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In ultrasonic metal welding (UMW), tool wear significantly affects the weld quality and tool maintenance
constitutes a substantial part of production cost. Thus, tool condition monitoring (TCM) is crucial for UMW.
Despite extensive literature focusing on TCM for other manufacturing processes, limited studies are available on
TCM for UMW. Existing TCM methods for UMW require offline high-resolution measurement of tool surface
profiles, which leads to undesirable production downtime and delayed decision-making. This paper proposes a
completely online TCM system for UMW using sensor fusion and machine learning (ML) techniques. A data
acquisition (DAQ) system is designed and implemented to obtain in-situ sensing signals during welding pro-
cesses. A large feature pool is then extracted from the sensing signals. A subset of features are selected and
subsequently used by ML-based classification models. A variety of classification models are trained, validated,
and tested using experimental data. The best-performing classification models can achieve close to 100% clas-
sification accuracy for both training and test datasets. The proposed TCM system not only provides real-time
TCM for UMW but also can support optimal decision-making in tool maintenance. The TCM system can be
extended to predict remaining useful life (RUL) of tools and integrated with a controller to adjust welding pa-

rameters accordingly.

1. Introduction

UMW is an important manufacturing process used for joining multi-
layer, thin and conductive metals using high frequency oscillations
[1-5]. A notable industrial application of UMW is battery-tab joining in
the manufacturing of lithium-ion battery packs for electrical vehicles [3,
5]. UMW has also been successfully employed for automotive body
construction [1,6], joining of hybrid heat exchangers [5,7,8], and
electronic packaging [9,10]. Fig. 1 shows the schematic of a typical
ultrasonic metal welder. The welder has two main parts: (1) Actuator
which consists of moving parts such as transducer, booster, horn and
anvil; and (2) Controller which controls the movement of the actuator
components.

The surfaces of typical welder tools (i.e., horn and anvil) consist of
many pyramid-shape knurls [11-13]. UMW tools wear out quickly in
production, mostly in the form of material loss [11,12]. There exist
relative movements not only between horn and top sheet but also be-
tween bottom sheet and anvil. These relative movements are believed to
be a major cause of tool wear [11,14]. Tool maintenance is reported to
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constitute a significant portion of production cost in battery pack
manufacturing [11,12]. Tool maintenance related costs can be divided
into two major categories [11]: (1) costs induced by production down-
time and (2) costs for reworking, or refurbishing worn tools.

In UMW, tool wear significantly affects the weld quality [12,15] and
as a result the overall product quality. For example, a battery pack used
by Chevy Volt consists of hundreds of battery cells, which are joined
primarily using UMW. A single low-quality joint can result in the failure
of the entire battery pack. Therefore, vehicle battery manufacturing has
a strict requirement for joint quality to avoid high production losses, and
consequently employs a conservative tool maintenance strategy. In the
absence of a TCM system, a conservative tool replacement approach is
used [12]. The number of welds is used as a measure of tool wear and a
tool is replaced once a pre-determined limit is reached. This approach is
simple to implement but cannot account for machine-to-machine or
tool-to-tool variability. Thus, it may sacrifice some useful tool life and
lead to increased production cost. Furthermore, existing TCM methods
for UMW require frequent high-resolution measurement of tool surface
profiles to estimate tool wear development [12]. This approach is
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Fig. 1. Schematic of the ultrasonic metal welder [5].

cumbersome from operation point of view and increases production
downtime, thereby increasing production cost. As a result, an online
TCM system is critically required to ensure joint quality and reduce
production cost.

To address these issues, this paper proposes a completely online TCM
system for UMW using sensor fusion and ML techniques. An experi-
mental case study is used to validate this methodology. The main con-
tributions of this paper include the following:

Design and implementation of an automated DAQ system to obtain
in-situ sensing signals during welding processes.

Extraction and selection of useful features for distinguishing
different tool conditions in UMW.

Training, validation, and testing of a variety of classification models
using experimental data.

Discussion about the relationship between useful features and tool
wear mechanism in UMW.

