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1; 13  Abstract:

14  Stream water temperature (Ts) is a variable of critical importgnce uatic ecosystem health.
ich can be learned from
g to effectively absorb with

22 17  process-based models due to parameter equifinality. the long short-term memory
;i 18 (LSTM) deep learning architecture, we developed a basi ric lumped daily mean Ts model,
25 19  which was trained over 118 data-rich basing withfn jg7dams in the conterminous United

26 20 States, and showed strong results. At a naf
27 21 error (RMSE) of 0.69°C, Nash-Sutcliffe
28 22  correlation of 0.994, which are marked impro
23  The addition of streamflow observati
31 24  this model. In the absence of measlre , we showed that a two-stage model can be
32 25  used where simulated streamflow from a pr: iped LSTM model (Qsim) still benefits the Ts model,
33 26  even though no new informati as brough¥directly in the inputs of the Ts model; the model
34 27  indirectly used information learncZl@m streamflow observations provided during the training of
22 28  Qsim, potentially to improve inter % entation of physically meaningful variables. Our results
37 29 indicate that strong relationship Qs between basin-averaged forcing variables, catchment
38 30 attributes, and Tsthatcanb ulgted by a single model trained by data on the continental scale.

I btained a median root-mean-square
cy coefficient (NSE) of 0.985, and
er previous values reported in literature.

39 31
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43 34

44 35 1. Introductij

45 36 Strea ter perature (Ts) is a critical, decision-relevant variable that controls
j? 37 numerous phigsifal, dhe , and biological processes and properties, e.g. dissolved oxygen
48 38  concentratj trient transformation rates, as well as industrial processes such as cooling

49 39 power plfinis and treating drinking water (Delpla et al. 2009; Madden, Lewis, and Davis 2013;
50 40 Kaushal §al. 2810). Thermal regimes of streams directly affect aquatic species (Justice et al.
dl

5; 41 201 me cases, fish mortality rate increases as Ts passes a certain threshold (Martins
§3 42 et aR2012;Marcogliese 2001). These are complicated by water uses in industry, such as utilizing
54 43  strea r for cooling systems, which causes thermal pollution downstream (Raptis, van Vliet,
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and Pfister 2016). Fulfiling the temperature requirements of the environment, agrigulture,
industries, and municipalities, and coordinating these uses requires a delicate balanc%
Ts models can inform the decision-making process and help lower the risks of ex in
thermal thresholds.

Myriad basin and in-stream/near-stream processes govern Ts (Poole angRgerm 00).
The heat balance of the basin, as modulated by land use types (Nelson and Pafher Boyhan
T

and Larson 2003; Moore, Spittlehouse, and Story 2005) is a primary contr s- Al the basin
scale, snowmelt and groundwater baseflow contributions (Kelleher et al. 2)a so important
factors due to their sharp contrast in temperature with air. In streams,{l’s is infuénced by solar
radiation, latent heat flux, air-water heat exchange, riparian vegegati rer, Lines, and
Nelson 1985; Garner et al. 2017), channel geomorphology (Haykin al. 1997), hyporheic
exchange (Evans and Petts 1997), and reservoirs and industrial di rgep (Poff et al. 2010). At
any pointin the channel network, Ts is the spatiotemporal integr, f alNOf the above processes.
Process-based models, while offering physical explanatio f cI®es and effects, need to
embrace substantial model complexity to represent all or np f these complex processes
with their heterogeneity and scaling effects (Johnson et he requirements for input data
also make scaling up such simulations challenging. lar@e-scale process-based models
have had root-mean-square error (RMSE) values r ed eater than 2.5 °C (Wanders et al.
2019; van Vliet et al. 2012).

