NOTE: "© Harshany, Edward; Benton, Ryan; Bourrie, David; Black, Michael; Glisson, William (2020). This is the author's version of the
work, prior to the modifications made post-acceptance. It is posted here for your personal use. The definitive Version of Record was published
in Proceedings of the 15th International Conference on Availability, Reliability and Security, http://dx.doi.org/10.1145/3407023.3407056."

DFS3: Automated Distributed File System Storage State
Reconstruction

FirstName Surname’
Department Name
Institution/University Name
City State Country
email@email.com

ABSTRACT

Distributed file systems present distinctive forensic challenges in
comparison to traditional locally mounted file system volume.
Storage device media can number in the thousands, and forensic
investigations in this setting necessitate a tailored approach to data
collection. The Hadoop Distributed File System (HFDS) produces
and maintains partially persistent metadata that is pursuant with a
logical volume, a file system, and file addresses on the centralized
server. Hence, this research investigates the viability of using a
residual central server digital artifact to generate a history model of
the distributed file system. The history model affords an
investigator a high-level perspective of low-level events to narrow
investigative process obligations. The model is generated through
set-theoretic relations of the file system essential data structure.
Graph-theoretic ordering is applied to the events to provide a
history model. The research contribution is a rapid reconstruction
of the HDFS storage state transitions generating timelines for
system events to forensically assess HDFS properties with
conceptual similarity to traditional low-level file system forensic
tool output. The results of this research provide a prototype tool,
DFS?, for rapid and noninvasive data storage state timeline
reconstruction in a big data distributed file system.

CCS CONCEPTS

* Applied Computing « Computer Forensics * Data Recovery

KEYWORDS

Digital Forensics, Reconstruction, Formal Modeling, Automation

1 Introduction

Digital forensics is a broadly-applied term referring to the
identification, acquisition, and analysis of digital evidence [1], [2].
The general process can be defined as the identification of digital
evidence using scientifically derived and proven methodology.
The process undertaken is crucial to the investigative outcome.
Ultimately, evidence credibility is the essential element of an

FirstName Surname
Department Name
Institution/University Name
City State Country

email@email.com

FirstName Surname
Department Name
Institution/University Name
City State Country
email@email.com

investigation. The traditional means of performing digital forensics
follows four primary phases: Collection, Examination, Analysis,
Reporting [3]. The collection phase is typically reduced to digital
evidence search and recognition.

The digital forensic process model has undergone significant
modifications and adaptations to accommodate the rapidly
changing computing landscape. Despite the numerous changes and
varied proposals to address an increasing volume of data, very little
has been published about methods of applying techniques to
facilitate efforts of evidence collection reduction in a distributed
environment.

Distributed File Systems (DFS) often provide storage
repositories for the cloud environment. Attackers and academics
are actively investigating scenarios to abuse or attack cloud
environments [4], [5]. This activity prompts researchers to
investigate the ability to recognize and examine attacks in cloud
environments as well as understanding the legal implications
associated with cloud investigations [6]-[14]. One of the chief
difficulties in the digital reconstruction of a complex system is
induced by the many rapidly changing variables and multiple
abstraction layers that enter into every single operation [15]. Event
materialization techniques take the high-level events and attempt to
deduce lower-level events. The typical forensic reconstruction
process moves bottom-up [16].

The objective of this research is to automate the generation of a
storage state transition timeline in the DFS using prototype
software, Distributed File System Storage State (DFS?). To extract
information that is typically made available later in the sequenced
investigative process, DFS® emulates low-level methods of file
system forensic examination and analysis tools as an initial
enhanced preview of the file system. It is preferred to do this
without having to access the individual files and datanodes. In this
paper, we present an approach to apply causal ordering and Event
Calculus (EC) [17] reasoning to identify and verify file system
operations using a single DFS central server image file. The history
reconstruction is made more efficient by namespace partitioning
through topological ordering, and properties of the data units are
shown to persist over intervals.

http://dx.doi.org/10.1145/3407023.3407056
mailto:email@email.com

DFS?: Automated Distributed File System Storage State
Reconstruction

The structure of this paper is as follows. Section 2 provides
background on distributed file systems. Section 3 discusses
relevant work in forensic reconstruction. Section 4 chronicles the
methodology. Section 5 presents the formal modeling of the system
and the generation of facts and rules. Section 6 discusses the
analysis of the findings. Section 7 draws conclusions from the
research and discusses future work.

2 Background

Cluster-based distributed file systems (e.g., Google File
Systems (GFS), Lustre File System, and Hadoop Distributed File
System (HDFS)) often have a single master server with multiple
data servers [18]. The single master server controls the data servers
by having data management, and metadata management separated
[19]. The file system is ordinarily object-based, allowing for
unstructured data supporting a flexible schema-on-read
implementation. Therefore, data is applied to a schema as it is
retrieved from a stored location rather than when written, although
many distributed file systems support schema on write for a specific
application.

Files are distributed over data servers that handle the read and
write operations. The master server, a meta-data server, maintains
the directory tree and manages the data placement. This
architecture allows for incremental scaling, and the capacity of this
system is a function of the meta-data load. As the load increases,
the metadata server must be able to manage the additional data
servers as extensions of the file system capacity. A DFS with only
a single metadata server is called centralized, whereas a DFS with
distributed metadata servers is totally distributed [20].

Traditionally, in digital investigations, the file system media is
collected, imaged, and preserved to maintain its integrity. A
forensic image in this context is a bit-by-bit copy of data on the
storage volume [21]. Once the evidence is identified and collected,
file system examination and analysis methods are applied. Forensic
tools are utilized to examine and extract information. Many tools
exist for file system information extraction and analysis, but all
operate on the notion of a volume image to examine. Many of the
examination tools have built-in analysis capabilities. It’s in this
analysis phase when reconstruction of file system events occurs
typically.

The centralized distributed file system is unique from traditional
file systems because the metadata is not co-located with the content
data. The traditional investigative process and current tools are not
conducive to a distributed file system investigation. The delay from

start to finish is prohibitive in all phases, from collection to analysis.

