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A B S T R A C T   

Spatiotemporal processes commonly exist in manufacturing. Modeling and monitoring such processes are crucial 
for ensuring high-quality production. For example, ultrasonic metal welding is an important industrial-scale 
joining technique with wide applications. The surfaces of ultrasonic welding tools evolve in both spatial and 
temporal domains, resulting in a spatiotemporal process. Close monitoring of tool surface progression is 
imperative since degraded tools often lead to low-quality joints. However, it is generally expensive and time- 
consuming to acquire fine-scale surface measurement data, which is not economically viable. This paper de
velops a multi-task learning method to enable data-efficient spatiotemporal modeling. A Gaussian process-based 
hierarchical Bayesian inference structure is constructed to transfer knowledge among multiple similar-but-not- 
identical measurement tasks. Meanwhile, a spatiotemporal kernel is developed based on squared sine expo
nential damping (SSED) function to characterize the periodic trend of anvil surfaces. The proposed method is 
able to improve interpolation accuracy using limited measurement data compared with state-of-the-art tech
niques. Data collected from lithium-ion battery production are employed to demonstrate the effectiveness of the 
proposed method. Additionally, the influence of training data size and hyperparameter selection on the modeling 
performance is systematically investigated.   

1. Introduction 

Spatiotemporal processes widely exist in manufacturing. Modeling 
and monitoring spatiotemporal processes are of great interest to man
ufacturers and industry practitioners. For instance, in ultrasonic metal 
welding, which is an important industrial-scale solid-state joining 
technique, the surfaces of welding tools change both spatially and 
temporally, as shown in Fig. 1, and the surface degradation leads to low- 
quality joints [1–6]. Modeling and monitoring the tool surface degra
dation are crucial for improving the process robustness [7] and online 
monitoring of product quality [8,9,1]. In automotive machining pro
cesses, spatial and temporal changes in tool geometry result in machined 
parts with different surface patterns and quality [10,11]. In addition, the 
geometry modeling of surface spatial variation [12] and time-varying 
deviations [13] have been conducted for monitoring the quality of 
machined parts. 

Fine-scale measurement data of spatiotemporal processes is crucial 
in manufacturing applications to enable effective modeling, monitoring, 
and control. The acquisition of fine-scale measurement data, however, is 

often expensive and time-consuming [2,4]. For instance, it may take a 
three-dimensional (3D) microscope around 8 hours to scan an anvil 
surface with a dimension of 43 mm × 8 mm in ultrasonic metal welding 
[2], which brings prohibitive production downtime. Additionally, mul
tiple factors may limit the availability of measurement data. For 
example, the surface measurement processes are subject to the distur
bances including measurement table vibration, dissipated heat, and 
surface contamination [14]. 

In light of the challenges brought by the high cost of the measure
ment process and limited measurement data, researchers and practi
tioners have developed various interpolation techniques to predict the 
values at unmeasured locations using available data. The interpolation 
methods can be generally categorized into deterministic and stochastic 
methods. The former includes inverse distance weighted interpolation 
[15], B-spline methods [16], and artificial neural networks [17]. The 
representative stochastic models include ordinary kriging [18] and its 
variants such as co-kriging [19] and kriging with external drift [20]. 
Different kernels, such as Bessel additive variogram [21], have been 
developed to extend the capability of kriging methods to model different 
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spatial variation patterns. These methods have been widely adopted in 
manufacturing applications, including wafer profile monitoring in 
semiconductor industry [22], quality control in additive manufacturing 
[23], and tool condition monitoring in ultrasonic metal welding [2,4,3]. 
Because these methods estimate missing values from nearby locations, 
their effectiveness relies on adequate measurement data. As the data of 
nearby locations become limited, their performance quickly degrades. 

Spatiotemporal modeling overcomes such limitation by leveraging 
both spatial and temporal correlations to infer on unmeasured locations. 
The addition of temporal information often leads to improvements in 
modeling performance. Recent methods on spatiotemporal modeling 
and prediction include shapelet based spatial-temporal feature extrac
tion [24] and evolutionary algorithm based spatiotemporal prediction 
[25]. As an example, in automotive machining processes, Babu et al. 
adopted a state-space spatiotemporal modeling to improve the quality 
inspection by predicting the deviations of the entire part from partial 
measurements [26]. However, when data scarcity is more severe, the 
effectiveness of spatiotemporal modeling methods is impaired, because 
the consistent data deficiency across all time stages prohibits trans
ferring information among time stages. 