A large body of literature has employ istical models to simulate T, with some good
summaries given by Benyahya et al. (2007) anqGa et al. (2015). Typically, Ts was regressed
to air temperature (Tz), but more re gressed the parameters in Ts~T, relationships
using catchment attributes. Among thesazgtudies and most relevant to our work, Segura et al.
(2015) predicted the slope and intercept ofNe 7-day average Ts~T. relationship based on
catchment characteristics su€r watershed area and baseflow index. A Nash-Sutcliffe
coefficient of 0.78 was obtained fgff roWQgenge sites for the 7-day average Ts, and strong hysteresis
was noted in the stream-air tem elationship (Segura et al. 2015). Stewart et al. (2015),
integrated an artificial neura . h a soil water balance model and obtained an RMSE of
around 1.5°C and R? of 0.7 37) sites across Wisconsin. Very recently, Johnson et al. (2020)
used sine-wave linea re Ry d reported RMSE values of 1.41°C for an extensive regional
dataset and 1.85°C e pational-scale U.S. Geological Survey (USGS) dataset. They
highlighted the imp atial scales and heterogeneity. Graf et al. (2019) used wavelet
transformations ofpgde age air temperature as inputs to an artificial neural network to predict
water temperaturé 2 fifferent sites in Poland and obtained RMSE values ranging from 0.98°
to 1.43° in t sty p€ Additionally, there are several studies that used recent water
temperature a asgan input to predict stream temperature, which can significantly increase
model p s it can be interpreted as a form of data assimilation (Feng et al., 2020).
Sohrabi @t al. (2817) obtained RMSE of ~1.25°C when they used the previous day’s temperature

and a s drivers. On one temperature gauge, Stajkowski et al. (2020) obtained RMSE
of Of/6°C uging a variant of LSTM with previous hour’s stream temperature in the inputs. However,
he d

’ ©

&

r ot use previous day measurements in inputs because the purpose of our model is
long-te rojections.
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1

2 89 Streamflow conditions are often not utilized by statistical models of Ts, partially bgcause
i 90 relationships are not clear; none of the abovementioned statistical models used S’M
5 91 However, we do know that streamflow exerts substantial control on Ts. Rivers dogaig

6 92  baseflow are typically fairly stable and cool in summer, but have relatively low the

7 93 and are rapidly heated by strong solar radiation. Peak flows are typically d@ninafe

8 94  runoff, the temperature of which is strongly influenced by the fast-changingjii

?0 95  (Edinger, Duttweiler, and Geyer 1968). A sensitivity analysis on large river b

11 96 average, a decrease in river flow of 50% as compared to a reference

12 97  minimum annual river discharge temperature (in winter) by -0.4°C
13 98 temperature (in summer) by +1.2°C (van Vliet et al. 2012). In another stfidy on yn¢ specific river,

14 99 a linear regression model based on monthly air temperature and stgea ta revealed that
12 100  air temperature rise and flow reduction were responsible for 60%{ an o of June to August
17 101 temperature increases, respectively (Moatar and Gailhard 2006

18 102

19 103 Recently, deep learning (DL) models, including t basp¥ on the long short-term
;‘1) 104  memory (LSTM) algorithm, have shown promise in predighi ogic variables such as soil
2 105 moisture and streamflow by achieving superior results mputational and human effort

>3 106  (Feng, Fang, and Shen 2020; Shen 2018; Shen et al ; Fdhg and Shen 2020). LSTM can
24 107 learn long-term dependencies and gave high p
25 108 streamflow prediction (Feng, Fang and Shery2020Q T, mory mechanisms of LSTM may be
26 109  able to mimic heat units, similar to heat ac |ation release processes. Thus, it is natural
28 110 to think that LSTM may also be suitable for eling. However, given the complicated and
29 111 scale-dependent processes influencing Ts,
30 112  relationship between basin-average and Tsacross different spatial scales, and if so,

;; 113  whether such a relationship can be capt by LSTM given limited observational data.

114
33
34 115 One advantage of a Dggodel as Compared to process-based ones is that it can
35 116  incorporate auxiliary information g quiring explicit understanding of relationships. In our
36 117  case, not only does streamflo % nfluence Ts fluctuations, it also reveals multi-faceted

37 118 hydrologic dynamics ina b g factors such as baseflow contributions and residence
119  times of surface runoff, w aid Ts modeling. Therefore, we expect adding streamflow
40 120  information to improv d mance. In a process-based modeling framework, streamflow
41 121 datacan be used to c% hydrologic components. Unfortunately due to the issue of model
42 122  equifinality (Beven Zfl n and Freer 2001), calibration may or may not improve model
43 123 internal dynamics gde g on model parameterization, structure, and data information content
124  (Huang and Liand utilizing the DL framework, we hypothesize that models may be able
46 125  to automatica gropnation from hydrographs to inform Ts, which, to our knowledge, no

47 126  study has exa§

Cco

48 127
gg 128 en if greamflow data are indeed useful, real-world use can be hampered by lack of

