
The quench control of water estimates in convergent margin magmas

Maxim Gavrilenko1,2,*,†, Michael Krawczynski1, Philipp Ruprecht2, Wenlu Li3,‡, and  
Jeffrey G. Catalano1

1Department of Earth and Planetary Sciences, Washington University in St. Louis, Campus Box 1190, One Brookings Drive, St. Louis,  
Missouri 63130, U.S.A. Orcid 0000-0002-0710-0763.

2Department of Geological Science and Engineering, University of Nevada, Reno, 1664 N. Virginia Street, Reno, Nevada 89557, U.S.A.
3Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, Campus Box 1180, One Brookings Drive,  

St. Louis, Missouri 63130, U.S.A.

Abstract

Here we present a study on the quenchability of hydrous mafic melts. We show via hydrothermal 
experiments that the ability to quench a mafic hydrous melt to a homogeneous glass at cooling rates 
relevant to natural samples has a limit of no more than 9 ± 1 wt% of dissolved H2O in the melt. We 
performed supra-liquidus experiments on a mafic starting composition at 1–1.5 GPa spanning H2O-
undersaturated to H2O-saturated conditions (from ~1 to ~21 wt%). After dissolving H2O and equilibrat-
ing, the hydrous mafic melt experiments were quenched. Quenching rates of 20 to 90 K/s at the glass 
transition temperature were achieved, and some experiments were allowed to decompress from thermal 
contraction while others were held at an isobaric condition during quench. We found that quenching of 
a hydrous melt to a homogeneous glass at quench rates comparable to natural conditions is possible at 
water contents up to 6 wt%. Melts containing 6–9 wt% of H2O are partially quenched to a glass, and 
always contain significant fractions of quench crystals and glass alteration/devitrification products. 
Experiments with water contents greater than 9 wt% have no optically clear glass after quench and 
result in fine-grained mixtures of alteration/devitrification products (minerals and amorphous materials). 
Our limit of 9 ± 1 wt% agrees well with the maximum of dissolved H2O contents found in natural 
glassy melt inclusions (8.5 wt% H2O). Other techniques for estimating pre-eruptive dissolved H2O 
content using petrologic and geochemical modeling have been used to argue that some arc magmas 
are as hydrous as 16 wt% H2O. Thus, our results raise the question of whether the observed record of 
glassy melt inclusions has an upper limit that is partially controlled by the quenching process. This 
potentially leads to underestimating the maximum amount of H2O recycled at arcs when results from 
glassy melt inclusions are predominantly used to estimate water fluxes from the mantle.

Keywords: Mafic glassy melt inclusions, hydrous mafic glass quenchability, arc volatile budget, 
magmatic water; Applications of Fluid, Mineral, and Melt Inclusions

Introduction

Arc magmas are almost exclusively hydrous (e.g., Sobolev 
and Chaussidon 1996; Wallace 2005; Métrich and Wallace 2008; 
Plank et al. 2013; Zellmer et al. 2015) as a result of subducting 
slab dehydration (Sobolev and Chaussidon 1996; Kamenetsky 
et al. 2002; Grove et al. 2006). The maximum dissolved H2O 
content in magmas plays a pivotal role in the generation (Katz 
et al. 2003; Grove et al. 2006, 2012) and evolution (Grove et al. 
2003, 2012; Zimmer et al. 2010) of arc melts. Within the crust, 
magma transport and eruption is strongly modulated by dissolved 
H2O since it imparts buoyancy to primitive magmas traveling 
through the crust (Herzberg et al. 1983; Ochs and Lange 1999; 
Carmichael 2002), and when H2O exsolves at shallow pressures, 
it affects explosivity through volumetric expansion (Cashman 

2004). Besides the effects of H2O on the magmatic system itself, 
the H2O budget in convergent margins affects mantle rheology 
and geophysical parameters like seismic wave speed, attenua-
tion, and conductivity of the lithosphere and mantle (Hacker et 
al. 2003; Pozgay et al. 2009; McGary et al. 2014). Because water 
plays such a central role in magma genesis and evolution at con-
vergent margins, knowing the water content of the most primitive 
magma samples at volcanic arcs is of first-order importance.

Currently, magmatic H2O content estimations are based most-
ly on studies of melt inclusions (e.g., Sobolev and Chaussidon 
1996; Kamenetsky et al. 1997; Frezzotti 2001; Danyushevsky et 
al. 2002; Kamenetsky et al. 2002; Schiano 2003; Kent 2008); in 
particular, melt inclusions that are glassy and hosted by the most 
magnesian olivine crystals, present in tephra/scoria. Melt inclu-
sions (MIs) act as tiny pressure capsules potentially preserving 
the chemistry of pristine primitive melts as well as minimum dis-
solved H2O contents. The physical state of MIs post entrapment 
can be thought of as having three major end-members: (1) glassy 
MIs; (2) crystallized MIs; and (3) devitrified MIs. The resulting 
type of the MI strongly depends on its cooling rates (Anderson 
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1991; Frezzotti 2001). Because it has long been assumed that 
the glassy single-phase melt inclusions have the most rapid 
cooling rates, direct secondary ion mass spectrometer (SIMS) 
and Fourier-transform infrared spectroscopy (FTIR) measure-
ments of H2O dissolved in glassy MIs have served for decades 
as the “gold standard” for determining magmatic pre-eruptive 
H2O content (e.g., Wallace 2005; Plank et al. 2013). Crystallized 
MIs are thought to be produced during slow cooling (Skirius et 
al. 1990; Anderson 1991; Frezzotti 2001) and thus are usually 
presumed to be subject to diffusive degassing of H2O in nature. 
These inclusions are rarely used for volatile species studies (e.g., 
Skirius et al. 1990; Esposito et al. 2016). Devitrified MIs are the 
result of partial modification of the glass, and those melt inclu-
sions are usually discarded by researchers of magmatic volatile 
species (Kent 2008).

While the evolution of magmatic H2O at shallow depths has 
been studied thoroughly using glassy MI (e.g., Wallace 2005; 
Plank et al. 2013), the evolution of magmatic H2O in deeper 
parts of subduction zones remains less constrained. Volatile-rich 
magmas undergo nearly complete degassing during ascent, erup-
tion, and cooling. Because H2O solubility is pressure dependent 
(e.g., Moore et al. 1998; Papale et al. 2006; Shishkina et al. 2010; 
Mitchell et al. 2017), high water contents above 9 wt% would 
require MIs to have formed at mid to lower crustal or even upper 
mantle pressures, but no mafic glassy melt inclusions preserv-
ing >9 wt% H2O have been found (Fig. 1). The existence and 
preservation of such melt inclusions are further challenged by 
the fact that hydrogen diffusion through the crystal lattice of 
the host allows equilibration between the degassing matrix melt 
and the entrapped pressurized melt droplet. Recent studies have 
demonstrated that hydrogen diffusion within a host mineral is 
rapid (Danyushevsky et al. 2002; Hauri 2002; Portnyagin et al. 
2008; Chen et al. 2011; Gaetani et al. 2012; Bucholz et al. 2013; 
Lloyd et al. 2013; Hartley et al. 2015), causing MIs to be par-
tially open to lose (or gain) volatile species. Hydrogen may also 
migrate along dislocations or propagation of defect points in the 
host mineral (Massare et al. 2002; Portnyagin et al. 2008), further 
enhancing hydrogen exchange between the melt inclusion and the 
matrix melt. Thus, it has been acknowledged that the amount of 
H2O that MIs contain likely represents a minimum from what was 
originally dissolved in a particular magma (Gaetani and Watson 
2000; Danyushevsky et al. 2002; Hauri 2002; Portnyagin et al. 
2008; Gaetani et al. 2012; Bucholz et al. 2013; Lloyd et al. 2013).

