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ABSTRACT 
Distributed file systems present distinctive forensic challenges in 
comparison to traditional locally mounted file system volume. 
Storage device media can number in the thousands, and forensic 
investigations in this setting necessitate a tailored approach to data 
collection. The Hadoop Distributed File System (HFDS) produces 
and maintains partially persistent metadata that is pursuant with a 
logical volume, a file system, and file addresses on the centralized 
server. Hence, this research investigates the viability of using a 
residual central server digital artifact to generate a history model of 
the distributed file system. The history model affords an 
investigator a high-level perspective of low-level events to narrow 
investigative process obligations. The model is generated through 
set-theoretic relations of the file system essential data structure. 
Graph-theoretic ordering is applied to the events to provide a 
history model. The research contribution is a rapid reconstruction 
of the HDFS storage state transitions generating timelines for 
system events to forensically assess HDFS properties with 
conceptual similarity to traditional low-level file system forensic 
tool output. The results of this research provide a prototype tool, 
DFS3, for rapid and noninvasive data storage state timeline 
reconstruction in a big data distributed file system.  
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1  Introduction 
Digital forensics is a broadly-applied term referring to the 

identification, acquisition, and analysis of digital evidence [1], [2].  
The general process can be defined as the identification of digital 
evidence using scientifically derived and proven methodology.  
The process undertaken is crucial to the investigative outcome. 
Ultimately, evidence credibility is the essential element of an 

investigation. The traditional means of performing digital forensics 
follows four primary phases: Collection, Examination, Analysis, 
Reporting [3]. The collection phase is typically reduced to digital 
evidence search and recognition.  

The digital forensic process model has undergone significant 
modifications and adaptations to accommodate the rapidly 
changing computing landscape. Despite the numerous changes and 
varied proposals to address an increasing volume of data, very little 
has been published about methods of applying techniques to 
facilitate efforts of evidence collection reduction in a distributed 
environment.  

Distributed File Systems (DFS) often provide storage 
repositories for the cloud environment. Attackers and academics 
are actively investigating scenarios to abuse or attack cloud 
environments [4], [5]. This activity prompts researchers to 
investigate the ability to recognize and examine attacks in cloud 
environments as well as understanding the legal implications 
associated with cloud investigations [6]–[14]. One of the chief 
difficulties in the digital reconstruction of a complex system is 
induced by the many rapidly changing variables and multiple 
abstraction layers that enter into every single operation [15]. Event 
materialization techniques take the high-level events and attempt to 
deduce lower-level events. The typical forensic reconstruction 
process moves bottom-up [16].  

The objective of this research is to automate the generation of a 
storage state transition timeline in the DFS using prototype 
software, Distributed File System Storage State (DFS3). To extract 
information that is typically made available later in the sequenced 
investigative process, DFS3 emulates low-level methods of file 
system forensic examination and analysis tools as an initial 
enhanced preview of the file system. It is preferred to do this 
without having to access the individual files and datanodes. In this 
paper, we present an approach to apply causal ordering and Event 
Calculus (EC) [17] reasoning to identify and verify file system 
operations using a single DFS central server image file. The history 
reconstruction is made more efficient by namespace partitioning 
through topological ordering, and properties of the data units are 
shown to persist over intervals. 
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The structure of this paper is as follows. Section 2 provides 
background on distributed file systems. Section 3 discusses 
relevant work in forensic reconstruction. Section 4 chronicles the 
methodology. Section 5 presents the formal modeling of the system 
and the generation of facts and rules. Section 6 discusses the 
analysis of the findings. Section 7 draws conclusions from the 
research and discusses future work. 

2  Background 
Cluster-based distributed file systems (e.g., Google File 

Systems (GFS), Lustre File System, and Hadoop Distributed File 
System (HDFS)) often have a single master server with multiple 
data servers [18]. The single master server controls the data servers 
by having data management, and metadata management separated 
[19]. The file system is ordinarily object-based, allowing for 
unstructured data supporting a flexible schema-on-read 
implementation. Therefore, data is applied to a schema as it is 
retrieved from a stored location rather than when written, although 
many distributed file systems support schema on write for a specific 
application.  

Files are distributed over data servers that handle the read and 
write operations. The master server, a meta-data server, maintains 
the directory tree and manages the data placement. This 
architecture allows for incremental scaling, and the capacity of this 
system is a function of the meta-data load.  As the load increases, 
the metadata server must be able to manage the additional data 
servers as extensions of the file system capacity. A DFS with only 
a single metadata server is called centralized, whereas a DFS with 
distributed metadata servers is totally distributed [20].  

Traditionally, in digital investigations, the file system media is 
collected, imaged, and preserved to maintain its integrity. A 
forensic image in this context is a bit-by-bit copy of data on the 
storage volume [21]. Once the evidence is identified and collected, 
file system examination and analysis methods are applied. Forensic 
tools are utilized to examine and extract information. Many tools 
exist for file system information extraction and analysis, but all 
operate on the notion of a volume image to examine. Many of the 
examination tools have built-in analysis capabilities. It’s in this 
analysis phase when reconstruction of file system events occurs 
typically. 