Exhaustively collecting or imaging disk drives is not a good option.
Trying to analyze the low-level file system for every drive in the
system would be counterproductive and induce extremely high
latency in the process. Imaging and extracting information from
only the central server drives would not provide meaningful
information to survey the system rapidly. However, the central
server provides a natural starting point to emulate the low-level
tools given it’s the metadata manager for the entire centrally

managed distributed file system. The central server uses a specific
file for system restarts, persisting partial point in time file system
metadata.

3 Related Work

The reconstruction of digital events is traditionally considered a
performance of analysis using varied collected evidence [16], [22]—
[25]. Most traditional approaches assume the lower level evidence
identified and collected. There have been a relatively small number
of attempts to apply formal methods to the reconstruction of digital
events [26].

There exists a collection of research addressing the areas of
automating heterogeneous data evidence extraction and event
correlation. Chen et al. [27] developed the Event Correlation for
Forensics (ECF) as a means by which a consolidated repository of
data evidence is created from various log file structures. The
repository can then be queried for post hoc event correlation.
Necessary information is captured in 4-tuple event abstractions
(Time, Subject, Object, and Action). Schatz et al. [28] developed
Forensics of Rich Events (FORE) to store events in an ontology.
They endeavored to explore methods of forensic investigation of
heterogeneous event log based records. The methods included a
human-guided search, automated correlation, and hypothetical
reasoning.

Hargreaves and Patterson [25] used an approach to search for
patterns of events in the low-level timeline based on pre-
determined rules. The method consists of two phases: low-level
event extraction and high-level event reconstruction. The
generation of low-level events includes file system times, and times
extracted from within files by the analysis of a mounted file system.
This approach strives to develop high-level events; however, the
method relies on accumulated low-level data evidence.

Formal modeling for digital event reconstruction has generally
taken the approach to model the system as a transition system [26].
The most common method is the overall notion of a Finite State
Machine (FSM). Gladyshev and Patel [29] modeled a hacked
system as an FSM to explore the possible scenarios leading to the
hacking incident. They utilized a back-tracing of transitions from
the discovered state of the system, and then discarded scenarios
which did not agree with discovered evidence. Gladyshev and Patel
presented findings of an automated search of the state space for a
simple print program given the knowledge of the system
functionality, which included 25 states and 75 possible transitions.
One drawback to their method is the model doesn’t provide a
solution for the state-space explosion in a more realistic system,
although the authors believe the model could be utilized for
reconstruction with an appropriate choice of models.

James et al. [30] presented a novel approach to formally
defining the system as an algorithmic representation of a
Deterministic Finite Automaton (DFA). The system computations
are encoded as sets of strings mapped as an FSM. They use a
propriety witness statement to restrict possible computations of the
FSM by restricting the possible events of the model by applying

DFS?: Automated Distributed File System Storage State
Reconstruction

known observations. This helps to limit the state space explosion,
albeit limited and augmented by witness statements. FSM modeling
presents challenges in scoping the state space, specifically with
complex systems. Generalizing an FSM and determining the
appropriate level at which to model with practicality to digital
forensics has yet to be realized in general [26].

Khan and Wakeman [31] proposed a neural network-based
event reconstruction of application activity from disk image input
parameters. The activity parameters included log files, registry
entries, file system properties, and free blocks on disk. Evidence
must be derived from events within the log file, temporary files
detected either directly on the file system, or by searching through
the free blocks of the file system. As the reconstruction moves
further into the past, the evidence becomes much less reliable.

Willassen [32] uses the Simplified Event Calculus (SEC), a
form of propositional logic to reconstruct digital events from
observed states using hypotheses about actions. In that work, a
simple file system model is presented, which demonstrates the
resolution of observed states by means of Selective Literal Definite
clause with Negation as Failure (SLDN) resolutions. Willassen
extends his theoretical approach to forming and testing hypotheses
about actions and deriving system invariants and concludes SEC
could be a reasonable tool for system model building and property
determination, but the approach in his work is purely theoretical.

The complexity and search space of many of the formal models
reviewed make these approaches ineffective or impractical for the
modeling of the DFS [33]. With respect to the other methods that
appeared in this review, they have several qualities in common,
making them inappropriate for the formal modeling of the DFS.
First, they require the collection of low-level data evidence or log
file extraction to reconstruct event timelines. The latency induced
to piece together and analyze voluminous log data or extract low-
level file system data is prohibitive given the architecture of the
DFS. Second, some of the methods mostly lack the formal
theoretical foundation behind the automation of the event
extraction. Although machine learning appears to be a viable
solution in a specific context, neural network reasoning can be
unclear and not explicit, which could limit evidentiary value to
some degree. If there is no understanding of the process behind the
actions to infer events and make interpretations, the validity is
questioned.

4 Methodology

The method chosen is to extract information from a central
server image file. The process of reconstructing file system
operations normally flows bottom-up as we described, but we’ll use
a top-down approach and work at the higher abstraction layer. At
this high-level layer of abstraction, we adopt many of the common
concepts that a low-level file system forensic tool would address.
We use those concepts and build structures like master file tables
that are extractable on lower-level file systems.

The HDFS was formatted, and we started with a clean cluster
volume and performed file system operations on the cluster over a

period of months. A series of central server images were collected
during the process over a time period of several months, and each
image is a partition of the final image space. The cluster consisted
of a central server and three data nodes in a fully distributed mode.

A prototype software tool, DFS3, has been developed to
demonstrate the model construction and reasoning. The model is
built on the data structure that is essential to the core purpose of the
HDFS (3.2.0) consistent with low-level approaches. Logic
programming is ideal for modeling any sort of knowledge and its
use. Modus ponens (if/then) rules make available understanding of
the hypotheses linking cause (antecedent) and effect (consequent)
assertions in a digital investigation. This is comparable to the
approach of Hargreaves and Patterson [25]; however, this work
does not utilize accumulated low-level artifacts for the high-level
reconstruction. We employ logic statements to describe the
properties and behavior of the domain being modeled and generate
event occurrence hypotheses. The timeline is innately made in the
temporal logic of the system data structures.

There exist various techniques to acquire or generate the central
server binary image file, and we omit that discussion and assume
the image has been acquired upstream through a sound forensic
method. The binary file is converted to XML file format as input
into our Python 3 prototype software DFS>.

