ENVIRONMENTAL RESEARCH

LETTERS

ACCEPTED MANUSCRIPT • OPEN ACCESS

Exploring the exceptional performance of a deep learning stream temperature model and the value of streamflow data

To cite this article before publication: Farshid Rahmani et al 2020 Environ. Res. Lett. in press https://doi.org/10.1088/1748-9326/abd501

Manuscript version: Accepted Manuscript

Accepted Manuscript is "the version of the article accepted for publication including all changes made as a result of the peer review process, and which may also include the addition to the article by IOP Publishing of a header, an article ID, a cover sheet and/or an 'Accepted Manuscript' watermark, but excluding any other editing, typesetting or other changes made by IOP Publishing and/or its licensors"

This Accepted Manuscript is © 2020 The Author(s). Published by IOP Publishing Ltd.

As the Version of Record of this article is going to be / has been published on a gold open access basis under a CC BY 3.0 licence, this Accepted Manuscript is available for reuse under a CC BY 3.0 licence immediately.

Everyone is permitted to use all or part of the original content in this article, provided that they adhere to all the terms of the licence https://creativecommons.org/licences/by/3.0

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions may be required. All third party content is fully copyright protected and is not published on a gold open access basis under a CC BY licence, unless that is specifically stated in the figure caption in the Version of Record.

View the article online for updates and enhancements.

Exploring the exceptional performance of a deep learning stream temperature model and the value of streamflow data

Farshid Rahmani¹, Kathryn Lawson¹, Wenyu Ouyang², Alison Appling^{3,*}, Samani, a Oliver⁴, Chaopeng Shen^{1,*}

¹Civil and Environmental Engineering, Pennsylvania State University, University Park, ²A, USA ²School of Hydraulic Engineering, Dalian University of Technology, Dalian, Chi. ³U.S. Geological Survey, Reston, VA, USA

 ⁴U.S. Geological Survey, Upper Midwest Water Science Center, Middle an, WI USA

Abstract:

Stream water temperature (T_s) is a variable of critical importance in equatic ecosystem health. T_s is strongly affected by groundwater-surface water interactions which can be learned from streamflow records, but previously such information was reallenging to effectively absorb with process-based models due to parameter equifinality. ased the long short-term memory (LSTM) deep learning architecture, we developed a basin antric lumped daily mean T_s model, which was trained over 118 data-rich basins with no rajor dams in the conterminous United States, and showed strong results. At a national scale we obtained a median root-mean-square error (RMSE) of 0.69°C, Nash-Sutcliffe not efficiency coefficient (NSE) of 0.985, and correlation of 0.994, which are marked improvement over previous values reported in literature. The addition of streamflow observations as a model input strongly elevated the performance of this model. In the absence of measured streamnew, we showed that a two-stage model can be used where simulated streamflow from a pre-trained LSTM model (Qsim) still benefits the Ts model, even though no new informati was brought directly in the inputs of the T_s model; the model indirectly used information learned am streamflow observations provided during the training of Q_{sim}, potentially to improve internal replacentation of physically meaningful variables. Our results indicate that strong relationships wist between basin-averaged forcing variables, catchment attributes, and T_s that can be simulated by a single model trained by data on the continental scale.

Keywords: Stream Ter Cratule, wachine Learning, streamflow, deep learning, LSTM

1. Introduction

Stream enter apperature (T_s) is a critical, decision-relevant variable that controls numerous physical, themsel, and biological processes and properties, e.g. dissolved oxygen concentrations and attrient transformation rates, as well as industrial processes such as cooling power plants and treating drinking water (Delpla et al. 2009; Madden, Lewis, and Davis 2013; Kaushal et al. 2010). Thermal regimes of streams directly affect aquatic species (Justice et al. 2017) and In some cases, fish mortality rate increases as T_s passes a certain threshold (Martins et al. 2012; Marcogliese 2001). These are complicated by water uses in industry, such as utilizing stream er for cooling systems, which causes thermal pollution downstream (Raptis, van Vliet,

Corresponding authors: Chaopeng Shen: cshen@engr.psu.edu, Alison Appling: aappling@usgs.gov

and Pfister 2016). Fulfilling the temperature requirements of the environment, agriculture, industries, and municipalities, and coordinating these uses requires a delicate balance. Usurate T_s models can inform the decision-making process and help lower the risks of exceeding thermal thresholds.

2000). Myriad basin and in-stream/near-stream processes govern T_s (Poole an Rerman The heat balance of the basin, as modulated by land use types (Nelson and Pather 2007; Bolynan) and Larson 2003; Moore, Spittlehouse, and Story 2005) is a primary contract T_s. At the basin scale, snowmelt and groundwater baseflow contributions (Kelleher et al. 2242) and so important factors due to their sharp contrast in temperature with air. In streams, Ts is influenced by solar radiation, latent heat flux, air-water heat exchange, riparian vegetation urer, Lines, and Nelson 1985; Garner et al. 2017), channel geomorphology (Havkins et al. 1997), hyporheic exchange (Evans and Petts 1997), and reservoirs and industrial discharge. (Poff et al. 2010). At any point in the channel network, T_s is the spatiotemporal integration of an of the above processes. Process-based models, while offering physical explanation of cases and effects, need to embrace substantial model complexity to represent all or even partial these complex processes with their heterogeneity and scaling effects (Johnson et al. 2021). The requirements for input data also make scaling up such simulations challenging. State large-scale process-based models have had root-mean-square error (RMSE) values regested on reater than 2.5 °C (Wanders et al. 2019; van Vliet et al. 2012).