To cope with this challenge, this paper develops a multi-task learning 
method for data-efficient spatiotemporal modeling. It is motivated by 
the fact that in factories, manufacturing tasks are often performed by 
multiple machines in parallel, which share much similarity. High stan
dardization of modern manufacturing further enforces this similarity 
[27]. Therefore, it is potentially more cost-effective if spatiotemporal 
processes can be jointly learned by transferring information among 
them. 

To realize the joint learning, this paper develops a method called 
spatiotemporal kernel based multi-task learning (STK-MTL). Each 
spatiotemporal process is modeled from a kernel perspective, and 
domain knowledge can be integrated into customized kernels. This 
kernel view also provides an access to the variogram method, which has 
been extensively studied in the geostatistics community [28]. Finally, 
we note that the proposed method is readily applicable to a wide range 
of scenarios in manufacturing. 

The main contributions of this paper can be summarized as follows:  

1. A new spatiotemporal modeling approach is developed by combing a 
spatiotemporal kernel and hierarchical multi-task learning. It pro
vides a solution for cost-effective spatiotemporal modeling and 
monitoring in data scarce situations. This method is demonstrated to 
be more effective than learning each process separately.  

2. A framework is developed to formulate a customized kernel function 
that can account for the periodic spatial patterns of the tool surfaces 
in ultrasonic metal welding. Compared with the conventional kernel 
used in the multi-task learning for Gaussian process, our kernel 
captures both periodic spatial variations and temporal correlations 
well. 

3. The characteristics of the proposed STK-MTL approach are system
atically studied, including its applicability and the effects of hyper
parameters. Practical suggestions are also presented based on the 
experimental results. 

The rest of the paper is organized as follows. Section 2 presents the 
STK-MTL model and its implementation. In Section 3, a case study is 

reported on the anvil surface to verify the effectiveness of proposed 
method. In Section 4, the applicability of the proposed method and the 
effects of hyperparameters are discussed. Finally, Section 5 concludes 
the paper. 

2. Method 

In this section, the spatiotemporal modeling approach from the 
kernel point of view and the kernel function construction are first 
reviewed, and then, the multi-task learning algorithm and its imple
mentation are introduced. 

2.1. Spatiotemporal modeling 

We use spatiotemporal coordinates to represent measurement data. 
Each measurement can be denoted as (t, x, y, z), where t is the time when 
the measurement happens, and x, y, and z specify its location in the 3D 
space. The task of surface measurement/modeling is essentially to 
obtain height z in a given spatiotemporal location p, where 

p = (t, x, y). (1) 

These spatiotemporal locations are not independent, but instead 
correlate with each other [28]. One way to explore these correlations is 

using kernel functions. The inner product κ(pi, pj) =
〈

ϕ(pi), ϕ(pj)
〉

pro

vides a valid positive definite kernel, where ϕ(pi) is the projection of pi in 
a Hilbert space. According to the closure property of kernel functions, a 
spatiotemporal kernel can be constructed as the product of a spatial 
kernel and a temporal kernel [29] as shown below: 

κst(pi, pj) = κs(pi, pj)⋅κt(pi, pj). (2) 

As a prime form of spatial kernel κs, Gaussian radial basis function 
(RBF) kernel is popular in spatial statistics. It is given by 

κs(pi, pj) = exp

(

−

⃦
⃦

(
xi, yi) − (xj, yj)

⃦
⃦2

δ2
s

)

, (3)  

where δ2
s is scaling factor. The intuitive interpretation for Gaussian RBF 

kernel is that the nearest neighbors share the most similarities. 
However, the Gaussian RBF kernel fails to characterize the periodic 

pattern of anvil surfaces in ultrasonic metal welding, which is docu
mented as “hole effect” [21]. To capture the “hole effect”, we can 
consider sinusoidal-function-based kernels, such as “waving model” and 
squared sine exponential (SSE) model: 

