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A B S T R A C T   

In ultrasonic metal welding (UMW), tool wear significantly affects the weld quality and tool maintenance 
constitutes a substantial part of production cost. Thus, tool condition monitoring (TCM) is crucial for UMW. 
Despite extensive literature focusing on TCM for other manufacturing processes, limited studies are available on 
TCM for UMW. Existing TCM methods for UMW require offline high-resolution measurement of tool surface 
profiles, which leads to undesirable production downtime and delayed decision-making. This paper proposes a 
completely online TCM system for UMW using sensor fusion and machine learning (ML) techniques. A data 
acquisition (DAQ) system is designed and implemented to obtain in-situ sensing signals during welding pro
cesses. A large feature pool is then extracted from the sensing signals. A subset of features are selected and 
subsequently used by ML-based classification models. A variety of classification models are trained, validated, 
and tested using experimental data. The best-performing classification models can achieve close to 100% clas
sification accuracy for both training and test datasets. The proposed TCM system not only provides real-time 
TCM for UMW but also can support optimal decision-making in tool maintenance. The TCM system can be 
extended to predict remaining useful life (RUL) of tools and integrated with a controller to adjust welding pa
rameters accordingly.   

1. Introduction 

UMW is an important manufacturing process used for joining multi- 
layer, thin and conductive metals using high frequency oscillations 
[1–5]. A notable industrial application of UMW is battery-tab joining in 
the manufacturing of lithium-ion battery packs for electrical vehicles [3, 
5]. UMW has also been successfully employed for automotive body 
construction [1,6], joining of hybrid heat exchangers [5,7,8], and 
electronic packaging [9,10]. Fig. 1 shows the schematic of a typical 
ultrasonic metal welder. The welder has two main parts: (1) Actuator 
which consists of moving parts such as transducer, booster, horn and 
anvil; and (2) Controller which controls the movement of the actuator 
components. 

The surfaces of typical welder tools (i.e., horn and anvil) consist of 
many pyramid-shape knurls [11–13]. UMW tools wear out quickly in 
production, mostly in the form of material loss [11,12]. There exist 
relative movements not only between horn and top sheet but also be
tween bottom sheet and anvil. These relative movements are believed to 
be a major cause of tool wear [11,14]. Tool maintenance is reported to 

constitute a significant portion of production cost in battery pack 
manufacturing [11,12]. Tool maintenance related costs can be divided 
into two major categories [11]: (1) costs induced by production down
time and (2) costs for reworking, or refurbishing worn tools. 

In UMW, tool wear significantly affects the weld quality [12,15] and 
as a result the overall product quality. For example, a battery pack used 
by Chevy Volt consists of hundreds of battery cells, which are joined 
primarily using UMW. A single low-quality joint can result in the failure 
of the entire battery pack. Therefore, vehicle battery manufacturing has 
a strict requirement for joint quality to avoid high production losses, and 
consequently employs a conservative tool maintenance strategy. In the 
absence of a TCM system, a conservative tool replacement approach is 
used [12]. The number of welds is used as a measure of tool wear and a 
tool is replaced once a pre-determined limit is reached. This approach is 
simple to implement but cannot account for machine-to-machine or 
tool-to-tool variability. Thus, it may sacrifice some useful tool life and 
lead to increased production cost. Furthermore, existing TCM methods 
for UMW require frequent high-resolution measurement of tool surface 
profiles to estimate tool wear development [12]. This approach is 
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cumbersome from operation point of view and increases production 
downtime, thereby increasing production cost. As a result, an online 
TCM system is critically required to ensure joint quality and reduce 
production cost. 

To address these issues, this paper proposes a completely online TCM 
system for UMW using sensor fusion and ML techniques. An experi
mental case study is used to validate this methodology. The main con
tributions of this paper include the following:  

• Design and implementation of an automated DAQ system to obtain 
in-situ sensing signals during welding processes.  