A large body of literature has employed sistical models to simulate T_s, with some good summaries given by Benyahya et al. (2007) and Galin $\stackrel{\cdot}{\circ}$ et al. (2015). Typically, T_s was regressed to air temperature (T_a), but more reconstitution gressed the parameters in T_s~T_a relationships using catchment attributes. Among these studies and most relevant to our work, Segura et al. (2015) predicted the slope and intercept of the 7-day average T_s~T_a relationship based on catchment characteristics such as watershed area and baseflow index. A Nash-Sutcliffe coefficient of 0.78 was obtained for revence sites for the 7-day average T_s, and strong hysteresis was noted in the stream-air temperature relationship (Segura et al. 2015). Stewart et al. (2015), th a soil water balance model and obtained an RMSE of integrated an artificial neural work around 1.5°C and R² of 0.7 f f 37 sites across Wisconsin. Very recently, Johnson et al. (2020) used sine-wave linear regression and reported RMSE values of 1.41°C for an extensive regional dataset and 1.85°C to be national-scale U.S. Geological Survey (USGS) dataset. They highlighted the important se of patial scales and heterogeneity. Graf et al. (2019) used wavelet transformations of cally a rage air temperature as inputs to an artificial neural network to predict water temperature at light different sites in Poland and obtained RMSE values ranging from 0.98° to 1.43° in the est pend. Additionally, there are several studies that used recent water temperature data as an input to predict stream temperature, which can significantly increase manuas it can be interpreted as a form of data assimilation (Feng et al., 2020). Sohrabi at al. (2) 17) obtained RMSE of ~1.25°C when they used the previous day's temperature as drivers. On one temperature gauge, Stajkowski et al. (2020) obtained RMSE of 0.76°C using a variant of LSTM with previous hour's stream temperature in the inputs. However, we do not use previous day measurements in inputs because the purpose of our model is long-term projections.

Streamflow conditions are often not utilized by statistical models of T_s, partially because relationships are not clear; none of the abovementioned statistical models used streamflow. However, we do know that streamflow exerts substantial control on T_s. Rivers dominate the baseflow are typically fairly stable and cool in summer, but have relatively low thermal canacity and are rapidly heated by strong solar radiation. Peak flows are typically dominate by surface runoff, the temperature of which is strongly influenced by the fast-changing or temperature (Edinger, Duttweiler, and Geyer 1968). A sensitivity analysis on large river bodins haved that on average, a decrease in river flow of 50% as compared to a reference condition lowered the minimum annual river discharge temperature (in winter) by -0.4°C organised the maximum temperature (in summer) by +1.2°C (van Vliet et al. 2012). In another study on one specific river, a linear regression model based on monthly air temperature and stream low atta revealed that air temperature rise and flow reduction were responsible for 60% and 40% of June to August temperature increases, respectively (Moatar and Gailhard 2006).

Recently, deep learning (DL) models, including these basis on the long short-term memory (LSTM) algorithm, have shown promise in predicting hydrologic variables such as soil moisture and streamflow by achieving superior results with the computational and human effort (Feng, Fang, and Shen 2020; Shen 2018; Shen et al. 2.18; Fang and Shen 2020). LSTM can learn long-term dependencies and gave high performant in snow-dominated regions for streamflow prediction (Feng, Fang and Shen 2020). The primory mechanisms of LSTM may be able to mimic heat units, similar to heat accomplation and release processes. Thus, it is natural to think that LSTM may also be suitable for T_s and deling. However, given the complicated and scale-dependent processes influencing T_s , it is highly uncertain if there is even a stable relationship between basin-average for any and T_s across different spatial scales, and if so, whether such a relationship can be captured by LSTM given limited observational data.

One advantage of a Diamodel as compared to process-based ones is that it can incorporate auxiliary information with at requiring explicit understanding of relationships. In our case, not only does streamflow directly influence T_s fluctuations, it also reveals multi-faceted hydrologic dynamics in a basic regular of factors such as baseflow contributions and residence times of surface runoff, which could aid T_s modeling. Therefore, we expect adding streamflow information to improve model parameter. In a process-based modeling framework, streamflow data can be used to calculate the hydrologic components. Unfortunately due to the issue of model equifinality (Beven 2005; Beven and Freer 2001), calibration may or may not improve model internal dynamics depending on model parameterization, structure, and data information content (Huang and Liang 2006). In utilizing the DL framework, we hypothesize that models may be able to automatically extract his remation from hydrographs to inform T_s , which, to our knowledge, no study has examined in the context of deep learning models.

Even if streamflow data are indeed useful, real-world use can be hampered by lack of available streamflow data. Beyond existing stations, collecting new streamflow data is more expensive than collecting new T_s data. However, given that highly accurate, LSTM-based streamflow models have been reported (Feng, Fang, and Shen 2020), we wondered if a well-trained LSTM streamflow model could serve as a surrogate for actual measurements. Deep the are known to maximally use available information, but it is not certain whether such a

streamflow model presents any benefit; the model uses identical forcing data to those already used by the temperature model and do not explicitly bring in new information.

In this work, we attempted to answer two main research questions and improve our understanding of the stream heat balance: (1) Are there reliable relations to be usen basin-average meteorological forcing and attributes and T_s that could be learned by deep net arks to predict T_s with high accuracy? (2) Can observed or simulated streamflow to use the improve temperature predictions, especially when the simulated streamflow is predicted using the same information as the T_s model?

2. Methods:

We simulated T_s from a basin perspective, that is, as a function of basin-average climate forcings and attributes. This setup greatly simplifies the model representation compared to spatially explicit models and is supported by widely-available data, at ignores some local channel characteristics. We examined the effect of including daily stranflow in the inputs to assess its information content for T_s .

2.1. Datasets

Basin characteristics came from the Geografial A fibutes of Gages for Evaluating Streamflow dataset, version II (GAGES-II)/which represent the geological aspects, land cover, reservoir information, and air temperature of (Falcore 2011). Historical data for daily mean $T_{\rm s}$ was downloaded from the USGS's National Water beformation System (USGS NWIS) website for all 9322 basins in GAGES-II (USGS 2016). We obtained daily meteorological forcing data (precipitation, maximum and minima transfer perature, vapor pressure, solar radiation) by interpolating a gridded meteorological dataset (Daymet) (Thornton et al. 2016) from Google Earth Engine (GEE) (Gorelick et al. 2017) for each basin for the period of 2004 to 2016. Daily streamflow observations were downloaded from USGS NWIS for the same period. Forcing and attribute inputs are summarized in Table \$1 (Supplementary Information).

