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m ABSTRACT

Spatial segmentation partitions mass spectrometry imaging (MSI) data into distinct regions providing a
concise visualization of the vast amount of data and identifying regions of interest (ROIs) for downstream
statistical analysis. Unsupervised approaches are particularly attractive as they may be used to discover the
underlying subpopulations present in the high-dimensional MSI data without prior knowledge of the
properties of the sample. Herein, we introduce an unsupervised spatial segmentation approach, which
combines multivariate clustering and univariate thresholding to generate comprehensive spatial
segmentation maps of the MSI data. This approach combines matrix factorization and manifold learning to
enable high-quality image segmentation without an extensive hyperparameter search. In parallel, some ion
images inadequately represented in the multivariate analysis are treated using univariate thresholding to
generate complementary spatial segments. The final spatial segmentation map is assembled from segment
candidates generated using both techniques. We demonstrate the performance and robustness of this
approach for two MSI data sets of mouse uterine and kidney tissue sections acquired with different spatial
resolutions. The resulting segmentation maps are easy to interpret and project onto the known anatomical
regions of the tissue.

m INTRODUCTION

Mass spectrometry imaging (MSI) is a powerful tool in biological and biomedical research, which enables
an untargeted characterization of the spatial distribution of hundreds of molecules in tissue samples.'™ MSI
experiments usually sample a virtual grid of pixels on a sample surface by acquiring a full mass spectrum
in each spatial pixel. Typically, MSI generates hundreds of thousands of mass spectra each containing
thousands of features, which are subsequently extracted and visualized as 2D ion images. Recent
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developments which focused on increasing the throughput> and improving the spatial resolution’® on MSI
techniques have substantially increased the amount of data generated in MSI studies. Several powerful
software packages have been developed to provide the MSI community with visualization and analysis
tools.!®13 In parallel, progress has been made in the development of advanced computational analysis
methods, which are indispensable for the interpretation and mining of the vast MSI data.'* In particular,
concise representations of MSI data which facilitates data mining and assists human interpretation of high-
dimensional data are highly desirable.'

16,17 18,19

Several computational methods including factorization, co-localization, spatial pattern
clustering,?’2! hyperspectral visualization,?>?* and spatial segmentation'**7 have been developed for the
efficient visualization or fast exploration of complex MSI data. Spatial segmentation is a powerful tool that
provides a concise representation of the high-dimensional data and helps identify regions of interest (ROIs)
for the downstream analysis. ROIs determined using MSI have been used to understand the landscape of
heterogeneous tissue samples and to link molecular signatures to biological conditions through the region-
specific statistical analysis.”®>° For example, a data-driven approach has been used to identify tumor
subpopulations that are statistically linked to patient survival in gastric cancer.>! The ROI-specific analysis
has also been reported to reveal temporal lipid profile changes in a rat brain tissue following the traumatic
brain injury.*

Unsupervised spatial segmentation of MSI data is usually conducted by clustering pixels based on their
spectral similarity.'* For this high-dimensional clustering task, a sequential combination of dimensionality
reduction and clustering techniques is commonly used. In addition, a subspace clustering-based method has
also been developed for clustering of MSI data.** Matrix factorization methods, such as principal
component analysis (PCA)** and non-negative matrix factorization (NMF)* have been used to project
MSI data into a lower-dimensional space in a linear manner. In addition, nonlinear manifold learning
methods, such as self-organized maps (SOM),*>37 t-distributed stochastic neighbor embedding (t-SNE),*!-*8
and uniform manifold approximation and projection (UMAP)*' have gained popularity due to their ability
to preserve local structures of high-dimensional data in a low map representation.