• Extraction and selection of useful features for distinguishing 
different tool conditions in UMW.  

• Training, validation, and testing of a variety of classification models 
using experimental data.  

• Discussion about the relationship between useful features and tool 
wear mechanism in UMW. 

• Identification of useful sensing signals for TCM in UMW. Displace
ment and acoustic emission (AE) signals proved to be more useful 
than others.  

• Future recommendations to extend the proposed TCM system for 
prediction of RUL of tools and integration with a controller to adjust 
welding parameters accordingly. 

The remainder of the paper is organized as follows: Section 2 pre
sents a literature review of existing TCM methods. Section 3 introduces 
the proposed methodology for developing an online TCM system and 
explains each step in detail using an experimental case study. Section 4 
discusses the experimental results. Section 5 provides conclusions and 
recommendations for future work. 

2. Literature review 

TCM has been an active area of research in the past few decades due 
to its importance in the manufacturing industry [16]. In particular, TCM 
for machining including milling [17–21], grinding [22], turning [22, 
23], and atomic force microscope tip-based nanomachining [24] as well 
as forming [23,25,26] processes has received substantial attention. TCM 
methods for machining processes that have been practiced and 
described in the literature are summarized and discussed by 
Abellan-Nebot and Subirón [16], Zhou and Xue [17] and Mohanraj et al. 
[18]. TCM has also been studied for forming processes especially in 
extrusion and forging processes and online TCM systems were developed 
[25,26]. 

In general, TCM techniques can be categorized into two groups [12]: 
direct and indirect methods. Direct methods rely on direct measure
ments obtained by visual inspection, 3D-scanning, or computer vision 
for determining tool wear, e.g., [18]. However, direct methods are not 
preferred since they are cumbersome and may increase production 
downtime and cost. 

Indirect methods utilize data from the sensors attached to the ma
chine to infer the tool status using a decision-making model. Indirect 
methods are often preferred because they do not involve any direct tool 
measurements or substantial production downtime. Indirect methods 
can further be categorized into model-based [18,27] and data-driven 
methods [16,28]. Model-based methods require in-depth knowledge of 
the tool wear mechanism for a manufacturing process. The tool wear 
mechanism depends on varying process parameters and conditions [29]. 
This makes it difficult to develop an effective TCM system for some 
manufacturing processes. On the other hand, data-driven methods use 
artificial intelligence techniques such as ML or pattern recognition 
methods [29]. These algorithms rely on past data and do not need to be 
explicitly programmed. This makes them quite popular for TCM appli
cations in manufacturing. 

A comprehensive review on indirect data-driven TCM methods uti
lizing artificial intelligence techniques is presented in [16]. A typical 
workflow for developing an indirect TCM system includes the following 
key steps [16]: (i) sensor selection, (ii) signal pre-processing, (iii) feature 
generation, (iv) feature selection, and (v) decision-making algorithm. 
Relevant features are calculated from sensing signals to represent data in 
lower dimensions. In general, features can be categorized into three 
groups: (1) time domain, (2) frequency domain, and (3) time-frequency 
domain. Extensive literature about feature generation methods can be 
found in [16,30]. Feature selection techniques are then used to select a 
parsimonious set of features [31–33]. There exists a wide range of al
gorithms for decision-making [18] such as fuzzy logic systems, Bayesian 
networks, decision trees, support vector machine (SVM), and artificial 
neural networks (ANN). Recent trends are shifting towards the use of 
deep learning techniques which combine feature generation and model 
training steps in a single process [19]. Some attempts have also been 
made for adaptive process control using sensing signals [34–36]. 