Many of the GAGES-II base and T_s observations recorded for only some days of the year, with unobserved days more common during the winter (there are nonetheless many sites with winter data and our model prodicts temperature for all days in a year). For this paper, we selected temperature garges with more than 60% of daily observations available between 2010/10/01 and 2014/90/30, cobasins where there were no major dams (more than 50 ft in height, or having more than 5000 acre feet storage according to the definition in GAGES-II), resulting in a dataset of 118 bases ranging in size from 2 to 14,000 km². We simulated T_s at the pour point of basins where the USCS streamgages were located. Limiting this analysis to sites with >60% data coverage allowed us to focus on the capabilities of LSTM for T_s modeling under relatively ideal conditions.

2.2. LSTM-based models for predicting T_s

We used the long short-term memory (LSTM) algorithm which has received increasing attention in hydrologic literature. This method is designed to learn and keep information for long using units called memory cells and gates. Cells store the information, and gates decide

which information comes in and out of the cells. Because the basic LSTM architecture has been described extensively elsewhere, we refer readers to those papers for a more detailed days sion of the equations and structure of LSTM (Hochreiter and Schmidhuber 1997; Fang et al. 25.7). Fang, Pan, and Shen 2019). A sketch and equations of the model are provided in Figure 2.

We standardized values for all inputs and target values. As a preprocessing step, streamflow was first divided by basin area and mean annual precipitation to a fain a dimensionless streamflow, which was then transformed to a new, more Gassian distribution (Feng, Fang, and Shen 2020):

$$v^* = \log_{10}(\sqrt{v} + 0.1) \tag{}$$

where v^* and v are the variables after and before transformation, respectively. Next, the transformed streamflow data along with all other meteorol pair forcing data, basin characteristics, and T_s observations were standardized by the following formula (Feng, Fang, and Shen 2020):

$$x_{i,new} = \frac{(x_i - \bar{x})}{\sigma}$$
 (2)

in which $x_{i,new}$ is the standardized value, x_i is the remarkable, x_i is the mean value, and x_i is the standard deviation for each variable. Standardization before conditions the model for gradient descent and forces the model to pay roughly squal at aprion to both large wet basins and small dry basins (Feng, Fang, and Shen 2011). It results in this study are shown after destandardization, or reversal of all standardization placedures, for the outputs.

Hyperparameters were CHO. THE unning multiple tests to determine the hyperparameters as listed in Table S2. The metric the model training aimed to minimize (loss) was RMSE, and we also reported an unbiased RMSE (ubRMSE), which is the RMSE minus the mean bias. We also report bias can of error) and Nash-Sutcliffe efficiency coefficient (NSE, equation in the supporting information (Nash and Sutcliffe 1970) for the test periods for comparison with other studies. Further, because a model simply copying air temperature may give acceptable metrics, we select such such selections (NSE_{res}) calculated based on the difference between daily mean waer and daily mean air temperatures (residual temperature): $T_{res} = T_s - T_a$. To provide was expressive also provide a locally-fitted autoregressive model with exogenous viables (ARX2). The ARX2 inputs contain current and delayed and ARX₂-simulated stream temperature in the last two days: $T_s^{t,*}$ = atmospheric forcing $\sum_{i=1}^{t} b_{i} X_{j}^{t-i} + c$, where a, b and c were fitted coefficients, $T_{s}^{t,*}$ is the stream $\sum_{i=1}^{2} a_i T_s^{t-i,*} + \sum_{i=1}^{2} a_i T_s^{t-i,*} + \sum_{i$ temperature sign whis model at time step t and p is the number of forcings. All temperature models were trained an dail from 2010/10/01-2014/09/30 and tested on 2014/10/01-2016/09/30.

2.3. Streamflowobservations or simulations as model inputs

A ross ISGS gages, streamflow is a more widely-available measurement than temperature, meaning that inclusion could bring additional information. To test this, the following models were trained:

$$T_{s,obsQ} = LSTM_{obsQ}(F, A_T, Q_{obs})$$
 (3)

$$T_{s,noQ} = LSTM_{noQ}(F, A_T)$$
 (4)

$$T_{s,simQ} = LSTM_{simQ}(F, A_T, Q_{sim})$$
 (5)

where F is the forcing data time series, A_T represents static and single-valued at butes of the basin for temperature modeling, Q_{obs} is the observed time series of daily mean stream low, and Q_{sim} is simulated streamflow (described below). LSTM_{obsQ}, LSTM_{noQ}, and LSTM_{sh}, are LTM-based models incorporating observed streamflow, no streamflow information, and simulated streamflow, respectively. For Q_{sim} , streamflow was simulated using a LSTM-s sed streamflow model shown to have very good performance (Feng, Fang, and Shen 2020).

$$Q_{sim} = LSTM_Q(F, A_Q)$$

 $A_{\rm Q}$ represents static attributes of the basins for streamflow model. (Table S1 in Supporting Information). Meteorological forcing data used for the simulations where the same as for the temperature prediction models. $Q_{\rm sim}$ was trained using observation, from 2397 basins, and a longer training period (from 2004/10/01 to 2014/09/30) was used for the temperature models in this study.

3. Results and Discussion

3.1. Overall results

All LSTM-based models delivered exceptionally strong performance in the test period (Figure 1). The median test-period RMSE for the nextel incorporating streamflow observations (LSTM $_{\rm obsQ}$) was 0.69°C. The RMSE for a model incorporating simulated streamflow (LSTM $_{\rm simQ}$) was 0.81°C, which was still lower than that for the model lacking any streamflow information (LSTM $_{\rm noQ}$), for which the RMSE was 0.86°C. The corresponding median NSE values were 0.986, 0.983, and 0.979 respectively, and fall of the correlation values were above 0.992, indicating that temporal fluctuations were extremely sell captured. These metrics are markedly better than those reported in the literature at this scale, which demonstrates that LSTM is particularly well-suited for Ts modeling at basin outlets.

