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■ ABSTRACT 

Spatial segmentation partitions mass spectrometry imaging (MSI) data into distinct regions providing a 

concise visualization of the vast amount of data and identifying regions of interest (ROIs) for downstream 

statistical analysis. Unsupervised approaches are particularly attractive as they may be used to discover the 

underlying subpopulations present in the high-dimensional MSI data without prior knowledge of the 

properties of the sample. Herein, we introduce an unsupervised spatial segmentation approach, which 

combines multivariate clustering and univariate thresholding to generate comprehensive spatial 

segmentation maps of the MSI data. This approach combines matrix factorization and manifold learning to 

enable high-quality image segmentation without an extensive hyperparameter search. In parallel, some ion 

images inadequately represented in the multivariate analysis are treated using univariate thresholding to 

generate complementary spatial segments. The final spatial segmentation map is assembled from segment 

candidates generated using both techniques. We demonstrate the performance and robustness of this 

approach for two MSI data sets of mouse uterine and kidney tissue sections acquired with different spatial 

resolutions. The resulting segmentation maps are easy to interpret and project onto the known anatomical 

regions of the tissue. 

■ INTRODUCTION 

Mass spectrometry imaging (MSI) is a powerful tool in biological and biomedical research, which enables 

an untargeted characterization of the spatial distribution of hundreds of molecules in tissue samples.1–4 MSI 

experiments usually sample a virtual grid of pixels on a sample surface by acquiring a full mass spectrum 

in each spatial pixel. Typically, MSI generates hundreds of thousands of mass spectra each containing 

thousands of features, which are subsequently extracted and visualized as 2D ion images. Recent 
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developments which focused on increasing the throughput5,6 and improving the spatial resolution7–9 on MSI 

techniques have substantially increased the amount of data generated in MSI studies.  Several powerful 

software packages have been developed to provide the MSI community with visualization and analysis 

tools.10–13 In parallel, progress has been made in the development of advanced computational analysis 

methods, which are indispensable for the interpretation and mining of the vast MSI data.14 In particular, 

concise representations of MSI data which facilitates data mining and assists human interpretation of high-

dimensional data are highly desirable.15 

Several computational methods including factorization,16,17 co-localization,18,19 spatial pattern 

clustering,20,21 hyperspectral visualization,22,23 and spatial segmentation21,24–27 have been developed for the 

efficient visualization or fast exploration of complex MSI data. Spatial segmentation is a powerful tool that 

provides a concise representation of the high-dimensional data and helps identify regions of interest (ROIs) 

for the downstream analysis. ROIs determined using MSI have been used to understand the landscape of 

heterogeneous tissue samples and to link molecular signatures to biological conditions through the region-

specific statistical analysis.28–30 For example, a data-driven approach has been used to identify tumor 

subpopulations that are statistically linked to patient survival in gastric cancer.31 The ROI-specific analysis 

has also been reported to reveal temporal lipid profile changes in a rat brain tissue following the traumatic 

brain injury.32  

Unsupervised spatial segmentation of MSI data is usually conducted by clustering pixels based on their 

spectral similarity.14 For this high-dimensional clustering task, a sequential combination of dimensionality 

reduction and clustering techniques is commonly used. In addition, a subspace clustering-based method has 

also been developed for clustering of MSI data.24 Matrix factorization methods, such as principal 

component analysis (PCA)33  and non-negative matrix factorization (NMF)34  have been used to project 

MSI data into a lower-dimensional space in a linear manner. In addition, nonlinear manifold learning 

methods, such as self-organized maps (SOM),35–37 t-distributed stochastic neighbor embedding (t-SNE),31,38  

and uniform manifold approximation and projection (UMAP)21  have gained popularity due to their ability 

to preserve local structures of high-dimensional data in a low map representation.  