A number of studies have been reported on data-driven TCM 
methods, such as [19–23,25,26]. Zheng and Lin [19] used 
time-frequency images of cutting force signals and convolutional neural 
networks for TCM in machining process. Drouillet et al. [20] developed 
neural networks to predict RUL using the machine spindle power values 
in a milling process. Zhou and Xue [21] developed a multi-sensor fusion 
method for TCM in milling, in which a kernel-based extreme learning 
machine and a modified genetic algorithm were used for parameter 
search. Zhang and Shin [22] developed a multi-modal system for pre
dicting tool wear, detecting chatter and tool chipping in turning pro
cesses using the same set of sensing signals. Bhuiyan et al. [23] explored 
the application of AE sensor to investigate the frequency of tool wear 
and plastic deformation in TCM for turning processes. Kong and Naha
vandi [25] and Kim [26] used multiple sensing signals and 
decision-making algorithms such as principal curve fitting and neural 
networks for TCM in forging processes. 

Despite extensive literature focusing on online (or indirect) TCM 
system development for other manufacturing processes, limited studies 
have been reported on online TCM for UMW. Developing an online TCM 

Fig. 1. Schematic of the ultrasonic metal welder [5].  
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system for UMW is more challenging than other processes such as 
machining and forming. UMW has characteristics of high oscillation 
frequency (around 20 kHz) and short welding cycle (typically below 1 s) 
[1,2]. Moreover, the UMW tools have complex shapes [12] and the 
process itself has not been thoroughly understood. 

Some previous research [11,12,15] has been reported on the devel
opment of direct TCM systems for UMW. These methods rely on manual 
tool surface measurement and none of them is completely online. The 
tool wear progression in UMW was characterized by comparing tools at 
four different tool wear stages [11]. For this purpose, the tool surfaces 
were measured using a high-resolution 3D surface measurement system. 
An impression method was used to measure tool surface without 
removing the tool from the welder [12], and features were then calcu
lated from cross-sectional tool surface profiles for TCM. A high-order 
decomposition method is presented in [15] for TCM in UMW. 

Some studies [35,37] have also been reported in the literature that 
involve the usage of sensing signals for online quality monitoring in 
UMW. An online monitoring system was developed for weld-quality 
prediction in UMW of lithium-ion batteries [37]. Recently, Nong et al. 
[35] utilized sensing signals for the control of UMW. 

To summarize, limited studies are available on TCM for UMW. 
Existing TCM methods for UMW require offline high-resolution mea
surement of tool surface profiles, which leads to undesirable production 
downtime and delayed decision-making. Therefore, there is a strong 
need for a completely online TCM system for UMW using sensor fusion 
and ML techniques. 

3. Methodology 

Fig. 2 presents a schematic description of the proposed online TCM 
system for UMW. The first stage is the identification of relevant sensors 
using domain expertise and installation of a DAQ setup. The second 
stage is to run experiments and collect sensing signals for known tool 
conditions. The third stage is to reduce the dimensionality of data by 

extracting and selecting useful features from signals. The fourth stage is 
the development of classification models. This process is iterative, and 
involves training, validation and testing of a variety of classification 
models with various hyper-parameter settings. Once satisfied with the 
classification performance, the final stage is to deploy the model for 
online TCM. 

3.1. DAQ setup 

The first stage is the design and implementation of an automated 
DAQ system to obtain sensing signals during welding processes. Some of 
the sensing signals require signal conditioning before being fed to the 
DAQ device. Four relevant data sources were identified using UMW 
domain knowledge as shown in Fig. 3 and are briefly described below.  

1. Power Signal: It provides a profile of instantaneous power used by 
the welder during a welding process. This signal is directly obtained 
from the welder controller.  

2. Displacement Signal: It provides a profile of instantaneous vertical 
displacement of the horn. This signal is directly obtained from the 
linear velocity displacement transducer (LVDT) sensor installed in 
the welder actuator.  

3. Sound Signal: A microphone is placed close to the actuator to obtain 
the sound signal. A pre-amplifier is used to amplify the sound signal 
before the signal is transmitted to the DAQ device.  

4. AE Signal: An AE sensor is attached to the anvil to record acoustic 
emissions generated during the welding process. A pre-amplifier is 
used to amplify the AE signal. 