LSTM performed mich bitter than ARX_2 , which had a median RSEM of 1.41 °C. Moreover, when we is luated T_{res} , the locally-fitted ARX_2 model's median Nash-Sutcliffe Efficiency (NSE_{res}) were new obstantially to 0.772, indicating that a substantial portion (although not all) of ARX_2 's predictive power came from air temperature and some memory (linear regression is worse than ARX_2 and not shown here). In comparison, the LSTM-based models were much less expected the median NSE_{res} values for the conterminous United States (CONUS) values were above 0.950 and 0.924 for $LSTM_{obsQ}$ and $LSTM_{noQ}$, respectively. LSTM models captured most in the lations unaccounted for by seasonality and they were able to capture more complicated memory effects than the simple linear autocorrelation described in ARX_2 . These temporal picture lons could have been induced by heat storages in the basin (vegetation, snow, soil, groundwater, riparian zone, urban areas) causing delayed responses to atmospheric forcage.

LSTM_{obsQ} generally performed better in the eastern CONUS than the western half, and better in the northern half than the southern half (Figure 2a-b). Most of the eastern bases had NSE values above 0.975 and RMSE values below 0.9°C. Northern basins had slightly high NSEs, presumably because in colder basins, the minimum winter liquid T_s is confined to bove 0°C, and therefore easier to predict. Existing statistical models often have officulty or normern basins where air temperature and water temperature are decoupled. LSTM halfs long temory to keep track of seasonal snow states and can learn threshold-like functions. Hance LSTM is quite useful where existing models often have deficiencies. Sites with large LASE values were scattered across the geographic extent, but there were no clear explanable patterns. Regardless, the NSE values for most of these "difficult" basins were still quite high, with only two stations out of 118 having NSEs <0.9.

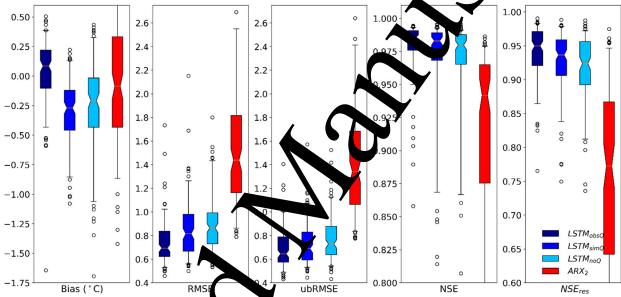


Figure 1. CONUS-scale aggregated metrics of stream temperature models for the test period. LSTM_{obsQ} incorporated observed streamflow, LSTM_{noQ} had no input streamflow information, while LSTM_{simQ} incorporated simulated streamflow (Q_{sim}). ARX₂ is the locally-fitted autoregressive model with extra in the lower whisker, lower box edge, center bar, upper box edge and upper whish is represent 5%, 25%, 50%, 75% and 95% of data, respectively.

3.2. Impacts of observed and simulated streamflow as inputs

Providing streamfile as an input to the T_s model generally improved model accuracy, but the effects we a pre-lounced for the poorly-simulated sites. The models incorporating either observed (LSTM_{obsQ}) or simulated (LSTM_{simQ}) streamflow improved median bias (reducing the absolute median bias by 0.120°C and 0.062°C), RMSE (by 0.170°C and 0.049°C) as compared to the coder tacking streamflow (LSTM_{noQ}) (Figure 1). Including streamflow information helped to both reduce bias and greatly improve representation of temporal fluctuations, especially for the worst per rming sites. Without the streamflow data, 10 sites had NSE values below 0.9. Additionally, LSTM_{noQ} had a median bias of around -0.25°C, while the median bias of LSTM_{obsQ}

was much closer to 0°C. The inclusion of observed streamflow also greatly reduced overall error range, providing the largest improvements in model performance at the most troublesor asites.

The model incorporating simulated streamflow (LSTM $_{simQ}$) generally performed between LSTM $_{obsQ}$ and LSTM $_{noQ}$. Similar to LSTM $_{obsQ}$, LSTM $_{simQ}$ helped to noticeably in prove the accuracy and reduced the spread of bias (decreasing error range, as shown by compressed which its and outliers compared to LSTM $_{noQ}$), but did not help as much to improve the hardian plas. Understandably, simulated streamflow had more errors compared to actual observations, and input attributes (A $_Q$) do not fully characterize a basin. While Q $_{sim}$ iffered tate-of-the-art performance, it still encountered more errors estimating peaks (mainly (ue to minfall inputs) and baseflows, especially in the western CONUS (possibly due to inadequate reological information) (Feng, Fang, and Shen 2020).

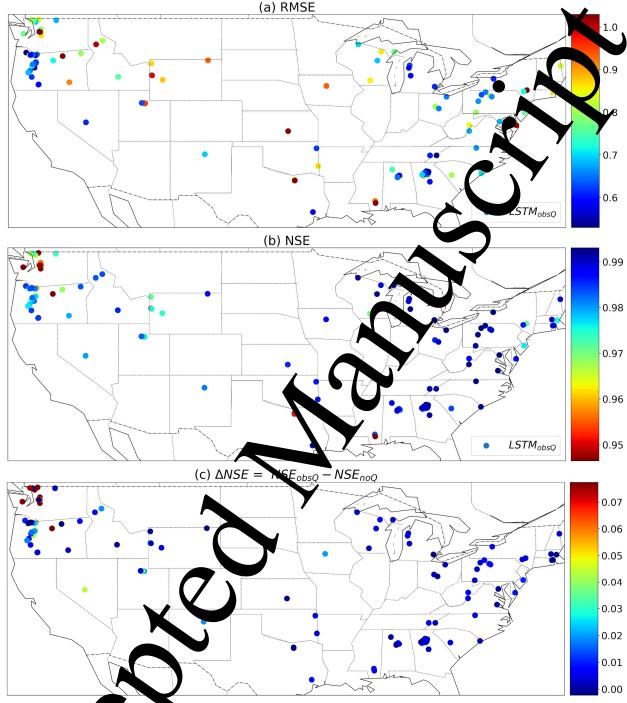
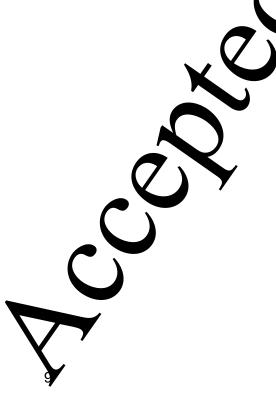


Figure 2. Maps of the TS USGS streamgage locations used in this study, where dot color represents (a) PMSF and (b) NSE values for LSTM_{obsQ}, and (c) Δ NSE values between LSTM_{obsQ} and LSTM_{noo}.