The centralized distributed file system is unique from traditional 
file systems because the metadata is not co-located with the content 
data. The traditional investigative process and current tools are not 
conducive to a distributed file system investigation. The delay from 
start to finish is prohibitive in all phases, from collection to analysis. 
Exhaustively collecting or imaging disk drives is not a good option. 
Trying to analyze the low-level file system for every drive in the 
system would be counterproductive and induce extremely high 
latency in the process. Imaging and extracting information from 
only the central server drives would not provide meaningful 
information to survey the system rapidly. However, the central 
server provides a natural starting point to emulate the low-level 
tools given it’s the metadata manager for the entire centrally 

managed distributed file system. The central server uses a specific 
file for system restarts, persisting partial point in time file system 
metadata.  

3  Related Work 
The reconstruction of digital events is traditionally considered a 

performance of analysis using varied collected evidence [16], [22]–
[25]. Most traditional approaches assume the lower level evidence 
identified and collected. There have been a relatively small number 
of attempts to apply formal methods to the reconstruction of digital 
events [26].  

There exists a collection of research addressing the areas of 
automating heterogeneous data evidence extraction and event 
correlation. Chen et al. [27] developed the Event Correlation for 
Forensics (ECF) as a means by which a consolidated repository of 
data evidence is created from various log file structures. The 
repository can then be queried for post hoc event correlation. 
Necessary information is captured in 4-tuple event abstractions 
(Time, Subject, Object, and Action). Schatz et al. [28] developed 
Forensics of Rich Events (FORE) to store events in an ontology. 
They endeavored to explore methods of forensic investigation of 
heterogeneous event log based records. The methods included a 
human-guided search, automated correlation, and hypothetical 
reasoning.  

Hargreaves and Patterson [25] used an approach to search for 
patterns of events in the low-level timeline based on pre-
determined rules. The method consists of two phases: low-level 
event extraction and high-level event reconstruction. The 
generation of low-level events includes file system times, and times 
extracted from within files by the analysis of a mounted file system. 
This approach strives to develop high-level events; however, the 
method relies on accumulated low-level data evidence.  

Formal modeling for digital event reconstruction has generally 
taken the approach to model the system as a transition system [26]. 
The most common method is the overall notion of a Finite State 
Machine (FSM). Gladyshev and Patel [29] modeled a hacked 
system as an FSM to explore the possible scenarios leading to the 
hacking incident. They utilized a back-tracing of transitions from 
the discovered state of the system, and then discarded scenarios 
which did not agree with discovered evidence. Gladyshev and Patel 
presented findings of an automated search of the state space for a 
simple print program given the knowledge of the system 
functionality, which included 25 states and 75 possible transitions. 
One drawback to their method is the model doesn’t provide a 
solution for the state-space explosion in a more realistic system, 
although the authors believe the model could be utilized for 
reconstruction with an appropriate choice of models.  

James et al. [30] presented a novel approach to formally 
defining the system as an algorithmic representation of a 
Deterministic Finite Automaton (DFA). The system computations 
are encoded as sets of strings mapped as an FSM. They use a 
propriety witness statement to restrict possible computations of the 
FSM by restricting the possible events of the model by applying 
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known observations. This helps to limit the state space explosion, 
albeit limited and augmented by witness statements. FSM modeling 
presents challenges in scoping the state space, specifically with 
complex systems. Generalizing an FSM and determining the 
appropriate level at which to model with practicality to digital 
forensics has yet to be realized in general [26].  

Khan and Wakeman [31] proposed a neural network-based 
event reconstruction of application activity from disk image input 
parameters. The activity parameters included log files, registry 
entries, file system properties, and free blocks on disk. Evidence 
must be derived from events within the log file, temporary files 
detected either directly on the file system, or by searching through 
the free blocks of the file system. As the reconstruction moves 
further into the past, the evidence becomes much less reliable. 

Willassen [32] uses the Simplified Event Calculus (SEC), a 
form of propositional logic to reconstruct digital events from 
observed states using hypotheses about actions. In that work, a 
simple file system model is presented, which demonstrates the 
resolution of observed states by means of Selective Literal Definite 
clause with Negation as Failure (SLDN) resolutions. Willassen 
extends his theoretical approach to forming and testing hypotheses 
about actions and deriving system invariants and concludes SEC 
could be a reasonable tool for system model building and property 
determination, but the approach in his work is purely theoretical. 

The complexity and search space of many of the formal models 
reviewed make these approaches ineffective or impractical for the 
modeling of the DFS [33]. With respect to the other methods that 
appeared in this review, they have several qualities in common, 
making them inappropriate for the formal modeling of the DFS. 
First, they require the collection of low-level data evidence or log 
file extraction to reconstruct event timelines. The latency induced 
to piece together and analyze voluminous log data or extract low-
level file system data is prohibitive given the architecture of the 
DFS. Second, some of the methods mostly lack the formal 
theoretical foundation behind the automation of the event 
extraction. Although machine learning appears to be a viable 
solution in a specific context, neural network reasoning can be 
unclear and not explicit, which could limit evidentiary value to 
some degree. If there is no understanding of the process behind the 
actions to infer events and make interpretations, the validity is 
questioned.  

4  Methodology 
The method chosen is to extract information from a central 

server image file. The process of reconstructing file system 
operations normally flows bottom-up as we described, but we’ll use 
a top-down approach and work at the higher abstraction layer. At 
this high-level layer of abstraction, we adopt many of the common 
concepts that a low-level file system forensic tool would address. 
We use those concepts and build structures like master file tables 
that are extractable on lower-level file systems. 