5 Modeling the Centralized DFS

HDFS presents inode, block, and generation stamp variables as
integer types. HDFS is mainly developed in the Java programming
language, and the source code is readily available through Apache
Software Foundation (ASF). The Java long data type is a 64-bit
two's complement integer. The Java programming language is
statically typed, stating the variable’s type and name, which means
that all variables must first be declared before they can be used. The
signed long has a minimum value of -2% and a maximum value of
29-1. In Java SE 8 and later, you can use the long data type to
represent an unsigned 64-bit long, which has a minimum value of
0 and a maximum value of 264-1. [34]. This subset of integers forms
the value set from which the inode, block, and generation stamp
variables are permitted to hold. This subset of permitted integers is
a subset of the positive integers. The values can be quantified over
the natural numbers, and that is the domain of discourse.

5.1 System Properties

It is convenient to leverage natural number properties in the
formation of the prescribed notation. This includes the concept that
for a finite set of positive natural numbers (integers), a total (well)
ordering exists. The HDFS uses the Unix-style inode concept of a
file. There exists an inherent causal ordering in the structure that
can be exploited to reason about the file system event sequences.

The in-memory representation of the directory/file/block
hierarchy is kept in a base class, /node, containing common fields
for files and directories. When an inode is generated, the inode is
assigned an ID, uniquely identifying the inode. Inodes are allocated
sequentially from an initial static value, LAST RESERVED ID+1,

DFS?: Automated Distributed File System Storage State
Reconstruction

in the InodelD class. The initial value is assigned to the root
directory as 16385. The primitive Java type long is used to
represent the inode ID. The inode ID won’t be recycled and is not
expected to wrap around for a very long period. File inode IDs are
immutable through all subsequent file operations, including
location changes (data transfers) and renaming operations. File
inodes contain chunks of data in the form of blocks. Block IDs are
generated sequentially as immutable keys identifying blocks and
generation stamps as an operation sequence. Figure 1 depicts the
relationships of the inode, block, and generation stamp structures
in HDFS. File inodes include blocks, and blocks include generation
stamps. These object relations, their orderings, and the values they
hold present complex event causes and effects.

Inode ID: 001

Generation Stamp

I
I
}
I
I
I
I
|

flename; ——| 001 |— | 002 |—| 004 | — | 005

Figure 1: HDFS Inode Structure

Inodes, blocks, and generation stamps are essential to the
metadata management of the central server. These unique
identifiers are generated as monotonic sequences of integers, and
the instantiations can be abstracted and treated as ordered sets of
integers. The operations affect the allocation of object sets in the
abstraction. The structure is summarized into sets with file
operations equating to set operations. For the remainder of this
paper, inode and data block references are the high-level HDFS
abstractions.

It can be established that the set of blocks B in the namespace is
totally ordered with each b € B represented by a unique integer
value. By definition, there exists a least element and greatest
element from a subset of B. Suppose bs, b2 € B. Let B’ = {b1, b2} #
@. By hypothesis, B~ has a smallest element. If it is bs, then b; < b2,
and if it is b2, then b2 < b;. The same logic applies to a set of
generation stamps G’ in the namespace. Generation stamps G and
blocks B form relations since generation stamps are created if and
only if (iff) block operations occur. Within HDFS, the following
block operations rules affect the generation stamp to block relation
in precisely the manner described:

1. OP_ALLOCATE BLOCK ID: creates a new block to write
data. Adds one block and one generation stamp to namespace
pools with OP_SET GENSTAMP, OP_ADD BLOCK

2. OP_DELETE: removes data block. Removes one block and
one generation stamp from namespace pools with
OP_DELETE

3. OP_APPEND: appends data to end of file; the last data block
within file Inode. Overwrites previous namespace generation
stamp with OP_SET GENSTAMP

4. OP_TRUNCATE: removes data from the block. Overwrites
previous namespace generation stamp with
OP _SET GENSTAMP

From the block operation rules, we define three data block
content properties that can be used to determine consistency for
‘events’ in the system. Observed events are those explicit in the
discovered namespace.

e Events are considered ‘original’ events when rule 1 is the

cause of the observed event

e Events are considered ‘deleted’ events when rule 2 is the

cause of the observed event. Hypotheses events are
generated to infer rule 1 ‘original’ events from rule 2
events

e Events are considered ‘modified’ events when rules 3 and

4 are the cause of the observed event. Hypotheses events
are generated to infer rule 1 ‘original’ events from rule 3
and 4 events

5.2 Modeling the System Operations

The four block operation rules define the characteristics of the
block to generation stamp relation. Formally, each relation R is
defined with g representing the power set:

@R :=(GxB): ¥p ER:
pEGxB(g€eG beB:p={g b)))]

Let Gops be a set of generation stamps in the discovered namespace:
{g1, g2 ..., gn} where g1 is the least element, and g» is the greatest
element. The generation stamp integer value domain is 1001 - 2%4-
1. |Gobs| = the number of elements in Gops. This value is the total
number of block operations explicitly enumerated in the discovered
namespace from {gs, b:} to {gn, bi}. However, since some of our
block operations remove generation stamps from Goss, this does not
represent the total number of block operations over the namespace
after the event associated with g;. The generation stamp values
belong to the set Z™, the set of positive integers, and are allocated
sequentially and monotonically. The relation gRb is asymmetric,
transitive, complete, and acyclic.

Therefore, we can determine the total number of block
operations implicit in the namespace with the set Gur: {gi, g2, ...,
gn} and |Gan| = gn+1 — g1. The overwritten, or absent generation
stamps are defined by Gups:

Gabs := Gaii — Gobs = {g | g € Gan A g e‘Gobs}
Gobs U Gabs E Gail (2)

We can similarly define sets of blocks Boss, Babs, Ban for the
discovered namespace. The block numbers use a different initiating
block numbering criterion but are allocated sequentially and
monotonically, forming a finite set of integers.

Babs = Bait— Bobs = { b |b € Ba A b & Bobs}

Bobs U Babs S Bail 3)

DFS?: Automated Distributed File System Storage State
Reconstruction

Let Robs € R where Robs is the discovered or observed image
namespace. Every generation stamp, including those absent in the
discovered namespace, belongs to a relation Rai € R and Robs € Rai.
Ran includes our discovered namespace relations and hypothesis-
based relations developed from of the discovered namespace. Rai:=
(Gan x Ban). The binary relations Robs and Ran are functions F. By
definition:

Fep(GxB) AN (Vpl,p2€EF: pi#p>=
mi(p1) # m2p2) N{mip) | p EF} =G “

The operators 71 and w2 act on the first and second coordinates of
ordered pair p. The function from G to B has a one-to-one
correspondence and is bijective when applied to the discovered
namespace Ross and surjective when applied to Rai.