Both dimensionality reduction techniques have downsides: matrix factorization typically requires more
than three components to adequately represent the nonlinear MSI data, which limits the ability to visualize
the underlying structure of high-dimensional data.?* Despite the success of t-SNE and UMAP in the analysis
of RNA sequencing®**’ and mass spectrometry data®'?’, there is a recognition that currently emerging
density-preserving versions of these techniques provide more robust visualizations of the original data
architecture.*! Finally, because of the inevitable information loss in dimensionality reduction and the
tradeoff between the quality of the representation and “curse of dimensionality”,** multivariate clustering

does not necessarily describe the comprehensive patterns present in complex MSI data.

In this study, we have developed a spatial segmentation approach to address some of these limitations. The
approach combines multivariate clustering and univariate thresholding to generate high-quality spatial
image segmentation. In particular, the synergy of both matrix factorization (PCA) and manifold learning
(UMAP) is utilized in the multivariate analysis, which generates a compressed representation of high-
dimensional MSI data for Gaussian mixture model (GMM) clustering. This strategy enables good-quality
clustering of pixels without extensive search of hyperparameters for the clustering algorithm. In addition,
univariate multi-Otsu thresholding is applied to ion images, which are poorly represented using multivariate
techniques, thereby generating complementary spatial segments. Herein, we describe the implementation
of the approach using two previously reported MSI data sets of mouse uterine and kidney tissue samples,
which were acquired using nanospray desorption electrospray ionization (nano-DESI)* imaging source



operated at both high (uterine tissue)* and moderate (kidney tissue)*’ spatial resolutions. We demonstrate

the performance of the approach for different tissue types, spatial resolution, and data complexity.

m EXPERIMENTAL SECTION

MSI Data. Two MSI data sets used as examples in this study have been previously reported. Briefly, 10
pum thick mouse uterine and kidney tissue sections were analyzed using nano-DESI MSI on a Q-Exactive
HF-X Orbitrap mass spectrometer (Thermo Fisher Scientific, Waltham, MA) equipped with a custom-
designed nano-DESI source.” Mass spectra were acquired in the range of m/z 133-2000. For uterine tissue
sample, both positive and negative ion mode mass spectra were acquired in the same experiment, while
only negative mode mass spectra were collected for kidney tissue. The spatial resolution of nano-DESI
experiments was 10 um and 50 um for uterine and kidney samples, respectively.*®*’ The dimensions of
acquired ion images are provided in the supporting information (Table S1).

Data Preprocessing. Detailed description of the computational approaches is provided in the Supporting
Information (SI). We used different data preprocessing approaches for UMAP and PCA (SI 1.1).
Specifically, peak detection and m/z binning were used for UMAP implementation. Meanwhile, we used a
peak picking approach described in our previous study*® to generate a list of peaks originating from the
tissue for PCA analysis. The following custom-designed Python codes were developed for subsequent
analysis of the MSI data. Line scan raw files were processed using pyMSfilereader, a Python binding for
Thermo MSFileReader dynamic-link library, to construct a 2D MSI data array for each sample with pixel
index and m/z bins as coordinates. The resulting data format is shown schematically in Figure S1. Signal
intensity at each pixel for each m/z on the peak list was extracted from the corresponding mass spectrum
with a bin width of 10 ppm. These intensities were normalized to the total ion signal (TIC) of the spectrum.
Because automated gain control was turned on during MSI experiments, the number of spectra varied from
line to line. A linear interpolation was used to generate data with a fixed number of pixels per line (typically
the average number over all the lines). Dimensionalities of the MSI data arrays for UMAP and PCA
analyses are shown in Tables S1 and S3, respectively. For PCA analysis, signal intensities in each m/z bin
were centered and scaled such that they have a mean of 0 and a standard deviation of 1, which eliminates
feature’s magnitude bias in the unsupervised learning algorithms described below.