Identification of useful sensing signals for TCM in UMW. Displace-
ment and acoustic emission (AE) signals proved to be more useful
than others.

Future recommendations to extend the proposed TCM system for
prediction of RUL of tools and integration with a controller to adjust
welding parameters accordingly.

The remainder of the paper is organized as follows: Section 2 pre-
sents a literature review of existing TCM methods. Section 3 introduces
the proposed methodology for developing an online TCM system and
explains each step in detail using an experimental case study. Section 4
discusses the experimental results. Section 5 provides conclusions and
recommendations for future work.

2. Literature review

TCM has been an active area of research in the past few decades due
to its importance in the manufacturing industry [16]. In particular, TCM
for machining including milling [17-21], grinding [22], turning [22,
23], and atomic force microscope tip-based nanomachining [24] as well
as forming [23,25,26] processes has received substantial attention. TCM
methods for machining processes that have been practiced and
described in the literature are summarized and discussed by
Abellan-Nebot and Subirén [16], Zhou and Xue [17] and Mohanraj et al.
[18]. TCM has also been studied for forming processes especially in
extrusion and forging processes and online TCM systems were developed
[25,26].

In general, TCM techniques can be categorized into two groups [12]:
direct and indirect methods. Direct methods rely on direct measure-
ments obtained by visual inspection, 3D-scanning, or computer vision
for determining tool wear, e.g., [18]. However, direct methods are not
preferred since they are cumbersome and may increase production
downtime and cost.
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Indirect methods utilize data from the sensors attached to the ma-
chine to infer the tool status using a decision-making model. Indirect
methods are often preferred because they do not involve any direct tool
measurements or substantial production downtime. Indirect methods
can further be categorized into model-based [18,27] and data-driven
methods [16,28]. Model-based methods require in-depth knowledge of
the tool wear mechanism for a manufacturing process. The tool wear
mechanism depends on varying process parameters and conditions [29].
This makes it difficult to develop an effective TCM system for some
manufacturing processes. On the other hand, data-driven methods use
artificial intelligence techniques such as ML or pattern recognition
methods [29]. These algorithms rely on past data and do not need to be
explicitly programmed. This makes them quite popular for TCM appli-
cations in manufacturing.

A comprehensive review on indirect data-driven TCM methods uti-
lizing artificial intelligence techniques is presented in [16]. A typical
workflow for developing an indirect TCM system includes the following
key steps [16]: (i) sensor selection, (ii) signal pre-processing, (iii) feature
generation, (iv) feature selection, and (v) decision-making algorithm.
Relevant features are calculated from sensing signals to represent data in
lower dimensions. In general, features can be categorized into three
groups: (1) time domain, (2) frequency domain, and (3) time-frequency
domain. Extensive literature about feature generation methods can be
found in [16,30]. Feature selection techniques are then used to select a
parsimonious set of features [31-33]. There exists a wide range of al-
gorithms for decision-making [18] such as fuzzy logic systems, Bayesian
networks, decision trees, support vector machine (SVM), and artificial
neural networks (ANN). Recent trends are shifting towards the use of
deep learning techniques which combine feature generation and model
training steps in a single process [19]. Some attempts have also been
made for adaptive process control using sensing signals [34-36].

A number of studies have been reported on data-driven TCM
methods, such as [19-23,25,26]. Zheng and Lin [19] used
time-frequency images of cutting force signals and convolutional neural
networks for TCM in machining process. Drouillet et al. [20] developed
neural networks to predict RUL using the machine spindle power values
in a milling process. Zhou and Xue [21] developed a multi-sensor fusion
method for TCM in milling, in which a kernel-based extreme learning
machine and a modified genetic algorithm were used for parameter
search. Zhang and Shin [22] developed a multi-modal system for pre-
dicting tool wear, detecting chatter and tool chipping in turning pro-
cesses using the same set of sensing signals. Bhuiyan et al. [23] explored
the application of AE sensor to investigate the frequency of tool wear
and plastic deformation in TCM for turning processes. Kong and Naha-
vandi [25] and Kim [26] used multiple sensing signals and
decision-making algorithms such as principal curve fitting and neural
networks for TCM in forging processes.