The HDFS was formatted, and we started with a clean cluster 
volume and performed file system operations on the cluster over a 

period of months. A series of central server images were collected 
during the process over a time period of several months, and each 
image is a partition of the final image space. The cluster consisted 
of a central server and three data nodes in a fully distributed mode. 

A prototype software tool, DFS3, has been developed to 
demonstrate the model construction and reasoning. The model is 
built on the data structure that is essential to the core purpose of the 
HDFS (3.2.0) consistent with low-level approaches. Logic 
programming is ideal for modeling any sort of knowledge and its 
use. Modus ponens (if/then) rules make available understanding of 
the hypotheses linking cause (antecedent) and effect (consequent) 
assertions in a digital investigation. This is comparable to the 
approach of Hargreaves and Patterson [25]; however, this work 
does not utilize accumulated low-level artifacts for the high-level 
reconstruction. We employ logic statements to describe the 
properties and behavior of the domain being modeled and generate 
event occurrence hypotheses. The timeline is innately made in the 
temporal logic of the system data structures.  

There exist various techniques to acquire or generate the central 
server binary image file, and we omit that discussion and assume 
the image has been acquired upstream through a sound forensic 
method. The binary file is converted to XML file format as input 
into our Python 3 prototype software DFS3.  

5  Modeling the Centralized DFS 
HDFS presents inode, block, and generation stamp variables as 

integer types. HDFS is mainly developed in the Java programming 
language, and the source code is readily available through Apache 
Software Foundation (ASF). The Java long data type is a 64-bit 
two's complement integer. The Java programming language is 
statically typed, stating the variable’s type and name, which means 
that all variables must first be declared before they can be used. The 
signed long has a minimum value of -263 and a maximum value of 
263-1. In Java SE 8 and later, you can use the long data type to 
represent an unsigned 64-bit long, which has a minimum value of 
0 and a maximum value of 264-1. [34]. This subset of integers forms 
the value set from which the inode, block, and generation stamp 
variables are permitted to hold. This subset of permitted integers is 
a subset of the positive integers. The values can be quantified over 
the natural numbers, and that is the domain of discourse.  

5.1 System Properties 
It is convenient to leverage natural number properties in the 

formation of the prescribed notation. This includes the concept that 
for a finite set of positive natural numbers (integers), a total (well) 
ordering exists. The HDFS uses the Unix-style inode concept of a 
file. There exists an inherent causal ordering in the structure that 
can be exploited to reason about the file system event sequences. 

The in-memory representation of the directory/file/block 
hierarchy is kept in a base class, Inode, containing common fields 
for files and directories. When an inode is generated, the inode is 
assigned an ID, uniquely identifying the inode. Inodes are allocated 
sequentially from an initial static value, LAST_RESERVED_ID+1, 
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in the InodeID class. The initial value is assigned to the root 
directory as 16385. The primitive Java type long is used to 
represent the inode ID. The inode ID won’t be recycled and is not 
expected to wrap around for a very long period. File inode IDs are 
immutable through all subsequent file operations, including 
location changes (data transfers) and renaming operations. File 
inodes contain chunks of data in the form of blocks. Block IDs are 
generated sequentially as immutable keys identifying blocks and 
generation stamps as an operation sequence. Figure 1 depicts the 
relationships of the inode, block, and generation stamp structures 
in HDFS. File inodes include blocks, and blocks include generation 
stamps. These object relations, their orderings, and the values they 
hold present complex event causes and effects. 

 

 

Figure 1: HDFS Inode Structure 

Inodes, blocks, and generation stamps are essential to the 
metadata management of the central server. These unique 
identifiers are generated as monotonic sequences of integers, and 
the instantiations can be abstracted and treated as ordered sets of 
integers. The operations affect the allocation of object sets in the 
abstraction. The structure is summarized into sets with file 
operations equating to set operations. For the remainder of this 
paper, inode and data block references are the high-level HDFS 
abstractions. 

It can be established that the set of blocks B in the namespace is 
totally ordered with each b ∈ B represented by a unique integer 
value. By definition, there exists a least element and greatest 
element from a subset of B. Suppose b1, b2 ∈ B. Let B’ = {b1, b2} ≠ 
∅. By hypothesis, B’ has a smallest element. If it is b1, then b1 ≤ b2, 
and if it is b2, then b2 ≤ b1. The same logic applies to a set of 
generation stamps G’ in the namespace. Generation stamps G and 
blocks B form relations since generation stamps are created if and 
only if (iff) block operations occur. Within HDFS, the following 
block operations rules affect the generation stamp to block relation 
in precisely the manner described: 
1. OP_ALLOCATE_BLOCK_ID: creates a new block to write 

data. Adds one block and one generation stamp to namespace 
pools with OP_SET_GENSTAMP, OP_ADD_BLOCK 

2. OP_DELETE: removes data block. Removes one block and 
one generation stamp from namespace pools with 
OP_DELETE 

3. OP_APPEND: appends data to end of file; the last data block 
within file Inode. Overwrites previous namespace generation 
stamp with OP_SET_GENSTAMP 

4. OP_TRUNCATE: removes data from the block. Overwrites 
previous namespace generation stamp with 
OP_SET_GENSTAMP 

From the block operation rules, we define three data block 
content properties that can be used to determine consistency for 
‘events’ in the system. Observed events are those explicit in the 
discovered namespace.  

