 62 to be
around 0.1, and 6? around 40 for ultrasonic anvil surface.

(2) Hyperparameters from multi-task learning structure: When
investigating the effect of 7, 7, the hyperparameters from kernel are fixed
to be 62 = 0.1, 52 = 40. z varies from 0.01 to 4000, and 7 varies from
0.01 to 1750. The corresponding RMSE is shown in Fig. 8(b). It is
observed that with the increase of 7, prediction error first decreases and
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(b)

Fig. 7. Performance of the four models on different amount of training data.

then increases, having minimum error at around 7 =1000. Meanwhile,
with the increase of z, prediction error first increases and then keeps
stable. With 7 settled as optimum at 1000, prediction error becomes
lower when 7z < 50.

By comparing the two groups above, we can see that prediction ac-
curacy is much more sensitive to the hyperparameters from the kernel
function. This indicates that hyperparameters from kernel function
should be more carefully chosen in order to fit a particular spatiotem-
poral process. In practice, they can be tuned based on training data with
cross-validation.

4.3. Accelerated computing

To pinpoint the bottleneck of the STK-MTL algorithm, we first
perform program profiling to obtain the breakdown of runtime, which is
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Fig. 8. Effects of hyperparameters on prediction accuracy: (a) effects of (552,5[2)
from kernel function, and (b) effects of (z,7) from multi-task learning structure.

visualized in Fig. 9. Profiling is a common approach to locating the
hotspot in a program [39]. In this experiment, the program is imple-
mented in Python and evaluated on a laptop with Intel i7-9750H @
2.60 GHz CPU and Nvidia GeForce GTX 1650 4GB GPU. To facilitate
accurate analysis, trivial data pre-processing before the inference pro-
cess is striped for runtime analysis.

As shown in Fig. 9, an inference on a target surface costs 986.9
seconds. Notably, the matrix inversion operation alone costs 804.5
seconds, accounting for over 81.5% the total computation time. This is
because the matrix inversion is operated in every iteration of EM algo-
rithm, and its complexity O(n®) grows polynomially as the matrix size
increases. In our case study, the kernel matrix in a ~3400 x 3400 size
leads to extensive computation. Particularly, the baseline matrix
inversion using Gauss-Jordan Elimination is prohibitively expensive, as
shown in Fig. 10. To achieve improved computing efficiency, we
recommend using the LU decomposition and parallelizing the compu-
tation with pivoting on hypercubes [40]. These solutions can be realized
in certain Python libraries such as NumPy and SciPy using multi-thread
CPU programming. The runtime shown in Fig. 9 is based on NumPy
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Fig. 10. Runtime of matrix inversion as the matrix size growing.

library. The comparison between baseline and CPU parallel matrix
inversion is presented in Fig. 10.

Apart from multi-thread CPU parallel programming, further im-
provements in computational efficiency can be accomplished by (1)
using GPU with a large number of processors and (2) optimizing the
number of iterations needed to achieve convergence. First, it is docu-
mented that when employing a large number of processors, GPU can be
more efficient than CPU in large matrix operations [41]. We experiment
the matrix inversion on GPU via PyTorch with CUDA platform, and the
result is shown in Fig. 10. Compared with CPU-based parallel
computing, the GPU programming achieves 1.7 times speedup for a
3400 x 3400 size matrix, and 2.0 times speedup for a 10000 x 10000
matrix. Second, the convergence of EM can be significantly slow in some
instances, although it has a desirable monotonicity property [42]. One
possible reason is that the likelihood may be stuck at ridge regions. To
avoid these regions, we suggest reinitializing the parameters with
random seeds when EM fails to converge. Fig. 11 demonstrates the
effectiveness of these two acceleration approaches. The combination of
GPU-based parallel programming and reinitialization achieves 1.84
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Fig. 11. Comparison of runtime on different acceleration settings. 20 experi-
ments are repeated.
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Fig. 9. Breakdown of the program’s runtime in a sample execution.
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times speedup. measurement, which can enable cost-effective measurement, modeling,
and monitoring of spatiotemporal processes in industry. In addition, the
5. Conclusion effects of hyperparameters were systematically investigated. It is found

that kernel parameters have a substantial effect, so they should be
In order to cope with challenges brought by the high cost associated carefully selected prior to applying the STK-MTL method.
with fine-scale surface measurement, this paper develops a new
spatiotemporal modeling method using multi-task learning. This allows

a joint learning over multiple similar spatiotemporal processes. More- Declaration of Competing Interest

over, a systematic framework is developed for the construction of the

spatiotemporal kernel. In the case study, the proposed STK-MTL The authors report no declarations of interest.

approach is applied to model the spatiotemporal progression of anvil

surfaces in ultrasonic metal welding, and its performance is thoroughly Acknowledgment
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Appendix

Here, we provide the EM algorithm for estimating the parameters in hierarchical multi-task learning model. Detailed derivation is available in
[33].

(16) Expectation (E-step): Estimate the expectation and covariance of al, I=1,2,...,m, given the current ©.

R 1 11
a = (EK,TK, + c;‘) (;K,Tn, +c! m) (16)

1 -1
Cu = (EK,TK, + c;‘) a7

k(p1,p1)  k(P1,p2) ... K(P1,Pn)
K(Pz_apl) K(szpz) K(szpn)

K(pm.ypl) K(Pn;apz) K(pn;,pn)

where K; =

(18) Maximization (M-step): optimize ©® = {y,,C,,0?}

1 “ ~I
= 18
Fo =m0 (18)
1 T 71 m
C, = P X {ﬂ,uaﬂa + 1K +;Ca[
19
LNV} ~ T
+2 (@ — ] [0 — o] }
1 2 —~
o = Y lIn — Kids||* + u[K,Cu K] (20)
21:1’1[ =1
k(p1,p1) k(P1,p2) ... k(P1,Pn)
where K = K(pz:,p 1) K(pz.,p 2) K(pg:,p ) , and tr(-) is the trace operator.

K(pnlypl) K(pn.7p2) . K(pn.7pn)

As an approximation, Kronecker product may be used to simplify the construction of kernel matrix K. [43] models a kernel matrix K as the
Kronecker product between two covariance matrices:

K=K K, 21)

where K is the internal covariance matrix, which is the same for all tasks; and K’ is the external covariance matrix over all tasks, whose element
measures correlation between each pair of tasks. However, because this approximation oversimplified each task and lose their specificities, we do not
adopt this approximation in this paper.
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