Despite extensive literature focusing on online (or indirect) TCM
system development for other manufacturing processes, limited studies
have been reported on online TCM for UMW. Developing an online TCM
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Fig. 2. Schematic description of the online TCM system for UMW.

system for UMW is more challenging than other processes such as
machining and forming. UMW has characteristics of high oscillation
frequency (around 20 kHz) and short welding cycle (typically below 1 s)
[1,2]. Moreover, the UMW tools have complex shapes [12] and the
process itself has not been thoroughly understood.

Some previous research [11,12,15] has been reported on the devel-
opment of direct TCM systems for UMW. These methods rely on manual
tool surface measurement and none of them is completely online. The
tool wear progression in UMW was characterized by comparing tools at
four different tool wear stages [11]. For this purpose, the tool surfaces
were measured using a high-resolution 3D surface measurement system.
An impression method was used to measure tool surface without
removing the tool from the welder [12], and features were then calcu-
lated from cross-sectional tool surface profiles for TCM. A high-order
decomposition method is presented in [15] for TCM in UMW.

Some studies [35,37] have also been reported in the literature that
involve the usage of sensing signals for online quality monitoring in
UMW. An online monitoring system was developed for weld-quality
prediction in UMW of lithium-ion batteries [37]. Recently, Nong et al.
[35] utilized sensing signals for the control of UMW.

To summarize, limited studies are available on TCM for UMW.
Existing TCM methods for UMW require offline high-resolution mea-
surement of tool surface profiles, which leads to undesirable production
downtime and delayed decision-making. Therefore, there is a strong
need for a completely online TCM system for UMW using sensor fusion
and ML techniques.

3. Methodology

Fig. 2 presents a schematic description of the proposed online TCM
system for UMW. The first stage is the identification of relevant sensors
using domain expertise and installation of a DAQ setup. The second
stage is to run experiments and collect sensing signals for known tool
conditions. The third stage is to reduce the dimensionality of data by
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Fig. 3. Schematic of the sensors used for online TCM.
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extracting and selecting useful features from signals. The fourth stage is
the development of classification models. This process is iterative, and
involves training, validation and testing of a variety of classification
models with various hyper-parameter settings. Once satisfied with the
classification performance, the final stage is to deploy the model for
online TCM.

3.1. DAQ setup

The first stage is the design and implementation of an automated
DAQ system to obtain sensing signals during welding processes. Some of
the sensing signals require signal conditioning before being fed to the
DAQ device. Four relevant data sources were identified using UMW
domain knowledge as shown in Fig. 3 and are briefly described below.

. Power Signal: It provides a profile of instantaneous power used by
the welder during a welding process. This signal is directly obtained
from the welder controller.

. Displacement Signal: It provides a profile of instantaneous vertical
displacement of the horn. This signal is directly obtained from the
linear velocity displacement transducer (LVDT) sensor installed in
the welder actuator.

. Sound Signal: A microphone is placed close to the actuator to obtain
the sound signal. A pre-amplifier is used to amplify the sound signal
before the signal is transmitted to the DAQ device.

. AE Signal: An AE sensor is attached to the anvil to record acoustic
emissions generated during the welding process. A pre-amplifier is
used to amplify the AE signal.

3.2. Data collection
The welder has two main tools, namely, a horn and an anvil, whose

conditions need to be monitored. In this study, we have two horn con-
ditions, i.e., new and worn, and two anvil conditions, i.e., new and worn,

horn

») D] @ Microphone
I\

v Acoustic Emission
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Table 1 which result in four combined tool conditions as listed in Table 1.
Labels assigned to tool condition combinations. The tool surfaces were also measured using Keyence VK-X1000,
Label Horn condition Anvil condition which is a high-resolution 3D surface measurement system. A compar-
o New New ison of tool conditions for horn and anvil is shown in Figs. 4 and 5 .
1 New Worn Using the process parameters listed in Table 2, 50 samples were
2 Worn New welded for each tool condition, and corresponding sensing signals were
3 Worn Worn recorded. The signals were pre-processed to remove noise and trimmed

to extract data corresponding to the weld-duration only.

