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Abstract: 13 
Stream water temperature (Ts) is a variable of critical importance for aquatic ecosystem health. 14 
Ts is strongly affected by groundwater-surface water interactions which can be learned from 15 
streamflow records, but previously such information was challenging to effectively absorb with 16 
process-based models due to parameter equifinality. Based on the long short-term memory 17 
(LSTM) deep learning architecture, we developed a basin-centric lumped daily mean Ts model, 18 
which was trained over 118 data-rich basins with no major dams in the conterminous United 19 
States, and showed strong results. At a national scale, we obtained a median root-mean-square 20 
error (RMSE) of 0.69oC, Nash-Sutcliffe model efficiency coefficient (NSE) of 0.985, and 21 
correlation of 0.994, which are marked improvements over previous values reported in literature. 22 
The addition of streamflow observations as a model input strongly elevated the performance of 23 
this model. In the absence of measured streamflow, we showed that a two-stage model can be 24 
used where simulated streamflow from a pre-trained LSTM model (Qsim) still benefits the Ts model, 25 
even though no new information was brought directly in the inputs of the Ts model; the model 26 
indirectly used information learned from streamflow observations provided during the training of 27 
Qsim, potentially to improve internal representation of physically meaningful variables. Our results 28 
indicate that strong relationships exist between basin-averaged forcing variables, catchment 29 
attributes, and Ts that can be simulated by a single model trained by data on the continental scale.  30 
 31 
Keywords: Stream Temperature, Machine Learning, streamflow, deep learning, LSTM  32 
 33 
 34 

1. Introduction: 35 
Stream water temperature (Ts) is a critical, decision-relevant variable that controls 36 

numerous physical, chemical, and biological processes and properties, e.g. dissolved oxygen 37 
concentrations and nutrient transformation rates, as well as industrial processes such as cooling 38 
power plants and treating drinking water (Delpla et al. 2009; Madden, Lewis, and Davis 2013; 39 
Kaushal et al. 2010). Thermal regimes of streams directly affect aquatic species (Justice et al. 40 
2017) and in some cases, fish mortality rate increases as Ts passes a certain threshold (Martins 41 
et al. 2012; Marcogliese 2001). These are complicated by water uses in industry, such as utilizing 42 
stream water for cooling systems, which causes thermal pollution downstream (Raptis, van Vliet, 43 
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and Pfister 2016). Fulfilling the temperature requirements of the environment, agriculture, 44 
industries, and municipalities, and coordinating these uses requires a delicate balance. Accurate 45 
Ts models can inform the decision-making process and help lower the risks of exceeding the 46 
thermal thresholds.  47 

 48 
Myriad basin and in-stream/near-stream processes govern Ts (Poole and Berman 2000). 49 

The heat balance of the basin, as modulated by land use types (Nelson and Palmer 2007; Borman 50 
and Larson 2003; Moore, Spittlehouse, and Story 2005) is a primary control on Ts. At the basin 51 
scale, snowmelt and groundwater baseflow contributions (Kelleher et al. 2012) are also important 52 
factors due to their sharp contrast in temperature with air. In streams, Ts is influenced by solar 53 
radiation, latent heat flux, air-water heat exchange, riparian vegetation (Theurer, Lines, and 54 
Nelson 1985; Garner et al. 2017), channel geomorphology (Hawkins et al. 1997), hyporheic 55 
exchange (Evans and Petts 1997), and reservoirs and industrial discharges (Poff et al. 2010). At 56 
any point in the channel network, Ts is the spatiotemporal integration of all of the above processes. 57 
Process-based models, while offering physical explanations of causes and effects, need to 58 
embrace substantial model complexity to represent all or even parts of these complex processes 59 
with their heterogeneity and scaling effects (Johnson et al. 2020). The requirements for input data 60 
also make scaling up such simulations challenging. Some large-scale process-based models 61 
have had root-mean-square error (RMSE) values reported of greater than 2.5 oC (Wanders et al. 62 
2019; van Vliet et al. 2012).  63 