• Events are considered ‘original’ events when rule 1 is the 
cause of the observed event 

• Events are considered ‘deleted’ events when rule 2 is the 
cause of the observed event. Hypotheses events are 
generated to infer rule 1 ‘original’ events from rule 2 
events 

• Events are considered ‘modified’ events when rules 3 and 
4 are the cause of the observed event. Hypotheses events 
are generated to infer rule 1 ‘original’ events from rule 3 
and 4 events 

5.2 Modeling the System Operations 
The four block operation rules define the characteristics of the 

block to generation stamp relation. Formally, each relation R is 
defined with ℘ representing the power set: 

℘R := (G x B): ∀p ∈ R :  
p ∈ G x B (g ∈ G, b ∈ B: p = {g, b})                 (1) 

Let Gobs be a set of generation stamps in the discovered namespace: 
{g1, g2, …, gn} where g1 is the least element, and gn is the greatest 
element. The generation stamp integer value domain is 1001 - 264-
1. |Gobs| = the number of elements in Gobs. This value is the total 
number of block operations explicitly enumerated in the discovered 
namespace from {g1, b1} to {gn, bk}. However, since some of our 
block operations remove generation stamps from Gobs, this does not 
represent the total number of block operations over the namespace 
after the event associated with g1. The generation stamp values 
belong to the set ℤ+, the set of positive integers, and are allocated 
sequentially and monotonically. The relation gRb is asymmetric, 
transitive, complete, and acyclic.  

Therefore, we can determine the total number of block 
operations implicit in the namespace with the set Gall: {g1, g2, …, 
gn} and |Gall| = gn+1 – g1. The overwritten, or absent generation 
stamps are defined by Gabs: 

Gabs := Gall – Gobs = { g | g ∈ Gall ˄ g ∉ Gobs}  
Gobs ∪ Gabs ⊆ Gall                (2) 

We can similarly define sets of blocks Bobs, Babs, Ball for the 
discovered namespace. The block numbers use a different initiating 
block numbering criterion but are allocated sequentially and 
monotonically, forming a finite set of integers. 

Babs := Ball – Bobs = { b | b  ∈ Ball ˄ b ∉ Bobs}  
Bobs ∪ Babs  ⊆ Ball            (3) 
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Let Robs ⊂ R where Robs is the discovered or observed image 
namespace. Every generation stamp, including those absent in the 
discovered namespace, belongs to a relation Rall ⊂ R and Robs ⊂ Rall. 
Rall includes our discovered namespace relations and hypothesis-
based relations developed from of the discovered namespace. Rall := 
(Gall x Ball). The binary relations Robs and Rall are functions F. By 
definition:  
 

F ∈ ℘ (G x B) ˄ (∀ p1, p2 ∈ F: p1 ≠ p2 ⇒ 
π1(p1) ≠ π2(p2)) ˄ {π1(p) | p ∈ F} = G           (4) 

The operators π1 and π2 act on the first and second coordinates of 
ordered pair p. The function from G to B has a one-to-one 
correspondence and is bijective when applied to the discovered 
namespace Robs and surjective when applied to Rall.  

Returning to the four operations defining R, we can state some 
propositions about the HDFS system and expected observed 
relations in the discovered image. The first proposition established 
allows us to create additional propositions and form inferences 
about the sequences of relations. 

Proposition 5.2.1: |Bobs| ≤ |Gobs| ˄ |Babs| ≤ |Gabs| ˄ |Ball| ≤ |Gall| 

The number of blocks must always be less than or equal 
to the number of generation stamps. Operation 1 must 
occur prior to Operations 2-4 for every block included in 
the HDFS namespace. Operation 1 is bijective in its 
function and is the only operation in which a block is 
added to the allocated set of blocks Ball. 

From Proposition 5.3.1, an additional proposition is formed 
about the quantity of file system operations on data blocks and the 
number of data blocks from the discovered image properties.  

Proposition 5.2.2: |Gall| - |Ball| 

The number of modification operations can be 
determined by cardinality differences of any given 
partition. 

Propositions 5.3.1 and 5.3.2 enable the causal ordering and 
bounding of relation gRb, which are modeled as event occurrences. 

 5.3 Specifying Forensic Properties 
The discovered namespace relation Robs is a total preorder. Robs 

is a bijection, and by definition, the composition of bijective 
functions is bijective.  Partitioning Robs creates the mutually disjoint 
non-empty sets: PRobs := {{R1}, { R2 }, …{Rn}}. Each partition is a 
bijection, and the union of these partitions is Robs. Creating 
partitions provides two important analysis functions. First, 
partitions of original blocks may be generated. The data block 
content was created and written to without subsequent 
modifications to the content. Second, partitioning facilitates the 
computation of a maximal validity interval (MVI). This is an 
interval over which a property holds uninterruptedly. The 
algorithmic approach to compute possible states is simplified by 
minimal partitions of modified sequences. 