3D Scan

150

y-axis [mm]
Height [um]
Height [um)]

50

20
y-axis [mm]

- E -

E 21 E

- 3

Worn E S % =
R] ‘o =

Horn % T 0
> T

X . . i

150
» N Y, ' 4 3
X ¥ OLY LYY ML LY 100
. % LY ‘ 50
y-axis [mm] .
0 20 40 60 0 -
axis [mm] 0 x-axis [mm] 0
Fig. 4. Comparison of new and worn horns.

pE sy
A Ay A ,
‘ \ At

Optical Image Top View 3D Scan

500
400

300

y-axis [mm]
Height [pum]

200

Height [um]

100

500

N
=}
o

Height [um]

500
250

y-axis [mm]
Height [um]

N
(=3
o

100

y-axis [mm]

x-axis [mm]

Fig. 5. Comparison of new and worn anvils.

809



Q. Nagzir and C. Shao

Table 2
UMW process parameters used for data collection.
Parameter Value
Weld coupon Material Copper
Dimensions 50.8 mm x 25.4 mm x 0.2032 mm
Controller settings Control mode Time mode
Weld time 0.5s
Pressure 40 Psi
Amplitude 45 pm
DAQ settings Trigger mode On
Signal duration 2s
Sample rate 250 kHz

Fig. 6 shows all sensing signals for each tool condition. AE and sound
signals are visualized in frequency domain in Fig. 7 because of their
periodic nature. This visualization helps in understanding the overall
distribution of sensing signals and identifying the differences in signals
across different tool conditions. It can be observed that sensing signals
contain rich information about the process; however, it is difficult to
visually differentiate among tool conditions. There exists strong varia-
tions within each tool condition, leading to substantial overlap between
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tool conditions. The worn/worn tool condition shows the strongest
within-class variation, indicating poor process robustness.

The variation in signals and lack of robustness in UMW process
makes it challenging to develop an online TCM system. Simple features
might not be sufficient to develop an effective TCM system. Therefore,
extensive feature engineering is required to generate a large feature pool
from sensing signals and then select the most useful features using
feature selection techniques.

3.3. Feature engineering

3.3.1. Feature generation

As observed in Figs. 6 and 7, sensing signals contain rich information
about the process and the tool condition. However, being unstructured
and high dimensional, the sensing signals cannot be directly used to
train traditional classification algorithms. Therefore, it is required to
reduce data dimensionality and extract useful features from the signals.
Features can be broadly divided into two main categories.

1. Time-Domain Features
Signal statistics such as mean, median, standard deviation, kur-
tosis, skewness, root mean square, maximum, and minimum can be
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Fig. 6. Raw sensing signals for tool conditions horn/anvil.
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potentially useful features. Other useful features are calculated using
domain knowledge such as the welding energy which is the area
under the power curve, and the change in displacement.
. Frequency-Domain Features

Frequency-domain representation of a signal is particularly useful
in the case of periodic signals such as sound and AE. It gives infor-
mation about dominant frequencies and is an effective way to
represent signals in lower dimensions. First ten peaks from the PSD of
AE and sound signals are used as features as shown in Fig. 8.

The UMW controller also saves parameters such as total energy and
power utilized in log files during the welding process. These parameters
are also included as potential features. The complete list of features
along with their descriptions can be found in Table 3.

3.3.2. Feature selection

In total, 97 features are calculated from sensing signals but not all of
them are useful in classification. Feature selection is often used to select
a subset of useful features and can be broadly categorized into three
types: [32,33] (1) wrapper methods, (2) filter methods, and (3)
embedded methods. It is desirable to only retain the most useful features
without discarding possibly useful information about the welding pro-
cess. In this study, the most useful features are selected using a feature
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selection procedure that is explained as follows. First, features with very
low variance, i.e., features that have the same or very close values in all
samples, are discarded. Then, we use multiple feature selection methods
that are available in the scikit-learn machine learning library to select 10
features each. These methods include (1) SelectKbest, (2) Select-
FromModel, (3) Featurelmportance, and (4) recursive feature elimina-
tion with cross-validation (RFECV). Interested readers are referred to
[38] for details. The final feature set is generated by taking union of
feature sets obtained in the previous step.