3.2. Data collection 

The welder has two main tools, namely, a horn and an anvil, whose 
conditions need to be monitored. In this study, we have two horn con
ditions, i.e., new and worn, and two anvil conditions, i.e., new and worn, 

Fig. 2. Schematic description of the online TCM system for UMW.  

Fig. 3. Schematic of the sensors used for online TCM.  

Q. Nazir and C. Shao                                                                                                                                                                                                                          



Journal of Manufacturing Processes 62 (2021) 806–816

809

which result in four combined tool conditions as listed in Table 1. 
The tool surfaces were also measured using Keyence VK-X1000, 

which is a high-resolution 3D surface measurement system. A compar
ison of tool conditions for horn and anvil is shown in Figs. 4 and 5 . 

Using the process parameters listed in Table 2, 50 samples were 
welded for each tool condition, and corresponding sensing signals were 
recorded. The signals were pre-processed to remove noise and trimmed 
to extract data corresponding to the weld-duration only. 

Table 1 
Labels assigned to tool condition combinations.  

Label Horn condition Anvil condition 

0 New New 
1 New Worn 
2 Worn New 
3 Worn Worn  

Fig. 4. Comparison of new and worn horns.  

Fig. 5. Comparison of new and worn anvils.  
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Fig. 6 shows all sensing signals for each tool condition. AE and sound 
signals are visualized in frequency domain in Fig. 7 because of their 
periodic nature. This visualization helps in understanding the overall 
distribution of sensing signals and identifying the differences in signals 
across different tool conditions. It can be observed that sensing signals 
contain rich information about the process; however, it is difficult to 
visually differentiate among tool conditions. There exists strong varia
tions within each tool condition, leading to substantial overlap between 

tool conditions. The worn/worn tool condition shows the strongest 
within-class variation, indicating poor process robustness. 

The variation in signals and lack of robustness in UMW process 
makes it challenging to develop an online TCM system. Simple features 
might not be sufficient to develop an effective TCM system. Therefore, 
extensive feature engineering is required to generate a large feature pool 
from sensing signals and then select the most useful features using 
feature selection techniques. 

3.3. Feature engineering 

3.3.1. Feature generation 
As observed in Figs. 6 and 7, sensing signals contain rich information 

about the process and the tool condition. However, being unstructured 
and high dimensional, the sensing signals cannot be directly used to 
train traditional classification algorithms. Therefore, it is required to 
reduce data dimensionality and extract useful features from the signals. 
Features can be broadly divided into two main categories.  

1. Time-Domain Features 
Signal statistics such as mean, median, standard deviation, kur

tosis, skewness, root mean square, maximum, and minimum can be 

Table 2 
UMW process parameters used for data collection.   

Parameter Value 

Weld coupon Material Copper  
Dimensions 50.8 mm × 25.4 mm × 0.2032 mm 

Controller settings Control mode Time mode  
Weld time 0.5 s  
Pressure 40 Psi  
Amplitude 45 μm 

DAQ settings Trigger mode On  
Signal duration 2 s  
Sample rate 250 kHz  

Fig. 6. Raw sensing signals for tool conditions horn/anvil.  
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potentially useful features. Other useful features are calculated using 
domain knowledge such as the welding energy which is the area 
under the power curve, and the change in displacement.  

2. Frequency-Domain Features 
Frequency-domain representation of a signal is particularly useful 

in the case of periodic signals such as sound and AE. It gives infor
mation about dominant frequencies and is an effective way to 
represent signals in lower dimensions. First ten peaks from the PSD of 
AE and sound signals are used as features as shown in Fig. 8. 

The UMW controller also saves parameters such as total energy and 
power utilized in log files during the welding process. These parameters 
are also included as potential features. The complete list of features 
along with their descriptions can be found in Table 3. 