Creating partitions bounded by known original data block 
properties allows us to reduce the state space when checking 

whether a property holds on the model. The effect is to create a 
second proposition on a partition concerning the initial events 
defined by the binary relation Robs: 

Proposition 5.3.1: ∃ {g, b} ∈ Robs: ∀p ∈ Robs (g ∈ G, b ∈ B: p = 
{g’, b’}) g ≤ g’ ˄ b ≤ b’  

The first event formed by the relation between generation 
stamps and blocks must be the least element from each 
set in a partition of original events.  The partitions can be 
classified into two types: 

Type 1: Contains only block operations 1 and 2. These 
partitions are identified by the straight-line equation of 
the binary relation. The partition is a total order.  

Type 2: Contains block operations 2, 3, and 4, and is 
bounded by type 1 partitions. The partition is a total order 
of the observed set with complex event space partial 
orders.  

If we utilize the concept of a logical clock, c(t), and apply that 
to our set of events E, a predicate happens can be evaluated with 
the clause happens(e, c(t)). An a priori order is established from 
the image as a set of event occurrences. This pair, (e, c(t)), uniquely 
identifies an event occurrence. For forensic investigative 
practicality, we prefer an approach that would constrain the event 
occurrence to those within a partition of the namespace. Therefore, 
the initial goal is to show that the happens(e, c(t)) relations in the 
discovered namespace could form disjoint sets and cannot be united. 
If the partition can be shown to be monotonic, then reachable states 
of the namespace can be more efficiently discovered. 

The algorithm employed to specify the forensic properties first 
verifies the discovered system partition is in a normal state. 
Sequences of block creation events do not include block operations 
rules 3 and 4. Block creation events are an arithmetic order-
preserving sequence in the form: 

en = en-1 + 2             (5) 

 This formula is zero-based, and e0 can be any e ∈ Robs. 
Arithmetically, e is the sum of the integer values for the block ID 
and generation stamp.  

Any event occurrence e in the discovered namespace set o 
happens(e, c(t)), implies every event e’ with c’(t) < c(t) 
happens_before(e). Assuming discrete time increments μ on the 
logical clock where t ∈ T, the next event in our sequence has a clock 
value c(t+ μ). The addition of an original block b ∈ Ball, which is 
defined by Bobs ∪ Babs ⊆ Ball. If Babs = Ø in the time interval c’(t) < 
c(t) < c(t+ μ), then Bobs ⟺ Ball. An original block will not have any 
g ∈ Gabs as a possible relation. If the block is created at c(t) it is not 
possible to associate any time c’(t) < c(t) with the block creation. 
Also, no events with time greater than c(t) could possibly generate 
an original block less than block b in the event identified as original. 
Therefore, the interval [c(t) < c(t+ μ)] contains the original block 
generation stamp and Gobs ⟺ Gall in the interval if the events satisfy 
the arithmetic sequence in (5). An event e’ is an immediate 
predecessor of event e if no other event could exist in the interval 
between the events. By determining original event sequences 
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(block creations), it is possible to partition the event sequence on 
these blocks. Additionally, an event sequence defined as a Type 1 
partition is a unique topological ordering and cannot be invalidated 
by any additional information.  

Theorem 5.3.1: If the duration μ between values of T is defined 
as the smallest possible time interval for T, which an event may 
occur, then the maximum number of events happening over the 
interval is one.  

Proof: If two events occur between c(t) < c(t+ μ), then the 
duration between their occurrences is less than μ. This is not 
possible given the definition of the values in T. 

Theorem 5.3.2: If the duration μ between values of T is defined 
as the smallest possible time interval for T which an event may 
occur, then no event occurrence e’’ could have existed between 
e’(c(t))  and e( c(t+ μ)).  

Proof: If event e’’ occurred between c(t) < c(t+ μ) then e’’ and 
e occurred between c(t) < c(t+ μ). This is not possible given 
Theorem 5.3.1. 

Block operation rule 1 in section 5.1 describes the operation for 
block creation in the namespace.  Establishment of original blocks 
as bookends of the partition means all rule 1 operations antecede 
the partition for every block ID less than the minimal bookend 
block, and all rule 1 operations postdate the partition for every 
block ID greater than the maximal bookend block. The partition is 
bounded by the clocks of e0 and en. If the sequence of events 
satisfies the arithmetic sequence of (5), then the partition is Type 1. 
The method creates partitions of the discovered namespace into 
original and modified regions. In fact, we can form numerous 
partitions that help to illuminate operations and bound reachability 
of hypotheses for Rall. 

This method is utilized to determine which blocks are original 
within the namespace. Original in the sense that data content was 
written to the block once, and the block has not undergone data 
content modification. The method is also utilized and applied to 
Type 2 partitions to determine original generation stamp 
sequencing possibilities of modified blocks. Type 2 partitions are 
differentiated because these partitions contain regions where 
possible states exist without known order, and event hypotheses 
must be formed and tested. DFS3 automatically generates data 
structures with partitioned data sets. 

5.4 Verifying Properties  
Event calculus (EC) allows the derivation of time intervals over 

which properties hold [35]. EC builds on first-order predicate 
calculus. The calculus is a general approach in logic programming 
to represent and reason about events and effects. Default 
persistence is a notion expressed in EC. An assumption of 
persistence until termination exists for properties defined by event 
effects. A history is modeled by a set of event occurrences as a 
binary acyclic relation. 