Despite the limitations in the use of glassy melt inclusions, 
they are still assumed to be among the best archives to record pre-
eruptive primitive water contents (e.g., Sobolev and Chaussidon 
1996; Kamenetsky et al. 1997; Kamenetsky et al. 2002; Wallace 
2005; Plank et al. 2013; Wallace et al. 2015b), especially when 
quenched rapidly as tephra of mafic magmas. The rapid quench 
of the melt inclusions upon eruption, or even before eruption, 
results in the preservation of the melt inside host minerals as 
clear glass. Melt inclusions from primitive olivine phenocrysts 
in tephra and scoria are assumed to best preserve the pre-eruptive 
water contents of melts with a mantle origin, so these samples are 
preferentially analyzed. The highest amount of water recorded 
in melt inclusions with mafic compositions is ~8.5 wt% (de 
Moor et al. 2013) hosted in minerals from nephelinitic magmas, 
related to rift settings. In arc settings the maximum is slightly 

lower at 7.0–7.5 wt% of H2O (Auer et al. 2009; Zimmer et al. 
2010; Weller and Stern 2018).

Many excellent MI studies have significantly improved 
our understanding of the H2O variations in arc magmas (e.g., 
review/summary in Wallace 2005; Kent 2008; Plank et al. 2013). 
A review of the existing database of inclusions that have been 
quantitatively studied for their dissolved H2O contents concluded 
that the maximum H2O content in melt inclusions from a single 
volcano or cinder cone ranges typically between 1–7 wt% (Plank 
et al. 2013). Those researchers (Plank et al. 2013) and other 
studies (Gaetani and Watson 2000; Danyushevsky et al. 2002; 
Hauri 2002; Portnyagin et al. 2008; Gaetani et al. 2012; Bucholz 
et al. 2013; Lloyd et al. 2013) have recognized the open system 
behavior of MIs. Nonetheless, it is still generally interpreted 
that the maximum water contents of MIs in primitive magmas 
in subduction zone settings are representative of the amount of 
H2O in primitive arc melts (e.g., Straub and Layne 2003; Wallace 
2005; Moore 2008; Parai and Mukhopadhyay 2012; Wallace et 
al. 2015b; Peslier et al. 2017).

An alternative interpretation of the maximum water content 
found in glassy melt inclusions is that melts with higher water 
contents do not quench to a homogeneous glass at natural 
quenching rates. Such higher water contents (14–16 wt%) for 
arc magmas have been postulated, based on other petrologic 
constraints, to exist at the deep crust and upper mantle condi-
tions (Carmichael 2002; Fischer and Marty 2005; Krawczynski 
et al. 2012). The fact that the majority (98%) of studied glassy 
MIs record last equilibration at shallow pressures (<500 MPa; 
Wallace 2005) raises the question whether all MIs formed and/or 
equilibrated at shallow depths, or whether MIs are formed at all 
pressures, but by selectively analyzing glassy samples there is a 
bias in the current data set to low H2O melt inclusions or those 
that formed or re-equilibrated shallowly. Here we show that the 
low-pressure record in MIs is not only a result of shallow entrap-
ment or re-equilibration on the ascent, but potentially also due to 
the ability of quenched glass to retain H2O in its structure when it 
is formed as the hydrous silicate melt passes the glass transition.

Here we define the term “quenchability,” which refers to 
the ability of a silicate melt to be transformed to a glass upon 
cooling. This kinetically driven process strongly depends on 
such parameters as degree of melt polymerization and cooling 
rates (Dingwell and Webb 1990). Adding a significant amount 
of H2O to a melt lowers the glass transition temperature (Tg), 
potentially making hydrous melts harder to quench and producing 
non-glassy melt inclusions. Devitrified or crystallized MIs are 
preferentially not studied for their volatile content. Below we 
present evidence that if hydrous mafic magmas contain greater 
than ~9 wt% H2O they cannot form glassy MIs at naturally oc-
curring quench rates. Studies that make global calculations of 
water exchange between the Earth’s interior and the exosphere 
using MI data for estimates of H2O contents in arc magmas (e.g., 
Hacker 2008; van Keken et al. 2011; Parai and Mukhopadhyay 
2012), are likely underestimating the amount of recycled H2O 
in some sub-arc settings. In addition, recent geophysical studies 
show that the amount of subducted water may be much higher 
than previously realized (Cai et al. 2018), which would require 
some amount of arc magmas to contain higher water contents 
than traditionally recognized.
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Experimental approach

The MI record stands in contrast to studies using petrologic 
and geochemical proxies that provide evidence for up to 16 
wt% of H2O in some arc magmas (Carmichael 2002; Fischer 
and Marty 2005; Krawczynski et al. 2012). An underlying 
assumption in MI studies is that glassy MIs (single phase ± 
a single exsolution bubble) have the best chance to faithfully 
record pre-eruptive H2O content, while non-glassy MIs (multiple 
phases) are commonly interpreted as potentially slowly cooled 
(and, thus, have experienced more H2O degassing by diffusion) 
and also require additional stages of sample preparation (e.g., 
Skirius et al. 1990; Esposito et al. 2016). Anecdotally, many 
previous experimental studies involving H2O-bearing silicate 
melts have reported problems with quenching mafic glasses with 
a high water content of more than 8 wt% of H2O (e.g., Grove et 
al. 2006; Behrens et al. 2009; Baker and Alletti 2012; Shishkina 
2012). However, the quenchability limit for hydrous silicate 
melts has not been studied systematically before. This then begs 
the question: how much water can we quench in a single-phase 
mafic glassy inclusion with naturally occurring cooling rates?