Both dimensionality reduction techniques have downsides: matrix factorization typically requires more 

than three components to adequately represent the nonlinear MSI data, which limits the ability to visualize 

the underlying structure of high-dimensional data.22 Despite the success of t-SNE and UMAP in the analysis 

of RNA sequencing39,40 and mass spectrometry data21,23, there is a recognition that currently emerging 

density-preserving versions of these techniques provide more robust visualizations of the original data 

architecture.41 Finally, because of the inevitable information loss in dimensionality reduction and the 

tradeoff between the quality of the representation and “curse of dimensionality”,42 multivariate clustering 

does not necessarily describe the comprehensive patterns present in complex MSI data. 

In this study, we have developed a spatial segmentation approach to address some of these limitations. The 

approach combines multivariate clustering and univariate thresholding to generate high-quality spatial 

image segmentation. In particular, the synergy of both matrix factorization (PCA) and manifold learning 

(UMAP) is utilized in the multivariate analysis, which generates a compressed representation of high-

dimensional MSI data for Gaussian mixture model (GMM) clustering. This strategy enables good-quality 

clustering of pixels without extensive search of hyperparameters for the clustering algorithm. In addition, 

univariate multi-Otsu thresholding is applied to ion images, which are poorly represented using multivariate 

techniques, thereby generating complementary spatial segments. Herein, we describe the implementation 

of the approach using two previously reported MSI data sets of mouse uterine and kidney tissue samples, 

which were acquired using nanospray desorption electrospray ionization (nano-DESI)43–45 imaging source 



operated at both high (uterine tissue)46 and moderate (kidney tissue)47 spatial resolutions. We demonstrate 

the performance of the approach for different tissue types, spatial resolution, and data complexity. 

■ EXPERIMENTAL SECTION 

MSI Data. Two MSI data sets used as examples in this study have been previously reported. Briefly, 10 

µm thick mouse uterine and kidney tissue sections were analyzed using nano-DESI MSI on a Q-Exactive 

HF-X Orbitrap mass spectrometer (Thermo Fisher Scientific, Waltham, MA) equipped with a custom-

designed nano-DESI source.9 Mass spectra were acquired in the range of m/z 133-2000. For uterine tissue 

sample, both positive and negative ion mode mass spectra were acquired in the same experiment, while 

only negative mode mass spectra were collected for kidney tissue. The spatial resolution of nano-DESI 

experiments was 10 µm and 50 µm for uterine and kidney samples, respectively.46,47 The dimensions of 

acquired ion images are provided in the supporting information (Table S1).  

Data Preprocessing. Detailed description of the computational approaches is provided in the Supporting 

Information (SI). We used different data preprocessing approaches for UMAP and PCA (SI 1.1). 

Specifically, peak detection and m/z binning were used for UMAP implementation. Meanwhile, we used a 

peak picking approach described in our previous study46 to generate a list of peaks originating from the 

tissue for PCA analysis. The following custom-designed Python codes were developed for subsequent 

analysis of the MSI data. Line scan raw files were processed using pyMSfilereader, a Python binding for 

Thermo MSFileReader dynamic-link library, to construct a 2D MSI data array for each sample with pixel 

index and m/z bins as coordinates. The resulting data format is shown schematically in Figure S1. Signal 

intensity at each pixel for each m/z on the peak list was extracted from the corresponding mass spectrum 

with a bin width of ±10 ppm. These intensities were normalized to the total ion signal (TIC) of the spectrum. 

Because automated gain control was turned on during MSI experiments, the number of spectra varied from 

line to line. A linear interpolation was used to generate data with a fixed number of pixels per line (typically 

the average number over all the lines). Dimensionalities of the MSI data arrays for UMAP and PCA 

analyses are shown in Tables S1 and S3, respectively. For PCA analysis, signal intensities in each m/z bin 

were centered and scaled such that they have a mean of 0 and a standard deviation of 1, which eliminates 

feature’s magnitude bias in the unsupervised learning algorithms described below.  

Image segmentation by multivariate clustering. Given the high dimensionality of MSI data, 

dimensionality reduction of m/z bins and clustering of pixels were adopted as a general strategy to spatially 

partition the image. Both UMAP48 and PCA49 were used for dimensionality reduction. UMAP was 

performed to transform MSI data arrays into a low-dimensional space, in which each pixel is represented 

by a vector of transformed feature values (SI 1.2). Hierarchical density-based spatial clustering for 

application with noise (HDBSCAN)50 was used to cluster pixels in the UMAP transformed space (SI 1.3). 