The event calculus algorithm can be applied to each partition 
separately and composed as necessary. An investigator may query 
a knowledge base on any number of partitions, and the algorithm is 
used to determine whether the property holds. EC expresses the 

properties of states visited as properties that can be queried against 
a knowledge base derived from the observed state.  

Several versions of the EC have evolved from the original [17]. 
The EC forms a timeline about events and fluents, the-time varying 
properties, or states. One variant of the calculus is called the 
Simplified Event Calculus (SEC). Any number of supporting 
domain-dependent axiom definitions are appropriate; however, the 
SEC consists of three core effect axioms in conventional logic 
programming if-form [35]: 

holdsAt(f, t) ← ((initially(f)  (SEC1) 
˄ ¬clipped(0, f, t))    

holdsAt(f, t2) ← (happens(e, t1)  (SEC2) 
˄ initiates(e, f, t1) ˄ t1 ˂ t2 ˄ ¬clipped(t1, f, t2)   

clipped(t1, f, t2) ← happens(e, t)  ˄  (SEC3) 
t1 ˂ t ˂ t2 ˄ terminates(e, f, t)   

These axioms assert that a fluent that is initially true remains 
true and that a fluent that is initiated persists until termination by a 
subsequent event. Given: 

• a conjunction SEC of SEC1 and SEC2 and SEC3 

• a conjunction Σ of Initiates and Terminates formulae 

• a conjunction ∆ of Initially, Happens and temporal 
ordering formulae 

• a conjunction Ω of uniqueness-of-names axioms for 
actions and fluents of interest 

• HoldsAt predicate form: HoldsAt(f, t)  

Definition 5.4.1: The event calculus program: 

Σ ∧ ∆ ∧ SEC ∧ Ω ⊨ HoldsAt(f, t) 

A partial simplified event calculus model is defined based on a 
data block object within the HDFS. This example system consists 
of data units, blocks, which can only be written. The write is 
considered as two acts, Create and Modify, that effect the fluent 
property State.  The State has a logical clock timestamp. Create and 
Modify cause State updates through Initiates clauses. Changes are 
represented as an event calculus with fluents as states of the data 
unit. Actions are the operations Create and Modify changing the 
fluent State. The set of Initiates and Terminates clauses set the 
values from the logical system clock as timestamp c(t). The set Σ 
follows: 

 initiates(create(Block), state(Block, c(t)), t) (E1) 
 initiates(modify(Block), state(Block, c(t)), t)  (E2)
 terminates(create(Block), state(Block, c(t1)), t) ← t1 ˂ t  (E3)
 terminates(modify(Block), state(Block, c(t1)), t) ← t1 ˂ t  (E4) 

Since HDFS blocks always have a value assigned to the ID and 
modification time, we will define Initially clauses for these fluents 
to hold from the start. A subset of ∆ follows: 

initially(state(Block, t0))  (E5) 

Completing the set ∆ with a set of happens clauses completes an 
event calculus program for this basic HDFS. For example: A block 
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is created at t = tc and subsequently modified at t = tm, therefore tc ˂ 
tm. We will let c(t) be integers so that tc = 1076 and tm = 1093. Two 
happens clauses are added to ∆:   

happens(create(Block), tc) ˄ 
happens(modify(Block), tm) 

The fluents in ∆ can be examined in a logic program by means 
of Selective Literal Definite-clause Negation as Failure (SLDNF) 
resolutions for specific points in time for possible event histories, 
or to test propositions at a certain time. In this case, an assessment 
is made of the observation of the modified timestamp at a specific 
time to see if it holds. If we want to determine whether the block 
was created at the time observed tob = 1093, we could resolve 
holdsAt(State(block, 1093), tob).  

A resolution for the observed timestamp would show the only 
happens clause that can satisfy this is happens(modify(Block),tm). 
Therefore, holdsAt (state(Block, 1093), tob) is determined to belong 
to a possible observation lacking refutation.  

Building on the theory developed by Willassen [32], the 
discovered namespace, Robs, forms an observation set O as a finite 
set of holdsAt clauses. Leveraging the modeled system, a finite set 
of happens clauses may be derived from O to explain the observed 
state. Partitioning the namespace event space simplifies the 
hypotheses generation and treats the partitions as disjunctive logic 
programs in the EC. The Type 1 partitions possess complete 
ordering information, and no additional event occurrences are 
possible in these partitioned event spaces.  

In partitions with multiple modified data blocks, it is possible to 
generate multiple original block hypotheses. If we let E define the 
events in the partition, we can define the number of possible 
original creation events for each modified event e’ in the partition 
with the set of absent generation stamps in the interval defined by 
∀g ∈ Gabs: Gabs is defined over the interval (g | g ∈  𝑚𝑚𝑚𝑚𝑚𝑚

𝑒𝑒∈𝐸𝐸℘(E) ≤ e’). 
Possible actions can be used to form event hypotheses in the form 
of happens clauses. It is possible to recursively traverse previous 
partitions to reduce the set of event hypotheses if desired. 