Returning to the four operations defining R, we can state some
propositions about the HDFS system and expected observed
relations in the discovered image. The first proposition established
allows us to create additional propositions and form inferences
about the sequences of relations.

Proposition 5.2.1: |Bobs| < |Gobs| A |Babs| < |Gabs| A |Bau| < |Gaill

The number of blocks must always be less than or equal
to the number of generation stamps. Operation 1 must
occur prior to Operations 2-4 for every block included in
the HDFS namespace. Operation 1 is bijective in its
function and is the only operation in which a block is
added to the allocated set of blocks Buai.

From Proposition 5.3.1, an additional proposition is formed
about the quantity of file system operations on data blocks and the
number of data blocks from the discovered image properties.

Proposition 5.2.2: |Gl - |Bai

The number of modification operations can be
determined by cardinality differences of any given
partition.

Propositions 5.3.1 and 5.3.2 enable the causal ordering and
bounding of relation gRb, which are modeled as event occurrences.

5.3 Specifying Forensic Properties

The discovered namespace relation Robs is a total preorder. Robs
is a bijection, and by definition, the composition of bijective
functions is bijective. Partitioning Robs creates the mutually disjoint
non-empty sets: Probs := {{R1}, { Rz}, ...{Rn}}. Each partition is a
bijection, and the union of these partitions is Robs. Creating
partitions provides two important analysis functions. First,
partitions of original blocks may be generated. The data block
content was created and written to without subsequent
modifications to the content. Second, partitioning facilitates the
computation of a maximal validity interval (MVI). This is an
interval over which a property holds uninterruptedly. The
algorithmic approach to compute possible states is simplified by
minimal partitions of modified sequences.

Creating partitions bounded by known original data block
properties allows us to reduce the state space when checking

whether a property holds on the model. The effect is to create a
second proposition on a partition concerning the initial events
defined by the binary relation Rops:

Proposition 5.3.1: 3 {g, b} € Robs: Vp € Robs(g EG,bEB: p=
{g.b})g<g’ Absb’

The first event formed by the relation between generation
stamps and blocks must be the least element from each
set in a partition of original events. The partitions can be
classified into two types:

Type 1: Contains only block operations 1 and 2. These
partitions are identified by the straight-line equation of
the binary relation. The partition is a total order.

Type 2: Contains block operations 2, 3, and 4, and is
bounded by type 1 partitions. The partition is a total order
of the observed set with complex event space partial
orders.

If we utilize the concept of a logical clock, c(?), and apply that
to our set of events E, a predicate happens can be evaluated with
the clause happens(e, ¢(?)). An a priori order is established from
the image as a set of event occurrences. This pair, (e, ¢(?)), uniquely
identifies an event occurrence. For forensic investigative
practicality, we prefer an approach that would constrain the event
occurrence to those within a partition of the namespace. Therefore,
the initial goal is to show that the happens(e, c(?)) relations in the
discovered namespace could form disjoint sets and cannot be united.
If the partition can be shown to be monotonic, then reachable states
of the namespace can be more efficiently discovered.

The algorithm employed to specify the forensic properties first
verifies the discovered system partition is in a normal state.
Sequences of block creation events do not include block operations
rules 3 and 4. Block creation events are an arithmetic order-
preserving sequence in the form:

ep=¢e1+2 %)

This formula is zero-based, and eo can be any ¢ € Robs.
Arithmetically, e is the sum of the integer values for the block ID
and generation stamp.

Any event occurrence e in the discovered namespace set o
happens(e, c(?)), implies every event e’ with c’'(t) < c(t)
happens_before(e). Assuming discrete time increments £ on the
logical clock where ¢ € T, the next event in our sequence has a clock
value ¢(t+ p). The addition of an original block » € By, which is
defined by Bobs U Babs S Bair. If Bars= @ in the time interval ¢’(?) <
c(t) <c(t+ u), then Bobs & Bau. An original block will not have any
g € Guaps as a possible relation. If the block is created at ¢(?) it is not
possible to associate any time c’(#) < ¢(t) with the block creation.
Also, no events with time greater than c(z) could possibly generate
an original block less than block 4 in the event identified as original.
Therefore, the interval [c(?) < c(t+ w)] contains the original block
generation stamp and Goss < Gau in the interval if the events satisfy
the arithmetic sequence in (5). An event e’ is an immediate
predecessor of event e if no other event could exist in the interval
between the events. By determining original event sequences

DFS?: Automated Distributed File System Storage State
Reconstruction

(block creations), it is possible to partition the event sequence on
these blocks. Additionally, an event sequence defined as a Type 1
partition is a unique topological ordering and cannot be invalidated
by any additional information.

Theorem 5.3.1: If the duration x between values of T is defined
as the smallest possible time interval for T, which an event may
occur, then the maximum number of events happening over the
interval is one.

Proof: If two events occur between c() < c(t+ p), then the
duration between their occurrences is less than u. This is not
possible given the definition of the values in T.

Theorem 5.3.2: If the duration i between values of T is defined
as the smallest possible time interval for T which an event may
occur, then no event occurrence e’ could have existed between
e’y and e e+).

Proof: If event e’ occurred between c(?) < ¢(t+ u) then e’” and
e occurred between c(?) < c¢(t+ w). This is not possible given
Theorem 5.3.1.

Block operation rule 1 in section 5.1 describes the operation for
block creation in the namespace. Establishment of original blocks
as bookends of the partition means all rule 1 operations antecede
the partition for every block ID less than the minimal bookend
block, and all rule 1 operations postdate the partition for every
block ID greater than the maximal bookend block. The partition is
bounded by the clocks of eo and en. If the sequence of events
satisfies the arithmetic sequence of (5), then the partition is Type 1.
The method creates partitions of the discovered namespace into
original and modified regions. In fact, we can form numerous
partitions that help to illuminate operations and bound reachability
of hypotheses for Rau.