Image segmentation by multivariate clustering. Given the high dimensionality of MSI data,
dimensionality reduction of m/z bins and clustering of pixels were adopted as a general strategy to spatially
partition the image. Both UMAP* and PCA* were used for dimensionality reduction. UMAP was
performed to transform MSI data arrays into a low-dimensional space, in which each pixel is represented
by a vector of transformed feature values (SI 1.2). Hierarchical density-based spatial clustering for
application with noise (HDBSCAN)* was used to cluster pixels in the UMAP transformed space (SI 1.3).
In parallel, PCA was utilized to reduce the dimensionality of data arrays to 2-50 dimensions. Explained
variance ratio for each principal component (PC) was calculated to determine the number of PCs used for
subsequent clustering. Gaussian mixture model (GMM)’! was adopted to identify subpopulations (clusters)
in the PCA-projected data; the parameters for each Gaussian mixture component were optimized using the
expectation maximization (EM) algorithm. After clustering, the results were visualized by both a scatter
plot of color-coded pixels in the 2D feature space and a color-coded spatial segmentation map. For UMAP
algorithm, cosine distance was used as suggested in a previous study.”® The selection of the number of
mixture components in GMM was evaluated by the Akaike information criterion (AIC) and Bayesian
information criterion (BIC). These two criteria are given by equations 1 and 2:



AIC =2p — 2log(L) (1)
BIC =log(N)p — 2log(L) (2)

where p is the number of free parameters in the model, N is the number of pixels, and L is the likelihood of
the model fit. Both criteria take the negative log-likelihood of the model and a penalty term of model
complexity to avoid over-fitting. In model selection, the lower value of AIC or BIC corresponds to a more
favored model.>> However, the penalty of model complexity in BIC is harsher, as it multiplies the logarithm
of the number of pixels (N) by the number of free parameters (p). The implication of this difference between
AIC and BIC will be discussed later in the text. In this study, UMAP was implemented using a umap-lean
Python package, and other methods were implemented using Scikit-Learn, an open-source machine
learning library for Python.>

Image segmentation by univariate thresholding. After the PCA+GMM multivariate clustering, ion
distribution patterns were sorted by their PCA loadings, which helped identify outlier ion images for the
univariate thresholding (SI 1.4). Multi-Otsu thresholding algorithm>® was used to partition images into 5
classes. A subsequent despiking process was performed on the resulting segments to remove a mild noise
present in the data set. In this process, a 5 x 5 pixel moving window was set to scan the full image. At each
scanning step, the intensity value of the center pixel was compared with the median intensity value of pixels
in the window. If the value was 3 times larger than the standard deviation, the intensity of the center pixel
was replaced by the median intensity value of the surrounding 8 pixels. Multi-Otsu thresholding was
implemented in Scikit-image Python package.>

Ensemble generation and segment assembly. Ensemble generation, which involves processing the data
many times while making some perturbation to the data or hyperparameters of algorithms,*? was applied in
the image segmentation. In particular, GMM clustering was repeated with different numbers of mixture
components; multi-Otsu thresholding was conducted on several ion images which provide complementary
ion distributions. As a result, multiple spatial segment candidates were generated in both image
segmentation modules. A majority vote method** was adopted to automatically assemble a segmentation
map based on the co-occurrence membership agreement across the ensemble clustering results (details are
provided in SI 1.5). Finally, segments generated using univariate thresholding were added to the
segmentation map. A manual selection and assembly method was used to validate the final map. The source
code is available at https://github.com/hanghul024/MSI-segmentation.
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m RESULTS AND DISCUSSION
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Figure 1. Overview of the image segmentation workflow. Color codes indicate independent data processing
modules and arrows indicate data flow.