6 Analysis and Findings 
The DFS3 builds a logical view that inversely maps the blocks 

to file objects. The software generates structures for directories, 
files and blocks. The directory structures contain the inode ID, 
directory name, the modification time, and user and group 
permission information. File structures include inode ID, file name, 
replication status, modification and access times, size, and user and 
group permissions. Block structures include generation stamp, the 
block order within the file, size, replication, and pointer to the inode. 
An additional mutable field exists for the data state content of the 
block. For the observed set, those blocks that are enumerated in the 
image file, this field is updated through the ordering logic property 
verification with the initial pass over the block sequences. 

The image file used in the final analysis contained 3977 
transactions over the namespace consisting of 1,574 objects (files, 
directories, data blocks). DFS3 correctly identified all original 

content blocks and all 147 modified content data blocks from 1069 
total data blocks in the image. Deleted inode and data block and 
absent generation stamp data sets were generated for analysis and 
hypothesis production. On average, the data structures were 
generated in under 3.0 seconds once the XML file is input.  
Progressively larger images were collected over a time span of 
several months.  

Figure 2 presents the initial sequence of events on the cluster 
defined by relations gRb discovered in the namespace on the central 
server image file after a modest number of file system operations. 
In this case, the initial series consists of data block creation and 
deletion events. The sequence is generated by the DSF3 causal 
ordering logic. 

 

 

Figure 2. Initial cluster sequence of events, May 2019 

 

Figure 3 presents the same initial sequence of events, however, 
from a progressively larger image space 70 days after the 
observation set generated in Figure 2.  
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Figure 3. Initial cluster sequence of events, Jun 2019 

An important property is illuminated in the initial sequence of 
events. Despite the addition of file system operations after the 
initial sequence, and 70 days between image captures, the 
properties of the initial sequence of events hold at a later 
observation. The EC logic programming exploits default 
persistence to reason about the events. Actions affect fluents, and 
the holdsAt clauses exist because the fluents were initiated or held 
initially. The model uses the data content state property to reason 
about the actions. The properties abstracted in the initial sequence 
of events will hold until the initiation of an action terminating the 
property.  

Modeling the events as gRb relations with creation events as a 
function of (5) is the propositional statement equivalent of the next 
data block in the namespace is assigned the next ID number in the 
block ID allocation set, and assigned the next ID number in the 
generation stamp allocation set. If not, then the gRb where g is the 
next generation stamp in the allocation set must be further analyzed 
for possible action hypotheses.  

Another important property illuminated in this example is the 
deletion of the data blocks will persist. It’s an important concept, 
because the model will always reveal deletions in perpetuity. The 
possible creation events can be generated for all the deleted blocks 
and are bounded by events surrounding the deleted block creations. 
Therefore, write time bounds can be established for deleted files 
dating back over long periods of time. In the case of the initial 
sequence of events in Figure 2, it can be determined that three data 
blocks were generated on cycles 1016, 1017, and 1018. This is 
because theorems 5.3.1 and 5.3.2 allow for bounding the possible 
events around these cycles, and the causal ordering logic rules 
require data blocks to be generated in a specific sequence.  

We turn to a sequence of events from a subsequent image 
extraction in Feb of 2020. The image is processed by DFS3, and the 
output produces 15 directories, 92 files, and 235 data blocks in the 
observed set of events. The set-theoretical abstractions for the 
image reveal the deleted inodes and data blocks and the number of 
deletion and modification events to account for in the image. Figure 

4 reveals a portion of the reconstructed space with multiple data 
block content modifications identified. Fourteen data blocks in this 
sequence have been identified as ‘modified,’ and the DFS3 

generates holdsAt and happens clauses initiating the states for the 
observation set. In addition, through the causal ordering logic, 
possible sets for creation cycles of the logical clock are generated 
for each modified block in the observation set. The blocks are then 
mapped to inodes and file objects generated to now reason about 
the file as an aggregation of the data blocks related to each inode. 
The software prompts the investigator to query the system for file 
state properties and possible action hypotheses.  

 

Figure 4. Partitioned space with multiple modified data blocks 

The three data blocks highlighted by the red arrows in Figure 4 
belong to two different files, inodes 16405 and 16408. When 
queried about these two files, the logic output is generated and 
produces the following via the command line interface: 

Output: 

Inode 16405 contains following blocks: 
1073741890 Original 
1073741891 Modified 
1073741911 Modified 
1073741913 Original  
Original Block Bounds:  
1073741890 1073741892 1073741910 1073741912 
Possible creation cycles:  
Block: 1073741891, Cycles: [1070] 
Block: 1073741911, Cycles: [1092] 
 
Inode 16408 contains following blocks: 
1073741896   Original  
1073741897   Modified   
1073741912   Original 
Original Block Bounds: 
1073741896 1073741898 
Possible creation cycles:  
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Block: 1073741897, Cycles: [1076] 
In this context, the files are presented as objects with content 
history state representation. The original block bounds are 
identified, which reduce the space in which to reason about causal 
events. Possible creation cycles are generated for those data blocks 
identified as modified.  