κwav(pi, pj) = 1 −
sin

(⃦
⃦

(
xi, yi) − (xj, yj)

⃦
⃦

/
w

)

⃦
⃦

(
xi, yi) − (xj, yj)

⃦
⃦

/
w

, (4)  

κSSE(pi, pj) = exp

(

−
sin2(

⃦
⃦

(
xi, yi) − (xj, yj)

⃦
⃦

/
w)

δ2
s

)

, (5)  

where w is the wavelength of a periodic pattern. “Wave model” fits the 
damping periodic trend but leads to nonzero kernel value among irrel
evant locations. In fact, the affinity in these locations is expected to be 
zero instead. The SSE model characterizes this attribute by coating an 
exponential function out of the sinusoidal term, so the kernel value can 

Fig. 1. The spatiotemporal progression of anvil surface topography in an ultrasonic welding process.  
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be kept ideally small in “inactivated” area. 
Strictly speaking, the SSE model still fails to depict the damped trend 

for different periods, meaning that compared with distant periods, 
adjacent periods share more similar surface conditions with the inter
esting location. One possible solution is to use radial basis to charac
terize this trend. Popular radial basis functions with the damped trend 
include inverse quadratics and inverse multiquadrics [30]. To overcome 
this drawback, we propose an squared sine exponential damping (SSED) 
model, which is shown by Eq. (6), by adding inverse quadratics to a 
standard SSE model: 

κSSED(pi, pj) = exp[ −
1
δ2

s
(

sin2
(
||xi − xj||

/
wx

)

||xi − xj||
2
/

w2
x + 1

+
sin2

(
||yi − yj||

/
wy

)

||yi − yj||
2
/

w2
y + 1

)], (6)  

where wx and wy represent the periods in x and y directions, respec
tively. In practice, wx and wy can be either obtained from the provided 
tool geometry specifications or estimated from surface measurement 
data using frequency domain analysis such as fast Fourier transform. 

Following the work on multi-task time-series prediction [31], we 
choose Gaussian RBF kernel for the temporal kernel: 

κt(pi, pj) = exp

(

−

⃦
⃦ti − tj

⃦
⃦2

δ2
t

)

(7) 

The spatiotemporal kernel κst(pi, pj) is then constructed by obtaining 
the product of the spatial and temporal kernels, as shown in Eq. (2). 

It is worth mentioning that modeling spatiotemporal processes from 
the kernel perspective builds a connection to the variogram model. The 
transformation from a variogram function to a kernel function is illus
trated by: 

κs
(
pi, pj

)
= C

(
‖ pi − pj ‖

)
= γ(∞) − γ

(
‖ pi − pj ‖

)
, (8)  

where C(‖ pi − pj ‖) is the covariance function and γ(‖ pi − pj ‖)is the 
variogram function. Practically, the variogram function can be esti
mated using the following equation: 

γ̂(h) =
1

2|N(h)|

∑

N(h)

{[
Z(pi) − Z(pj)

]2
}

, (9)  

where N(h) =
{(

si, sj) :
⃦
⃦si − sj

⃦
⃦ = h

}
is the set of all pairs of locations 

grouped by lag distance h. Z(pi) is the surface height in our context of 
anvil surface monitoring. Expert knowledge is often incorporated in the 
process of choosing variogram functions. Using Eq. (8), we can convert 
an existing variogram function to a kernel function and use it in our STK- 
MTL model. 

2.2. Multi-task learning 

Various approaches have been developed for multi-task learning, 
such as transferring similar features, sharing hidden layers of neural 
network, and introducing regularization terms as constraints [32]. Here, 
we develop a hierarchical multi-task learning structure on top of the 
methods of [33]. 

Given m similar tasks, each of them is denoted as task l, where l = 1, 
2, 3, …, m. The target of multi-task learning is to estimate latent func
tions fl for each task based on training data Dl = (Pl, zl), where Pl ∈ ℝnl×d 

are the spatiotemporal locations of interest; zl ∈ ℝnl are the corre
sponding measurement values, which is the surface height in anvil 
surface monitoring; nl is the size of training data. In our application, 
dimension d is 3, because a spatiotemporal location is characterized by 
(t, x, y). ∪P denotes the set of distinguished pi in {Dl}, and ∪P ∈ ℝn×d, 
where n is the size of distinctive training data for all tasks. 