 64 
A large body of literature has employed statistical models to simulate Ts, with some good 65 

summaries given by Benyahya et al. (2007) and Gallice et al. (2015). Typically, Ts was regressed 66 
to air temperature (Ta), but more recent studies regressed the parameters in Ts~Ta relationships 67 
using catchment attributes. Among these studies and most relevant to our work, Segura et al. 68 
(2015) predicted the slope and intercept of the 7-day average Ts~Ta relationship based on 69 
catchment characteristics such as watershed area and baseflow index. A Nash-Sutcliffe 70 
coefficient of 0.78 was obtained for reference sites for the 7-day average Ts, and strong hysteresis 71 
was noted in the stream-air temperature relationship (Segura et al. 2015). Stewart et al. (2015), 72 
integrated an artificial neural network with a soil water balance model and obtained an RMSE of 73 
around 1.5oC and R2 of 0.76 for 371 sites across Wisconsin. Very recently, Johnson et al. (2020) 74 
used sine-wave linear regression and reported RMSE values of 1.41oC for an extensive regional 75 
dataset and 1.85oC for the national-scale U.S. Geological Survey (USGS) dataset. They 76 
highlighted the importance of spatial scales and heterogeneity. Graf et al. (2019) used wavelet 77 
transformations of daily average air temperature as inputs to an artificial neural network to predict 78 
water temperature at eight different sites in Poland and obtained RMSE values ranging from 0.98o 79 
to 1.43o in the test period. Additionally, there are several studies that used recent water 80 
temperature data as an input to predict stream temperature, which can significantly increase 81 
model performance as it can be interpreted as a form of data assimilation (Feng et al., 2020). 82 
Sohrabi et al. (2017) obtained RMSE of ~1.25oC when they used the previous day’s temperature 83 
and streamflow as drivers. On one temperature gauge, Stajkowski et al. (2020) obtained RMSE 84 
of 0.76oC using a variant of LSTM with previous hour’s stream temperature in the inputs. However, 85 
here we do not use previous day measurements in inputs because the purpose of our model is 86 
long-term projections. 87 

 88 
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Streamflow conditions are often not utilized by statistical models of Ts, partially because 89 
relationships are not clear; none of the abovementioned statistical models used streamflow. 90 
However, we do know that streamflow exerts substantial control on Ts. Rivers dominated by 91 
baseflow are typically fairly stable and cool in summer, but have relatively low thermal capacity 92 
and are rapidly heated by strong solar radiation. Peak flows are typically dominated by surface 93 
runoff, the temperature of which is strongly influenced by the fast-changing air temperature 94 
(Edinger, Duttweiler, and Geyer 1968). A sensitivity analysis on large river basins found that on 95 
average, a decrease in river flow of 50% as compared to a reference condition lowered the 96 
minimum annual river discharge temperature (in winter) by -0.4°C or raised the maximum 97 
temperature (in summer) by +1.2°C (van Vliet et al. 2012). In another study on one specific river, 98 
a linear regression model based on monthly air temperature and streamflow data revealed that 99 
air temperature rise and flow reduction were responsible for 60% and 40% of June to August 100 
temperature increases, respectively (Moatar and Gailhard 2006).  101 

 102 
Recently, deep learning (DL) models, including those based on the long short-term 103 

memory (LSTM) algorithm, have shown promise in predicting hydrologic variables such as soil 104 
moisture and streamflow by achieving superior results with low computational and human effort 105 
(Feng, Fang, and Shen 2020; Shen 2018; Shen et al. 2018; Fang and Shen 2020). LSTM can 106 
learn long-term dependencies and gave high performance in snow-dominated regions for 107 
streamflow prediction (Feng, Fang and Shen 2020). The memory mechanisms of LSTM may be 108 
able to mimic heat units, similar to heat accumulation and release processes. Thus, it is natural 109 
to think that LSTM may also be suitable for Ts modeling. However, given the complicated and 110 
scale-dependent processes influencing Ts, it is highly uncertain if there is even a stable 111 
relationship between basin-average forcing inputs and Ts across different spatial scales, and if so, 112 
whether such a relationship can be captured by LSTM given limited observational data. 113 