In parallel, PCA was utilized to reduce the dimensionality of data arrays to 2-50 dimensions. Explained 

variance ratio for each principal component (PC) was calculated to determine the number of PCs used for 

subsequent clustering. Gaussian mixture model (GMM)51 was adopted to identify subpopulations (clusters) 

in the PCA-projected data; the parameters for each Gaussian mixture component were optimized using the 

expectation maximization (EM) algorithm. After clustering, the results were visualized by both a scatter 

plot of color-coded pixels in the 2D feature space and a color-coded spatial segmentation map. For UMAP 

algorithm, cosine distance was used as suggested in a previous study.23 The selection of the number of 

mixture components in GMM was evaluated by the Akaike information criterion (AIC) and Bayesian 

information criterion (BIC). These two criteria are given by equations 1 and 2: 



 

where p is the number of free parameters in the model, N is the number of pixels, and L is the likelihood of 

the model fit. Both criteria take the negative log-likelihood of the model and a penalty term of model 

complexity to avoid over-fitting. In model selection, the lower value of AIC or BIC corresponds to a more 

favored model.52 However, the penalty of model complexity in BIC is harsher, as it multiplies the logarithm 

of the number of pixels (N) by the number of free parameters (p). The implication of this difference between 

AIC and BIC will be discussed later in the text. In this study, UMAP was implemented using a umap-lean 

Python package, and other methods were implemented using Scikit-Learn, an open-source machine 

learning library for Python.53  

Image segmentation by univariate thresholding. After the PCA+GMM multivariate clustering, ion 

distribution patterns were sorted by their PCA loadings, which helped identify outlier ion images for the 

univariate thresholding (SI 1.4). Multi-Otsu thresholding algorithm54 was used to partition images into 5 

classes. A subsequent despiking process was performed on the resulting segments to remove a mild noise 

present in the data set. In this process, a 5 x 5 pixel moving window was set to scan the full image. At each 

scanning step, the intensity value of the center pixel was compared with the median intensity value of pixels 

in the window. If the value was 3 times larger than the standard deviation, the intensity of the center pixel 

was replaced by the median intensity value of the surrounding 8 pixels. Multi-Otsu thresholding was 

implemented in Scikit-image Python package.55 

Ensemble generation and segment assembly. Ensemble generation, which involves processing the data 

many times while making some perturbation to the data or hyperparameters of algorithms,42 was applied in 

the image segmentation. In particular, GMM clustering was repeated with different numbers of mixture 

components; multi-Otsu thresholding was conducted on several ion images which provide complementary 

ion distributions. As a result, multiple spatial segment candidates were generated in both image 

segmentation modules. A majority vote method42 was adopted to automatically assemble a segmentation 

map based on the co-occurrence membership agreement across the ensemble clustering results (details are 

provided in SI 1.5). Finally, segments generated using univariate thresholding were added to the 

segmentation map. A manual selection and assembly method was used to validate the final map. The source 

code is available at https://github.com/hanghu1024/MSI-segmentation. 
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■ RESULTS AND DISCUSSION 

 

Figure 1. Overview of the image segmentation workflow. Color codes indicate independent data processing 

modules and arrows indicate data flow. 

Spatial segmentation workflow overview. The approach developed in this study comprises four 

independent data processing modules, as illustrated in Figure 1. First, we perform data preprocessing to 

organize the MSI data for downstream data mining. Next, pixels are clustered based on their spectral 

similarity in multivariate analysis. Particularly, both PCA and UMAP are applied: the former generates 

compressed features for GMM clustering, while the latter helps estimate the number of clusters. Given these 

inputs, GMM is repeatedly fitted, assigned with a range of mixture component numbers around the 

estimated cluster number. In this study, a range of 5 is set by default. In parallel, ion images that are poorly 

represented in multivariate analysis are independently partitioned using multi-Otsu thresholding. As a result, 

ensemble generation of both multivariate and univariate analyses approximates a pool of spatial segment 

candidates. We adopted a co-occurrence majority vote to identify the most robust multivariate clustering 

result and incorporated segments generated using univariate thresholding into the final segmentation map. 