3.3.2. Feature selection 
In total, 97 features are calculated from sensing signals but not all of 

them are useful in classification. Feature selection is often used to select 
a subset of useful features and can be broadly categorized into three 
types: [32,33] (1) wrapper methods, (2) filter methods, and (3) 
embedded methods. It is desirable to only retain the most useful features 
without discarding possibly useful information about the welding pro
cess. In this study, the most useful features are selected using a feature 

selection procedure that is explained as follows. First, features with very 
low variance, i.e., features that have the same or very close values in all 
samples, are discarded. Then, we use multiple feature selection methods 
that are available in the scikit-learn machine learning library to select 10 
features each. These methods include (1) SelectKbest, (2) Select
FromModel, (3) FeatureImportance, and (4) recursive feature elimina
tion with cross-validation (RFECV). Interested readers are referred to 
[38] for details. The final feature set is generated by taking union of 
feature sets obtained in the previous step. 

3.3.3. Feature subsets 
There are different sources for the extracted features as listed in 

Table 3. For online TCM system development, one approach is to utilize 
all the sensing signals also known as sensor fusion and create a large 
feature pool to be used by ML-based classification models. An alternative 
approach is to utilize features only from individual sensing signals. Thus 
depending on the sensing signals used, we can have various feature 
subsets to be used for classification model development as listed in 
Table 4. The sensor fusion feature set includes features from all the 
sensing signals. Other feature subsets are named by the source of the 
sensing signal. 

It is interesting to compare the performance of classification models 
developed using different feature subsets. It is expected that the model 

Fig. 7. PSD of AE and sound signals for tool conditions horn/anvil.  

Fig. 8. Frequency domain features extracted from PSD of sensing signals.  
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developed using sensor fusion should give the best performance since it 
uses the most information about the tool condition. However, hardware 
resources can be minimized if a model developed using individual 
sensing signals can provide comparable results. 

Therefore, the feature selection process explained in Section 3.3.2 is 
repeated for each feature subset. Table 4 summarizes the feature count 
and selected features for each subset. 

3.4. Classification model development 

The dataset is used to train and test candidate ML classification 
models using 5-fold cross validation. The candidate models include 
linear discriminant analysis (LDA), quadratic discriminant analysis 
(QDA), logistic regression, K-nearest neighbors (KNN), SVM with 
different kernels (linear, polynomial, and radial basis function – RBF), 
naive Bayes, decision tree, random forest, gradient boosting, and extra 
tree. 

Hyper-parameters of classification algorithms influence the classifi
cation performance and thus need to be carefully tuned. Considering the 
wide range of ML algorithms and their hyper-parameters, it is difficult 
and computationally expensive to find a globally optimal solution. 
Therefore, an iterative approach is used for model training along with 
hyper-parameter tuning until satisfactory results are achieved. Similar 

Table 3 
List of features.  

Source Feature Description 

Log files Energy Energy consumed during welding  
Power Peak power during welding  
PreHeight Horn height before weld  
PostHeight Horn height after weld  
ChangeHeight Change in horn height 

AE Signal Amean Mean of AE signal  
Amedian Median of AE signal  
Astd Standard deviation of AE signal  
Akurtosis Kurtosis of AE signal  
Askewness Skewness of AE signal  
Arms Root mean square value of AE signal  
Amax Maximum value of AE signal  
Amin Minimum value of AE signal  
Arange Range of AE signal  
Aentropy Entropy of AE signal  
Apsd_pk[n] The nth peak from psd of AE signal. n ∈ ⟦1, 