This method is utilized to determine which blocks are original
within the namespace. Original in the sense that data content was
written to the block once, and the block has not undergone data
content modification. The method is also utilized and applied to
Type 2 partitions to determine original generation stamp
sequencing possibilities of modified blocks. Type 2 partitions are
differentiated because these partitions contain regions where
possible states exist without known order, and event hypotheses
must be formed and tested. DFS? automatically generates data
structures with partitioned data sets.

5.4 Verifying Properties

Event calculus (EC) allows the derivation of time intervals over
which properties hold [35]. EC builds on first-order predicate
calculus. The calculus is a general approach in logic programming
to represent and reason about events and effects. Default
persistence is a notion expressed in EC. An assumption of
persistence until termination exists for properties defined by event
effects. A history is modeled by a set of event occurrences as a
binary acyclic relation.

The event calculus algorithm can be applied to each partition
separately and composed as necessary. An investigator may query
a knowledge base on any number of partitions, and the algorithm is
used to determine whether the property holds. EC expresses the

properties of states visited as properties that can be queried against
a knowledge base derived from the observed state.

Several versions of the EC have evolved from the original [17].
The EC forms a timeline about events and fluents, the-time varying
properties, or states. One variant of the calculus is called the
Simplified Event Calculus (SEC). Any number of supporting
domain-dependent axiom definitions are appropriate; however, the
SEC consists of three core effect axioms in conventional logic
programming if-form [35]:

holdsAt(f, t) « ((initially(f) (SEC1)
A —clipped(0, £, t))

holdsAt(f, t2) < (happens(e, t1) (SEC2)
A initiates(e, f, t1) A t1 <t2 A —clipped(ti, f, t2)

clipped(ts, f, t2) < happens(e, t) A (SEC3)

t1 <t <t2 A terminates(e, f, t)

These axioms assert that a fluent that is initially true remains
true and that a fluent that is initiated persists until termination by a
subsequent event. Given:

e aconjunction SEC of SEC1 and SEC2 and SEC3
e aconjunction X of Initiates and Terminates formulae

e a conjunction A of Initially, Happens and temporal
ordering formulae

e a conjunction Q of uniqueness-of-names axioms for
actions and fluents of interest

e HoldsAt predicate form: HoldsAt(f, t)
Definition 5.4.1: The event calculus program:
X ANANSEC A Q = HoldsAt(f, t)

A partial simplified event calculus model is defined based on a
data block object within the HDFS. This example system consists
of data units, blocks, which can only be written. The write is
considered as two acts, Create and Modify, that effect the fluent
property State. The State has a logical clock timestamp. Create and
Modify cause State updates through Initiates clauses. Changes are
represented as an event calculus with fluents as states of the data
unit. Actions are the operations Create and Modify changing the
fluent State. The set of Initiates and Terminates clauses set the
values from the logical system clock as timestamp c(t). The set £
follows:

initiates(create(Block), state(Block, c(t)), t) (E1)
initiates(modify(Block), state(Block, c(t)), t) (E2)
terminates(create(Block), state(Block, c(t1)),t) «—t1 <t (E3)
terminates(modify(Block), state(Block, c(t1)), t) < t1 <t (E4)

Since HDFS blocks always have a value assigned to the ID and
modification time, we will define Initially clauses for these fluents
to hold from the start. A subset of A follows:

initially(state(Block, to)) (E5)

Completing the set A with a set of happens clauses completes an
event calculus program for this basic HDFS. For example: A block

DFS?: Automated Distributed File System Storage State
Reconstruction

is created at t = tc and subsequently modified at t = tm, therefore tc <
tm. We will let c(t) be integers so that te= 1076 and tm= 1093. Two
happens clauses are added to A:

happens(create(Block), tc) A
happens(modify(Block), tm)

The fluents in A can be examined in a logic program by means
of Selective Literal Definite-clause Negation as Failure (SLDNF)
resolutions for specific points in time for possible event histories,
or to test propositions at a certain time. In this case, an assessment
is made of the observation of the modified timestamp at a specific
time to see if it holds. If we want to determine whether the block
was created at the time observed to, = 1093, we could resolve
holdsAt(State(block, 1093), tob).

A resolution for the observed timestamp would show the only
happens clause that can satisfy this is happens(modify(Block),tm).
Therefore, holdsAt (state(Block, 1093), tob) is determined to belong
to a possible observation lacking refutation.

Building on the theory developed by Willassen [32], the
discovered namespace, Ross, forms an observation set O as a finite
set of holdsAt clauses. Leveraging the modeled system, a finite set
of happens clauses may be derived from O to explain the observed
state. Partitioning the namespace event space simplifies the
hypotheses generation and treats the partitions as disjunctive logic
programs in the EC. The Type 1 partitions possess complete
ordering information, and no additional event occurrences are
possible in these partitioned event spaces.

In partitions with multiple modified data blocks, it is possible to
generate multiple original block hypotheses. If we let £ define the
events in the partition, we can define the number of possible
original creation events for each modified event e’ in the partition
with the set of absent generation stamps in the interval defined by

Vg € Guabs: Gabsis defined over the interval (g | g € Zggp(E) <e).
Possible actions can be used to form event hypotheses in the form
of happens clauses. It is possible to recursively traverse previous

partitions to reduce the set of event hypotheses if desired.

6 Analysis and Findings

The DFS? builds a logical view that inversely maps the blocks
to file objects. The software generates structures for directories,
files and blocks. The directory structures contain the inode ID,
directory name, the modification time, and user and group
permission information. File structures include inode ID, file name,
replication status, modification and access times, size, and user and
group permissions. Block structures include generation stamp, the

block order within the file, size, replication, and pointer to the inode.

An additional mutable field exists for the data state content of the
block. For the observed set, those blocks that are enumerated in the
image file, this field is updated through the ordering logic property
verification with the initial pass over the block sequences.

The image file used in the final analysis contained 3977
transactions over the namespace consisting of 1,574 objects (files,
directories, data blocks). DFS?® correctly identified all original

content blocks and all 147 modified content data blocks from 1069
total data blocks in the image. Deleted inode and data block and
absent generation stamp data sets were generated for analysis and
hypothesis production. On average, the data structures were
generated in under 3.0 seconds once the XML file is input.
Progressively larger images were collected over a time span of
several months.