 114 
One advantage of a DL model as compared to process-based ones is that it can 115 

incorporate auxiliary information without requiring explicit understanding of relationships. In our 116 
case, not only does streamflow directly influence Ts fluctuations, it also reveals multi-faceted 117 
hydrologic dynamics in a basin, regarding factors such as baseflow contributions and residence 118 
times of surface runoff, which could aid Ts modeling. Therefore, we expect adding streamflow 119 
information to improve model performance. In a process-based modeling framework, streamflow 120 
data can be used to calibrate the hydrologic components. Unfortunately due to the issue of model 121 
equifinality (Beven 2006; Beven and Freer 2001), calibration may or may not improve model 122 
internal dynamics, depending on model parameterization, structure, and data information content 123 
(Huang and Liang 2006). In utilizing the DL framework, we hypothesize that models may be able 124 
to automatically extract information from hydrographs to inform Ts, which, to our knowledge, no 125 
study has examined in the context of deep learning models.  126 

 127 
Even if streamflow data are indeed useful, real-world use can be hampered by lack of 128 

available streamflow data. Beyond existing stations, collecting new streamflow data is more 129 
expensive than collecting new Ts data. However, given that highly accurate, LSTM-based 130 
streamflow models have been reported (Feng, Fang, and Shen 2020), we wondered if a well-131 
trained LSTM streamflow model could serve as a surrogate for actual measurements. Deep 132 
networks are known to maximally use available information, but it is not certain whether such a 133 
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streamflow model presents any benefit; the model uses identical forcing data to those already 134 
used by the temperature model and do not explicitly bring in new information.  135 

 136 
In this work, we attempted to answer two main research questions and improve our 137 

understanding of the stream heat balance: (1) Are there reliable relationships between basin-138 
average meteorological forcing and attributes and Ts that could be learned by deep networks to 139 
predict Ts with high accuracy? (2) Can observed or simulated streamflow be used to improve 140 
temperature predictions, especially when the simulated streamflow is predicted using the same 141 
information as the Ts model? 142 

 143 
2. Methods: 144 

We simulated Ts from a basin perspective, that is, as a function of basin-average climate 145 
forcings and attributes. This setup greatly simplifies the model representation compared to 146 
spatially explicit models and is supported by widely-available data, but ignores some local channel 147 
characteristics. We examined the effect of including daily streamflow in the inputs to assess its 148 
information content for Ts. 149 
 150 
2.1. Datasets  151 

Basin characteristics came from the Geospatial Attributes of Gages for Evaluating 152 
Streamflow dataset, version II (GAGES-II) which represent geological aspects, land cover, 153 
reservoir information, and air temperature data (Falcone 2011). Historical data for daily mean Ts 154 
was downloaded from the USGS's National Water Information System (USGS NWIS) website for 155 
all 9322 basins in GAGES-II (USGS 2016). We obtained daily meteorological forcing data 156 
(precipitation, maximum and minimum air temperature, vapor pressure, solar radiation) by 157 
interpolating a gridded meteorological dataset (Daymet) (Thornton et al. 2016) from Google Earth 158 
Engine (GEE) (Gorelick et al. 2017) for each basin for the period of 2004 to 2016. Daily streamflow 159 
observations were downloaded from USGS NWIS for the same period. Forcing and attribute 160 
inputs are summarized in Table S1 (Supplementary Information).  161 

 162 
Many of the GAGES-II basins had Ts observations recorded for only some days of the 163 

year, with unobserved days more common during the winter (there are nonetheless many sites 164 
with winter data and our model predicts temperature for all days in a year). For this paper, we 165 
selected temperature gauges with more than 60% of daily observations available between 166 
2010/10/01 and 2014/09/30, in basins where there were no major dams (more than 50 ft in height, 167 
or having more than 5000 acre feet storage according to the definition in GAGES-II), resulting in 168 
a dataset of 118 basins ranging in size from 2 to 14,000 km2. We simulated Ts at the pour point 169 
of basins where the USGS streamgages were located. Limiting this analysis to sites with >60% 170 
data coverage allowed us to focus on the capabilities of LSTM for Ts modeling under relatively 171 
ideal conditions. Future research on the effect of reservoir presence and data availability could 172 
further improve stream temperature predictions. 173 
 174 
2.2. LSTM-based models for predicting Ts 175 

We used the long short-term memory (LSTM) algorithm which has received increasing 176 
attention in hydrologic literature. This method is designed to learn and keep information for long 177 
periods using units called memory cells and gates. Cells store the information, and gates decide 178 
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which information comes in and out of the cells. Because the basic LSTM architecture has been 179 
described extensively elsewhere, we refer readers to those papers for a more detailed discussion 180 
of the equations and structure of LSTM (Hochreiter and Schmidhuber 1997; Fang et al. 2017; 181 
Fang, Pan, and Shen 2019). A sketch and equations of the model are provided in Figure S1. 182 