Fig. 2 illustrates the hierarchical structure for the Gaussian process 
multi-task learning. The estimated values in task l are obtained by the 
following steps:  

(10) μα, Cα are generated from 

p(μα, Cα) = N
(

μα

⃒
⃒
⃒
⃒0,

1
π Cα

)

IW
(
Cα

⃒
⃒τ, K−1 )

(10)    

(11) For each task fl 

αl ∼ N(μα, Cα). (11)    

(12) The estimated function in task l is given by 

Zl(p) =
∑n

i=1
αl

iκ(p, pi) + ε, (12)  

where K is an ℝn×n kernel matrix (also called Gram matrix), con
taining kernel κ(pi, pj) of every input pair from ∪P, where i = 1, 2, . . . , 
n and j = 1, 2, . . . , n. In anvil surface monitoring, κ(pi, pj) is replaced 
with the spatialtemporal kernel κst(pi, pj) obtained in Section 2.1. ε is 
the output noise, following ε ~ N(0, σ2). 

The rationale of sharing similarity among tasks is to assume that the 
αl for each task l is sampled from the same multivariate Gaussian dis
tribution as shown by Eq. (11), whose parameters are sampled from an 
upper layer of normal-inverse-Wishart distribution, which is given by 
Eq. (10). 

In the above-mentioned framework, the model parameters are 
θ = {μα, Cα, σ2}, whose estimation can be achieved with an Expectation 
Maximization (EM) algorithm. Details of the EM algorithm are provided 
in Appendix I. Then a series of estimated αl are plugged into Eq. (13) and 
the estimated measurement value at pu is given by: 

Ẑ l(pu) =
∑n

i=1
α̂l

iκst(pu, pi), (13)  

where pu denotes the spatiotemporal location that we are interested in. 
κst(pu, pi) is the kernel value between pu and each pi in ∪P. 

The implementation of the above procedure is illustrated by Fig. 3. 
The hyperparameters δ2

s , δ2
t , τ, and π are predetermined and can be used 

to tune the STK-MTL model. Then, spatialtemporal kernels κst(pi, pj) are 
formulated for every pair of training data. These kernels κst(pi, pj) 
constitute the kernel matrices K and Kl, which are subsequently used in 
the EM algorithm. The mathematical formulations on kernel matrices 
and EM algorithm are detailed in the Appendix. The EM algorithm is 
used to find maximum-likelihood estimates for model parameters μα, Cα. 
Finally, the estimated μα is plugged in the Eq. (13) for predicting test 
data. 

The complexity of the EM algorithm is O(kmn3), where k is the 
number of iterations in EM. The computation could be more time- 
consuming with the increase of k, m, and n. Here, we suggest two 
ways to accelerate the algorithm. 

Fig. 2. Graphic model for hierarchical multi-task learning.  
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• Use parallel LU decomposition in graphics processing unit or other 
multi-cores processors to accelerate matrix inversion [34] which 
contributes most complexity O(n3) in the EM algorithm.  

• Check the log-likelihood trace and reset initial conditions, when 
convergence cannot be achieved after k reaches a predetermined 
threshold. 

There are four hyperparameters in the STK-MTL model, namely, δ2
s , 

δ2
t from spatiotemporal kernel, and τ, π from the normal-inverse-Wishart 

distribution. The selection of these hyperparameters affects the 

prediction accuracy, which will be discussed in Section 4. 