Figure 2 presents the initial sequence of events on the cluster
defined by relations gRb discovered in the namespace on the central
server image file after a modest number of file system operations.
In this case, the initial series consists of data block creation and
deletion events. The sequence is generated by the DSF? causal
ordering logic.

900 +1.073741e9

890
880
870

860

Block ID

850

840

830

1000 1010 1020 1030 1040 1050 1060 1070 1080
Gen Stamp

Figure 2. Initial cluster sequence of events, May 2019

Figure 3 presents the same initial sequence of events, however,
from a progressively larger image space 70 days after the
observation set generated in Figure 2.

DFS?: Automated Distributed File System Storage State
Reconstruction

+1.073741e9
910
%00 &
890
880

870 P

Block ID

860 4
850 #
840

830 &

1000 1020 1040 1060 1080
Gen Stamp

Figure 3. Initial cluster sequence of events, Jun 2019

An important property is illuminated in the initial sequence of
events. Despite the addition of file system operations after the
initial sequence, and 70 days between image captures, the
properties of the initial sequence of events hold at a later
observation. The EC logic programming exploits default
persistence to reason about the events. Actions affect fluents, and
the holdsAt clauses exist because the fluents were initiated or held
initially. The model uses the data content state property to reason
about the actions. The properties abstracted in the initial sequence
of events will hold until the initiation of an action terminating the
property.

Modeling the events as gRb relations with creation events as a
function of (5) is the propositional statement equivalent of the next
data block in the namespace is assigned the next ID number in the
block ID allocation set, and assigned the next ID number in the
generation stamp allocation set. If not, then the gRb where g is the
next generation stamp in the allocation set must be further analyzed
for possible action hypotheses.

Another important property illuminated in this example is the
deletion of the data blocks will persist. It’s an important concept,
because the model will always reveal deletions in perpetuity. The
possible creation events can be generated for all the deleted blocks
and are bounded by events surrounding the deleted block creations.
Therefore, write time bounds can be established for deleted files
dating back over long periods of time. In the case of the initial
sequence of events in Figure 2, it can be determined that three data
blocks were generated on cycles 1016, 1017, and 1018. This is
because theorems 5.3.1 and 5.3.2 allow for bounding the possible
events around these cycles, and the causal ordering logic rules
require data blocks to be generated in a specific sequence.

We turn to a sequence of events from a subsequent image
extraction in Feb of 2020. The image is processed by DFS3, and the
output produces 15 directories, 92 files, and 235 data blocks in the
observed set of events. The set-theoretical abstractions for the
image reveal the deleted inodes and data blocks and the number of
deletion and modification events to account for in the image. Figure

4 reveals a portion of the reconstructed space with multiple data
block content modifications identified. Fourteen data blocks in this
sequence have been identified as ‘modified,” and the DFS3
generates holdsAt and happens clauses initiating the states for the
observation set. In addition, through the causal ordering logic,
possible sets for creation cycles of the logical clock are generated
for each modified block in the observation set. The blocks are then
mapped to inodes and file objects generated to now reason about
the file as an aggregation of the data blocks related to each inode.
The software prompts the investigator to query the system for file
state properties and possible action hypotheses.

+1.073741e9

Modification to Block 911 —

910

905
a 200 Modification to Block 897
v .
8
o 895

Modification to Block 891
—_—
890
885

880 T T T T T
1070 1075 1080 1085 1090 1095
Gen Stamp

Figure 4. Partitioned space with multiple modified data blocks

The three data blocks highlighted by the red arrows in Figure 4
belong to two different files, inodes 16405 and 16408. When
queried about these two files, the logic output is generated and
produces the following via the command line interface:

Output:

Inode 16405 contains following blocks:
1073741890 Original

1073741891 Modified

1073741911 Modified

1073741913 Original

Original Block Bounds:

1073741890 1073741892 1073741910 1073741912
Possible creation cycles:

Block: 1073741891, Cycles: [1070]

Block: 1073741911, Cycles: [1092]

Inode 16408 contains following blocks:
1073741896 Original

1073741897 Modified

1073741912 Original

Original Block Bounds:

1073741896 1073741898

Possible creation cycles:

DFS?: Automated Distributed File System Storage State
Reconstruction

Block: 1073741897, Cycles: [1076]
In this context, the files are presented as objects with content
history state representation. The original block bounds are
identified, which reduce the space in which to reason about causal
events. Possible creation cycles are generated for those data blocks
identified as modified.

Another file in the image, inode 16396, contains two data blocks.

During the first pass, the following information is generated for this
file:

blocks: [1073741883, 1073741884]

block states: [Modified, Original]

The clock cycle for the modification event of block 1073741883
is 1062 in the observed set. Upon generating a query for inode
16396, the system produces the following output logic:

Inode 16396 contains following blocks:

1073741883 Modified

1073741884 Original

Original Block Bounds:

1073741882 1073741884

Possible creation cycles:

Block: 1073741883, Cycles: [1059, 1060, 1061]
There exist three possible cycles for the ‘original’ data content
creation events for block 1073741883. This unusual case for the
HDFS was intentionally generated in the test image and is utilized
to highlight the logic behind the program. The data block was
created, and original data content written to on logical clock cycle
1059. Subsequently, and in sequence, three modifications were
made to the data block. A truncate operation followed by two
append operations with the latter append generating a new block of
data, 1073741884, within the file. All three possible logical
creation cycles would present as valid and would be accepted in the
logic as valid; however, they do not imply full knowledge in this
case, only as possible valid hypotheses actions. There may be more
than one Initiates clause initiating this fluent, and all must be
considered. In this instance, if the valid logical clock cycle of 1059
is established, the other two possibilities of 1060 and 1061 are
constrained to modification events for inode 16396 given the causal
ordering of events.

6.1 Forensic Value

The reconstruction is a history of the file operations modeling
the state of the data blocks. One benefit is data causal consistency
can be established given the file operation history. For example, if
the file presented in the previous section as inode 16408 is of
interest and an operation in question is prior to event 2, then the
single block of 1073741896 on disk is representative of the file
state at that time, and we’ve reduced the number of blocks to
recover or analyze. Similarly, if the operation is after event 4, then
all three blocks on disk are available and representative. Figure 5
shows the reconstructed state of the file and the validity intervals.