3.3.3. Feature subsets

There are different sources for the extracted features as listed in
Table 3. For online TCM system development, one approach is to utilize
all the sensing signals also known as sensor fusion and create a large
feature pool to be used by ML-based classification models. An alternative
approach is to utilize features only from individual sensing signals. Thus
depending on the sensing signals used, we can have various feature
subsets to be used for classification model development as listed in
Table 4. The sensor fusion feature set includes features from all the
sensing signals. Other feature subsets are named by the source of the
sensing signal.

It is interesting to compare the performance of classification models
developed using different feature subsets. It is expected that the model
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Table 3
List of features.
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Table 4
List of features selected for classification model training.

Source Feature Description Feature set Count  Selected features
Log files Energy Energy consumed during welding Sensor fusion 15 Disp_initial, Aentropy, Astd, Dskewness, Arms,
Power Peak power during welding Apsd_pk9, Apsd_pk6, Dpsd_pk2, Dentropy, Dpsd_pk3,
PreHeight Horn height before weld Disp_change, Apsd_pk7, Disp_final, Dmean, Akurtosis
Ezit:;:g;;ght gg;igte;ﬁhﬁoﬁe;e‘::}f Log features 4 Energy, quer, PreHeight, PostHeight,
ChangeHeight
AE Signal 2223?3[1 x:?azfo?i]sil i?garial AE features 14 Apsd_pk6, Apsd_pk7, Apsd_pk9, Apsd_f2, Apsd_pk5,
Astd Standard deviation of AE signal Astd, Arms, Amean, Aentrolpy, Apsd_pk1, Apsd_pk2,
Akurtosis Kurtosis of AE signal Apsd.pk3, Arange, Akurtosis
Askewness Skewness of AE signal Displacement 16 Dpsd_f3, Dpsd_pk2, Dskewness, Dkurtosis, Dpsd_pk3,
Arms Root mean square value of AE signal features Drange, Dmean, Disp_final, Dstd, Dpsd_meanfreq,
Amax Maximum value of AE signal Dpsd_f5, Dentropy, Disp_change, Dpsd_pk4,
Amin Minimum value of AE signal Dmedian, Disp_initial
Arange Range of AE signal .
Aentropy Entropy of AE signal Power features 10 Pskevs{ness, Pentropy, Prms, Pkurtosis, Pstd,
Apsd_pk[n] The nth peak from psd of AE signal. n€ [1, Pmedian, Pmean, Prange, Energy, Pmax
10] Sound features 15 Spsd_pk3, Spsd_pk10, Smin, Spsd_pk8, Spsd_f8, Srms,
Apsd_f[n] Frequency at the nth peak of psd. n € [1, Spsd_pk9, Sstd, Sskewness, Spsd_pk2, Spsd_f10,
10] Spsd_f5, Smean, Spsd_pk5, Spsd_pk6
Apsd_meanfreq  Mean frequency of psd
Displacement Dmean Mean of displacement signal
signal
Dmedian Median of displacement signal Table 5 ) . .
Dstd Standard deviation of displacement signal Results f.or best-performing I.nodels among the various classification mod.els t.hat
Dkurtosis Kurtosis of displacement signal were trained and tested on different feature subsets using 5-fold cross validation.
Dskewness Skewness of displacement signal 5.Fold cross validation
Drms Root mean square value of displacement Feature set Classification - -
signal models Train Train Val Val
Dmax Maximum value of displacement signal Mean Std Mean Std
Dmin Minimum value of displacement signal Sensor fusion QDA 100.0 0.0 99.50 1.00
Disp_initial Displacement of horn at start of weld SVM linear 100.0 0.0 99.50 1.00
Disp_final Displacement of horn at end of weld KNN 100.0 0.0 99.00 2.00
Disp_change Change in displacement
Dpsd_pk[n] The nth peak from psd of displacement Log features SVM RBF 94.25 0.47 82.50 5.70
signal. n € [1, 5] QDA 86.00 1.16 80.00 5.70
Dpsd_f[n] Frequency at the nth peak of psd. n € [1, 5] Naive Bayes 83.12 2.34 79.00 4.36
Dpsd meanfreq  Mean frequency of psd AE features Extra tree 99.50 0.47 97.00  2.45
Power signal Pmean Mean of power signal Logistic 100.0 0 97.00 3.67
Pmedian Median of power signal regression
Pstd Standard deviation of power signal LDA 99.12 0.50 97.00 6.00
Pkurtosis Kurtosis of power signal Displacement LDA 100.0 0.0 9950  1.00
Pskewness Skewness of power signal features
Prms Root. mean square value of Power signal SVM linear 100.0 0.0 99.00 1.22
Pm.ax M?lx.lmum value of power s.1gnal Logistic 99.75 0.31 99.00 1.22
Pmin Minimum value of power signal regression
PEnergy Area under power signal curve
N K Power features LDA 88.88 1.55 83.50 10.79
Sound signal Smear.l Mea? of sound 51gflal SVM RBF 08.38 0.50 78.50 0.43
Smedian Median of sound signal QDA 95.12 1.08 77.50 10.0
Sstd Standard deviation of sound signal
Skurtosis Kurtosis of sound signal Sound features Gradient 100.0 0.00 86.50 8.31
Sskewness Skewness of sound signal boosting
Srms Root mean square value of sound signal Extra tree 100.0 0.00 85.00 10.25
Smax Maximum value of sound signal Random forest 98.62 0.73 81.00 11.14
Smin Minimum value of sound signal
Srange Range of sound signal
Sentropy Entropy of sound signal 3.4. Classification model development
Spsd_pk[n] The nth peak from psd of sound signal.
nell, 10] The dataset is used to train and test candidate ML classification
Spsd_f[n] Frequency at the nth peak of psd. n e [1, . . . . .
10] models using 5-fold cross validation. The candidate models include