Negative biases with LSTM_{noQ} were attributable to underestimating T_s peaks in both winter and summer in some sites (e.g., Figure 3a) and a more consistent bias at other sites (e.g., Figure 3b). The same often associated with streamflow peaks (possibly caused by warm rain) in the winter but after-storm recession limbs in the summer. For the Black River in Ohio (Figure 3a), T_s peaks were coincidental with recession periods between storms in summer 2015 (annotated

points A & B). Simulated T_s by LSTM_{noQ} did not rise as high as the observed T_s , possibly because LSTM_{noQ} had an internal representation of baseflow that is overestimated here, while LSTM_{obsQ} captured the peaks well. For the South Fork Sultan River in Washington (Figure 3b), there we more prominent year-round bias for temperature predictions in 2015, concurrent with an overestimation of baseflow in Q_{sim} . This underestimation is potentially due recomplitive accumulation and melt of snowpacks. This basin typically has a long snow sealing, so extimes the whole year, but the 2015 summer saw all snow melted by June (verified val Google Earty).

Several reasons could explain why observed streamflow helps months but to think them through, we first need to assume that the LSTM model has in ernal representations of physically-relevant quantities such as water depth, snowmelt, water ten erat re, net heat flux, and baseflow temperature. Other studies have shown that LSTM has learned to use cell memory states to represent intermediate hydrologic variables that were not matched to observations, e.g., snow cover (Jiang, Zheng, and Solomatine 2020). With this a sumption, it is possible that observed or simulated streamflow corrects the internal "water depity variable to estimate the effect of net heat flux. From the energy balance equation, street temperature changes are estimated by dividing the net heat flux over the flow depth. In reamflow is overestimated during summer baseflow periods, the positive heat flux is verifically inluted too much (and thus the temperature rise is underestimated). Secondly, derived from figure 3b, the model may not be able to accurately keep track of long-term snow ccum bion/melt so LSTM_{noQ} misjudges the MobsQ was informed by observed flow and corrected amount of cool snowmelt water. However, LS the error. In fact, the basins with the lowest No. Es. ere concentrated in the Rocky Mountains with long snow seasons (Figure 2c). Thirdly, LSTM-paset, T_s models may have learned other holistic hydrologic information from the stream eries. For example, they may have learned to perform baseflow separation internally, if such a feature was helpful for T_s prediction. Streamflow data may provide more clues to reduce uncertainties - for example, cool summer temperatures could be due to high baseflow abundant riparian shade, and streamflow data may make it easier to distinguish between these cases



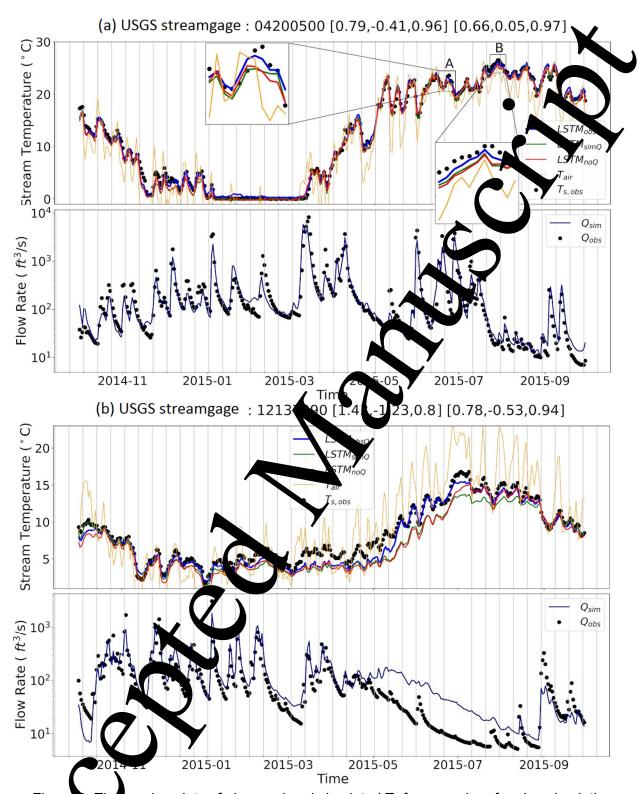


Figure Tip series plots of observed and simulated T_s for a good performing simulation, along with the observed and simulation hydrographs shown in log scale. (a) Black River at Elyl 3, Ohi ; (b) South Fork Sultan River, Washington. T_{s, obs} and Q_{obs} represent observed water temperature and streamflow, respectively. The two brackets contain values for [RMSE, Bias, NSE_{res}] for LSTM_{noQ} and LSTM_{obsQ}, respectively.

3.3. Further discussion

LSTM, with its hidden layers to store system states (100 hidden units) with different ates, is extremely well-suited to model systems with memory and hysteresis. The Carming and cooling of water storage compartments (soil water, groundwater, riparian zones, etc.) are called by different mechanisms with different rates, durations, and lags relative to drivers (accumulation, flush by storms, etc.). Such multirate exchanges, along with diffusive exchanges with soil, easily lead to hysteresis in the system (Briggs et al. 2014). We suspect that the internal sixtes and gates of LSTM-based models mimic the effects of buffers and delays by these heat (and water) storage compartments and can be sufficiently trained by 4 years of data as was tone in this study.

Streamflow data may have carried multifaceted, temperature relevant information about stream depth, basin hydrologic properties, and the relative influence on low versus other heat-moderating processes. Even simulated streamflow provide valuable new information to the temperature model -- despite the fact that Q_{sim} ingested identical reteorological forcing data as the T_s models. We posit that the pre-trained Q_{sim} model must have derived some of this new information from the additional catchment attributes in the relative to A_T (Table S1 in Supporting Information) but that the majority of the new information can be from the 10 years of streamflow observations across the 2397 stations on which Q_{sh} was rained. Q_{sim} was thus able to learn and transfer a wealth of nuanced information abbreveach basins hydrologic properties and responses to meteorological drivers, which in turn likely proved the implicit representation of those attributes in the T_s models.

