Forensic Science International: Digital Investigation 32 (2020) 300909

journal homepage: www.elsevier.com/locate/fsidi

Contents lists available at ScienceDirect

Forensic Science International: Digital Investigation

Investigati,01

DFRWS 2020 EU — Proceedings of the Seventh Annual DFRWS Europe

Big Data Forensics: Hadoop 3.2.0 Reconstruction)

Edward Harshany®’, Ryan Benton?, David Bourrie?, William
Glisson®. 3University of South Alabama, School of Computing, Mobile,
36688, USA; "Sam Houston State University, College of Science and
Engineering Technology, Huntsville, 77342, USA

Check for
Updates

ABSTRACT

Keywords
Hadoop
Forensics
Big data

. finite time series.
Reconstruction

Conducting digital forensic investigations in a big data distributed file system environment presents
significant challenges to an investigator given the high volume of physical data storage space. Presented
is an approach from which the Hadoop Distributed File System logical file space is mapped to the
physical data location. This approach uses metadata collection and analysis to reconstruct events in a

Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/)..

* Corresponding author.

1. Introduction

Metadata management is vital to the Hadoop Distributed File System
(HDFS). HDFS is designed to centrally manage all distributed file system
metadata through the master server called the Namenode. The metadata
details the structure of the distributed file system abstraction through file
and directory attributes, mapping of data to data storage locations, and
namespace hierarchy (Hadoop — Apache Hadoop 3, 2019). Expeditious
assimilation of metadata is critical to successful data evidence recovery for
a distributed system with high ingestion rates (Grispos et al., 2013).
HDEFS is at the core of the Hadoop ecosystem which has evolved through
version releases (White, 2015). Hadoop 3.2.0 version, released in 2018,
includes 1) Hadoop Common containing utilities to support Hadoop
modules, 2) HDFS, the Hadoop distributed file system handling architec-
ture, 3) MapReduce, for cluster resource managing and data processing,
and 4) Yet Another Resource Negotiator (YARN) another resource manager
layer forming a data-computation framework (Hadoop — Apache Hadoop
3, 2019). The Hadoop ecosystem is comprised of four main layers
employed in varying configurations providing data storage and processing
solutions (White, 2015).

This study aims to investigate the effectiveness of utilizing a subset of
metadata generated at the HDFS data storage layer to reconstruct file
system operations and map data to physical data location. Once mapped,
data evidence could be prioritized and targeted for preservation or further
analysis.

URL: http://eh1721@jagmail.southalabama.edu

https://doi.org/10.1016/j.fsidi.2020.300909

2. Methodology and experimental setting

Methods were confined to the construction of directories and file opera-
tions addition and deletion in a specific order. The timeline creates a
directory structure within the HDFS namespace, adds files to the HDFS
namespace, and deletes specific files from the HDFS namespace. The goal is
to reconstruct the sequence of operations over this time period and
discover file locations from the HDFS metadata. Fig. 1 shows the setting
configured in a fully distributed mode with Hadoop 3.2.0. on available
commodity hardware, each running 64-bit Ubuntu 18.0.4.2 operating
system with version 4.15 Linux kernel.

Data block ID is used within the logical namespace to identify data blocks
within a file. The Datanode local file system uses block ID as the file name
to create files in its native file system and store in the Ext4 file's INode
structure. Block replicas on Datanodes are represented by two files in the
local file system. One contains the data itself and the other records met-
adata including checksums for the data and the generation stamp
(Sremack, 2015).

3. Analysis and findings

HDFS image and edits files were recovered from the live system and
converted to.XML files for offline analysis. These files contain serialized
image data that must be converted for viewing. The XML files were then
read by a parser developed to extract attributes. The most recent discov-
ered image represented the most recent state as all edits were updated on
the image. The image contains information on each individual INode
including type, name, replication, timestamp information, associated block
information, and sequential generation stamp for each data block present.
This information can be compared with the INode directory section and a
resultant HDFS logical file system namespace can be reconstructed.