To test the limits of quenchability for hydrous glasses for 
naturally occurring cooling rates, we conducted a series of 
hydrous (1–21 wt% of pre-loaded H2O) supra-liquidus tem-
perature experiments (1225–1300 °C, 1–1.5 GPa) on a mafic 
calc-alkaline composition (Table 1), to determine the highest 
concentration of dissolved H2Ototal that a quenched glass is able to 
contain (H2Ototal accounts for all hydrogen species in the glass). 
The mafic composition for experiments was chosen because 
previous studies have explored primitive magma water contents 
in the mafic range of 44–56 wt% SiO2 (Fig. 1). Synthetic glass 
powders and deionized water were loaded in Au80Pd20 metal 
capsules and heated above the liquidus and equilibrated for 
10–16 h in a piston-cylinder apparatus. The experiments were 
heated to 1225–1300 °C, near or above the liquidus (depending 
on the water content), and quenched at rates applicable to cool-
ing rates for volcanic tephra (Lloyd et al. 2013) (see Materials 
and Methods section for more details). Dissolved H2O contents 
in quenched experimental run products were determined by 
thermo-gravimetric analysis (TGA), electron microprobe analy-
sis (EPMA; “volatiles by difference” method), and secondary 
ion mass spectrometry (SIMS).

The experimental pressure (1–1.5 GPa) represents deep 
crustal and shallow mantle pressures. We have chosen this 
pressure because H2O solubility in the melt is sufficiently high 
(~16–20 wt% H2O; e.g., Shishkina et al. 2014; Mitchell et al. 
2017 and references therein) to contain far more dissolved H2O 
than what is recorded in natural glassy MIs (Fig. 1). Overall, 
H2O solubility in melts/glasses of different compositions has 
been best constrained at conditions ≤500 MPa representing 
crustal depths shallower than 15–16 km (Hamilton et al. 1964; 
Moore et al. 1998; Papale et al. 2006; Shishkina et al. 2010 
and others).

Materials and methods

Starting materials
Experiments were conducted on a starting composition that was synthesized to 

match the composition of a primitive basaltic andesite (Mg# = 71), 85–44, erupted 
from Mt. Shasta, California, in the Cascades (Baker et al. 1994; Grove et al. 2003, 
2005). This basaltic andesite was chosen because it is a low silica (52 wt% SiO2), 
high MgO (10.5 wt% MgO) end-member of the Mt. Shasta primitive lava suite, and 
known from experimental studies to be a hydrous magma composition. The starting 
composition was made from reagent-grade oxides and carbonates, ground under 
isopropanol in a ball mill, and decarbonated at 1000 °C for 8 h. The ground powder 
was held at 1500 °C in a Pt crucible in air for 1 h, and then quenched to a glass by 
dropping the crucible in water. The glass was extracted from the crucible and ground 
in an agate mortar under isopropanol. The ground glass was then remelted in air and 
quenched and crushed following the same procedures to ensure homogeneity. In total, 
the melting/grinding procedure was repeated three times to ensure a homogeneous 
and crystal-free starting material. The major element composition and homogeneity 

Table 1. 	 Glass starting material for experiments in oxide weight percents measured by EPMA
Starting material	 n	 SiO2

a		  TiO2		  Al2O3		  FeO		  MnO		  MgO		  CaO		  Na2O		  K2O		  Total	 Mg# 
mafic (85–44)	 40	 51.12	 (0.85)	 0.61	 (0.03)	 16.58	 (0.18)	 7.84	 (0.24)	 0.059	 (0.015)	 10.43	(0.14)	 9.28	 (0.08)	 2.24	 (0.06)	 0.39	(0.02)	 98.55	 70.3
Note: n = number of probe analyses.
a Numbers in parentheses are the 2σ errors (standard deviation from replicate analyses) on the reported oxide wt%.
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Figure 1. Measured H2O variations in melt inclusions with different 
bulk compositions. Major element compositions of the melt inclusions are 
normalized to an anhydrous basis, and SiO2 is plotted. H2O concentrations 
range up to 8–9 wt% (bold dashed green line). Experimental results 
showing the maximum possible H2O content in a mafic glass (this study) 
are shown with a red circle (1s error bars). Quenched glassy melt inclusions 
have not been found with the high water contents (14–16 wt% H2O) 
previously estimated by petrological and geochemical studies (Carmichael 
2002; Fischer and Marty 2005; Krawczynski et al. 2012). Dashed gray 
and blue lines are H2O solubility limits for 500 MPa having no CO2 (gray 
line) and having 2500 ppm of CO2 provided by the model reported in 
Shishkina et al. (2014). MI data (6300 analyses) are from the GEOROC 
database (Geochemistry of rocks of the Oceans and Continents; MPI für 
Chemie, Mainz, Germany, http://georoc.mpch-mainz.gwdg.de/georoc). 
The histogram at the bottom panel illustrates the distribution of studied 
MIs by SiO2 content showing the abundance of mafic MIs in the global 
compilation due to numerous studies of primitive magmas.
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of the glass starting material was inspected by electron microprobe analysis (Table 1).
Since the starting material was glassed in air we expect the starting material to 

have all iron as Fe3+ before the experiments. However, the experiments (see below for 
procedures) were unbuffered for fO2 (oxygen fugacity). The presence of Fe-bearing 
olivine and orthopyroxene crystals in some of the experimental products (Table 2 and 
Supplemental1 Table S1) confirms that some of the Fe3+ was reduced to Fe2+ during 
the experiments. It was shown recently that increasing Fe3+ content of anhydrous 
silicate melts increases their viscosity and glass transition temperature (Di Genova et 
al. 2017), which indirectly means that increasing Fe3+ improves the quenchability. The 
effect of fO2 on hydrous glass quenchability has not yet been studied directly. In our 
case we expect the Fe3+/Fe2+ to be higher than zero, but at this time it is unconstrained.

Experimental procedures
Experiments were conducted using the 1⁄2 inch piston-cylinder apparatus (Boyd 

and England 1960) at the Washington University in St. Louis, Experimental Studies 
of Planetary Materials laboratory. We employed a single capsule, which contained 
an unbuffered mixture of powdered glass starting material and deionized water. We 
used an Au80Pd20 alloy capsule for all experiments. The capsule was prepared with a 
small lip and was fitted with a lid that was cold-welded by pressure (Ayers et al. 1992), 
a design that has been successful in super-hydrous experiments (e.g., Brenan et al. 
1994, 1995; Krawczynski et al. 2012). The lid seals when the piston load is applied 
to the capsule during pressurization, before heating. The capsule was surrounded by 
a soft-fired pyrophyllite ring. During compression, the pyrophyllite ring deformed 
with the capsule, which helped stop the development of shear stresses. A BaCO3 
pressure cell was used in all experiments. Most of the experiments were conducted 
on glass starting materials at 1 GPa, but several experiments were conducted at 1.5 
GPa (see details below). Experiments were doped with different starting amounts 
of deionized water ranging from ~1 to ~21% of the weight of sample glass + H2O 
(Table 2). Turning off the power quenched the experiments. Cooling during the finite 
quench duration leads to thermal contraction and a concurrent drop of pressure on 
the sample (Bista et al. 2015). To test whether the pressure evolution during the 
quench duration significantly controls the final run we quenched some of our 1 GPa 
experiments under isobaric (pumped pressure at quench) conditions and conducted 
several 1.5 GPa experiments. The maximum experimental cooling rate ranges up 
to 120 K/s (Fig. 2), which is common for the piston-cylinder apparatus (e.g., Zhang 
et al. 2017). However, the cooling rates at specific glass transition temperatures 
(Tg was calculated after Deubener et al. 2003) are 20–90 K/s (Fig. 2), which match 
those for melt inclusions that form in samples that range in particle size somewhere 
in between ash particles (>500 K/s) to 2 cm lapilli (up to 22 K/s; Lloyd et al. 2013; 
Fig. 3). Thus, the quench rates achieved in the piston-cylinder closely approximate 
those for the most frequent size of tephra samples used in melt inclusions studies. 
Each experiment used porous MgO parts to surround the sample, and experiments 