Spsd_meanfreq Mean frequency of psd

developed using sensor fusion should give the best performance since it
uses the most information about the tool condition. However, hardware
resources can be minimized if a model developed using individual
sensing signals can provide comparable results.

Therefore, the feature selection process explained in Section 3.3.2 is
repeated for each feature subset. Table 4 summarizes the feature count
and selected features for each subset.

812

linear discriminant analysis (LDA), quadratic discriminant analysis
(QDA), logistic regression, K-nearest neighbors (KNN), SVM with
different kernels (linear, polynomial, and radial basis function — RBF),
naive Bayes, decision tree, random forest, gradient boosting, and extra
tree.

Hyper-parameters of classification algorithms influence the classifi-
cation performance and thus need to be carefully tuned. Considering the
wide range of ML algorithms and their hyper-parameters, it is difficult
and computationally expensive to find a globally optimal solution.
Therefore, an iterative approach is used for model training along with
hyper-parameter tuning until satisfactory results are achieved. Similar
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Fig. 10. Heat map of top 20 features.

to the feature selection process, the classification model development
process is repeated for each feature subset. The results from the best-
performing classification models for each feature subset are summa-
rized in Table 5.

4. Discussion

Promising results were achieved by the developed online TCM sys-
tem in the experimental case study. As listed in Table 5, the best-
performing models achieve close to 100% accuracy for both training
and validation datasets.

Comparison of classification accuracy results from different feature
subsets, as listed in Table 5, leads to some interesting observations.
Displacement and AE signals prove to be the most useful in predicting
tool conditions. Power and sound signals give reasonable results but are
not as good as the other two signals. Results obtained from the
displacement features subset are comparable to the results of sensor
fusion. Thus, for this case study with four tool conditions, a good TCM
system can be developed by using a displacement signal alone instead of
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using sensor fusion. This will not only save hardware resources but will
also result in faster data processing when deployed for real-time TCM.