We standardized values for all inputs and target values. As a preprocessing step, 183 
streamflow was first divided by basin area and mean annual precipitation to obtain a 184 
dimensionless streamflow, which was then transformed to a new, more Gaussian distribution 185 
(Feng, Fang, and Shen 2020):  186 

𝑣∗ ൌ logଵ଴ሺ√𝑣 ൅  0.1ሻ  (1) 

where v* and v are the variables after and before transformation, respectively. Next, the 187 
transformed streamflow data along with all other meteorological forcing data, basin 188 
characteristics, and Ts observations were standardized by the following formula (Feng, Fang, and 189 
Shen 2020): 190 

𝑥௜,௡௘௪  ൌ  
ሺ𝑥௜  െ  𝑥̅ሻ

ơ
 

(2) 

in which xi,new is the standardized value, xi is the raw value, 𝑥̅ is the mean value, and ơ is the 191 
standard deviation for each variable. Standardization better conditions the model for gradient 192 
descent and forces the model to pay roughly equal attention to both large wet basins and small 193 
dry basins (Feng, Fang, and Shen 2019). All results in this study are shown after 194 
destandardization, or reversal of all standardization procedures, for the outputs. 195 

Hyperparameters were chosen by running multiple tests to determine the 196 
hyperparameters as listed in Table S2. The metric the model training aimed to minimize (loss) 197 
was RMSE, and we also reported an unbiased RMSE (ubRMSE), which is the RMSE minus the 198 
mean bias. We also report bias (mean of error) and Nash-Sutcliffe efficiency coefficient (NSE, 199 
equation in the supporting information) (Nash and Sutcliffe 1970) for the test periods for 200 
comparison with other studies. Further, because a model simply copying air temperature may 201 
give acceptable metrics, we added Nash-Sutcliffe coefficient (NSEres) calculated based on the 202 
difference between daily mean water and daily mean air temperatures (residual temperature): 203 
Tres=Ts-Ta. To provide a baseline for comparison, we also provide a locally-fitted autoregressive 204 
model with exogenous variables (ARX2). The ARX2 inputs contain current and delayed 205 

atmospheric forcings (X) and ARX2-simulated stream temperature in the last two days: 𝑇௦
௧,∗ ൌ206 

∑ 𝑎௜𝑇௦
௧ି௜,∗ଶ

௜ୀଵ ൅ ∑ ∑ 𝑏௜,௝𝑋௝
௧ି௜௣

௝ୀଵ
ଶ
௜ୀ଴ ൅ 𝑐, where a, b and c were fitted coefficients, 𝑇௦

௧,∗ is the stream 207 

temperature simulated by this model at time step t and p is the number of forcings. All temperature 208 
models were trained on data from 2010/10/01-2014/09/30 and tested on 2014/10/01-2016/09/30. 209 
 210 
2.3. Streamflow observations or simulations as model inputs 211 

Across USGS gages, streamflow is a more widely-available measurement than 212 
temperature, meaning that inclusion could bring additional information. To test this, the following 213 
models were trained: 214 

Ts,obsQ = LSTMobsQ(F, AT, Qobs) (3) 
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5 

Ts,noQ = LSTMnoQ(F, AT) (4) 

Ts,simQ= LSTMsimQ(F, AT, Qsim) (5) 

where F is the forcing data time series, AT represents static and single-valued attributes of the 215 
basin for temperature modeling, Qobs is the observed time series of daily mean streamflow, and 216 
Qsim is simulated streamflow (described below). LSTMobsQ, LSTMnoQ, and LSTMsimQ are LSTM-217 
based models incorporating observed streamflow, no streamflow information, and simulated 218 
streamflow, respectively. For Qsim, streamflow was simulated using a LSTM-based streamflow 219 
model shown to have very good performance (Feng, Fang, and Shen 2020).  220 

Qsim= LSTMQ(F, AQ) (6) 

AQ represents static attributes of the basins for streamflow modeling (Table S1 in Supporting 221 
Information). Meteorological forcing data used for the simulations were the same as for the 222 
temperature prediction models. Qsim was trained using observations from 2397 basins, and a 223 
longer training period (from 2004/10/01 to 2014/09/30) was used than for the temperature models 224 
in this study.  225 
 226 