Spatial segmentation workflow overview. The approach developed in this study comprises four
independent data processing modules, as illustrated in Figure 1. First, we perform data preprocessing to
organize the MSI data for downstream data mining. Next, pixels are clustered based on their spectral
similarity in multivariate analysis. Particularly, both PCA and UMAP are applied: the former generates
compressed features for GMM clustering, while the latter helps estimate the number of clusters. Given these
inputs, GMM is repeatedly fitted, assigned with a range of mixture component numbers around the
estimated cluster number. In this study, a range of 5 is set by default. In parallel, ion images that are poorly
represented in multivariate analysis are independently partitioned using multi-Otsu thresholding. As a result,
ensemble generation of both multivariate and univariate analyses approximates a pool of spatial segment
candidates. We adopted a co-occurrence majority vote to identify the most robust multivariate clustering
result and incorporated segments generated using univariate thresholding into the final segmentation map.
This ensemble generation and finishing strategy also addresses the stability issues commonly observed in
multivariate clustering.*?
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Figure 2. Multivariate clustering of MSI data of a mouse uterine tissue section. (A) 2D representation of
the PCA analysis (PC1 vs. PC2). The PCA+GMM pixel clustering results color-coded by cluster
assignments are visualized in a 2D feature space (B) and spatial domain (C). (D) The 2D UMAP
embeddings. The UMAP+HDBSCAN pixel clustering results color-coded by cluster assignments are
visualized in a 2D feature space (E) and spatial domain (F). (G) Optical image of the mouse uterine tissue
section, scale bar = 500 um. (H) A representative ion image (m/z 746.5106), with intensity scale changes
from black (low) to yellow (high). The color bar on the right illustrates integer clustering labels (1-20) for
color codes. Integer labels were randomly assigned to clusters, and clustering labels in (B, C) and (E, F) are
different. Dots in the scatter plots are set to be 90% transparent. White arrows in panel H indicate glandular
epithelium region.

Dimensionality reduction for multivariate clustering. Extensive search of the parameter space of both
UMAP and PCA implementation indicated that best UMAP result is obtained when all the peaks including
tissue-related and solvent signals are included. We found that peak detection and m/z binning provides
good-quality UMAP representations with a reasonable runtime on a desktop computer (Figure S4).
Meanwhile, best PCA representation was obtained using a filtered list of predominately tissue-related peaks
(Figure S5).

Our approach, which synergistically combines UMAP and PCA methods, is illustrated in Figure 2 for
mouse uterine MSI data. Figures 2A and 2D depict the projection of all 52954 pixels in the mouse uterine
tissue data onto a 2D feature space generated using PCA and UMAP, respectively. PCA preserves the
relative distances between objects by linear projection. Therefore both the separation and compactness of



the projected patterns describe their association in the original space.’® However, a substantial information
loss occurs when only 2 PCs are employed. As shown in Figure 2A, there is insufficient separation of the
clusters in the PCA projection. In contrast, UMAP creates a nearest-neighbors graph in the original space
and arranges a low-dimensional embedding according to the distances between the neighboring points in
the graph, which thereby preserves the local structure of the high-dimensional data.***® Therefore, UMAP
efficiently separates MSI data into a number of distinct clusters (Figure 2D), which have better compactness
and separation in comparison with PCA.

In the next step, we use HDBSCAN and GMM to cluster the UMAP and PCA 2D projections, respectively.
The HDBSCAN views clusters as areas of high density separated by areas of low density*® and is therefore
well-suited to cluster the UMAP embedding. In contrast, the GMM models PCA-projected data using a
number of Gaussian mixture components with variable parameters. In this HDBSCAN implementation, we
used a soft clustering mode (min_cluster_size = 300, min_samples = 30), which classified pixels into 18
clusters (details are provided in SI 1.3). For direct comparison, we use the same number of mixture
components (18 components) in GMM.