Inodessaos
€1

B|0Ck895 O -

ez €3
Blockgy O—O O——>

€4

Oo—

B|0Ck912

Figure 5. Inode 16408 data block content state validity intervals

The reconstruction provides an enhanced preview of the file
system with output common to logically acquiring and extracting
file system volume. The volatility of the data in the unique context
of the HDFS could be better understood at an early point in the
process. If data blocks exist on the current system with a persisted
state property of interest, a decision could be made to quarantine
datanodes and identify files for recovery before additional
operations modify files. The amount of effort that is required to
recover data may be established much earlier.

Timelines are established without the reliance on physical
clocks. The event bounding helps to verify modified, accessed, and
created times on files and other subevents of the system using the
event time bounds. Additionally, log file analysis is not only
simplified, but log file timestamps can be verified through the event
bounding. In the case of inode 16408 in Figure 5, the only possible
logical cycle for ez is determined to be clock cycle 1076. The log
files should contain a data block creation event for block
1073741897 within the physical clock time bounds of logical cycle
1076. Since this is the only possible valid scenario, in this case,
discovering this event in the log file established a high level of
confidence in the validity of the log file. Times across log files and
system events can be synchronized using the event sequences and
consistent timelines established and verified.

Considering inodes 16405 and 16408 again, though 16405 is
created before 16408, the last block in 16405 is block 1073741913,
and it is original data content. Inode 16408 last block is
1073741912, also original data content. This means that data was
more recently written to inode 16405, and we would expect to find
consistent modified timestamps for these two files. In fact, the
modified timestamps for the two files support this reasoning:

16405: 2019-12-18 22:27:35.167000

16408: 2019-12-18 22:12:47.148000
The timestamps can be synchronized to the events and the physical
timestamp bounds become tighter with higher event density.

7 Conclusions and Future Work

Although the top-down technique could produce multiple
possibilities or undefined states of the lower-level data, we believe
this approach is well suited for an initial analysis of the HDFS. The
method produces many common output concepts of traditional
lower-level file system forensic tools without the need to produce

DFS?: Automated Distributed File System Storage State
Reconstruction

low-level volume images. Further, if the possible storage states are
formally defined and bounded, the top-down approach aids in the
production of supporting evidence once the investigation proceeds
into lower-level analysis.

Event bounding allows the formation and testing of hypotheses
to capture all possible high-level events of interest with associated
global state space explosion mitigation. The model forms a
collection of trustworthy observations building a foundation for
hypothesis-based investigation of the HDFS. This type of
automated high-level reconstruction is not intended to replace all
low-level analysis but instead reduce the need or narrow the focus
of low-level file system extraction and analysis. The high-level
events can highlight areas of interest and expedite the overall
investigative process. The reconstructed events could also provide
verification and evidentiary support to raw data evaluation, such as
log file analysis. The reconstructed state properties capture the
system invariant properties and thus provide a formal foundation to
establish validity to the reconstruction.

By conducting a hierarchical approach which embeds lower-
level primitive events, the method offers several advantages:

e The hierarchical embedding of subevents into higher-level
complex events forms a framework for traceability to
lower-level analysis

e Asynchronous events are modeled as synchronous
complex events simplifying the temporal component to
the model

e Model simplification means that any ‘concurrent’ events
can be treated as complex events and time bounds applied

Future work includes improving DFS3 to provide more
abundant tools to enhance the analysis features. Further broadening
the test data set and cluster environment to include very large
numbers of data blocks, complete operations sets, and fuller
metadata associations. The incorporation of a suitable knowledge
base and a broader rule reasoner to include additional properties of
the DFS is also left for future work.

ACKNOWLEDGMENTS

This work being reported partially supported by the National
Science Foundation; the grant number is being withheld as part of
the double-blind review.

REFERENCES

[1] “Defining Digital Forensic Examination and Analysis Tool Using
Abstraction Layers.,” Int. J. Digit. Evid., vol. 1, no. 4, pp. 1-12, 2003.

[2] R. Ayers, W. Jansen, and S. Brothers, “Guidelines on mobile device

forensics (NIST Special Publication 800-101 Revision 1),” NIST Spec.
Publ., vol. 1, no. 1, p. 85, 2014, doi: 10.6028/NIST.SP.800-101rl.

[3] [ISO/IEC 27037:2012]. 1st ed, “Guidelines for identification, collection,
acquisition and preservation of digital evidence,” 2012.
http://www.is027001security.com/html/27037.html (accessed Mar. 13,
2018).

[4] C. Kynogis, W. B. Glisson, T. R. Andel, and J. T. McDonald, “Utilizing
the Cloud to Store Camera-Hijacked Images,” in Hawaii International
Conference on System Sciences, 2016, vol. HICSS-49.

[5] G. Grispos, W. B. Glisson, J. H. Pardue, and M. Dickson, “Identifying User
Behavior from Residual Data in Cloud-based Synchronized Apps,” J. Inf.
Syst. Appl. Res., vol. 8, no. 2, pp. 4-14, 2015, [Online]. Available:
http://jisar.org/2015-8/.

[6] T. Watts, R. Benton, W. Glisson, and J. Shropshire, “Insight from a Docker

10

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Container Introspection,” in Proceedings of the 52nd Hawaii International
Conference on System Sciences, 2019.

J. Shropshire and R. Benton, “Container and VM Visualization for Rapid
Forensic Analysis,” in Proceedings of the 53rd Hawaii International
Conference on System Sciences, 2020.

G. Grispos, T. Storer, and W. Glisson, “Calm Before the Storm: The
Challenges of Cloud Computing in Digital Forensics,” Int. J. Digit. Crime
Forensics, vol. 4, no. 2, pp. 28-48, 2012, doi: 10.4018/jdcf.2012040103.
A. J. Brown, W. B. Glisson, T. R. Andel, and K. R. Choo, “Cloud
Forecasting: Legal visibiliy issues in saturated environments,” Comput.
Law Secur. Rev. 2018/06/18/, 2018, doi:
https://doi.org/10.1016/j.clsr.2018.05.031.