This ensemble generation and finishing strategy also addresses the stability issues commonly observed in 

multivariate clustering.42 



 

Figure 2. Multivariate clustering of MSI data of a mouse uterine tissue section. (A) 2D representation of 

the PCA analysis (PC1 vs. PC2). The PCA+GMM pixel clustering results color-coded by cluster 

assignments are visualized in a 2D feature space (B) and spatial domain (C). (D) The 2D UMAP 

embeddings. The UMAP+HDBSCAN pixel clustering results color-coded by cluster assignments are 

visualized in a 2D feature space (E) and spatial domain (F). (G) Optical image of the mouse uterine tissue 

section, scale bar = 500 µm. (H) A representative ion image (m/z 746.5106), with intensity scale changes 

from black (low) to yellow (high). The color bar on the right illustrates integer clustering labels (1-20) for 

color codes. Integer labels were randomly assigned to clusters, and clustering labels in (B, C) and (E, F) are 

different. Dots in the scatter plots are set to be 90% transparent. White arrows in panel H indicate glandular 

epithelium region. 

Dimensionality reduction for multivariate clustering. Extensive search of the parameter space of both 

UMAP and PCA implementation indicated that best UMAP result is obtained when all the peaks including 

tissue-related and solvent signals are included. We found that peak detection and m/z binning provides 

good-quality UMAP representations with a reasonable runtime on a desktop computer (Figure S4). 

Meanwhile, best PCA representation was obtained using a filtered list of predominately tissue-related peaks 

(Figure S5).  

Our approach, which synergistically combines UMAP and PCA methods, is illustrated in Figure 2 for 

mouse uterine MSI data. Figures 2A and 2D depict the projection of all 52954 pixels in the mouse uterine 

tissue data onto a 2D feature space generated using PCA and UMAP, respectively. PCA preserves the 

relative distances between objects by linear projection. Therefore both the separation and compactness of 



the projected patterns describe their association in the original space.56 However, a substantial information 

loss occurs when only 2 PCs are employed. As shown in Figure 2A, there is insufficient separation of the 

clusters in the PCA projection. In contrast, UMAP creates a nearest-neighbors graph in the original space 

and arranges a low-dimensional embedding according to the distances between the neighboring points in 

the graph, which thereby preserves the local structure of the high-dimensional data.40,48 Therefore, UMAP 

efficiently separates MSI data into a number of distinct clusters (Figure 2D), which have better compactness 

and separation in comparison with PCA.  

In the next step, we use HDBSCAN and GMM to cluster the UMAP and PCA 2D projections, respectively. 

The HDBSCAN views clusters as areas of high density separated by areas of low density50 and is therefore 

well-suited to cluster the UMAP embedding. In contrast, the GMM models PCA-projected data using a 

number of Gaussian mixture components with variable parameters. In this HDBSCAN implementation, we 

used a soft clustering mode (min_cluster_size = 300, min_samples = 30), which classified pixels into 18 

clusters (details are provided in SI 1.3). For direct comparison, we use the same number of mixture 

components (18 components) in GMM.  

The clustering results are visualized in both 2D feature space (Figures 2B, E) and spatial domain (Figures 

2C, F). Individual pixels are color-coded based on their cluster assignments indicated by the color bar on 

the right of Figure 2. We note that independent coloring is used to visualize the PCA and UMAP results. 

The clustering analysis reveals the spectral similarity of pixels in subregions of the uterine tissue section. 