were held at pressure for 5 h at 800 °C to anneal the porous MgO starting material 
before the temperature was increased up to maximum values (1225–1300 °C). This 
annealing step prevented gold from flowing into grain boundaries and pores in the 
MgO. Experimental durations were 16 h for 1225 °C runs and 10 h for 1300 °C 
runs. The run times were deemed sufficient by observing homogeneous glass as 
a run product in low H2O experiments. Experimental conditions and run products 
are shown in Table 2.

Electron microprobe analysis/characterization (EPMA)
Post-quenching, several 1–2 mm pieces from each experiment were prepared for 

analysis and characterization by electron microprobe. Experimental products were 
investigated for vesiculation and quench crystallization. Quantitative measurements 
of the major element chemistry of quenched products were obtained using the JEOL 
8200 instrument at Washington University in St. Louis. A beam current of 25 nA, 
an accelerating voltage of 15 kV, and a beam size of 30 mm were used for all glass 
analyses. EPMA analyses of experimental run products are listed in Supplemental1 
Table S1. Chemical homogeneity of the run products was checked by multiple 
EPMA analyses and presented in Supplemental1 Table S1 as the standard deviation 
(2s). Iron loss to the Au80Pd20 capsule was calculated by comparing the bulk glass 
composition to that of the starting material and shown to be always <8.5% and usu-
ally about 1–3% (Table 2).

Table 2. 	 Run conditions and products for hydrous supra-liquidus experiments for 85-44 composition
Run	 T (°C)	 P (GPa)	 Pre-loaded H2O (wt%)	 Duration (h)	 Phasesa	 % DFeb	 Tg (°C)
F068	 1225	 1.0	 8.7	 16	 vesicular glass, quench material (96) + olivine (4)	 –8.4	 288
F069	 1225	 1.0	 12.2	 16	 quench material	 –5.6	 248
F070	 1225	 1.0	 15.1	 16	 quench material	 –2.9	 223
F071	 1225	 1.0	 18.0	 14	 quench material	 –2.9	 202
F073	 1225	 1.0	 8.2	 16	 glass + quench material	 –1.2	 294
F074	 1225	 1.0	 9.9	 16	 quench material	 –0.6	 272
F075	 1225	 1.0	 7.6	 16	 glass + quench material	 0.0	 304
F076	 1225	 1.0	 6.8	 16	 glass (94), quench crystals, + olivine (6)	 1.9	 317
F079	 1225	 1.0	 5.9	 16	 glass and rare quench crystals	 –1.1	 334
F080	 1225	 1.0	 9.0	 16	 vesicular glass + quench material	 –0.7	 283
F083	 1225	 1.0	 21.3	 16	 quench material	 0.4	 184
F085	 1300	 1.0	 1.3	 10	 glass (88) + pyroxene (12)	 –1.4	 540
F087	 1300	 1.0p	 3.3	 10	 glass	 1.4	 413
F088	 1300	 1.0p	 5.0	 10	 glass	 0.8	 357
F089	 1300	 1.0p	 6.8	 10	 glass + quench crystals	 0.7	 317
F090	 1300	 1.0p	 8.7	 10	 vesicular glass + quench material	 3.1	 288
F091	 1300	 1.0p	 10.0	 10	 quench material		  271
F097	 1300	 1.5	 18.5	 10	 quench material	 –3.9	 198
F098	 1300	 1.5	 12.6	 10	 quench material	 –2.1	 244
F099	 1300	 1.5	 4.1	 10	 glass	 2.4	 383
F106	 1300	 1.0p	 8.0	 10	 glass + quench material	 –1.6	 297
F107	 1300	 1.0p	 12.2	 10	 quench material		  248
Notes: For experiments without crystals the Fe-loss was calculated via comparison of broad beam analyses (normalized to 100%) to the bulk composition. 1.0p means that 
pressure was maintained during quenching due to active pumping. Tg = calculated glass transition temperature based on pre-loaded H2O content and algorithm from 
Deubener et al. (2003). a Phase abundances in percent are given in parentheses, calculated by mass balance (Krawczynski and Olive 2011). b Percent of relative Fe 
loss or gain from the starting material was estimated using a mass balance of the measured phase compositions and the bulk starting composition of the experi-
ment (Krawczynski and Olive 2011).
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Imaging
Images of the experimental products presented in this study were obtained with 

the following instruments: an optical microscope, the JEOL 8200 electron microprobe 
at Washington University in St. Louis as well as a JEOL JSM-6010LA analytical scan-
ning electron microscope and a JEOL JSM-7100F field emission scanning electron 
microscope housed at the University of Nevada, Reno. The images are presented in 
Figures 5 and 8 and also in Appendices1 1 and 2.

Quantitative analysis of H2O in experimental products
To determine the dissolved H2O of our experimental run products we used a bulk 

extraction technique (Ihinger et al. 1994), which is based on measuring the loss on 
ignition of the hydrous glass. Quantification of water content was conducted using a 
Thermogravimetric Analyzer (TGA, Q5000IR, TA Instruments) at Washington Uni-
versity in St. Louis, having a sensitivity of 0.1 mg and the weighing accuracy ±0.1% 
(see method’s details in Mielenz et al. 1953; Knowlton et al. 1981; Guggenheim and 
van Groos 2001; Földvári 2011). In a typical TGA analysis, 5–7 mg of sample was 
crushed to a fine powder in an agate mortar immediately prior to the analysis. In 
this way, we minimized H2O loss from the sample, or H2O gain by adsorption onto 
the powdered sample from the atmosphere. The powdered sample was placed in a 
platinum pan and heated at a rate of 5 °C/min to 850 °C under a flow of N2 (1 bar, 25 
mL/min). Ultra-pure N2 was used for all measurements. After heating, the sample was 
held at 850 °C for a time (5–30 min) until no mass change greater than 1 mg per minute 
was observed. For each TGA run, the change in mass and temperature was recorded 
continuously during the entire measurement. The techniques that were employed in 
this study actually measure the total volatile content of experimental run products, 
not just the dissolved H2O. The major volatile component of the experimental run 
products is H2O, however other volatile species, primarily dissolved CO2, may 
contribute to the total volatile content. The run products from our experiments have 
low amounts of CO2 (~500 ppm; see details in the Results section). Such CO2 content 
is small compared to the H2O contents of these experiments, so that contribution to 
both total volatile content and H2O solubility during the quench are assumed to be 
negligible (e.g., Papale et al. 2006; Métrich and Wallace 2008; Shishkina et al. 2010; 
Steele-Macinnis et al. 2011, 2017).