The clustering results are visualized in both 2D feature space (Figures 2B, E) and spatial domain (Figures
2C, F). Individual pixels are color-coded based on their cluster assignments indicated by the color bar on
the right of Figure 2. We note that independent coloring is used to visualize the PCA and UMAP results.
The clustering analysis reveals the spectral similarity of pixels in subregions of the uterine tissue section.
As seen in the PCA+GMM plots (Figure 2B, C), pixels on the glass slide (light blue: label 2) generate a
more compact cluster than pixels in tissue subregions. There is also a large distance between these two
kinds of pixels in Figure 2B. Meanwhile, the clusters observed on the tissue edge (light brown: label 12,
light green: label 6, light yellow: label 18) are lined up in the middle of the PCA plane. Clustering analysis
in the PCA feature space indicates that spectra from adjacent subregions are more similar than those from
distant subregions, which is consistent with the expected chemical gradients presenting in biological tissue
samples. The combination of PCA and GMM provides a reasonable image segmentation, in which segments
reproduce biologically interesting patterns observed in the optical and ion images (Figure 2G, H and Figure
S5). Similar cluster architectures are also observed in UMAP+HDBSCAN plots (Figure 2E and 2F). The
UMAP spatial segmentation map captures major features but does not capture some fine patterns observed
in the ion images. For example, segment 10 highlighted with arrows in Figure 2F does not include some of
the glandular epithelium pixels but includes some stroma pixels, which affects quantification results
discussed later.

We used the ground truth color-coding approach reported in the literature*' to examine the quality of
multivariate representations (Figure S9). Specifically, we color-coded the final segmentation labels,
obtained at the end of the workflow, to PCA and UMAP 2D representations. Pixels from the same tissue
region uniformly agglomerate together in PCA. Meanwhile, some of the groups are split and outlier pixels
are observed outside the groups generated by UMAP. Additional segmentation results obtained using
UMAP embeddings with more dimensions are shown in Figure S10. We found that the higher-dimensional
analysis does not improve the segmentation results. Based on the MSI data obtained from the highly
heterogeneous mouse uterine tissue, the comparison of the performance of UMAP and PCA reveals that
PCA is well-suited for image segmentation. Meanwhile, UMAP is a powerful technique for the
visualization of the embedded local clusters that present in the high-dimensional MSI data.

Hyperparameter search for PCA+GMM clustering. Next, we examine the effect of hyperparameters on
image segmentation using PCA+GMM. In particular, we use both mouse uterine and kidney tissue MSI
data sets to examine the effect of the: (1) number of PCs in PCA, and (2) number of mixture components
in GMM on the performance of multivariate clustering.
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Figure 3. Comparison of the GMM pixel clustering results for different number of PCs. (A) Scree plot on
the percentage of variance explained by PCs. GMM with 10 PCs clustering result visualized in the 2D
feature space (B) and spatial domain (C). GMM with 33 PCs clustering result visualized in the 2D feature
space (D) and spatial domain (E). Most dots in scatter plots are set to be 90% transparent, while gray (label
15) coded pixels in (B), gray and salmon (label 8) coded pixels in (D) are set to be opaque for comparison.
White arrows in panels C and E indicate pixels of a fine pattern in spatial domain, while black arrows in
panels B and D indicate them in the 2D feature space.

In general, the smallest number of PCs resulting in sufficient explained variance should be used to reduce
data dimensionality with a minimal loss of information. Empirically, we set an 85% threshold for
cumulative percentage of variance explained (CVE) and a maximum PC number of 50. For the mouse
uterine tissue data, a scree plot is shown in Figure 3A. According to our criterion, 33 PCs describing 84.9%
CVE are selected and modeled by GMM with 18 mixture components. The results are compared with the
GMM clustering performed using 10 PCs describing 75% CVE and the same number of GMM mixture
components. Clustering results are visualized in both the 2D feature space and spatial domain with color-
coded pixels in Figures 3B-E. In comparison to clustering results obtained using two PCs shown in Figure
2B, C, cleaner spatial segments are obtained using a larger number of PCs. This is attributed to a better
separation of pixels residing at the classification boundaries with increase in the number of PCs. We obtain
similar results using 10 and 33 PCs. However, some of the finer patterns discovered using 33 PCs are not
observed in the segmentation obtained using 10 PCs. For example, a cluster shown in salmon (label 8) and
highlighted by the black and white arrows in Figures 3D and 3E, respectively, is not captured using 10 PCs.
This subregion highlighted in Figure S23 has a lower level of alkali ion concentrations compared to the
surrounding stroma cells and is only observed in ion images normalized to TIC.*
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Figure 4. Estimation of the optimal number of mixture components in GMM. (A) A 2D UMAP embedding
of the mouse kidney MSI data. (B) A PCA+GMM pixel clustering result visualized in the spatial domain
using 5 PCs and 10 mixture components. RGB hyperspectral visualizations of (C) mouse uterine and (D)
kidney tissue datasets. Normalized AIC and BIC values as a function of the number of mixture components
for (E) mouse uterine and (F) kidney tissue MSI data.