10⟧  
Apsd_f[n] Frequency at the nth peak of psd. n ∈ ⟦1, 

10⟧  
Apsd_meanfreq Mean frequency of psd 

Displacement 
signal 

Dmean Mean of displacement signal  

Dmedian Median of displacement signal  
Dstd Standard deviation of displacement signal  
Dkurtosis Kurtosis of displacement signal  
Dskewness Skewness of displacement signal  
Drms Root mean square value of displacement 

signal  
Dmax Maximum value of displacement signal  
Dmin Minimum value of displacement signal  
Disp_initial Displacement of horn at start of weld  
Disp_final Displacement of horn at end of weld  
Disp_change Change in displacement  
Dpsd_pk[n] The nth peak from psd of displacement 

signal. n ∈ ⟦1, 5⟧  
Dpsd_f[n] Frequency at the nth peak of psd. n ∈ ⟦1, 5⟧  
Dpsd_meanfreq Mean frequency of psd 

Power signal Pmean Mean of power signal  
Pmedian Median of power signal  
Pstd Standard deviation of power signal  
Pkurtosis Kurtosis of power signal  
Pskewness Skewness of power signal  
Prms Root mean square value of power signal  
Pmax Maximum value of power signal  
Pmin Minimum value of power signal  
PEnergy Area under power signal curve 

Sound signal Smean Mean of sound signal  
Smedian Median of sound signal  
Sstd Standard deviation of sound signal  
Skurtosis Kurtosis of sound signal  
Sskewness Skewness of sound signal  
Srms Root mean square value of sound signal  
Smax Maximum value of sound signal  
Smin Minimum value of sound signal  
Srange Range of sound signal  
Sentropy Entropy of sound signal  
Spsd_pk[n] The nth peak from psd of sound signal. 

n ∈ ⟦1, 10⟧  
Spsd_f[n] Frequency at the nth peak of psd. n ∈ ⟦1, 

10⟧  
Spsd_meanfreq Mean frequency of psd  

Table 4 
List of features selected for classification model training.  

Feature set Count Selected features 

Sensor fusion 15 Disp_initial, Aentropy, Astd, Dskewness, Arms, 
Apsd_pk9, Apsd_pk6, Dpsd_pk2, Dentropy, Dpsd_pk3, 
Disp_change, Apsd_pk7, Disp_final, Dmean, Akurtosis 

Log features 4 Energy, Power, PreHeight, PostHeight, 
ChangeHeight 

AE features 14 Apsd_pk6, Apsd_pk7, Apsd_pk9, Apsd_f2, Apsd_pk5, 
Astd, Arms, Amean, Aentropy, Apsd_pk1, Apsd_pk2, 
Apsd_pk3, Arange, Akurtosis 

Displacement 
features 

16 Dpsd_f3, Dpsd_pk2, Dskewness, Dkurtosis, Dpsd_pk3, 
Drange, Dmean, Disp_final, Dstd, Dpsd_meanfreq, 
Dpsd_f5, Dentropy, Disp_change, Dpsd_pk4, 
Dmedian, Disp_initial 

Power features 10 Pskewness, Pentropy, Prms, Pkurtosis, Pstd, 
Pmedian, Pmean, Prange, Energy, Pmax 

Sound features 15 Spsd_pk3, Spsd_pk10, Smin, Spsd_pk8, Spsd_f8, Srms, 
Spsd_pk9, Sstd, Sskewness, Spsd_pk2, Spsd_f10, 
Spsd_f5, Smean, Spsd_pk5, Spsd_pk6  

Table 5 
Results for best-performing models among the various classification models that 
were trained and tested on different feature subsets using 5-fold cross validation.  

Feature set Classification 
models 

5-Fold cross validation 

Train 
Mean 

Train 
Std 

Val 
Mean 

Val 
Std 

Sensor fusion QDA 100.0 0.0 99.50 1.00  
SVM linear 100.0 0.0 99.50 1.00  
KNN 100.0 0.0 99.00 2.00 

Log features SVM RBF 94.25 0.47 82.50 5.70  
QDA 86.00 1.16 80.00 5.70  
Naive Bayes 83.12 2.34 79.00 4.36 