As the first LSTM application for stream temperature, this application is focused on temporal prediction for basins with a good poor of historical data, and, as such, may not generalize to ungauged basins well. It is well-known that spatial extrapolation of stream temperature models can be quite risk (Gallice et al. 2015), which could be investigated in the future. Also warranting investigation is the representation of the spatial heterogeneity at smaller scales, e.g., using a multiscale graph betwork or calibrating parameters of a spatially-distributed process-based model.

4. Conclusions

This is the first time a Jasin-centric lumped T_s model has been shown to be so effective. The results clearly indicate that robust (but complex) mapping relationships exist between basin-average attributes, stimate forcings, and T_s , which can be reliably learned by a uniform, continental-scale model using a few years' worth of daily T_s observations. All models presented exceptional evaluation metrics that outperformed state-of-the-art models reported in the literature by a substantial hangin. Additionally, this performance was achieved without the need for detailed representations of the subsurface or the channel network - a convenience that promises high-quality forcinest of future T_s given available climate forcings.

Our use of a basin-centric lumped model to predict T_s allowed for great simplification that potentially enabled LSTM to learn the connection between different factors influencing T_s , as the more obvious benefits of simplifying model assembly and training. The

disadvantage of this basin-centric formulation is that it assumes each basin is homogeneous in forcings and attributes. The homogeneity assumption fundamentally limits the size of the basin that can be simulated: when predictions are needed for larger, mainstem rivers, we will have reach-centric models. Therefore, while the current model is highly capable and useful, we contour perceive the present form of the model as being complete in functionality.

Our results show that observed streamflow information helped to improve it. T_s model, perhaps because the observations (i) allowed the model to better resolution groundwater and snowmelt contributions, and (ii) provided a more accurate water volume used estimate the effect of net heat fluxes, especially during recession periods when T_s rapidly changed. The benefits were most substantial in basins with multiyear snow accumulations. If observed streamflow does not exist, a well-trained continental-scale streamflow model was able to indirectly bring in data from a larger training dataset, which alleviated more than half of the degradation in median NSE that would have otherwise resulted from the lack of streambow observations.

Acknowledgments

FR was supported by the Pennsylvania Water Resource: Research Center graduate internship O was provided by the Integrated G19AC00425, and funding for the fellowship and AA and Water Prediction Program at the U.S. Geological Sympy. Confas supported by National Science Foundation Award OAC #1940190. Data our be been cited in the paper, and all model inputs, outputs, and code are archive a a data release (Rahmani et al. 2020). The LSTM code for modeling streamflow is available https://github.com/mhpi/hydroDL. CS and KL have financial interests in HydroSapient, Inc., a company which could potentially benefit from the results of this research. This interest reviewed by the University in accordance with its Individual Conflict of Interest policy for the purpose of maintaining the objectivity and the integrity of research at The Pennsylvania State University. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

References

- Benyahya, Loubna, Daniel Cissic André St-Hilaire, Taha B.M.J Ouarda, and Bernard Bobée. 2007. "A Review Statistical Water Temperature Models." *Canadian Water Resources Journal* 32 (3): 179–12 https://doi.org/10.4296/cwrj3203179.
- Beven, Keith. 2006. A manifesto for the Equifinality Thesis." *Journal of Hydrology* 320 (1–2): 18–36. http://doi.org/10/ccx2ks.
- Beven, Keith, and Jim Treer. 2001. "Equifinality, Data Assimilation, and Uncertainty Estimation in Mechanistic Mod ling of Complex Environmental Systems Using the GLUE Methology Journal of Hydrology 249 (1): 11–29. https://doi.org/10/fgmngv.
- Borman, M.M., a. L. L. Larson. 2003. "A Case Study of River Temperature Response to Agricultural Land Use and Environmental Thermal Patterns." *Journal of Soil and Water Casery tion* 58 (1): 8–12.
- Brigras, Martin A., Frederick D. Day-Lewis, John B. Ong, Judson W. Harvey, and John W. Lane Jr. 2014. "Dual-Domain Mass-Transfer Parameters from Electrical Hysteresis: Theory Analytical Approach Applied to Laboratory, Synthetic Streambed, and Groundwater Experiments." Water Resources Research. https://doi.org/10.1002/2014WR015880.
- ., A.-V. Jung, E. Baures, M. Clement, and O. Thomas. 2009. "Impacts of Climate

- Change on Surface Water Quality in Relation to Drinking Water Production." *Environment International* 35 (8): 1225–33. https://doi.org/10.1016/j.envint.2009 201.
- Edinger, John E., David W. Duttweiler, and John C. Geyer. 1968. "The Response of Water Temperatures to Meteorological Conditions." *Water Resources Research* 4 (17, 137) 43. https://doi.org/10.1029/WR004i005p01137.
- Evans, E. C., and G. E. Petts. 1997. "Hyporheic Temperature Patterns within Riffles. Hydrological Sciences Journal 42 (2): 199–213. https://doi.org/10.1080/02626669709492020.
- Falcone, James A. 2011. GAGES-II: Geospatial attributes of gages for evaluating streamflow. US Geological Survey. https://doi.org/10.3133/70046617
- Fang, Kuai, Ming Pan, and Chaopeng Shen. 2019. "The Value of SMAF for Long-Term Soil Moisture Estimation with the Help of Deep Learning." *IEEE Transaction on Geoscience and Remote Sensing* 57 (4): 2221–33. https://doi.org/10/ggh/3v.
- Fang, Kuai, and Chaopeng Shen. 2020. "Near-Real-Time Forecas of Stallite-Based Soil Moisture Using Long Short-Term Memory with an Adaptive Data Integration Kernel." *Journal of Hydrometeorology* 21 (3): 399–413. https://doi.org/10/99j669.
- Fang, Kuai, Chaopeng Shen, Daniel Kifer, and Xiao Yang. 2017. "Prompation of SMAP to Spatiotemporally Seamless Coverage of Continental U.S. Using a Deep Learning Neural Network." *Geophysical Research Letters* 44 (21): 11, 30-11,039. https://doi.org/10/gcr7mq.
- Feng, Dapeng, Kuai Fang, and Chaopeng Shen. 2020. "Extracting Insights Using Long-Short Term Moorry Networks with Data Integration at Continental Scales." *Water Resources Research* 3 (9): e2019WR026793. https://doi.org/10.1029/2019WR0261.3
- Gallice, A., B. Schaefli, M. Lehning, M. B. Pallan, and H. Huwald. 2015. "Stream Temperature Prediction in Ungauged Basins, Leview of Recent Approaches and Description of a New Physics, Darived Statistical Model." *Hydrology and Earth System Sciences* 19 (9): 3727–53. https://doi.org/. 0.5194/hess-19-3727-2015.
- Garner, Grace, Iain A. Malcolm, Jonathan I. Sadler, and David M. Hannah. 2017. "The Role of Riparian Vegetation Density, Channel Grientation and Water Velocity in Determining River Temperature Dynamus." *Journal of Hydrology* 553 (October): 471–85. https://doi.org/10.1016/j.jlrydic. 2017.03.024.