As seen in the PCA+GMM plots (Figure 2B, C), pixels on the glass slide (light blue: label 2) generate a 

more compact cluster than pixels in tissue subregions. There is also a large distance between these two 

kinds of pixels in Figure 2B. Meanwhile, the clusters observed on the tissue edge (light brown: label 12, 

light green: label 6, light yellow: label 18) are lined up in the middle of the PCA plane. Clustering analysis 

in the PCA feature space indicates that spectra from adjacent subregions are more similar than those from 

distant subregions, which is consistent with the expected chemical gradients presenting in biological tissue 

samples. The combination of PCA and GMM provides a reasonable image segmentation, in which segments 

reproduce biologically interesting patterns observed in the optical and ion images (Figure 2G, H and Figure 

S5). Similar cluster architectures are also observed in UMAP+HDBSCAN plots (Figure 2E and 2F). The 

UMAP spatial segmentation map captures major features but does not capture some fine patterns observed 

in the ion images. For example, segment 10 highlighted with arrows in Figure 2F does not include some of 

the glandular epithelium pixels but includes some stroma pixels, which affects quantification results 

discussed later.  

We used the ground truth color-coding approach reported in the literature41 to examine the quality of 

multivariate representations (Figure S9). Specifically, we color-coded the final segmentation labels, 

obtained at the end of the workflow, to PCA and UMAP 2D representations. Pixels from the same tissue 

region uniformly agglomerate together in PCA. Meanwhile, some of the groups are split and outlier pixels 

are observed outside the groups generated by UMAP. Additional segmentation results obtained using 

UMAP embeddings with more dimensions are shown in Figure S10. We found that the higher-dimensional 

analysis does not improve the segmentation results. Based on the MSI data obtained from the highly 

heterogeneous mouse uterine tissue, the comparison of the performance of UMAP and PCA reveals that 

PCA is well-suited for image segmentation. Meanwhile, UMAP is a powerful technique for the 

visualization of the embedded local clusters that present in the high-dimensional MSI data.  

Hyperparameter search for PCA+GMM clustering. Next, we examine the effect of hyperparameters on 

image segmentation using PCA+GMM. In particular, we use both mouse uterine and kidney tissue MSI 

data sets to examine the effect of the: (1) number of PCs in PCA, and (2) number of mixture components 

in GMM on the performance of multivariate clustering.  



  

Figure 3. Comparison of the GMM pixel clustering results for different number of PCs. (A) Scree plot on 

the percentage of variance explained by PCs. GMM with 10 PCs clustering result visualized in the 2D 

feature space (B) and spatial domain (C). GMM with 33 PCs clustering result visualized in the 2D feature 

space (D) and spatial domain (E). Most dots in scatter plots are set to be 90% transparent, while gray (label 

15) coded pixels in (B), gray and salmon (label 8) coded pixels in (D) are set to be opaque for comparison. 

White arrows in panels C and E indicate pixels of a fine pattern in spatial domain, while black arrows in 

panels B and D indicate them in the 2D feature space.  

In general, the smallest number of PCs resulting in sufficient explained variance should be used to reduce 

data dimensionality with a minimal loss of information. Empirically, we set an 85% threshold for 

cumulative percentage of variance explained (CVE) and a maximum PC number of 50. For the mouse 

uterine tissue data, a scree plot is shown in Figure 3A. According to our criterion, 33 PCs describing 84.9% 

CVE are selected and modeled by GMM with 18 mixture components. The results are compared with the 

GMM clustering performed using 10 PCs describing 75% CVE and the same number of GMM mixture 

components. Clustering results are visualized in both the 2D feature space and spatial domain with color-

coded pixels in Figures 3B-E. In comparison to clustering results obtained using two PCs shown in Figure 

2B, C, cleaner spatial segments are obtained using a larger number of PCs. This is attributed to a better 

separation of pixels residing at the classification boundaries with increase in the number of PCs. We obtain 

similar results using 10 and 33 PCs. However, some of the finer patterns discovered using 33 PCs are not 

observed in the segmentation obtained using 10 PCs. For example, a cluster shown in salmon (label 8) and 

highlighted by the black and white arrows in Figures 3D and 3E, respectively, is not captured using 10 PCs. 