One of the major challenges in unsupervised clustering is to determine the number of clusters.’” In MSI
image segmentation, an extensive search is usually adopted to estimate the optimal number of
clusters.?2*33-8 This approach increases the complexity and time of the analysis. In this study, we use
UMAP analysis to guide the selection of the number of mixture components for GMM clustering. Since
UMAP effectively separates complex MSI data in 2D/3D feature space, the optimal number of clusters may
be estimated using UMAP visualizations. Furthermore, we use the information criteria described in the
experimental section to validate this parameter search strategy. Since GMM is a probabilistically grounded
method, the probability of the clustering assignment for each pixel is traceable, which enables the
calculation of the likelihood and AIC/BIC values in the fitted model.

We demonstrate the performance of this approach for both mouse uterine and kidney MSI data, in which
33 and 5 PCs (85% CVE from Figure S24) are used in the GMM clustering, respectively. First, an intuitive
estimation of the number of clusters could be made based on the 2D UMAP plots (Figure S11). A
HDBSCAN clustering analysis with similar cluster identification mechanism can be used to assist this
decision making as shown in Figures 2E, 4A and S13. Furthermore, UMAP-based RGB hyperspectral
visualizations* shown in Figures 4C and 4D help visualize major features of the MSI data. Based on the
2D UMAP plot, we estimate the presence of 18 and 10 clusters in the uterine and kidney tissue data,
respectively. The corresponding GMM clustering results are shown in Figure 3E and Figure 4B, which
reasonably represent ion distribution patterns in Figure S5. To statistically evaluate it, normalized AIC/BIC
values, calculated from independently fitted GMMs, are plotted against the number of mixture component
for uterine (Figure 4E) and kidney (Figure 4F) MSI data. For mouse uterine tissue, the AIC value reaches
an inflection point at 15 mixture components. In contrast, a shallow minimum is observed in the BIC plot



spanning over 15-25 mixture components. This distinct difference in the AIC and BIC trends may be
attributed to the harsher penalty over model’s complexity in BIC calculation. Interestingly, both BIC and
AIC show a similar gradual decrease with the number of mixture components in the analysis of the mouse
kidney tissue with an inflection point at 12 mixture components shown in Figure 4D. The steady downward
trend of both AIC and BIC may be attributed to the presence of non-Gaussian components in the data,
which cannot be described using a single Gaussian distribution.® We propose that the inflection point is a
reasonable choice for selecting the optimal number of mixture components in GMM. For both mouse
uterine and kidney data, the number of mixture component determined by analyzing AIC/BIC values is
consistent with the number of clusters estimated by UMAP visualizations. Our results indicate that
regardless of the complexity and spatial resolution of the MSI data, UMAP can be used to determine the
number of clusters for PCA+GMM clustering.
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Figure 5. Single ion image thresholding generates complementary spatial segments for mouse kidney tissue
MSI data. (A) Ion image of m/z 439.2441. (B) Histogram of (A) with thresholds illustrated by red vertical
lines. (C) Spatial segment (salmon) selected from 3 groups of pixels, as illustrated by salmon coded blocks
in (B). (D) lon image of m/z 236.0411. (E) Histogram of (D) with thresholds. (F) Spatial segment (salmon)
selected from the last group of pixels, as illustrated by salmon coded block in (E). (G) Optical image of the
kidney tissue section.