57 129  avail low data. Beyond existing stations, collecting new streamflow data is more
52 130 expgnsive Yhan collecting new Ts data. However, given that highly accurate, LSTM-based
53 131 stre odels have been reported (Feng, Fang, and Shen 2020), we wondered if a well-
4 traine M streamflow model could serve as a surrogate for actual measurements. Deep
13 are known to maximally use available information, but it is not certain whether such a
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used by the temperature model and do not explicitly bring in new information.

streamflow model presents any benefit; the model uses identical forcing data to thow

In this work, we attempted to answer two main research questions and

understanding of the stream heat balance: (1) Are there reliable relations@ps bE hsin-
average meteorological forcing and attributes and Ts that could be learned by ne s to
predict Ts with high accuracy? (2) Can observed or simulated streamflow us impyove
temperature predictions, especially when the simulated streamflow is predj using the same
information as the Ts model?

2. Methods:

We simulated Tsfrom a basin perspective, that is, as a fungtio asin-average climate
forcings and attributes. This setup greatly simplifies the modgel resgntation compared to
spatially explicit models and is supported by widely-available dafay igi®res some local channel
characteristics. We examined the effect of including daily s flo the inputs to assess its

information content for Ts.

2.1. Datasets

Basin characteristics came from the Ge ial ibutes of Gages for Evaluating
Streamflow dataset, version 1l (GAGES-II r nt geological aspects, land cover,
reservoir information, and air temperature Falc 011). Historical data for daily mean Ts

was downloaded from the USGS's National
all 9322 basins in GAGES-Il (USGS 2016).
(precipitation, maximum and mini
interpolating a gridded meteorological da
Engine (GEE) (Gorelick et al. 2Q17) for each b
observations were download
inputs are summarized in Table

ormation System (USGS NWIS) website for
tained daily meteorological forcing data
erature, vapor pressure, solar radiation) by
t (Daymet) (Thornton et al. 2016) from Google Earth
for the period of 2004 to 2016. Daily streamflow
USGS NWIS for the same period. Forcing and attribute
[ementary Information).

Many of the GAGES a d Ts observations recorded for only some days of the

year, with unobserved day re yommon during the winter (there are nonetheless many sites

with winter data and ur

dicts temperature for all days in a year). For this paper, we

selected temperature es with more than 60% of daily observations available between

2010/10/01 and 201448
or having more thg
a dataset of 118 DNy
of basins wh e
data coveragq Allowg us
ideal congiig

attenti

~asins where there were no major dams (more than 50 ft in height,
pcre feet storage according to the definition in GAGES-II), resulting in
flging in size from 2 to 14,000 km?2. We simulated T at the pour point
sireamgages were located. Limiting this analysis to sites with >60%
® focus on the capabilities of LSTM for Ts modeling under relatively
NSy re research on the effect of reservoir presence and data availability could

Msybased models for predicting Ts
Weglised the long short-term memory (LSTM) algorithm which has received increasing
hydrologic literature. This method is designed to learn and keep information for long
sing units called memory cells and gates. Cells store the information, and gates decide

Page 4 of 16
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which information comes in and out of the cells. Because the basic LSTM architectur been
described extensively elsewhere, we refer readers to those papers for a more detailed d sion
of the equations and structure of LSTM (Hochreiter and Schmidhuber 1997; Fang

Fang, Pan, and Shen 2019). A sketch and equations of the model are provided in Fi§
We standardized values for all inputs and target values. As a @reprd

streamflow was first divided by basin area and mean annual precipita to S@@ain, a
dimensionless streamflow, which was then transformed to a new, more G#Rssi i
(Feng, Fang, and Shen 2020):

v* =logo(vv + 0.1) (

where v and v are the variables after and before transform gt ctively. Next, the
transformed streamflow data along with all other meteoro orcing data, basin
in

characteristics, and Ts observations were standardized by the f g ula (Feng, Fang, and
Shen 2020):
(x; — %) (2)

xi,new

= T
in which X;new is the standardized value, x; is the ueY is the mean value, and o is the