3. Results and Discussion 227 
  228 

3.1. Overall results 229 
All LSTM-based models delivered exceptionally strong performance in the test period 230 

(Figure 1). The median test-period RMSE for the model incorporating streamflow observations 231 
(LSTMobsQ) was 0.69oC. The RMSE for the model incorporating simulated streamflow (LSTMsimQ) 232 
was 0.81oC, which was still lower than that for the model lacking any streamflow information 233 
(LSTMnoQ), for which the RMSE was 0.86oC. The corresponding median NSE values were 0.986, 234 
0.983, and 0.979 respectively, and all of the correlation values were above 0.992, indicating that 235 
temporal fluctuations were extremely well captured. These metrics are markedly better than those 236 
reported in the literature at this scale, which demonstrates that LSTM is particularly well-suited 237 
for Ts modeling at basin outlets.  238 

 239 
LSTM performed much better than ARX2, which had a median RSEM of 1.41 oC. 240 

Moreover, when we evaluated Tres, the locally-fitted ARX2 model’s median Nash-Sutcliffe 241 
Efficiency (NSEres) worsened substantially to 0.772, indicating that a substantialf portion (although 242 
not all) of ARX2’s predictive power came from air temperature and some memory (linear 243 
regression is worse than ARX2 and not shown here). In comparison, the LSTM-based models 244 
were much less affected: the median NSEres values for the conterminous United States (CONUS) 245 
values were above 0.950 and 0.924 for LSTMobsQ and LSTMnoQ, respectively. LSTM models 246 
captured most fluctuations unaccounted for by seasonality and they were able to capture more 247 
complicated memory effects than the simple linear autocorrelation described in ARX2. These 248 
temporal fluctuations could have been induced by heat storages in the basin (vegetation, snow, 249 
soil, groundwater, riparian zone, urban areas) causing delayed responses to atmospheric 250 
forcings. 251 

 252 
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LSTMobsQ generally performed better in the eastern CONUS than the western half, and 253 
better in the northern half than the southern half (Figure 2a-b). Most of the eastern basins had 254 
NSE values above 0.975 and RMSE values below 0.9oC. Northern basins had slightly higher 255 
NSEs, presumably because in colder basins, the minimum winter liquid Ts is confined to above 256 
0oC, and therefore easier to predict. Existing statistical models often have difficulty for northern 257 
basins where air temperature and water temperature are decoupled. LSTM has a long memory 258 
to keep track of seasonal snow states and can learn threshold-like functions. Hence LSTM is quite 259 
useful where existing models often have deficiencies. Sites with large RMSE values were 260 
scattered across the geographic extent, but there were no clear, explainable patterns. 261 
Regardless, the NSE values for most of these “difficult” basins were still quite high, with only two 262 
stations out of 118 having NSEs <0.9. 263 
 264 

 265 
Figure 1. CONUS-scale aggregated metrics of stream temperature models for the test period. 266 

LSTMobsQ incorporated observed streamflow, LSTMnoQ had no input streamflow information, 267 
while LSTMsimQ incorporated simulated streamflow (Qsim). ARX2 is the locally-fitted auto-268 

regressive model with extra inputs. The lower whisker, lower box edge, center bar, upper box 269 
edge and upper whisker represent 5%, 25%, 50%, 75% and 95% of data, respectively. 270 

 271 
 272 
3.2. Impacts of observed and simulated streamflow as inputs 273 

Providing streamflow as an input to the Ts model generally improved model accuracy, but 274 
the effects were pronounced for the poorly-simulated sites. The models incorporating either 275 
observed (LSTMobsQ) or simulated (LSTMsimQ) streamflow improved median bias (reducing the 276 
absolute median bias by 0.120oC and 0.062oC), RMSE (by 0.170oC and  0.049oC) as compared 277 
to the model lacking streamflow (LSTMnoQ) (Figure 1). Including streamflow information helped to 278 
both reduce bias and greatly improve representation of temporal fluctuations, especially for the 279 
worse-performing sites. Without the streamflow data, 10 sites had NSE values below 0.9. 280 
Additionally, LSTMnoQ had a median bias of around -0.25oC, while the median bias of LSTMobsQ 281 
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was much closer to 0oC. The inclusion of observed streamflow also greatly reduced overall error 282 
range, providing the largest improvements in model performance at the most troublesome sites.  283 