H2O determinations by TGA analyses of our experimental products also were 
complemented by H2O estimations by difference from 100% totals from EPMA 
analysis [“volatiles by difference” (VBD) method, e.g., Nash 1992; Devine et al. 
1995; King et al. 2002; Humphreys et al. 2006; Blundy and Cashman 2008]. The 
VBD method is widely used for quantifying the volatile contents in both experimental 

(e.g., Di Carlo et al. 2006; Botcharnikov et al. 2008; Erdmann and Koepke 2016) 
and natural (e.g., Sommer 1977; Rutherford and Devine 1996; Métrich et al. 2004; 
Holtz et al. 2005) silicate glasses. The quantitative analysis of H2O both by TGA and 
VBD determinations in experimental products are listed in Supplemental1 Table S1. 
The estimated uncertainty for total water content using the by difference method is 
higher than the TGA because it takes into account the uncertainty on all the other 
species measured. It was shown recently that the VBD method overestimates the 
volatile content of hydrous glasses as much as ~1 wt% due to sub-surface charging 
during EPMA analysis (Hughes et al. 2019). However, the two methods agree within 
uncertainty for all the samples measured with both methods.

Secondary ion mass spectrometry (SIMS) analysis of 
volatile components

Glass chips from two experimental charges (F099, n = 3; F087, n = 3) were 
mounted individually in dental resin and polished on one side. After removal from 
the resin using acetone wash, the chips were mounted in indium metal for SIMS 
(secondary ion mass spectrometer) analysis. Volatile species (H2O, CO2, Cl, F, and 
S) and P in the experimental glasses were measured on a Cameca IMS 7f-GEO ion 
probe at Washington University in St. Louis. The procedure was adapted from Hauri 
et al. (2002) measuring monovalent anions of 12C, 16O, 1H, 19F, 30Si, 31P, 32S, and 35Cl. 
A primary beam (5–10 nA) accelerated to 10 kV was used to create a ~20 mm spot 
size. We used primary basaltic reference materials ALV-519-4-1, ALV-1833-11, 
ALV-1846-12, ALV-1833-1 characterized by Kumamoto et al. (2017), and Fonualei 
Rift:ND-60-01 (n = 10) and Mangatolu Rift:ND-70-01 (n = 11) as secondary reference 
materials (Lloyd et al. 2013). The primary reference glasses were used to develop 
calibration curves for H2O, F, P, S, and Cl. Given the high background for 12C for the 
standard mount, likely due to contamination derived from the standard mount, we 
used the secondary standards to obtain a calibration curve for CO2. A significantly 
lower background in 12C characterized the sample mount. It is noted that we report 
CO2 concentrations for the experimental glasses with less confidence given that no 
additional secondary standard was available to confirm calculated concentrations. A 
synthetic pure silicate glass, Suprasil, was measured to estimate limits of detection 
for H2O, F, P, and S (Supplemental1 Table S2). CO2 is affected in the same way as 
mentioned above, and Cl is high in this reference glass.

Powder X‑ray diffraction
The quenched products from experiments F071, F091, and F098 were ground 

and then analyzed using powder X‑ray diffraction (XRD) to identify mineral 
components. All samples were mounted in zero-background Si sample holders 
with a 10 mm diameter well. Measurements were made on a Bruker d8 Advance 
diffractometer at Washington University in St. Louis, using a CuKa X‑ray tube and 
a LynxEyeXE energy-dispersive strip detector. Data were collected from 5 to 80° 
2q in 0.02° steps with 0.5 s integration time; the samples were continuously rotated 
at 15 revolutions per minute.

Results
Our results show that quenched mafic glasses, which retained 

the total pre-loaded H2O content as dissolved H2O, only occurred 
in experimental runs with less than ~9 wt% H2O (Fig. 4); at higher 
pre-loaded H2O content (up to ~21 wt%) the experiments did not 
quench to a homogeneous glass. Key in this analysis is both the 
H2O solubility in melts and the H2O quenchability in glasses. At 
the P and T conditions of our experiments, the maximum solubil-
ity of H2O in the mafic melt should be approximately 20 wt% 
(Mitchell et al. 2017), far exceeding observed H2O contents in 
our quench products.

Textures of the quenched experimental run products systemati-
cally changed with increasing pre-loaded H2O contents (Fig. 5). 
Experiments with up to 6 wt% pre-loaded H2O quenched to 
optically clear, non-vesiculated glass. For experiments with more 
than 6 wt% H2O but <9 wt% H2O, we identify a “transition zone” 
where run products were not completely quenched to vesicle-free 
glass; instead there was a mixture with areas of optically clear glass 
and areas of glass thoroughly permeated with quench crystals, 
vesicles, and devitrified glass. For our experiments with >9 wt% 
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Figure 3. The comparison of natural and experimental temperature 
drop during quenching. The experimental quench rates (blue and red 
thin lines) are very close to cooling rates of natural glasses (black and 
yellow thick lines). Yellow dashed thick lines show the cooling rates of 
MIs in 2 cm lapilli and 6 cm vessels determined by Lloyd et al. (2013). 
Black thick lines are modeled cooling rates of glass in pillow lava rims at 
different depths from the margin reported in Cottrell and Kelley (2011). 
The model for the depth of 0.5 mm is assumed as a cooling rate for MIs 
from ash particles. The glass transition temperatures (solid circles) are 
determined as in Figure 2.
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of pre-loaded H2O, optically clear glass was not present at any 
amount and all experimental products were an intimate mixture of 
fractured, vesicular, devitrified glass, quench crystals, and hydrous 
products of glass alteration (see more details about textures for 
every sample in the Appendix1 1).