3. Case study 

3.1. Data acquisition and experimental setup 

Ultrasonic metal welding is a solid-state joining technique. A 
bonding between thin metal sheets clamped under pressure is created 
with oscillating shears generated by ultrasonic vibration [35]. It is well 
suited for various applications such as lithium-ion battery assembly [35, 

Fig. 3. Flowchart for the spatiotemporal kernel based multi-task learning.  
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3] and joining of hybrid heat exchangers [36–38]. However, ultrasonic 
metal welding has relatively large process variability because its quality 
is influenced by a variety of uncontrollable process conditions such as 
surface contamination [35,7] and tool degradation [1,2,4–6]. As such, 
quality monitoring for ultrasonic welding has been widely investigated 
[3,8,9,38]. Ultrasonic welding tools, including horn and anvil, are 
directly involved in the bonding formation mechanism and its geometry 
significantly affects the joining quality [5,1,6,7]. Therefore, the tool 
surface degradation is a major concern in the quality control of ultra
sonic metal welding. 

This case study aims to model the spatiotemporal progression of 
anvil surfaces in ultrasonic metal welding and compares the perfor
mance of our method with state-of-the-art modeling approaches. The 
anvil surface measurement data was obtained using Keyence VK-9700 
laser scanning confocal microscope. The original dataset contains fine- 
scale measurement of three similar-but-not-identical anvil surfaces in 
consecutive time stages. 

The missing measurement values at the target task are selected by 

random sampling, while data sampled out are used as testing data. In the 
case study, the sampling rate is set as 25%. For an anvil surface, this 
sampling strategy results in 405 training data points and 135 testing 
data points at each time stage. A detailed discussion about the appli
cability of the proposed method at different sampling rates can be found 
in Section 4. Considering that the prediction performance can fluctuate 
due to the randomness of sampling, the sampling-and-prediction process 
is repeated 10 times to obtain a range for prediction accuracy. 

The prediction for missing measurement values is conducted over 
time, which means that STK-MTL is progressively applied, each time 
with previous stages as already measured. For example, when we are 
predicting surface height in stage t, the measurement data in earlier 
stages 1, 2, …, t − 2, t − 1 are available, while later stages t+ 1, t + 2, … 
are treated as unknown. After finishing the stage t, we continue to 
predict stage t + 1 with the same premise. In total, 16 consecutive stages 
are predicted in the case study. 

Fig. 4. Comparison of four candidate methods with regard to fused data: (a) SK-STL, (b) STK-STL, (c) SK-MTL, (d) STK-MTL. The color and grey-scale images 
represent anvil surfaces that are used and unused for predicting the target surface, respectively. Target surfaces are indicated by yellow stars. Different colors in target 
surfaces indicate different height values and a similar color scale with that of Fig. 1 is used. 
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3.2. Performance comparison 

The performance of the proposed STK-MTL method is compared with 
three other methods. The differences of these methods are summarized 
in Fig. 4 and Table 1. The setting of these methods aims to test the 
effectiveness of introducing temporal and similar-task information. A 
highlight of the differences is given below:  

1. Spatial kernel based single-task learning (SK-STL) uses data from the 
target surface at the current time stage as shown in Fig. 4(a). In other 
words, neither spatiotemporal kernel nor multi-task learning are 
involved. This method is essentially the same as simple kriging, a 
common algorithm in geostatistics which models spatial variation 
using Gaussian process [28].  

2. Spatiotemporal kernel based single-task learning (STK-STL) uses 
data from the target surface at recent three time stages as shown in 
Fig. 4(b). The key difference from SK-STL is that a spatiotemporal 
kernel is formulated by extending the spatial kernel with time 
domain. This method can also be referred as spatiotemporal 
Gaussian process.  

3. Spatial kernel based multi-task learning (SK-MTL) introduced in [14] 
leverages data from multiple surfaces, but uses data from the current 
time stage only. This method is also known as multi-task Gaussian 
process learning. In our scenario, it essentially uses three surfaces at 
a certain time stage, as shown in Fig. 4(c). 

Root mean squared error (RMSE), the definition of which is given by 
Eq. (14), is selected as an evaluation metric for prediction performance. 
Because RMSE varies in each run due to random sampling, we calculate 
the mean RMSE to measure the accuracy. Another important metric is 
standard deviation (STD) of RMSE during all repeated runs, which is 
given by Eq. (15). STD indicates the robustness of the prediction per
formance. A lower STD value indicates better robustness). 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

p∈P(Ẑ(p) − Z(p))
2

N

√

, (14)  

where N denotes the size of P. Recall that P is the set of spatiotemporal 
location. 