 284 
The model incorporating simulated streamflow (LSTMsimQ) generally performed between 285 

LSTMobsQ and LSTMnoQ. Similar to LSTMobsQ, LSTMsimQ helped to noticeably improve the accuracy 286 
and reduced the spread of bias (decreasing error range, as shown by compressed whiskers and 287 
outliers compared to LSTMnoQ), but did not help as much to improve the median bias. 288 
Understandably, simulated streamflow had more errors compared to actual observations, and 289 
input attributes (AQ) do not fully characterize a basin. While Qsim offered state-of-the-art 290 
performance, it still encountered more errors estimating peaks (mainly due to rainfall inputs) and 291 
baseflows, especially in the western CONUS (possibly due to inadequate geological information) 292 
(Feng, Fang, and Shen 2020).  293 

 294 

Page 8 of 16AUTHOR SUBMITTED MANUSCRIPT - ERL-109722.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



8 

 295 
Figure 2. Maps of the 118 USGS streamgage locations used in this study, where dot color 296 
represents (a) RMSE and (b) NSE values for LSTMobsQ, and (c) ΔNSE values between LSTMobsQ 

 297 
and LSTMnoQ.  298 

 299 
Negative biases with LSTMnoQ were attributable to underestimating Ts peaks in both winter 300 

and summer in some sites (e.g., Figure 3a) and a more consistent bias at other sites (e.g., Figure 301 
3b). Ts peaks are often associated with streamflow peaks (possibly caused by warm rain) in the 302 
winter but after-storm recession limbs in the summer. For the Black River in Ohio (Figure 3a), Ts 303 
peaks were coincidental with recession periods between storms in summer 2015 (annotated 304 
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points A & B). Simulated Ts by LSTMnoQ did not rise as high as the observed Ts, possibly because  305 
LSTMnoQ had an internal representation of baseflow that is overestimated here, while LSTMobsQ 306 
captured the peaks well. For the South Fork Sultan River in Washington (Figure 3b), there was a 307 
more prominent year-round bias for temperature predictions in 2015, concurrent with an 308 
overestimation of baseflow in Qsim. This underestimation is potentially due to multi-year 309 
accumulation and melt of snowpacks. This basin typically has a long snow season, sometimes 310 
the whole year, but the 2015 summer saw all snow melted by June (verified via Google Earth).  311 

 312 
Several reasons could explain why observed streamflow helps the model, but to think 313 

them through, we first need to assume that the LSTM model has internal representations of 314 
physically-relevant quantities such as water depth, snowmelt, water temperature, net heat flux, 315 
and baseflow temperature. Other studies have shown that LSTM has learned to use cell memory 316 
states to represent intermediate hydrologic variables that were not matched to observations, e.g., 317 
snow cover (Jiang, Zheng, and Solomatine 2020). With this assumption, it is possible that 318 
observed or simulated streamflow corrects the internal “water depth” variable to estimate the 319 
effect of net heat flux. From the energy balance equation, stream temperature changes are 320 
estimated by dividing the net heat flux over the flow depth. If streamflow is overestimated during 321 
summer baseflow periods, the positive heat flux is vertically diluted too much (and thus the 322 
temperature rise is underestimated). Secondly, derived from Figure 3b, the model may not be 323 
able to accurately keep track of long-term snow accumulation/melt so LSTMnoQ misjudges the 324 
amount of cool snowmelt water. However, LSTMobsQ was informed by observed flow and corrected 325 
the error. In fact, the basins with the lowest NSEs were concentrated in the Rocky Mountains with 326 
long snow seasons (Figure 2c). Thirdly, LSTM-based Ts models may have learned other holistic 327 
hydrologic information from the streamflow time series. For example, they may have learned to 328 
perform baseflow separation internally, if such a feature was helpful for Ts prediction. Streamflow 329 
data may provide more clues to reduce uncertainties - for example, cool summer temperatures 330 
could be due to high baseflow or abundant riparian shade, and streamflow data may make it 331 
easier to distinguish between these causes.  332 
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333 
Figure 3. Time series plots of observed and simulated Ts for a good performing simulation, 334 
along with the observed and simulation hydrographs shown in log scale. (a) Black River at 335 