Univariate thresholding of outlier ion images for complementary image segmentation. Although a
good-quality spatial segmentation may be achieved by using multivariate clustering, some ion distribution
patterns may not be captured by the clustering models. In mouse kidney tissue MSI data, two ion images
of m/z 439.2441 and 236.0411, shown in Figures 5, represent two outliers not identified by the clustering
analysis. They were detected and selected through a Ward’s hierarchical clustering-based outlier detection
process described in SI 1.4. The ion at m/z 439.2441 (Figure 5A) is observed in the tubules of the inner
cortex of the kidney. This region is located in close proximity to the gold segment (label 4) in Figure 4B,
which was generated by PCA+GMM, but its outline poorly matches the ion distribution of m/z 439.2441.



Another unusual pattern is observed for m/z 236.0411 (Figure 5D), which is substantially enhanced in
lymphatic vessels clearly seen in the optical image (Figure 5G). The presence of such outliers could be
attributed to the insufficient representation of minor spatial patterns among selected PCs in multivariate
analysis module. In PCA analysis, the loading is the correlation between the variable and component, which
estimates the information they share.** Accordingly, the sum of squares of loadings (SSL) represents the
proportion of the variance of the original ion distribution explained by the selected PCs. For m/z 439.2441
and 236.0411 in mouse kidney data the values of SSL are 4.7% and 1.7%, respectively, with the total SSL
of the corresponding classes of spatial patterns of 10.1% and 17.3% (Figure S16). These two classes are
ranked as 21" and 14™ among all ion distribution patterns (23 classes in total). Due to the low SSL values,
these spatial patterns are not incorporated into the spatial segments generated by multivariate clustering,
which are dominated by higher-ranked features.

In this study, we used the multi-Otsu thresholding algorithm to obtain spatial segments based on single ion
images shown in Figures SA and 5D. The multi-Otsu thresholding method partitions images by separating
pixels into several classes while maximizing the between-class variance of pixel intensities.’* As a
preliminary step to thresholding analysis, the histograms (Figure 5B, E) of two ion images are examined.
The histogram provides the statistics of pixels in an image, which helps to discover ion distribution
properties. For example, there are three noticeable pixel distributions in Figure 5E: (1) pixels observed
below the intensity of 0.0025 correspond to pixels on the glass slide with close to zero intensity and a small
number of low intensity pixels in the kidney medulla region; (2) a Gaussian-like distribution observed
between 0.0025 and 0.0075 corresponds to pixels localized on the tissue; (3) pixels observed above the
intensity of 0.0075 are localized at lymphatic vessels. To implement multi-Otsu thresholding for ion images,
we predefine the number of pixel classes as 5, in order to classify all possible features. As illustrated by red
vertical lines in Figure 5E, thresholds generated by this method successfully differentiate components in
the ion image of m/z 236.0411. By selecting and merging the classified pixels, we obtained two segments
shown in Figure 5C and 5F, which are complementary to the multivariate clustering results. Other state-of-
the-art univariate segmentation methods such as spatially aware Dirichlet Gaussian mixture models may be
utilized in this step.?’
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Figure 6. Assembly of the final segmentation map and subsequent region-specific quantitative analysis.
Automatically assembled segmentation maps of mouse uterine (A) and kidney (C) tissues. Segments are
identified using the majority vote method from ensemble clustering results. Simplified maps showing key
anatomical features in mouse uterine (B) and kidney (D) tissues. Anatomical annotations are only shown
for simplified segmentation maps. (E) Hand-drawn ROI for the glandular epithelium using an ion image of
m/z 746.5106. (F) Violin plots of ion intensities in ROIs generated using three different methods.