STD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
K

∑K

i=1

(
RMSEi − RMSE

)2

√
√
√
√ , (15)  

where K is the total number of experiments repeated for each prediction 
method. Since we have repeated sampling-and-prediction process 10 
times, K is 10 in this case. 

Fig. 5 displays the comparison of four methods. In general, it is 
observed that the RMSEs of multi-task learning (including SK-MTL and 
STK-MTL) stay lower and more stable. In contrast, there are some out
liers with significantly higher RMSEs in single-task learning (including 
SK-STL and STK-STL), which indicates their poor robustness and that 
they are influenced by sampling much more significantly. This evidence 
proves sharing information among similar tasks can be beneficial. 

Fig. 6 compares the RMSE mean and standard deviation of the four 
methods. By comparing spatiotemporal-kernel methods with spatial- 

kernel ones, we can see from Fig. 6(a) that incorporating temporal in
formation helps to reduce error of multi-task learning in every time 
stage, and it also benefits single-task learning in 14 of 16 time stages. 
Fig. 6(b) shows that including temporal information can reduce stan
dard deviation of RMSE thus improving the modeling robustness. 
Among four methods, the proposed STK-MTL outperforms others in 
every time stage, with highest prediction accuracy and robustness. 

4. Discussion 

This section discusses the following two issues: (A). Model applica
bility (with respect to data availability) and (B). Effects of 
hyperparameters. 

4.1. Model applicability w.r.t. data availability 

In order to reveal the applicable scope of STK-MTL, its performance 
is tested on different data availabitity. 40%–10% of original data are 
randomly sampled to simulate the missing data. Thus, the available 
training data in the target task vary from 60% to 90%. 10 runs are 
repeated for sampling and prediction. The prediction is made to estimate 
the missing data in the last time stage, which is stage 16, with the data 
from previous two stages and other two surfaces available for STK-MTL. 
The performance of STK-MTL is compared with other three methods, as 
introduced in Section 3. 

The results are presented by Fig. 7, where Fig. 7(a) shows the average 
RMSE and Fig. 7(b) shows the STD of RMSE. It is seen that when 
available (measurement) data are limited, the performance of single- 
task learning (SK-STL and STK-STL) rapidly degrades, indicating that 
traditional STL becomes unreliable with limited measurement. Mean
while, multi-task learning methods (SK-MTL and STK-MTL) outperform 
STL methods substantially. As more data in the target task are available, 
the prediction accuracy of single-task learning methods continuously 
improves, while the accuracy of multi-task learning methods is consid
erably stable. When the data availability in the target task exceeds 80%, 
the STK-STL method starts to outperform the STK-MTL method. In such 
cases, the training data is sufficient in the target task and STK-STL can 
better capture the specificity of the target task. This phenomenon in
dicates that multi-task learning is more advantageous in data-scarce 
scenarios. Model selection should be conducted in order to select the 
best-performing method. 

Fig. 7(b) shows the standard deviation of RMSE for each setting. It is 
observed that spatiotemporal-kernel methods keep showing higher 
robust than spatial-kernel methods, and multi-task learning shows 
higher robust than single-task learning. Specifically, STK-MTL has the 
lowest standard deviation in all levels of data loss. 

In short, the above experiment results lead to the following 
conclusions:  

1. STK-MTL is applicable to a wide range of data loss scenarios and it 
brings many benefits especially in a severely data-scarce 
environment. 

2. Bringing information from similar tasks can help to improve pre
diction accuracy and robustness, especially when limited data is 
available. However, multi-task learning should be carefully used 
when data loss is minor because the dissimilarity among tasks can 
manifest. 

4.2. Effects of hyperparameters 

There are two groups of hyperparameters in STK-MTL model: 
{

δ2
s ,

δ2
t
}

come from spatiotemporal kernel and {π, τ} come from normal- 
inverse-Wishart distribution in multi-task learning structure. In this 
section, experiments are conducted to study the effects of hyper
parameters in these two groups. 

Table 1 
Methods summary for the case study.  

Method Transfer knowledge from other 
surfaces? 

Use knowledge from historical 
measurement? 