Elyria, Ohio; (b) South Fork Sultan River, Washington. Ts, obs and Qobs represent observed water 336 
temperature and streamflow, respectively. The two brackets contain values for [RMSE, Bias, 337 

NSEres] for LSTMnoQ and LSTMobsQ, respectively. 338 
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 339 
3.3. Further discussion 340 

 341 
LSTM, with its hidden layers to store system states (100 hidden units) with different rates, 342 

is extremely well-suited to model systems with memory and hysteresis. The warming and cooling 343 
of water storage compartments (soil water, groundwater, riparian zones, etc.) are caused by 344 
different mechanisms with different rates, durations, and lags relative to drivers (accumulation, 345 
flush by storms, etc.). Such multirate exchanges, along with diffusive exchanges with soil, easily 346 
lead to hysteresis in the system (Briggs et al. 2014). We suspect that the internal states and gates 347 
of LSTM-based models mimic the effects of buffers and delays by these heat (and water) storage 348 
compartments and can be sufficiently trained by 4 years of data as was done in this study. 349 

 350 
Streamflow data may have carried multifaceted, temperature-relevant information about 351 

stream depth, basin hydrologic properties, and the relative influence of flow versus other heat-352 
moderating processes. Even simulated streamflow provided valuable new information to the 353 
temperature model -- despite the fact that Qsim ingested identical meteorological forcing data as 354 
the Ts models. We posit that the pre-trained Qsim model may have derived some of this new 355 
information from the additional catchment attributes in AQ relative to AT (Table S1 in Supporting 356 
Information) but that the majority of the new information came from the 10 years of streamflow 357 
observations across the 2397 stations on which Qsim was trained. Qsim was thus able to learn and 358 
transfer a wealth of nuanced information about each basin's hydrologic properties and responses 359 
to meteorological drivers, which in turn likely improved the implicit representation of those 360 
attributes in the Ts models. 361 

 362 
As the first LSTM application for stream temperature, this application is focused on 363 

temporal prediction for basins with a good record of historical data, and, as such, may not 364 
generalize to ungauged basins well. It is well-known that spatial extrapolation of stream 365 
temperature models can be quite risky (Gallice et al. 2015), which could be investigated in the 366 
future. Also warranting investigation is the representation of the spatial heterogeneity at smaller 367 
scales, e.g., using a multiscale graph network or calibrating parameters of a spatially-distributed 368 
process-based model. 369 

 370 
4. Conclusions 371 

This is the first time a basin-centric lumped Ts model has been shown to be so effective. 372 
The results clearly indicate that robust (but complex) mapping relationships exist between basin-373 
average attributes, climate forcings, and Ts, which can be reliably learned by a uniform, 374 
continental-scale model using a few years’ worth of daily Ts observations. All models presented 375 
exceptional evaluation metrics that outperformed state-of-the-art models reported in the literature 376 
by a substantial margin. Additionally, this performance was achieved without the need for detailed 377 
representations of the subsurface or the channel network - a convenience that promises high-378 
quality forecasts of future Ts given available climate forcings.  379 

 380 
Our use of a basin-centric lumped model to predict Ts allowed for great simplification that 381 

potentially enabled LSTM to learn the connection between different factors influencing Ts, 382 
alongside the more obvious benefits of simplifying model assembly and training. The 383 
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disadvantage of this basin-centric formulation is that it assumes each basin is homogeneous in 384 
forcings and attributes. The homogeneity assumption fundamentally limits the size of the basin 385 
that can be simulated: when predictions are needed for larger, mainstem rivers, we will need 386 
reach-centric models. Therefore, while the current model is highly capable and useful, we do not 387 
perceive the present form of the model as being complete in functionality. 388 

 389 
Our results show that observed streamflow information helped to improve the Ts model, 390 

perhaps because the observations (i) allowed the model to better resolve groundwater and 391 
snowmelt contributions, and (ii) provided a more accurate water volume used to estimate the 392 
effect of net heat fluxes, especially during recession periods when Ts rapidly changed. The 393 
benefits were most substantial in basins with multiyear snow accumulations. If observed 394 
streamflow does not exist, a well-trained continental-scale streamflow model was able to indirectly 395 
bring in data from a larger training dataset, which alleviated more than half of the degradation in 396 
median NSE that would have otherwise resulted from the lack of streamflow observations.  397 
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