The quenched products from experiments F071 (18 wt% H2O), 

F091 (10 wt% H2O), and F098 (12.6 wt% H2O) were analyzed us-
ing powder X‑ray diffraction (XRD) to identify minerals present. 
XRD patterns (Fig. 6) of the three run products consist of several 
broad and often asymmetric features on top of a background con-
taining a broad feature near 30°. This background feature indicates 
a significant amorphous component, such as glass. Features in the 
XRD pattern at low angles (Fig. 7) are consistent with smectites 
(Moore and Reynolds 1997) having a range of hydration states, with 
apparent d-spacings spanning ~12.5 to ~14.9 Å. The identification 
of smectites is further supported by the presence of asymmetric 
features near 19 and 34° (Fig. 6), which are (hk0) bands indica-
tive of a turbostratically stacked phyllosilicate. A phyllosilicate 
(060) feature present near 60° consists of a composite peak (Fig. 
7) corresponding to two or more phases with d-spacings in the 
range of 1.530 to 1.542 Å, indicating all phases are trioctahedral 
in nature (Moore and Reynolds 1997). Additional features pres-
ent in all patterns (Fig. 6) likely originate from higher-order basal 
reflections associated with smectites having different degrees of 
hydration and additional turbostratic (hk0) bands. However, 
some features present may also result from partial interstratifica-
tion with other phyllosilicates. In addition to the above features, 
sample F098 contains sharp diffraction peaks near 5.9, 11.8, and 
17.8° (Figs. 6 and 7) corresponding to the (001), (002), and (003) 
reflections, respectively, of chlorite. The narrow features at higher 
angles that are unique to this sample also likely originate from 
chlorite, although additional accessory crystalline phases may be 
present as well. While samples F098 and F071 contain two peaks 
from periclase, this phase is a contaminant originating from the 
experimental matrix outside of the reaction capsule. High-quality 
SEM images of those three non-glassy experimental products with 
comparison to a glassy one (experiment F099) are presented in 
Figure 8 (more SEM images of those experiments can be found in 
Appendix1 2). The SEM images visually confirm the presence of 
vast non-glassy material with a flaky appearance (Figs. 8a, 8b, and 
8c). The samples’ apparent flakiness cannot be easily confused with 
the appearance of blocky, conchoidally fractured glass (Fig. 8d).

H O solubility at 1 GPa for basal�c melt - 20.6 ± 0.9 wt%
Mitchell et al. (2017)
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Basaltic hydrated experimental glasses F099 and F087 were 
analyzed by SIMS and concentrations are reported in Supple-
mental1 Table S2. SIMS results agree well with how much water 
was initially loaded into the capsules and with other determi-
nations of water contents after the experiment. CO2 contents 
determined by SIMS (note that concentrations are reported with 
less confidence) are 461 ppm (F087) and 575 ppm (F099), which 
suggests that CO2 did not contribute significantly to any weight 
loss determined by TGA. The same applies for the other volatile 
elements that never exceed 200 ppm.

Discussion

Solubility vs. quenchability

The glass transition—a conversion from a liquid silicate melt 
to a solid glass—is an important process responsible for quench-
ing glassy MIs, both in natural systems and experimentally. This 
kinetic process strongly depends on parameters such as melt 
polymerization and cooling rates (Dingwell and Webb 1990). 
The temperature of the glass transition (Tg) is also controlled by 
the amount of dissolved H2O, which de-polymerizes a melt (e.g., 
Mysen 2014). While Tg of natural mafic dry melts is about 1000 K, 
Tg for hydrous melts is significantly lower; as low as 450 K for a 
melt with 20 wt% of dissolved H2O (Deubener et al. 2003). For 
higher melt H2O contents, the lower Tg requires particularly high 
cooling rates to quench a melt to a glass. During the quenching 
process, the cooling rate varies (Fig. 2) and is typically highest as 
quenching commences at high temperatures. Thus, melts with no 
or low dissolved H2O content quench easily as the glass transition 
temperature is rapidly reached. In contrast, melts with a low Tg 
(for example, H2O-rich melts) require high peak cooling rates at 
high temperatures, which would be sustained to low temperatures 
(Fig. 2).

Under normal quenching conditions for piston-cylinder ex-
periments, the quenching is achieved by shutting off power to the 
device. This instantaneous loss of power cools the experiment at 
rates (Figs. 2 and 3) similar to natural erupted samples (Lloyd et al. 
2013). This cooling leads to thermal contraction and a concurrent 
drop of pressure on the sample (Bista et al. 2015). Such pressure 
change may affect the run products if the sample becomes water-
oversaturated prior to reaching Tg as a consequence of the pressure 
drop in the sample. In our experiments, we tracked the pressure 
change at quench in every experiment (Fig. 9). The glass transition 
is reached in all experiments at pressures higher than 500 MPa. 
Two steps were taken to test whether the pressure evolution in our 
experiments controls the quenchability of the sample: (1) some 
of our 1 GPa experiments (Table 2; Fig. 9) were quenched under 
isobaric (without pressure drop) conditions and (2) several 1.5 GPa 
experiments were conducted (see Table 2 and Fig. 9). The latter 
higher pressure experiments had a contraction pressure drop, but 
still maintained pressures over 900 MPa. All experiments, includ-
ing those with the modified run procedures, ended up with the 
same experimental results. In all cases, our observed limit of ~9 
wt% dissolved H2O in the experimental glass is much lower than 
the H2O content in the melt suggested from solubility experiments 
that determined the H2O solubility indirectly through partitioning 
into olivine (Mitchell et al. 2017). Thus, our experiments indicate 
that the melt to glass transition fundamentally effects how much 
water can remain dissolved in glass. The release of water from the 
melt occurred because of the structural change related to the melt-
glass transition and it was not in response to lower H2O solubility 
limits at lower pressures.

How H2O is accommodated in the atomic structure of the 
glass may change during the melt-glass transition, likely due to 
changes in the speciation of hydrogen. In melts, water dissolves as 
both hydroxyl groups (OH-) and molecular water (H2Om) (Stolper 
1982a, 1982b; Silver and Stolper 1989; McMillan 1994). The 
incorporation of hydroxyl groups is well understood. Hydroxyl 
groups are thought to break bridging oxygen bonds and therefore 
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are easily structurally bound within the silicate melt (e.g., Mysen 
2014). The structural position of molecular water in silicate melt 
is less clear. As a neutral, although polar species, molecular water 
potentially behaves similarly to noble gases, which fit into holes 
in the melt/glass structure (Carroll and Stolper 1993; Guillot and 

Sarda 2006; Guillot and Sator 2012). If water occupies free vol-
umes or structural cavities in the melt (Paonita 2005), the so-called 
ionic porosity (i.e., the volume of holes in the structure; Carroll and 
Stolper 1993) may control the solubility of water molecules in sili-
cate melt/glass. Compared to high temperature and higher H2Ototal 
contents where water is primarily incorporated as hydroxyl groups 
(OH-) into the silicate melt structure (Nowak and Behrens 1995; 
Chertkova and Yamashita 2015), OH- groups convert to molecular 
water during cooling and quenching to a glass (Stolper 1982a, 
1982b; Silver and Stolper 1989). The ratio of hydrogen bound as 
hydroxyl groups to molecular water (OH-/H2Om) decreases from 
up to 4 in the melt to 0.25 in quenched glass (for an experimental 
charge with 8 wt% of H2Ototal; Chertkova and Yamashita 2015). The 
drastic increase in the amount of molecular H2O during quenching 
may exceed the ability of the glass to accommodate water in its 
structural cavities. For hydrous arc magmas with 14–20 wt% of 
H2Ototal (36–46 mol% of H2O), quenching to glass in MIs might 
result in occupying all free structural cavities by molecular H2O 
and exsolving excess H2O to a fluid or gas phase (bubbles), which 
can promote alteration/devitrification (Anderson 1991) through 
crystallization of hydrous minerals and/or over-pressurize the 
inclusion causing the host crystal to rupture.