This subregion highlighted in Figure S23 has a lower level of alkali ion concentrations compared to the 

surrounding stroma cells and is only observed in ion images normalized to TIC.46 



 

Figure 4. Estimation of the optimal number of mixture components in GMM. (A) A 2D UMAP embedding 

of the mouse kidney MSI data. (B) A PCA+GMM pixel clustering result visualized in the spatial domain 

using 5 PCs and 10 mixture components. RGB hyperspectral visualizations of (C) mouse uterine and (D) 

kidney tissue datasets. Normalized AIC and BIC values as a function of the number of mixture components 

for (E) mouse uterine and (F) kidney tissue MSI data.  

One of the major challenges in unsupervised clustering is to determine the number of clusters.57 In MSI 

image segmentation, an extensive search is usually adopted to estimate the optimal number of 

clusters.20,24,33,58 This approach increases the complexity and time of the analysis. In this study, we use 

UMAP analysis to guide the selection of the number of mixture components for GMM clustering. Since 

UMAP effectively separates complex MSI data in 2D/3D feature space, the optimal number of clusters may 

be estimated using UMAP visualizations. Furthermore, we use the information criteria described in the 

experimental section to validate this parameter search strategy. Since GMM is a probabilistically grounded 

method, the probability of the clustering assignment for each pixel is traceable, which enables the 

calculation of the likelihood and AIC/BIC values in the fitted model.  

We demonstrate the performance of this approach for both mouse uterine and kidney MSI data, in which 

33 and 5 PCs (85% CVE from Figure S24) are used in the GMM clustering, respectively. First, an intuitive 

estimation of the number of clusters could be made based on the 2D UMAP plots (Figure S11). A 

HDBSCAN clustering analysis with similar cluster identification mechanism can be used to assist this 

decision making as shown in Figures 2E, 4A and S13. Furthermore, UMAP-based RGB hyperspectral 

visualizations23 shown in Figures 4C and 4D help visualize major features of the MSI data. Based on the 

2D UMAP plot, we estimate the presence of 18 and 10 clusters in the uterine and kidney tissue data, 

respectively. The corresponding GMM clustering results are shown in Figure 3E and Figure 4B, which 

reasonably represent ion distribution patterns in Figure S5. To statistically evaluate it, normalized AIC/BIC 

values, calculated from independently fitted GMMs, are plotted against the number of mixture component 

for uterine (Figure 4E) and kidney (Figure 4F) MSI data. For mouse uterine tissue, the AIC value reaches 

an inflection point at 15 mixture components. In contrast, a shallow minimum is observed in the BIC plot 



spanning over 15-25 mixture components. This distinct difference in the AIC and BIC trends may be 

attributed to the harsher penalty over model’s complexity in BIC calculation. Interestingly, both BIC and 

AIC show a similar gradual decrease with the number of mixture components in the analysis of the mouse 

kidney tissue with an inflection point at 12 mixture components shown in Figure 4D. The steady downward 

trend of both AIC and BIC may be attributed to the presence of non-Gaussian components in the data, 

which cannot be described using a single Gaussian distribution.59 We propose that the inflection point is a 

reasonable choice for selecting the optimal number of mixture components in GMM. For both mouse 

uterine and kidney data, the number of mixture component determined by analyzing AIC/BIC values is 

consistent with the number of clusters estimated by UMAP visualizations. Our results indicate that 

regardless of the complexity and spatial resolution of the MSI data, UMAP can be used to determine the 

number of clusters for PCA+GMM clustering.  

 

Figure 5. Single ion image thresholding generates complementary spatial segments for mouse kidney tissue 

MSI data. (A) Ion image of m/z 439.2441. (B) Histogram of (A) with thresholds illustrated by red vertical 

lines. (C) Spatial segment (salmon) selected from 3 groups of pixels, as illustrated by salmon coded blocks 

in (B). (D) Ion image of m/z 236.0411. (E) Histogram of (D) with thresholds. (F) Spatial segment (salmon) 

selected from the last group of pixels, as illustrated by salmon coded block in (E). (G) Optical image of the 

kidney tissue section. 