I
standard deviation for each variable. Stang@rdiz3g r conditions the model for gradient
descent and forces the model to pay rough al a on to both large wet basins and small
. results in this study are shown after

dry basins (Feng, Fang, and Shen 20

destandardization, or reversal of all standardiz3jon cedures, for the outputs.
Hyperparameters were nning multiple tests to determine the

hyperparameters as listed in Table S2. metric the model training aimed to minimize (loss)

was RMSE, and we also reporjgd an unbiase

mean bias. We also report bids

equation in the supporting infg

(Nash and Sutcliffe 1970) for the test periods for
comparison with other studies. Decause a model simply copying air temperature may
give acceptable metrics, w eCush-Sutcliffe coefficient (NSEes) calculated based on the
difference between daily wdler and daily mean air temperatures (residual temperature):
Tres=Ts-Ta. To provide\gdas r comparison, we also provide a locally-fitted autoregressive
model with exogenoMles (ARX2). The ARX: inputs contain current and delayed
atmospheric forcing and ARXz-simulated stream temperature in the last two days: Tst'* =

Pt aiTst_i'* + YA %
temperature si teCWRhis model at time step t and p is the number of forcings. All temperature
models were ed dn da¥firom 2010/10/01-2014/09/30 and tested on 2014/10/01-2016/09/30.

f‘i + ¢, where a, b and ¢ were fitted coefficients, TS is the stream

2.3. Strefimtlowypbservations or simulations as model inputs
AQss MSGS gages, streamflow is a more widely-available measurement than

tem turg, Meaning that inclusion could bring additional information. To test this, the following
modgls weile trained:

‘ Ts,obsQ = LSTMobsQ(F, AT, Qobs) (3)
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Ts,noQ = I—STMnoQ(F, AT) (4)

Tssima= LSTMsimQ(F, Ar, Qsim) (5)

Qsim is simulated streamflow (described below). LSTMobsq, LSTMnoq, and L
based models incorporating observed streamflow, no streamflow inform
streamflow, respectively. For Qsim, streamflow was simulated using a LS
model shown to have very good performance (Feng, Fang, and Shen 2 .

Qsim= LSTMQ(F, AQ)

ed streamflow

Aq represents static attributes of the basins for streamflow mod le S1 in Supporting
Information). Meteorological forcing data used for the simul the same as for the
temperature prediction models. Qsim Was trained using obsggvatiorsgfrom 2397 basins, and a
longer training period (from 2004/10/01 to 2014/09/30) was use or the temperature models

in this study.
3. Results and Discussion

3.1. Overall results

All LSTM-based models delivered €
(Figure 1). The median test-period RMSE for
(LSTMobsa) was 0.69°C. The RMSE

ponally strong performance in the test period
el incorporating streamflow observations
incorporating simulated streamflow (LSTMsima)
e model lacking any streamflow information
(LSTMnoq), for which the RMSE was 0.86°C. corresponding median NSE values were 0.986,
0.983, and 0.979 respectively,
temporal fluctuations were extre
reported in the literature at this
for Ts modeling at basin outl

el captured. These metrics are markedly better than those
%\ ch demonstrates that LSTM is particularly well-suited

LSTM perfor ter than ARX2, which had a median RSEM of 1.41 °C.
Moreover, when we ated [rs, the locally-fitted ARX: model's median Nash-Sutcliffe
Efficiency (NSE/es) Waiiene stantially to 0.772, indicating that a substantialf portion (although

not all) of ARXY’ Qve power came from air temperature and some memory (linear
regression is worgs RX2 and not shown here). In comparison, the LSTM-based models
were much le ctc®gle median NSEs values for the conterminous United States (CONUS)
values were ve @O50Wnd 0.924 for LSTMobsq and LSTMneq, respectively. LSTM models
captured t tions unaccounted for by seasonality and they were able to capture more
compliced meynory effects than the simple linear autocorrelation described in ARX2. These
temporal ons could have been induced by heat storages in the basin (vegetation, snow,
soil water, riparian zone, urban areas) causing delayed responses to atmospheric

u
forcRegs.

Page 6 of 16
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LSTMobsa generally performed better in the eastern CONUS than the westernhgif, and
better in the northern half than the southern half (Figure 2a-b). Most of the eastern %
NSE values above 0.975 and RMSE values below 0.9°C. Northern basins had sligladly h

NSEs, presumably because in colder basins, the minimum winter liquid Ts is confing
0°C, and therefore easier to predict. Existing statistical models often have @fficulty ern
basins where air temperature and water temperature are decoupled. LSTM ha
to keep track of seasonal snow states and can learn threshold-like functions. ce ite
useful where existing models often have deficiencies. Sites with large SE vdlues were
scattered across the geographic extent, but there were no clear ggxpl e patterns.