Ensemble generation and assembly of spatial segmentation map. After the validation of approaches
adopted in multivariate and univariate analyses, the last step is to assemble a spatial segmentation map from
segment candidates. To construct the candidate pool, ensemble generation is applied for both image
segmentation modules. It is especially useful in multivariate clustering, since neither UMAP visualizations
nor the analysis of AIC/BIC values provides a unique value for the number of mixture components. In order
to evaluate different clustering scenarios, we independently performed GMM clustering over a range of
numbers of mixture components. Using the procedure described earlier, GMM was repeatedly fitted with
16-20 and 8-12 mixture components for uterine and kidney data, respectively. Multi-Otsu thresholding was
applied to two ion images for kidney data but not for uterine data, which are adequately described using
GMM ensemble clustering (Figure S5 and S18). Ensemble generation results for both data sets are shown
in Figures S26 and S27. All clustering generated segmentation maps reveal reasonable spatial segments on
tissues, and thresholding generated segments are unique and complementary. With the increase of the
number of mixture component in GMM, finer patterns emerge on segmentation maps, while some patterns
remain invariant throughout all models, which indicate robust clusters. These individual segments were
identified using a co-occurrence majority vote-based approach (Figure S20 - S22). The resulting
segmentation maps shown in Figures 6A and 6C closely resemble spatial ion distributions in the original



data (Figure S5). Furthermore, the identified segments are closely related to key anatomical features of
mouse uterine and kidney sections highlighted in the simplified maps in Figures 6B and 6D, respectively.
Automatically generated results are in good agreement with a manual segment assembly shown in Figures
S26 and S27. This process also addresses the clustering stability issue. With random initialization, the EM
algorithm may converge to a local rather than global minimum.*? The optimization process is also affected
by the number of mixture components assigned. Ensemble generation and finishing help identify robust
clustering results and avoid errors originating from algorithm perturbations.*? Collectively, this approach
provides comprehensive high-quality ROIs without extensive search of hyperparameters, which benefits
the downstream quantitative analysis. One example for ion at m/z 746.5106 is shown is Figure 6F. The
statistics of TIC-normalized ion signals in the hand-drawn ROI of the glandular epithelium along with ROIs
obtained using PCA+GMM (Figure 6B) and UMAP+HBDSCAN (Figure 2F) are visualized using violin
plots. Both the average and the distribution of ion signals obtained using PCA+GMM ROI closely resemble
the results obtained using a hand-drawn ROI. Meanwhile UMAP+HDBSCAN provides a lower average
value and a substantially distorted distribution of ion signals due to the large number of the stroma signals
included in this ROL.

m CONCLUSION

We have developed and validated a robust approach for image segmentation of high-dimensional MSI data
by combining multivariate clustering and univariate thresholding. We discuss the trade-off between matrix
factorization (PCA) and manifold learning methods (UMAP) for the high-dimensional clustering of MSI
data. Specifically, PCA reduces the dimensionality and preserves the relative distances of the high-
dimensional data. As a result, a PCA plot provides a readily interpretable map for spectral similarity of
pixels in the MSI data. In contrast, UMAP preserves the local structure of the data and provides a better
separation of the groups of pixels making it possible to estimate the number of segments in the complex
data. PCA analysis also generates a compressed representation of the high-dimensional data for GMM
clustering. It provides an optimized probability distribution for each segment, which is further validated
using the AIC and BIC analysis. A combination of these methods enables high-quality image segmentation
without extensive hyperparameter search, which captures a majority of spatial segments in MSI data.

Univariate thresholding is adopted to partition outlier ion distribution patterns, which are missed by the
multivariate clustering due to the relatively low explained variance in the transformed representations. The
identification of such patterns may be important for understanding biological processes based on MSI data.
Furthermore, quantitative analysis of MSI data benefits from an accurate representation of both major and
minor spatial patterns. The integrated strategy developed in this study, assisted by ensemble generation and
finishing, has been used to construct comprehensive spatial segmentation maps of distinct sets of MSI data
of varying complexity acquired with different spatial resolutions for different tissue types.

Our approach can be readily expanded to incorporate other image processing techniques. For example,
denoising of ion images may be used to improve the performance of the multivariate/univariate analysis.
Furthermore, other imaging modalities such as optical, fluorescence, or confocal Raman imaging, could be
incorporated into the workflow with appropriate spatial registration to improve the information content of
different imaging techniques.
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