Features are also ranked by their importance in each feature subset.
In the case of sensor fusion, the most useful features come from
displacement and AE signals as shown in Fig. 9. This again supports the
importance of these two signals.

Fig. 11 shows pair-plots of the most useful features from AE and
displacement signals. From the scatter plots, it can be observed that
important features can differentiate tool conditions well. These features
have good between-class separability and small variability within each
class. Fig. 12 shows pair-plots of some useful features from power and
sound signals. It can be observed that these features provide reasonable
separability between classes but they are not as good as the features
from the other two signals.

From the heat-map of features shown in Fig. 10, it can be seen that
some features are correlated to each other even though they are good in
differentiating among classes. These features are redundant and add
similar information to the classification model. Some of these features
can be discarded to make the algorithm more efficient.
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The displacement signal provides some insights in understanding the
tool wear mechanism. The signal represents the instantaneous distance
between the horn and the anvil. In particular, the initial displacement of
horn is quite helpful in understanding the process. Fig. 11shows the
distribution of Disp_initial. For new tools, this feature has nominal
values. As the anvil surface gets worn out, the weld coupons are placed
at lower height and Disp_initial will have lower values. Dis-
p_initial has higher values when a worn horn is used. A large vari-
ation in Disp_initial is observed when both horn and anvil are worn
out.

Disp_change is the difference between the final and initial dis-
placements of the horn. In other words, it represents the change in
thickness of weld coupon during the welding process. It is also helpful
for differentiating tool conditions. A larger value of Disp_change is
observed for the new anvil as compared to the worn anvil. This means
that the condition of the anvil primarily affects the change in thickness
of weld coupon.

Dentropy is another useful feature. A larger spread in Dentropy
values is observed when both the horn and the anvil are worn. It is a
useful feature for distinguishing the other three tool conditions from
each other because good separability is observed in Fig. 12.

Moreover, several features from the AE signal proved to be useful as
shown in Fig. 9. Some statistical features include Aentropy, Akur-
tosis, Arms, Astd, and Amean. There were some frequency-domain
features as well such as Apsd_pk7 and Apsd_pk6. While it is difficult
to interpret their physical meaning, they can distinguish tool conditions
effectively. This indicates that the tool wear mechanism is challenging to
fully understand and the proposed TCM system can provide essential
information that is not easily obtainable using physical knowledge about
UMW.

5. Conclusion and future work

Despite significant research work done in the area of TCM, limited
research exists on the TCM of UMW. Some studies have been performed
to develop TCM systems for UMW, but the existing methods require a
high-resolution measurement of tool surface profiles, which leads to
undesirable production downtime and delayed decision-making. This
research developed a completely online TCM system for UMW using
sensor fusion and ML techniques. A DAQ system was designed and
implemented to obtain multiple sensor signals including AE, displace-
ment, power, and sound signals during the welding process. A subset of
monitoring features were selected from a large feature pool and subse-
quently used by classification models. Experimental data was recorded
for four tool conditions and used to test the performance of the devel-
oped classifiers. The best classifiers achieved accuracy close to 100%
and their performance was very stable. AE and displacement signals
proved to be very useful in recognizing the four tool conditions.

The TCM system only classifies the tool condition but does not pro-
vide any information about RUL of tools. One future research topic can
be focused on developing an online system for RUL prediction. For this
purpose, it is required to record sensing signals for the complete life-
cycle of a tool. Once we have data for a sufficient number of tools, an
RUL prediction algorithm can be developed and integrated with the
TCM system.

Another interesting direction is to model the relationships between
tool conditions, weld quality and welding parameters such as pressure,
amplitude, energy and weld time. Response surface models can be
developed to characterize these relationships. These models along with
sensing signals can then be used to control the UMW process and
enhance weld quality when worn tool conditions are present, thus
increasing the tool service life and reducing the production cost.
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