Regardless, the NSE values for most of these “difficult” basins were stilfquite , with only two
stations out of 118 having NSEs <0.9.
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Comparison LSTM models with different streamflow options an®&utoJegressive model
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i
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o
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LSTMp00
ARX>

0.4

0.60

NSEres

while LS TMsimq incorpd
regressive model wi tra
edge and upper whi

ed sfinulated streamflow (Qsim). ARX is the locally-fitted auto-
. The lower whisker, lower box edge, center bar, upper box
resent 5%, 25%, 50%, 75% and 95% of data, respectively.

3.2. Impacts of e d simulated streamflow as inputs
Provi trégpm s an input to the Ts model generally improved model accuracy, but
the effects w ounced for the poorly-simulated sites. The models incorporating either
observe TNobsa) or simulated (LSTMsima) streamflow improved median bias (reducing the
absoluteNgediagibias by 0.120°C and 0.062°C), RMSE (by 0.170°C and 0.049°C) as compared
to thpd@o ing streamflow (LSTMnoq) (Figure 1). Including streamflow information helped to
botig reducd bias and greatly improve representation of temporal fluctuations, especially for the
wors ming sites. Without the streamflow data, 10 sites had NSE values below 0.9.
itionally, LSTMnoq had a median bias of around -0.25°C, while the median bias of LSTMopsa
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was much closer to 0°C. The inclusion of observed streamflow also greatly reduced owgrgll error
range, providing the largest improvements in model performance at the most troubleso jtes.

LSTMobsa and LSTMnoq. Similar to LSTMopsa, LSTMsima helped to noticeably i@prove racy

and reduced the spread of bias (decreasing error range, as shown by compres i and
outliers compared to LSTMnoq), but did not help as much to improve ylas
Understandably, simulated streamflow had more errors compared to act bservations, and
input attributes (Aq) do not fully characterize a basin. While Qsim re te-of-the-art

performance, it still encountered more errors estimating peaks (mainly que to ryintall inputs) and

baseflows, especially in the western CONUS (possibly due to inadegyat ical information)
(Feng, Fang, and Shen 2020). %

S
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7 0.06

‘ 0.05
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Figure 2. M
represents (a
and LSTY%%.

e biases with LSTMnoq Were attributable to underestimating Ts peaks in both winter

andgsumme) in some sites (e.g., Figure 3a) and a more consistent bias at other sites (e.g., Figure

3b). s are often associated with streamflow peaks (possibly caused by warm rain) in the

inter but after-storm recession limbs in the summer. For the Black River in Ohio (Figure 3a), Ts
ere coincidental with recession periods between storms in summer 2015 (annotated
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LSTMnoq had an internal representation of baseflow that is overestimated here, while
captured the peaks well. For the South Fork Sultan River in Washington (Figure 3b),
more prominent year-round bias for temperature predictions in 2015, concutr v an
overestimation of baseflow in Qsm. This underestimation is potentially@due % ear

accumulation and melt of snowpacks. This basin typically has a long snow se alimes
Go

points A & B). Simulated Ts by LSTMnoq did not rise as high as the observed Ts, possiblgi bacause
obs

hare

the whole year, but the 2015 summer saw all snow melted by June (verified a

Several reasons could explain why observed streamflow helps m but to think
them through, we first need to assume that the LSTM model has ingernal rgpfesentations of
physically-relevant quantities such as water depth, snowmelt, wategte e, net heat flux,
and baseflow temperature. Other studies have shown that LSTM hffis | to use cell memory
states to represent intermediate hydrologic variables that were not eglto observations, e.g.,
snow cover (Jiang, Zheng, and Solomatine 2020). With thi m¥ion, it is possible that
variable to estimate the
temperature changes are
flow is overestimated during
lluted too much (and thus the
igure 3b, the model may not be

estimated by dividing the net heat flux over the flow de
summer baseflow periods, the positive heat flux is
temperature rise is underestimated). Secondly, deg

able to accurately keep track of long-term c ion/melt so LSTMnoq misjudges the
amount of cool snowmelt water. However, L bsQ W ormed by observed flow and corrected
the error. In fact, the basins with the lowest N e concentrated in the Rocky Mountains with

could be due to high baseflow Sa@bundant riparian shade, and streamflow data may make it
easier to distinguish between thg