Another file in the image, inode 16396, contains two data blocks. 
During the first pass, the following information is generated for this 
file:  

blocks: [1073741883, 1073741884] 
block states: [Modified, Original] 

The clock cycle for the modification event of block 1073741883 
is 1062 in the observed set. Upon generating a query for inode 
16396, the system produces the following output logic: 

Inode 16396 contains following blocks: 
1073741883 Modified 
1073741884 Original 
Original Block Bounds:  
1073741882 1073741884 
Possible creation cycles:  
Block: 1073741883, Cycles: [1059, 1060, 1061] 

There exist three possible cycles for the ‘original’ data content 
creation events for block 1073741883. This unusual case for the 
HDFS was intentionally generated in the test image and is utilized 
to highlight the logic behind the program. The data block was 
created, and original data content written to on logical clock cycle 
1059. Subsequently, and in sequence, three modifications were 
made to the data block. A truncate operation followed by two 
append operations with the latter append generating a new block of 
data, 1073741884, within the file. All three possible logical 
creation cycles would present as valid and would be accepted in the 
logic as valid; however, they do not imply full knowledge in this 
case, only as possible valid hypotheses actions. There may be more 
than one Initiates clause initiating this fluent, and all must be 
considered. In this instance, if the valid logical clock cycle of 1059 
is established, the other two possibilities of 1060 and 1061 are 
constrained to modification events for inode 16396 given the causal 
ordering of events.  

6.1 Forensic Value 
The reconstruction is a history of the file operations modeling 

the state of the data blocks. One benefit is data causal consistency 
can be established given the file operation history. For example, if 
the file presented in the previous section as inode 16408 is of 
interest and an operation in question is prior to event 2, then the 
single block of 1073741896 on disk is representative of the file 
state at that time, and we’ve reduced the number of blocks to 
recover or analyze. Similarly, if the operation is after event 4, then 
all three blocks on disk are available and representative. Figure 5 
shows the reconstructed state of the file and the validity intervals.  

 

Figure 5. Inode 16408 data block content state validity intervals 

The reconstruction provides an enhanced preview of the file 
system with output common to logically acquiring and extracting 
file system volume. The volatility of the data in the unique context 
of the HDFS could be better understood at an early point in the 
process. If data blocks exist on the current system with a persisted 
state property of interest, a decision could be made to quarantine 
datanodes and identify files for recovery before additional 
operations modify files. The amount of effort that is required to 
recover data may be established much earlier.  

Timelines are established without the reliance on physical 
clocks. The event bounding helps to verify modified, accessed, and 
created times on files and other subevents of the system using the 
event time bounds. Additionally, log file analysis is not only 
simplified, but log file timestamps can be verified through the event 
bounding. In the case of inode 16408 in Figure 5, the only possible 
logical cycle for e2 is determined to be clock cycle 1076. The log 
files should contain a data block creation event for block 
1073741897 within the physical clock time bounds of logical cycle 
1076. Since this is the only possible valid scenario, in this case, 
discovering this event in the log file established a high level of 
confidence in the validity of the log file. Times across log files and 
system events can be synchronized using the event sequences and 
consistent timelines established and verified.  

Considering inodes 16405 and 16408 again, though 16405 is 
created before 16408, the last block in 16405 is block 1073741913, 
and it is original data content. Inode 16408 last block is 
1073741912, also original data content. This means that data was 
more recently written to inode 16405, and we would expect to find 
consistent modified timestamps for these two files. In fact, the 
modified timestamps for the two files support this reasoning:  

16405:  2019-12-18 22:27:35.167000 
16408:  2019-12-18 22:12:47.148000 

The timestamps can be synchronized to the events and the physical 
timestamp bounds become tighter with higher event density.  

7 Conclusions and Future Work 
Although the top-down technique could produce multiple 

possibilities or undefined states of the lower-level data, we believe 
this approach is well suited for an initial analysis of the HDFS. The 
method produces many common output concepts of traditional 
lower-level file system forensic tools without the need to produce 
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low-level volume images.  Further, if the possible storage states are 
formally defined and bounded, the top-down approach aids in the 
production of supporting evidence once the investigation proceeds 
into lower-level analysis.  

Event bounding allows the formation and testing of hypotheses 
to capture all possible high-level events of interest with associated 
global state space explosion mitigation. The model forms a 
collection of trustworthy observations building a foundation for 
hypothesis-based investigation of the HDFS. This type of 
automated high-level reconstruction is not intended to replace all 
low-level analysis but instead reduce the need or narrow the focus 
of low-level file system extraction and analysis. The high-level 
events can highlight areas of interest and expedite the overall 
investigative process. The reconstructed events could also provide 
verification and evidentiary support to raw data evaluation, such as 
log file analysis. The reconstructed state properties capture the 
system invariant properties and thus provide a formal foundation to 
establish validity to the reconstruction.  

By conducting a hierarchical approach which embeds lower-
level primitive events, the method offers several advantages: 

• The hierarchical embedding of subevents into higher-level 
complex events forms a framework for traceability to 
lower-level analysis 

• Asynchronous events are modeled as synchronous 
complex events simplifying the temporal component to 
the model 

• Model simplification means that any ‘concurrent’ events 
can be treated as complex events and time bounds applied 

Future work includes improving DFS3 to provide more 
abundant tools to enhance the analysis features. Further broadening 
the test data set and cluster environment to include very large 
numbers of data blocks, complete operations sets, and fuller 
metadata associations. The incorporation of a suitable knowledge 
base and a broader rule reasoner to include additional properties of 
the DFS is also left for future work.  
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