P-T paths of experimental products at quench vs. natural 
MIs

When a melt inclusion forms in nature, the pressure inside and 
outside the olivine is equal. During magma ascent and eruption, 
the pressure inside the melt inclusion will be reduced due to a 
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Figure 9. Pressure-drop during the quenching period of hydrous 

experiments at 1 and 1.5 GPa. The pressure for each experiment at the 
point when it crossed the estimated glass transition temperature was 
always at least 50–100 MPa above 0.5 GPa which is where ~9 wt% would 
be the H2O solubility in a basaltic melt (e.g., Shishkina et al. 2010, 2012, 
and references within). The glass transition temperatures (solid circles) 
are determined as in Figure 2.
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Figure 8.

Figure 8. SEM images of the non-glassy run products. (a) F071, (b) F091, (c) F098, mainly consisting of phyllosilicates (having flaky 
appearance)—in comparison with the glassy one (d) F099.
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combination of several factors, such as elastic deformation of the 
host mineral, post entrapment crystallization, diffusive volatile 
components loss, and volume change at the glass transition. The 
pressure inside the melt inclusion is reduced, but is ultimately 
greater than zero (e.g., Steele-MacInnis et al. 2011; Gaetani et al. 
2012; Hartley et al. 2014; Moore et al. 2015; Wallace et al. 2015a; 
Steele-MacInnis et al. 2017). Some of the contributions to the 
pressure drop might be minimized in the case of rapid magmatic 
ascent, but overall partial decompression will occur. The pres-
sure drop in a MI can be calculated (Zhang 1998), and is about 
3–4 kbar for olivine-hosted MIs that are <150 mm in size and are 
formed at a depth of 20–30 km (e.g., Schiano and Bourdon 1999; 
Maclennan 2017). This pressure drop is similar in magnitude to 
the pressure change resulting from thermal contraction during 
the quenching of our experiments under uncontrolled pressure 
conditions (described above) (Fig. 9). Moreover, even the ex-
periments with isobaric quench produced the same run products 
as the experiments with a pressure drop. Thus, our experiments 
represent a conservative estimate for the maximum water content 
that can quench to glass in natural melt inclusions, and we suggest 
that decompression conditions at quench in our experiments were 
comparable to natural MIs.

MI re-equilibration vs. quenchability
It is often interpreted that the most water-rich melt inclusions 

analyzed for a given volcanic suite of samples experienced the least 
water loss due to diffusive re-equilibration, and thus are the best 
estimates for the highest water contents of primitive arc magmas 
(e.g., Métrich and Wallace 2008; Bouvet de Maisonneuve et al. 
2012; Lloyd et al. 2013 and references therein). This is fundamen-
tally different than what we are showing in this study, which is that 
there is a physical limit to how much water a glassy melt inclusion 
can hold. Because the highest values of measured dissolved H2O 
in melt inclusions coincide with the experimentally determined 
quenching limit, it precludes the use of the melt inclusion record 
to determine the existence and/or prevalence of super-hydrous arc 
magmas. Indeed, MIs lose significant amounts of water during the 
slow ascent of arc magma to the surface due to rapid hydrogen 
diffusion. But even in cases when magma ascends extremely 
rapidly and keeps most of its original H2O content, a MI with high 
water content (>9 wt%) is unlikely to be quenched to a glassy MI.

Deep-formed crystals are brought to the surface in arcs fairly 
commonly. Mantle xenoliths, while not extremely abundant, are 
ubiquitous among most arcs (e.g., Bryant et al. 2007; Ionov 2010), 
and are much larger in size than single crystals. If xenoliths can 
make it to the surface from the mantle, certainly deep-formed 
crystals can as well. In the case of arcs there is also a common 
occurrence of primitive olivine and pyroxene phenocrysts (Mg# ≈ 
90 and more; e.g., Nye and Reid 1986; Ozerov 2000; Straub et al. 
2008; Ruprecht and Plank 2013; Gavrilenko et al. 2016a, 2016b; 
Streck and Leeman 2018), which are the very first crystals to form 
from melts in equilibrium with the mantle, and are most likely 
formed at depth. Many of those deep primitive crystals contain 
MIs (e.g., Sobolev and Chaussidon 1996; Kamenetsky et al. 1997; 
Kamenetsky et al. 2002; Churikova et al. 2007; Portnyagin et al. 
2007; Johnson et al. 2008; Cooper et al. 2010; Mironov and Port-
nyagin 2011; Ruscitto et al. 2011; Tolstykh et al. 2012; Mironov 
et al. 2015; Walowski 2015) with a range in volatile contents.

What then can explain the lack of high-pressure glassy melt 
inclusions? There are two non-mutually exclusive mechanisms 
for this: re-equilibration of hydrogen at shallow pressures and the 
existence of super-hydrous melt inclusions that cannot quench to a 
glass. For melt inclusions to retain >9 wt% H2O until eruption and 
quenching, they must ascend rapidly to the surface from depths 
where water solubility exceeds 9 wt%. Such rapid ascent has 
been proposed for some arc volcanoes (Gordeychik et al. 2018). 
We would still emphasize that H2O re-equilibration between MIs 
and matrix melt is known to be fast and likely controls the final 
recorded H2O content in MIs. Partial to complete re-equilibration 
occurs on timescales of hours to days (e.g., Qin et al. 1992; Gaetani 
et al. 2012; Bucholz et al. 2013) depending on the crystal and 
melt inclusion size, the magma temperature, and the ascent rate. 
However, as diffusive flux out of the melt inclusions is a direct 
function of the concentration gradient between the matrix melt 
and the melt inclusion, re-equilibration is most effective at shal-
low pressures, where fast ascent on the order of minutes to hours 
has been suggested (e.g., Demouchy et al. 2006; Humphreys et al. 
2008; Lloyd et al. 2014; Ferguson et al. 2016; Zellmer et al. 2016; 
Petrelli et al. 2018 and references therein). In the lower crust where 
H2O solubility is high the gradient of H2O contents between a MI 
and surrounding magma is small and re-equilibration is slowed. 
Thus, ascent driven water loss from melt inclusions below 10–12 
wt% H2O is limited until mid-crustal depth (6–7 kbar for 10–12 
wt% H2O; Shishkina et al. 2010). Rapid magma ascent is likely in 
some cases due to such factors as extreme buoyancy of hydrous 
magmas (e.g., Herzberg et al. 1983; Ochs and Lange 1999), the 
rapid dynamics of dike propagation (Rubin 1993; Dahm 2000; 
Taisne and Jaupart 2011; Rivalta et al. 2015), and absence of a 
crustal magma chamber for an arc volcano (Ariskin et al. 1995; 
Ozerov et al. 1997; Lees et al. 2007; Ozerov 2009; Mironov and 
Portnyagin 2011; Kayzar et al. 2014; Levin et al. 2014), which 
could help to preserve near-original H2O contents in primitive 
melt inclusions (and avoid/minimize rapid re-equilibration of a 
MI with external magma).