SK-STL No No 
STK-STL No Yes 
SK-MTL Yes No 
STK- 

MTL 
Yes Yes  
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(1) Hyperparameters from spatiotemporal kernel: During the 
experiment, δ2

s varies from 0.01 to 0.5, and δ2
t varies from 0.01 to 500, 

while two other hyperparameters are set to be constant at π = 1000, 
τ = 0.01. Fig. 8(a) displays the trend of RMSE with respect to δ2

s and δ2
t . It 

is observed that with the increase of δ2
s , the prediction error first sharply 

decreases and then increases. It can be explained by the fact that 
hyperparameter δ2

s scales the correlation for each data pair, thus 
learning too much nor too little from relevant locations could be 
harmful. Based on the experiment result, it is suggested to set δ2

s to be 
around 0.1, and δ2

t around 40 for ultrasonic anvil surface. 
(2) Hyperparameters from multi-task learning structure: When 

investigating the effect of π, τ, the hyperparameters from kernel are fixed 
to be δ2

s = 0.1, δ2
t = 40. π varies from 0.01 to 4000, and τ varies from 

0.01 to 1750. The corresponding RMSE is shown in Fig. 8(b). It is 
observed that with the increase of τ, prediction error first decreases and 

then increases, having minimum error at around τ = 1000. Meanwhile, 
with the increase of π, prediction error first increases and then keeps 
stable. With τ settled as optimum at 1000, prediction error becomes 
lower when π < 50. 

By comparing the two groups above, we can see that prediction ac
curacy is much more sensitive to the hyperparameters from the kernel 
function. This indicates that hyperparameters from kernel function 
should be more carefully chosen in order to fit a particular spatiotem
poral process. In practice, they can be tuned based on training data with 
cross-validation. 

4.3. Accelerated computing 

To pinpoint the bottleneck of the STK-MTL algorithm, we first 
perform program profiling to obtain the breakdown of runtime, which is 

Fig. 5. RMSEs of four candidate methods in all time stages.  

Fig. 6. Performance of four models in each time stage.  
Fig. 7. Performance of the four models on different amount of training data.  
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visualized in Fig. 9. Profiling is a common approach to locating the 
hotspot in a program [39]. In this experiment, the program is imple
mented in Python and evaluated on a laptop with Intel i7-9750H @ 
2.60 GHz CPU and Nvidia GeForce GTX 1650 4GB GPU. To facilitate 
accurate analysis, trivial data pre-processing before the inference pro
cess is striped for runtime analysis. 

As shown in Fig. 9, an inference on a target surface costs 986.9 
seconds. Notably, the matrix inversion operation alone costs 804.5 
seconds, accounting for over 81.5% the total computation time. This is 
because the matrix inversion is operated in every iteration of EM algo
rithm, and its complexity O(n3) grows polynomially as the matrix size 
increases. In our case study, the kernel matrix in a ~3400 × 3400 size 
leads to extensive computation. Particularly, the baseline matrix 
inversion using Gauss-Jordan Elimination is prohibitively expensive, as 
shown in Fig. 10. To achieve improved computing efficiency, we 
recommend using the LU decomposition and parallelizing the compu
tation with pivoting on hypercubes [40]. These solutions can be realized 
in certain Python libraries such as NumPy and SciPy using multi-thread 
CPU programming. The runtime shown in Fig. 9 is based on NumPy 

library. The comparison between baseline and CPU parallel matrix 
inversion is presented in Fig. 10. 

Apart from multi-thread CPU parallel programming, further im
provements in computational efficiency can be accomplished by (1) 
using GPU with a large number of processors and (2) optimizing the 
number of iterations needed to achieve convergence. First, it is docu
mented that when employing a large number of processors, GPU can be 
more efficient than CPU in large matrix operations [41]. We experiment 
the matrix inversion on GPU via PyTorch with CUDA platform, and the 
result is shown in Fig. 10. Compared with CPU-based parallel 
computing, the GPU programming achieves 1.7 times speedup for a 
3400 × 3400 size matrix, and 2.0 times speedup for a 10000 × 10000 
matrix. Second, the convergence of EM can be significantly slow in some 
instances, although it has a desirable monotonicity property [42]. One 
possible reason is that the likelihood may be stuck at ridge regions. To 
avoid these regions, we suggest reinitializing the parameters with 
random seeds when EM fails to converge. Fig. 11 demonstrates the 
effectiveness of these two acceleration approaches. The combination of 
GPU-based parallel programming and reinitialization achieves 1.84 

Fig. 8. Effects of hyperparameters on prediction accuracy: (a) effects of (δ2
s ,δ2

t ) 
from kernel function, and (b) effects of (π,τ) from multi-task learning structure. 