D. Quick and K. K. R. Choo, “Big forensic data reduction: digital forensic
images and electronic evidence,” Cluster Comput., vol. 19, no. 2, pp. 723—
740, 2016, doi: 10.1007/s10586-016-0553-1.

N. D. W. Cahyani, N. H. A. Rahman, W. B. Glisson, and K.-K. R. Choo,
“The Role of Mobile Forensics in Terrorism Investigations Involving the
Use of Cloud Storage Service and Communication Apps,” Mob. Networks
Appl., vol. 22, no. 2, pp. 240-254, 2017, doi: 10.1007/s11036-016-0791-8.
N. H. A. Rahman, W. B. Glisson, Y. Yang, and K.-K. R. Choo, “Forensic-
by-Design Framework for Cyber-Physical Cloud Systems,” IEEE Cloud
Comput., vol. 3, no. 1, pp. 50-59, 2016, doi: 10.1109/MCC.2016.5.

G. Grispos, W. B. Glisson, and T. Storer, “Chapter 16 - Recovering
residual forensic data from smartphone interactions with cloud storage
providers,” in The Cloud Security Ecosystem, R. K.-K. R., Boston:
Syngress, 2015, pp. 347-382.

G. Grispos, W. B. Glisson, and T. Storer, “Using smartphones as a proxy
for forensic evidence contained in cloud storage services,” Proc. Annu.
Hawaii Int. Conf. Syst. Sci., pp. 49104919, 2013, doi:
10.1109/HICSS.2013.592.

E. Harshany, R. Benton, D. Bourrie, and W. Glisson, “Forensic Science
International : Digital Investigation,” Forensic Sci. Int. Digit. Investig., vol.
32, p. 300909, 2020, doi: 10.1016/;.£5idi.2020.300909.

B. D. Carrier and E. H. Spafford, “Categories of digital investigation
analysis techniques based on the computer history model,” Digit. Investig.,
vol. 3, no. SUPPL., pp. 121-130, 2006, doi: 10.1016/j.diin.2006.06.011.
E. T. Mueller, “The Event Calculus,” Commonsense Reason., pp. 19-52,
2006, doi: 10.1016/b978-012369388-4/50059-x.

K. Khazanchi, A. Kanwar, and L. Saluja, “An Overview of Distributed File
System,” [jmer, vol. 2, no. 10, pp. 2958-2965, 2013.

H. G. Sanjay Ghemawat and Shun-Tak Leung, “The google filesystem,”
2003.

S. Weil, S. Brandt, E. Miller, and D. Long, “Ceph: A Scalable, High-
Performance Distributed File System,” in USENIX Symposium on
Operating Systems Design and Implementation, 2006, vol. 30, no. 2, pp.
267-291, doi: 10.2307/624306.

B. Carrier, File System Forensic Analysis. Addison-Wesley Professional
©2005, 2005.

B. Carrier and E. Spafford, “An event-based digital forensic investigation
framework,” Digit. forensic Res. Work., pp. 1-12, 2004, doi:
10.1145/1667053.1667059.

B. D. Carrier and E. H. Spafford, “Defining Event Reconstruction of
Digital Crime Scenes,” J. Forensic Sci., vol. 49, no. 6, pp. 1-8, 2004, doi:
10.1520/j£52004127.

W. Minnaard, “The Linux FAT32 allocator and file creation order
reconstruction,” Digit. Investig., vol. 11, no. 3, pp. 224-233, 2014, doi:
10.1016/1.diin.2014.06.008.

C. Hargreaves and J. Patterson, “An automated timeline reconstruction
approach for digital forensic investigations,” Proc. Digit. Forensic Res.
Conf. DFRWS 2012 USA, vol. 9, pp. S69-S79, 2012, doi:
10.1016/1.diin.2012.05.006.

S. Soltani and S. A. H. Seno, “A formal model for event reconstruction in
digital forensic investigation,” Digit. Investig., vol. 30, pp. 148-160, 2019,
doi: 10.1016/j.diin.2019.07.006.

K. Chen, A. Clark, O. De Vel, G. Mohay, and Q. Brisbane, “Ecf — Event
Correlation for Forensics Introduction: Ecf System Requirements and
Design,” Network, no. November, pp. 1-10, 2003, [Online]. Available:
http://scissec.scis.ecu.edu.au/secauconfs/proceedings/2003/forensics/pdf/
11_final.pdf.

B. Schatz, G. Mohay, and A. Clark, “Rich Event Representation for
Computer Forensics,” Asia Pacific Ind. Eng. Manag. Syst. APIEMS 2004,
no. April 2016, pp. 1-16, 2004, [Online]. Available:
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:RICH+
EVENT+REPRESENTATION+FOR+COMPUTER+FORENSICS#0.

P. Gladyshev and A. Patel, “Finite state machine approach to digital event
reconstruction,” Digit. Investig., vol. 1, no. 2, pp. 130-149, Jun. 2004, doi:
10.1016/J.DIIN.2004.03.001.

DFS?: Automated Distributed File System Storage State
Reconstruction

[30]

[31]

[32]

[33]

[34]

[35]

J. James, P. Gladyshev, M. T. Abdullah, and Y. Zhu, “Analysis of evidence
using formal event reconstruction,” Lect. Notes Inst. Comput. Sci. Soc.
Telecommun. Eng., vol. 31 LNICST, pp. 85-98, 2010, doi: 10.1007/978-
3-642-11534-9 9.

M. N. Khan, E. Mnakhansussexacuk, and I. Wakeman, “Machine Learning
for Post-Event Timeline Reconstruction,” PGnet, pp. 1-4, 2006.

S. Y. Willassen, “Using simplified event calculus in digital investigation,”
Proc. ACM Symp. Appl. Comput., pp. 1438-1442, 2008, doi:
10.1145/1363686.1364020.

E. M. Clarke and W. Klieber, “Model Checking and the State Explosion
Problem,” vol. 1041377, no. 2005, pp. 1-30, 2012.

“Primitive Data Types (Learning the Java Language Basics),” 2018.
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html
(accessed Aug. 07, 2019).

M. Shanahan, “The Event Calculus Explained,” Wooldridge M.J., Veloso
M. Artif: Intell. Today, pp. 19-52, 1999, doi: 10.1016/b978-012369388-
4/50059-x.

11