Comparison of experimental results to natural MIs
Most mafic MIs from subduction zone settings have low H2O 

content (<4 wt%; Fig. 1) presumably caused by extensive degas-
sing and diffusive equilibration through olivine-host crystals. The 
emphasis in recent studies has shifted to analyzing melt inclusions 
from fast cooled olivine grains in tephra particles, which often 
show H2O content of >4 wt% (e.g., Johnson et al. 2008), but do 
not exceed 8.5 wt% of H2O (de Moor et al. 2013). The maxima 
in dissolved H2O found in quickly cooled olivine crystals (Fig. 1) 
are normally interpreted to represent the maximum H2O content of 
arc magmas (e.g., Plank et al. 2013). Our experiments provide an 
alternative interpretation of natural glassy MI; that this maximum 
content observed in nature represents a physicochemical limit to 
the amount of H2O that can be found dissolved in a glassy melt 
inclusion.

Studies that focus on measuring water contents of glassy melt 
inclusions show that MI measurements are most abundant in the 
range of 1 to 6 wt% H2O contents (99% of the data points). Finding 
glassy melt inclusions in this range is common and consistent with 
our experiments. More hydrous glassy melt inclusions become 
increasingly rare in what we refer to in the experiments as the 
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“transition zone” (6–9 wt% H2O, Fig. 1). For the experiments, we 
propose that quenching to an optically clear single-phase glass is 
kinetically controlled and by analogy we expect natural MIs that 
form from melts with 6–9 wt% of H2O to quench to non-glassy 
inclusions. Only in the rare cases where quench rates are extremely 
high and samples experience natural kinetic barriers to forming 
quench crystals (i.e., little undercooling before the glass transition 
is achieved) can glassy melt inclusions form. The rarity of glassy 
melt inclusions with high water contents is thus not directly tied to 
the rarity of high water content melts but to the preferential analysis 
of glassy melt inclusions that get selected for study. Berndt et al. 
(2002) were able to quench an optically clear (bubble- and crystal-
free) glass from a basaltic melt containing 9.38 wt% of H2O using 
a rapid-quench device in an internally heated pressure vessel for 
quench rates of approximately ~150 K/s. The higher cooling rate 
at Tg is the likely reason why Berndt et al. (2002) obtained better 
quality quenched glass than ones from our study. Indeed, this result 
(9.38 wt% of H2O) is the maximum for published experiments 
on mafic quenched glasses and is still consistent with our results. 
However, it is probably not possible to obtain such high cooling 
rates (~150 K/s) at Tg in natural MIs.

For our experiments with >9 wt% of loaded H2O, optically 
clear glass was not present and instead an intimate mixture of 
fractured, vesicular, devitrified glass, quench crystals, and hydrous 
products of glass alteration comprised all experimental products. 
X‑ray diffraction measurements on experimental run products from 
super-hydrous experiments show mineralogy of run products that 
includes low-temperature hydrous minerals (smectites, chlorite) 
and amorphous material that is likely poorly quenched melt. A 
similar mineralogy has been described in devitrified MIs in olivine 
(e.g., Imae and Ikeda 2007).

There are multiple possible devitrification mechanisms, which 
cannot be distinguished with our current experimental setup: (1) 
during the quench, water exsolves and alters the glass in the experi-
ment producing a palagonite-like substance (Bonatti 1965), which 
is basically a mixture of various smectites and potentially zeolites 
and oxides (Stroncik and Schmincke 2002); (2) a devitrification 
mechanism where the crystallization temperature of hydrous 
minerals is higher than the Tg, which leads to the nucleation and 
crystallization of hydrous minerals before a glass transition. More 
detailed documentation of the devitrification mechanism would 
require in-situ observations. Nevertheless, natural melt inclusions 
with H2O contents above 9 wt% most likely never quench to a 
glass, and form devitrified inclusions (Skirius et al. 1990; Ander-
son 1991; Imae and Ikeda 2007) or exsolve water that may over-
pressurize the inclusion and break the host crystal (decrepitation, 
e.g., Wanamaker et al. 1990).

Our results indicate that 9 wt% of dissolved H2O is a physical 
limit for silicate mafic melts to quench to a homogeneous glass 
under naturally occurring cooling rates (Fig. 4). Thus, the observed 
maximum of 8–9 wt% H2O from glassy mafic MI studies may 
correspond to a quenchability limit (Fig. 1). We speculate that 
melt inclusions of H2O-rich magmas (>9 wt% H2O) may exist, 
but they may never get preserved as glassy MIs. Therefore, stud-
ies that focus solely on glassy single-phase MIs in olivine (or any 
mineral host) will systematically be limited to finding dissolved 
water contents <8–9 wt% and therefore may not fully characterize 
the magmatic H2O budget in subduction zones.

Implications

Our hydrothermal experiments show that the maxima of 8–9 
wt% of dissolved H2O from melt inclusions (MIs) studies match 
the physicochemical limit of quenched glassy-melt inclusions. 
At higher dissolved H2O contents and natural quenching rates 
mafic melts cannot form glassy MIs. The possibility that such a 
limit for glassy MIs exists has never before been directly studied 
experimentally and requires a reevaluation of using MIs as a pri-
mary tool to estimate global water fluxes at arcs. MIs likely form 
at all depths where crystallization occurs, and the lack of deeply 
formed and equilibrated MIs in the existing literature suggests 
there might be a higher probability for super-hydrous (>9 wt% 
of H2O) magmas than previously recognized. The results of this 
study have identified five main closing thoughts:
• 	 Glassy MIs are excellent recorders of pre-eruptive H2O contents 

in the uppermost part of the crust, where the solubility limit for 
hydrous magmas is ≤6–7 wt% H2O. Thus, MI studies focusing 
on degassing and eruption-style phenomena are not affected 
by our results.

• 	 A higher abundance of magmas containing >10 wt% of H2O 
may explain why dense primitive magmas in convergent 
margins can quickly reach the surface without much crystal-
lization and fractionation (Herzberg et al. 1983; Kohn et al. 
1989; Ruprecht and Plank 2013) despite a low-density filter 
in the form of evolved magmas and crust in their path.

• 	 Because glass quenchability depends on the amount of water 
in a mafic sample, MI studies that focus on single-phase glassy 
MIs are introducing a previously unrecognized sampling bias 
into our understanding of primitive magmas.

• 	 Our findings suggest that examining the mineralogy of non-
glassy melt inclusions found in quickly cooled environments 
such as small lapilli or even ash deposits for the presence of 
chlorites or smectites may be used to identify super-hydrous 
magmas.

• 	 Estimates of total water contents returned to the crust/
atmosphere by tectonic recycling based on studies of MIs 
(e.g., Straub and Layne 2003; Wallace 2005; Parai and 
Mukhopadhyay 2012; Wallace et al. 2015b; Peslier et al. 2017) 
likely underestimate the amount of returned H2O. Recent geo-
physical studies (Cai et al. 2018) also see evidence for more 
extensive hydration of incoming slabs at arcs, which support 
the idea more H2O is getting returned to the surface through 
subduction zones than previously recognized.
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