Fig. 9. Breakdown of the program’s runtime in a sample execution.  

Fig. 10. Runtime of matrix inversion as the matrix size growing.  

Fig. 11. Comparison of runtime on different acceleration settings. 20 experi
ments are repeated. 
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times speedup. 

5. Conclusion 

In order to cope with challenges brought by the high cost associated 
with fine-scale surface measurement, this paper develops a new 
spatiotemporal modeling method using multi-task learning. This allows 
a joint learning over multiple similar spatiotemporal processes. More
over, a systematic framework is developed for the construction of the 
spatiotemporal kernel. In the case study, the proposed STK-MTL 
approach is applied to model the spatiotemporal progression of anvil 
surfaces in ultrasonic metal welding, and its performance is thoroughly 
tested and compared with three state-of-the-art approaches. Results 
show that the STK-MTL significantly outperforms others in terms of 
prediction accuracy and robustness. As such, the proposed approach is 
expected to improve the prediction accuracy under limited 

measurement, which can enable cost-effective measurement, modeling, 
and monitoring of spatiotemporal processes in industry. In addition, the 
effects of hyperparameters were systematically investigated. It is found 
that kernel parameters have a substantial effect, so they should be 
carefully selected prior to applying the STK-MTL method. 
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Appendix 

Here, we provide the EM algorithm for estimating the parameters in hierarchical multi-task learning model. Detailed derivation is available in 
[33].  

(16) Expectation (E-step): Estimate the expectation and covariance of αl, l = 1, 2, . . . , m, given the current Θ. 

α̂l
=

(
1
σ2KT

l Kl + C−1
α

)−1(
1
σ2KT

l ηl + C−1
α μα

)

(16)  

Cαl =

(
1
σ2KT

l Kl + C−1
α

)−1

(17)  

where Kl =

⎡

⎢
⎢
⎣

κ(p1, p1) κ(p1, p2) … κ(p1, pn)

κ(p2, p1) κ(p2, p2) … κ(p2, pn)

⋮ ⋮ ⋱ ⋮
κ(pnl , p1) κ(pnl , p2) … κ(pnl , pn)

⎤

⎥
⎥
⎦.    

(18) Maximization (M-step): optimize Θ =
{

μα, Cα, σ2}

μα =
1

π + m
∑m

l=1
α̂l (18)  

Cα =
1

τ + m
×

{

πμαμT
α + τK−1 +

∑m

l=1
Cαl

+
∑m

l=1
[α̂l

− μα
]
[α̂ − μα]

T

} (19)  

σ2 =
1

∑m
l=1nl

∑m

l=1
‖ηl − Kl α̂l‖

2
+ tr[KlCαl KT

l ] (20)  

where K =

⎡

⎢
⎢
⎣

κ(p1, p1) κ(p1, p2) … κ(p1, pn)

κ(p2, p1) κ(p2, p2) … κ(p2, pn)

⋮ ⋮ ⋱ ⋮
κ(pn, p1) κ(pn, p2) … κ(pn, pn)

⎤

⎥
⎥
⎦, and tr(⋅) is the trace operator.   

As an approximation, Kronecker product may be used to simplify the construction of kernel matrix K. [43] models a kernel matrix K as the 
Kronecker product between two covariance matrices: 

K = K0 ⊗ Kf , (21)  

where K0 is the internal covariance matrix, which is the same for all tasks; and Kf is the external covariance matrix over all tasks, whose element 
measures correlation between each pair of tasks. However, because this approximation oversimplified each task and lose their specificities, we do not 
adopt this approximation in this paper. 
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