Page 10 of 16
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334 Figyre i series plots of observed and simulated Ts for a good performing simulation,
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336 ElyRg, Ohig (b) South Fork Sultan River, Washington. Ts obs and Qobs represent observed water
3 tem re and streamflow, respectively. The two brackets contain values for [RMSE, Bias,
33 NSE/es] for LSTMnoq and LSTMopsq, respectively.
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339
340 3.3. Further discussion
341

342 LSTM, with its hidden layers to store system states (100 hidden units) with
343  is extremely well-suited to model systems with memory and hysteresis. The @armifg gbling
344  of water storage compartments (soil water, groundwater, riparian zones, etc ed py

345 different mechanisms with different rates, durations, and lags relative to dri@#s ulayfon,
346  flush by storms, etc.). Such multirate exchanges, along with diffusive exch s with‘soil, easily
a

347 lead to hysteresis in the system (Briggs et al. 2014). We suspect that the@ s and gates
(

348 of LSTM-based models mimic the effects of buffers and delays by thesefheat (agd‘water) storage
349 compartments and can be sufficiently trained by 4 years of data as was this study.

350

351 Streamflow data may have carried multifaceted, temperatuelevnt information about
352  stream depth, basin hydrologic properties, and the relative in OMflow versus other heat-
353  moderating processes. Even simulated streamflow provid
354  temperature model -- despite the fact that Qsim ingested i
355 the Ts models. We posit that the pre-trained Qsim mo
356 information from the additional catchment attributes in to Ar (Table S1 in Supporting
357 Information) but that the majority of the new infor from the 10 years of streamflow
358  observations across the 2397 stations on whych Q ned. Qsim was thus able to learn and
359 transfer a wealth of nuanced information ab ach b s hydrologic properties and responses
360 to meteorological drivers, which in turn lik roved the implicit representation of those
361  attributes in the Ts models.
362

363 As the first LSTM application fONgtream temperature, this application is focused on
364 temporal prediction for basinsgwith a good ord of historical data, and, as such, may not
365 generalize to ungauged basin? . It is well-known that spatial extrapolation of stream
366 temperature models can be qui allice et al. 2015), which could be investigated in the
367  future. Also warranting investiga representation of the spatial heterogeneity at smaller
368 scales, e.g., using a multisc 2twork or calibrating parameters of a spatially-distributed
369  process-based model.

370
371 4. Conclusions
372 This is the figiiaae sin-centric lumped Ts model has been shown to be so effective.

373  The results clearl (Mthat robust (but complex) mapping relationships exist between basin-
374  average attribute 2 forcings, and Ts, which can be reliably learned by a uniform,
375  continental-s c'alng a few years’ worth of daily Ts observations. All models presented
376  exceptional e atigl metdCs that outperformed state-of-the-art models reported in the literature
377 byasub ia in. Additionally, this performance was achieved without the need for detailed
378 represerfations pf the subsurface or the channel network - a convenience that promises high-

379  qualityfo of future Ts given available climate forcings.
380
381 Ouglise of a basin-centric lumped model to predict Ts allowed for great simplification that

3 potenti enabled LSTM to learn the connection between different factors influencing Ts,
38 ple the more obvious benefits of simplifying model assembly and training. The

ve derived some of this new

Page 12 of 16
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1

2 384  disadvantage of this basin-centric formulation is that it assumes each basin is homoggngous in
3 385  forcings and attributes. The homogeneity assumption fundamentally limits the size o%
4 : - : : )

5 386 that can be simulated: when predictions are needed for larger, mainstem rivers, w, Il

6 387  reach-centric models. Therefore, while the current model is highly capable and use not
7 388  perceive the present form of the model as being complete in functionality. @

8 389

12 392 snowmelt contributions, and (ii) provided a more accurate water volu estimate the

?0 390 Our results show that observed streamflow information helped to im@ve s m¥el,

11 391 perhaps because the observations (i) allowed the model to better resol roundwater and
se

13 393 effect of net heat fluxes, especially during recession periods when {s rapidly ‘changed. The

14394  benefits were most substantial in basins with multiyear snow gcc ns. If observed
12 395 streamflow does not exist, a well-trained continental-scale streamfl | was able to indirectly
17 396  bring in data from a larger training dataset, which alleviated morg t aljof the degradation in
18 397 median NSE that would have otherwise resulted from the lack a w observations.

19 398
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