Univariate thresholding of outlier ion images for complementary image segmentation.  Although a 

good-quality spatial segmentation may be achieved by using multivariate clustering, some ion distribution 

patterns may not be captured by the clustering models. In mouse kidney tissue MSI data, two ion images 

of m/z 439.2441 and 236.0411, shown in Figures 5, represent two outliers not identified by the clustering 

analysis. They were detected and selected through a Ward’s hierarchical clustering-based outlier detection 

process described in SI 1.4. The ion at m/z 439.2441 (Figure 5A) is observed in the tubules of the inner 

cortex of the kidney. This region is located in close proximity to the gold segment (label 4) in Figure 4B, 

which was generated by PCA+GMM, but its outline poorly matches the ion distribution of m/z 439.2441. 



Another unusual pattern is observed for m/z 236.0411 (Figure 5D), which is substantially enhanced in 

lymphatic vessels clearly seen in the optical image (Figure 5G). The presence of such outliers could be 

attributed to the insufficient representation of minor spatial patterns among selected PCs in multivariate 

analysis module. In PCA analysis, the loading is the correlation between the variable and component, which 

estimates the information they share.49 Accordingly, the sum of squares of loadings (SSL) represents the 

proportion of the variance of the original ion distribution explained by the selected PCs. For m/z 439.2441 

and 236.0411 in mouse kidney data the values of SSL are 4.7% and 1.7%, respectively, with the total SSL 

of the corresponding classes of spatial patterns of 10.1% and 17.3% (Figure S16). These two classes are 

ranked as 21th and 14th among all ion distribution patterns (23 classes in total). Due to the low SSL values, 

these spatial patterns are not incorporated into the spatial segments generated by multivariate clustering, 

which are dominated by higher-ranked features.  

In this study, we used the multi-Otsu thresholding algorithm to obtain spatial segments based on single ion 

images shown in Figures 5A and 5D. The multi-Otsu thresholding method partitions images by separating 

pixels into several classes while maximizing the between-class variance of pixel intensities.54 As a 

preliminary step to thresholding analysis, the histograms (Figure 5B, E) of two ion images are examined. 

The histogram provides the statistics of pixels in an image, which helps to discover ion distribution 

properties. For example, there are three noticeable pixel distributions in Figure 5E: (1) pixels observed 

below the intensity of 0.0025 correspond to pixels on the glass slide with close to zero intensity and a small 

number of low intensity pixels in the kidney medulla region; (2) a Gaussian-like distribution observed 

between 0.0025 and 0.0075  corresponds to pixels localized on the tissue; (3) pixels observed above the 

intensity of 0.0075 are localized at lymphatic vessels. To implement multi-Otsu thresholding for ion images, 

we predefine the number of pixel classes as 5, in order to classify all possible features. As illustrated by red 

vertical lines in Figure 5E, thresholds generated by this method successfully differentiate components in 

the ion image of m/z 236.0411. By selecting and merging the classified pixels, we obtained two segments 

shown in Figure 5C and 5F, which are complementary to the multivariate clustering results. Other state-of-

the-art univariate segmentation methods such as spatially aware Dirichlet Gaussian mixture models may be 

utilized in this step.27  



 

Figure 6. Assembly of the final segmentation map and subsequent region-specific quantitative analysis. 

Automatically assembled segmentation maps of mouse uterine (A) and kidney (C) tissues. Segments are 

identified using the majority vote method from ensemble clustering results.  Simplified maps showing key 

anatomical features in mouse uterine (B) and kidney (D) tissues. Anatomical annotations are only shown 

for simplified segmentation maps. (E) Hand-drawn ROI for the glandular epithelium using an ion image of 

m/z 746.5106. (F) Violin plots of ion intensities in ROIs generated using three different methods.  