 Gorelick, Noel, Matt Hancher, Mile Dixol. Simon Ilyushchenko, David Thau, and Rebecca
- Gorelick, Noel, Matt Hancher, M. e Dixo. Simon Ilyushchenko, David Thau, and Rebecca Moore. 2017. "Google Fan. Engine: Planetary-Scale Geospatial Analysis for Everyone." *Remote Sensing of Environment*, Big Remotely Sensed Data: tools, applications and experiences, 202 (December): 18–27. https://doi.org/10/gddm6z.
- Graf, Renata, Senlin Zar, and Lake Sivakumar. 2019. "Forecasting River Water Temperature Time Series Using Wavelet–Neural Network Hybrid Modelling Approach." *Journal of Hydrology* 57 (Novelleser): 124115. https://doi.org/10.1016/j.jhydrol.2019.124115.
- Hawkins, Charles F., James N. Hogue, Lynn M. Decker, and Jack W. Feminella. 1997. "Channel Metahology, Water Temperature, and Assemblage Structure of Stream Insects" Jurna. If the North American Benthological Society 16 (4): 728–49. https://doi.org/10.25/1/1468167. Hochreiter, Sepp. ard Jürgen Schmidhuber. 1997. "Long Short-Term Memory." Neural
- Hochreiter, Se and Jürgen Schmidhuber. 1997. "Long Short-Term Memory." Neural Computation 9 (8): 1735–1780. https://doi.org/10/bxd65w.
- Hu, Zhul ua, Yiran Zhang, Yaochi Zhao, Mingshan Xie, Jiezhuo Zhong, Zhigang Tu, and Juntao Liu 201. "A Water Quality Prediction Method Based on the Deep LSTM Network Considering Correlation in Smart Mariculture." *Sensors* (Basel, Switzerland) 19 (6). http://doi.org/10.3390/s19061420.
- Huang, Loyi, and Xu Liang. 2006. "On the Assessment of the Impact of Reducing Parameters and Identification of Parameter Uncertainties for a Hydrologic Model with Applications to Ungauged Basins." *Journal of Hydrology*, The model parameter estimation experiment,

- 320 (1): 37–61. https://doi.org/10.1016/j.jhydrol.2005.07.010.
- Jiang, Shijie, Yi Zheng, and Dimitri Solomatine. 2020. "Improving AI System Awareness Geoscience Knowledge: Symbiotic Integration of Physical Approaches and Deep Learning." *Geophysical Research Letters* 47 (13): e2020GL088229. https://doi.org/10.1029/2020GL088229.
- Johnson, Zachary C., Brittany G. Johnson, Martin A. Briggs, Warren D. Devine, Craig Snyder, Nathaniel P. Hitt, Danielle K. Hare, and Teodora V. Minkova. 2022. "Paire Air-Water Annual Temperature Patterns Reveal Hydrogeological Controls on Struck Thermal Regimes at Watershed to Continental Scales." *Journal of Hydrology* 587 (August): 124929. https://doi.org/10.1016/j.jhydrol.2020.124929.
- Justice, Casey, Seth M. White, Dale A. McCullough, David S. Graves, and Monica R. Blanchard. 2017. "Can Stream and Riparian Restoration Offset Climate Change Impacts to Salmon Populations?" *Journal of Environmental Management* 15 Juliarch): 212–27. https://doi.org/10.1016/j.jenvman.2016.12.005.
- Kaushal, Sujay S, Gene E Likens, Norbert A Jaworski, Michael L Pace, As liey M Sides, David Seekell, Kenneth T Belt, David H Secor, and Rebecca L v., gates 2010. "Rising Stream and River Temperatures in the United States." Frontiers in Ecology and the Environment 8 (9): 461–466. https://doi.org/10/bfxq26.
- Kelleher, C., T. Wagener, M. Gooseff, B. McGlynn, K. McGs, and L. Marshall. 2012. "Investigating Controls on the Thermal Sensitivity of Pensylvania Streams." Hydrological Processes 26 (5): 771–85. https://doi.org/10.1002/hyp.8186.
- Madden, N., A. Lewis, and M. Davis. 2013. "Therman fluenty from the Power Sector: An Analysis of Once-through Cooling System Lapricis in Surface Water Temperature." *Environmental Research Letters* 8 (\$1.935006 https://doi.org/10.1088/1748-9326/8/3/035006.
- Marcogliese, David J. 2001. "Implications of Character hange for Parasitism of Animals in the Aquatic Environment." *Canadian Journal of Zoology* 79 (8): 1331–52. https://doi.org/10.1139/z01-067.
- Martins, Eduardo G., Scott G. Hinch, David A. Patterson, Merran J. Hague, Steven J. Cooke, Kristina M. Miller, David Robichaud, Kay K. English, and Anthony P. Farrell. 2012. "High River Temperature Reduces Survival of Sockeye Salmon (Oncorhynchus Nerka) Approaching Spawning G. oun is and Exacerbates Female Mortality." *Canadian Journal of Fisheries and Aquatic Science* 369 (2): 330-342. https://doi.org/10.1139/f2011-154.
- Moatar, Florentina, and Joël Gailh. 2006. "Water Temperature Behaviour in the River Loire since 1976 and 1887." Jomptes Rendus Geoscience 338 (5): 319–28. https://doi.org/10.1016/j.crte/2006.02.011.
- Moore, R. Dan, D. L. Stitlehout, and Anthony Story. 2005. "Riparian Microclimate and Stream Temperature Resp. pse to Forest Harvesting: A Review." *JAWRA Journal of the American Water* Resources Association 41 (4): 813–34. https://doi.org/10.1111/j.1752-1688.2005.tt.0377. x.
- Nash, J.E., and J.W. Sutclife. 1970. "River Flow Forecasting through Conceptual Models Part I A Discussion of Principles." *Journal of Hydrology* 10 (3): 282–290. https://doi.org/10/fb.2tm.
- Nelson, Kären and Margaret A. Palmer. 2007. "Stream Temperature Surges under Urbanization and Climate Change: Data, Models, and Responses." *JAWRA Journal of the Amelican Water Resources Association* 43 (2): 440–52. http://doi.org/10.1111/j.1752-1688.2007.00034.x.
- Poff N. Leroy, Brian D. Richter, Angela H. Arthington, Stuart E. Bunn, Robert J. Naiman, Eloise Ken ly, Mike Acreman, et al. 2010. "The Ecological Limits of Hydrologic Alteration JHA): A New Framework for Developing Regional Environmental Flow Standards." *Freshwater Biology* 55 (1): 147–70. https://doi.org/10.1111/j.1365-2427.2009.02204.x.
- Poole Geoffrey C, and Cara H Berman. 2000. "Pathways of Human Influence on Water