The processed image data structures reveal absent inodes, data blocks, and
generation stamps indicating file system modification from a previous
state. Generation stamps are associated with data blocks during data block

http://eh1721@jagmail.southalabama.edu
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:http://eh1721@jagmail.southalabama.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsidi.2020.300909&domain=pdf
www.sciencedirect.com/science/journal/26662817
www.elsevier.com/locate/fsidi
https://doi.org/10.1016/j.fsidi.2020.300909

S2

Forensic Science International: Digital Investigation 32 (2020) 300909

datanodel (192.168.1.101)
Intel 15-2400 4-core 3.1 GHz
RAM: 4 GB

o7
Fae
Q@JQO T
nodemaster (192.168.1.100) / Data Transfer
CPU: Intel 2-core 3.0 GHz Protocols
RAM: 4 GB datanode2 (192.168.1.102)
Intel i5-2500 4-core 3.3 GHz
Datanode /* Heartbeat/ RAM: 4 GB
<+ /RPC — <« Block e
Protocols N\ Report 500 GB
Fumm— f
Data Transfer
&% Protocols
6)/0176@6[/ datanode3 (192.168.1.103)
Aoy, k AMD FX-6120 6-core 3.5 GHz
“ RAM: 10 GB

Fig. 1. Cluster specifications.

Table 1
Block placement.

Time File Block ID Dnode Dnode Dnode
Series 1 2 3
filel.txt 1073741840 X X
2 file2.txt 1073741841 X X
3 file2.txt 1073741842 X X
4 file2.txt 1073741841 X X
5 file2.txt 1073741842 X X
6 file3.txt 1073741843 X X
7-43
44 file4.txt 1073741881 X X
45 file4.txt 1073741882 X X
46 filel.txt 1073741840 X p

modification operations. Given this property, it is deduced that blocks of
data associated with the missing generation stamps were created and
deleted in a previous state. In some cases, data block modifications can be
determined.

Namenode audit logs reveal data block data node destinations including
deleted files. Block allocation is discovered with the generation stamp
appended to the Block ID with an underscore. The Datanodes are identified
via IP addresses and port numbers. In one case, we have discovered that
the single block for file1.txt was written to data node3 and data nodel in
the cluster. Times are converted for the period boundary and the Name-
node log file entries collected within the interest period. Similarly, Data-
node audit log file entries can be searched for the period of interest to
verify block replication. Table 1 shows a partial block placement list. The
probability of recovery of deleted files is a function of block pool space,
post-deletion writes to disk, disk drive types, and the local file system disk
management scheme among other variables.

/ 10¢

We conclude the findings from this experiment support further research
into the potential of high-level event reconstruction from namespace
metadata. The capacity to wholly reconstruct and map to data nodes with
the outlined approach is a function of the audit log and edits files archiving
policies.

4. Conclusions and future work

This research presented an approach to reconstruct events over a time
period in a Hadoop 3.2.0 HDFS to reveal system storage state transitions.
The approach used only HDFS metadata at the data storage layer and
demonstrates through inherent metadata materialization sequencing
properties it is possible to utilize a relatively small subset of metadata for
rapid reconstruction. Future work entails expanding the file operations
and type data set to replicate a realistic big data environment, automating
the reconstruction and developing a formal definition of the process.

Acknowledgements

This work being reported partially supported by the National Science
Foundation under Grant No. CNS-1726069.

References

Grispos, G., Glisson, W.B,, Storer, T., 2013. Using smartphones as a proxy for forensic
evidence contained in cloud storage services. In: Proc. Annu. Hawaii Int. Conf.
Syst. Sci, pp. 4910—4919.

“Hadoop — Apache Hadoop 3.2.0,” 2019. [Online]. Available: https://hadoop.apache.
org/docs/r3.2.0/index.html. [Accessed: 27-Mar-2019].

Sremack, J., 2015. Big Data Forensics — Learning Hadoop Investigations.

White, T., 2015. Hadoop: the Definitive Guide, fourth ed.

http://refhub.elsevier.com/S2666-2817(20)30004-4/sref1
http://refhub.elsevier.com/S2666-2817(20)30004-4/sref1
http://refhub.elsevier.com/S2666-2817(20)30004-4/sref1
http://refhub.elsevier.com/S2666-2817(20)30004-4/sref1
https://hadoop.apache.org/docs/r3.2.0/index.html
https://hadoop.apache.org/docs/r3.2.0/index.html
http://refhub.elsevier.com/S2666-2817(20)30004-4/sref3
http://refhub.elsevier.com/S2666-2817(20)30004-4/sref4

	Big Data Forensics: Hadoop 3.2.0 Reconstruction
	1. Introduction
	2. Methodology and experimental setting
	3. Analysis and findings
	4. Conclusions and future work
	Acknowledgements
	References