Ensemble generation and assembly of spatial segmentation map. After the validation of approaches 

adopted in multivariate and univariate analyses, the last step is to assemble a spatial segmentation map from 

segment candidates. To construct the candidate pool, ensemble generation is applied for both image 

segmentation modules. It is especially useful in multivariate clustering, since neither UMAP visualizations 

nor the analysis of AIC/BIC values provides a unique value for the number of mixture components. In order 

to evaluate different clustering scenarios, we independently performed GMM clustering over a range of 

numbers of mixture components. Using the procedure described earlier, GMM was repeatedly fitted with 

16-20 and 8-12 mixture components for uterine and kidney data, respectively. Multi-Otsu thresholding was 

applied to two ion images for kidney data but not for uterine data, which are adequately described using 

GMM ensemble clustering (Figure S5 and S18). Ensemble generation results for both data sets are shown 

in Figures S26 and S27. All clustering generated segmentation maps reveal reasonable spatial segments on 

tissues, and thresholding generated segments are unique and complementary. With the increase of the 

number of mixture component in GMM, finer patterns emerge on segmentation maps, while some patterns 

remain invariant throughout all models, which indicate robust clusters. These individual segments were 

identified using a co-occurrence majority vote-based approach (Figure S20 - S22). The resulting 

segmentation maps shown in Figures 6A and 6C closely resemble spatial ion distributions in the original 



data (Figure S5). Furthermore, the identified segments are closely related to key anatomical features of 

mouse uterine and kidney sections highlighted in the simplified maps in Figures 6B and 6D, respectively. 

Automatically generated results are in good agreement with a manual segment assembly shown in Figures 

S26 and S27. This process also addresses the clustering stability issue. With random initialization, the EM 

algorithm may converge to a local rather than global minimum.52 The optimization process is also affected 

by the number of mixture components assigned. Ensemble generation and finishing help identify robust 

clustering results and avoid errors originating from algorithm perturbations.42 Collectively, this approach 

provides comprehensive high-quality ROIs without extensive search of hyperparameters, which benefits 

the downstream quantitative analysis. One example for ion at m/z 746.5106 is shown is Figure 6F. The 

statistics of TIC-normalized ion signals in the hand-drawn ROI of the glandular epithelium along with ROIs 

obtained using PCA+GMM (Figure 6B) and UMAP+HBDSCAN (Figure 2F) are visualized using violin 

plots. Both the average and the distribution of ion signals obtained using PCA+GMM ROI closely resemble 

the results obtained using a hand-drawn ROI. Meanwhile UMAP+HDBSCAN provides a lower average 

value and a substantially distorted distribution of ion signals due to the large number of the stroma signals 

included in this ROI. 

■ CONCLUSION 

We have developed and validated a robust approach for image segmentation of high-dimensional MSI data 

by combining multivariate clustering and univariate thresholding. We discuss the trade-off between matrix 

factorization (PCA) and manifold learning methods (UMAP) for the high-dimensional clustering of MSI 

data. Specifically, PCA reduces the dimensionality and preserves the relative distances of the high-

dimensional data. As a result, a PCA plot provides a readily interpretable map for spectral similarity of 

pixels in the MSI data. In contrast, UMAP preserves the local structure of the data and provides a better 

separation of the groups of pixels making it possible to estimate the number of segments in the complex 

data. PCA analysis also generates a compressed representation of the high-dimensional data for GMM 

clustering. It provides an optimized probability distribution for each segment, which is further validated 

using the AIC and BIC analysis. A combination of these methods enables high-quality image segmentation 

without extensive hyperparameter search, which captures a majority of spatial segments in MSI data. 

Univariate thresholding is adopted to partition outlier ion distribution patterns, which are missed by the 

multivariate clustering due to the relatively low explained variance in the transformed representations. The 

identification of such patterns may be important for understanding biological processes based on MSI data. 

Furthermore, quantitative analysis of MSI data benefits from an accurate representation of both major and 

minor spatial patterns. The integrated strategy developed in this study, assisted by ensemble generation and 

finishing, has been used to construct comprehensive spatial segmentation maps of distinct sets of MSI data 

of varying complexity acquired with different spatial resolutions for different tissue types.  

Our approach can be readily expanded to incorporate other image processing techniques. For example, 

denoising of ion images may be used to improve the performance of the multivariate/univariate analysis. 

Furthermore, other imaging modalities such as optical, fluorescence, or confocal Raman imaging, could be 

incorporated into the workflow with appropriate spatial registration to improve the information content of 

different imaging techniques. 
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