- Temperature Dynamics in Stream Channels." U.S. Environmental Protection Agency. https://pdfs.semanticscholar.org/49b9/149ad3c2ff489b697166ea0c7d210d93ec4andf
- Raptis, C. E., M. T. H. van Vliet, and S. Pfister. 2016. "Global Thermal Pollution of Rivers for Thermoelectric Power Plants." *Environmental Research Letters* 11 (10): 1040 https://doi.org/2020031315161525.
- Rahmani, Farshid, Kathryn Lawson, Wenyu Ouyang, Alison Appling, Samanina Olive.
 Chaopeng Shen. 2020. Data release: Exploring the exceptional performance of a ceptional stream temperature model and the value of streamflow data: 2.S. G. Jógiczi. Survey, https://doi.org/10.5066/P97CGHZH.
- Segura, Catalina, Peter Caldwell, Ge Sun, Steve McNulty, and Yang Zhang. 2015 "A Model to Predict Stream Water Temperature across the Conterminous USA." *Hydrological Processes* 29 (9): 2178–95. https://doi.org/10.1002/hyp.10357.
- Shen, Chaopeng. 2018. "A Transdisciplinary Review of Deep Learning Research and Its Relevance for Water Resources Scientists." *Water Resources Franch* 54 (11): 8558–93. https://doi.org/10/gd8cqb.
- Shen, Chaopeng, Eric Laloy, Amin Elshorbagy, Adrian Albert, Jen J. Bales, Fi-John Chang, Sangram Ganguly, Kuo-Lin Hsu, Daniel Kifer, Zheng, Sang, Kuci Fang, Dongfeng Li, Xiaodong Li, & Wen-Ping Tsai. 2018. "HESS Opinions: https://doi.org/ting/deep-learning-powered hydrologic science advances as a comman.". *Hydrology and Earth System Sciences*, 22(11): 5639–5656. https://doi.org/1015194/html-2-22-5639-2018
 Sohrabi, Mohammad M., Rohan Benjankar, Daniele Tonih, Seth J. Wenger, and Daniel J.
- Sohrabi, Mohammad M., Rohan Benjankar, Daniele Tonin, Seth J. Wenger, and Daniel J. Isaak. 2017. "Estimation of Daily Stream Water Tempy ratures with a Bayesian Regression Approach." *Hydrological Processes* 3. (1): 1719–33. https://doi.org/10.1002/hyp.11139.
- Stajkowski, Stephen, Deepak Kumar, Pijush Jan vi, Hossein Bonakdari, and Bahram Gharabaghi. 2020. "Genetic-Algorithm-Opting ed Sequential Model for Water Temperature Prediction." Sustainability 12 (13): 5374. https://doi.org/10.3390/su12135374.
- Theurer, Fred D., Ivan Lines, and Terry New on. 1985. "Interaction between Riparian Vegetation, Water Temperature, and Salmonid Habitat in the Tucannon River." *JAWRA Journal of the American Water Resources Association* 21 (1): 53–64. https://doi.org/10.1111/j.1752. 688.1985.tb05351.x.

 Thornton, P. E., M. M. Thornton, B. W. Nelyer, Y. Wei, R. Devarakonda, R. S. Vose, and R. B.
- Thornton, P. E., M. M. Thornton, B. W. Nylyer, Y. Wei, R. Devarakonda, R. S. Vose, and R. B. Cook. 2016. "Daymet: Dail, Surface Weather Data on a 1-Km Grid for North America, Version 3." ORNL DAA: July. https://doi.org/10.3334/ORNLDAAC/1328.
- U.S. Geological Survey. 20 6. National Water Information System data available on the World Wide Web. (U.). Geological Survey Water Data for the Nation), accessed in May 2020. http://dx.doi.org/10.5066/F7P55KJN.
- Vliet, M. T. H. van, Joanney, W. H. P. Franssen, F. Ludwig, I. Haddeland, D. P. Lettenmaier, and F. Kabat. 2012. "Coupled Daily Streamflow and Water Temperature Modelling in large River Basins." *Hydrology and Earth System Sciences* 16 (11): 4303–21. http://loi.org/10.5194/hess-16-4303-2012.
- Wanders, Nikb, Michalle T. J. van Vliet, Yoshihide Wada, Marc F. P. Bierkens, and Ludovicus P. H. (Lans) an Beek. 2019. "High-Resolution Global Water Temperature Modeling."

 Water Resources Research 55 (4): 2760–78. https://doi.org/10.1029/2018WR023250.