AE features Extra tree 99.50 0.47 97.00 2.45  
Logistic 
regression 

100.0 0 97.00 3.67  

LDA 99.12 0.50 97.00 6.00 

Displacement 
features 

LDA 100.0 0.0 99.50 1.00  

SVM linear 100.0 0.0 99.00 1.22  
Logistic 
regression 

99.75 0.31 99.00 1.22 

Power features LDA 88.88 1.55 83.50 10.79  
SVM RBF 98.38 0.50 78.50 9.43  
QDA 95.12 1.08 77.50 10.0 

Sound features Gradient 
boosting 

100.0 0.00 86.50 8.31  

Extra tree 100.0 0.00 85.00 10.25  
Random forest 98.62 0.73 81.00 11.14  
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to the feature selection process, the classification model development 
process is repeated for each feature subset. The results from the best- 
performing classification models for each feature subset are summa
rized in Table 5. 

4. Discussion 

Promising results were achieved by the developed online TCM sys
tem in the experimental case study. As listed in Table 5, the best- 
performing models achieve close to 100% accuracy for both training 
and validation datasets. 

Comparison of classification accuracy results from different feature 
subsets, as listed in Table 5, leads to some interesting observations. 
Displacement and AE signals prove to be the most useful in predicting 
tool conditions. Power and sound signals give reasonable results but are 
not as good as the other two signals. Results obtained from the 
displacement features subset are comparable to the results of sensor 
fusion. Thus, for this case study with four tool conditions, a good TCM 
system can be developed by using a displacement signal alone instead of 

using sensor fusion. This will not only save hardware resources but will 
also result in faster data processing when deployed for real-time TCM. 

Features are also ranked by their importance in each feature subset. 
In the case of sensor fusion, the most useful features come from 
displacement and AE signals as shown in Fig. 9. This again supports the 
importance of these two signals. 

Fig. 11 shows pair-plots of the most useful features from AE and 
displacement signals. From the scatter plots, it can be observed that 
important features can differentiate tool conditions well. These features 
have good between-class separability and small variability within each 
class. Fig. 12 shows pair-plots of some useful features from power and 
sound signals. It can be observed that these features provide reasonable 
separability between classes but they are not as good as the features 
from the other two signals. 

From the heat-map of features shown in Fig. 10, it can be seen that 
some features are correlated to each other even though they are good in 
differentiating among classes. These features are redundant and add 
similar information to the classification model. Some of these features 
can be discarded to make the algorithm more efficient. 

Fig. 9. Top 20 features ranked in order of their usefulness for class labels differentiation.  

Fig. 10. Heat map of top 20 features.  
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Fig. 11. Scatter plot of top 5 features that were extracted from AE and displacement signals.  

Fig. 12. Scatter plot of top 5 features that were extracted from power and sound signals.  
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The displacement signal provides some insights in understanding the 
tool wear mechanism. The signal represents the instantaneous distance 
between the horn and the anvil. In particular, the initial displacement of 
horn is quite helpful in understanding the process. Fig. 11shows the 
distribution of Disp_initial. For new tools, this feature has nominal 
values. As the anvil surface gets worn out, the weld coupons are placed 
at lower height and Disp_initial will have lower values. Dis
p_initial has higher values when a worn horn is used. A large vari
ation in Disp_initial is observed when both horn and anvil are worn 
out. 

Disp_change is the difference between the final and initial dis
placements of the horn. In other words, it represents the change in 
thickness of weld coupon during the welding process. It is also helpful 
for differentiating tool conditions. A larger value of Disp_change is 
observed for the new anvil as compared to the worn anvil. This means 
that the condition of the anvil primarily affects the change in thickness 
of weld coupon. 

Dentropy is another useful feature. A larger spread in Dentropy 
values is observed when both the horn and the anvil are worn. It is a 
useful feature for distinguishing the other three tool conditions from 
each other because good separability is observed in Fig. 12. 

Moreover, several features from the AE signal proved to be useful as 
shown in Fig. 9. Some statistical features include Aentropy, Akur
tosis, Arms, Astd, and Amean. There were some frequency-domain 
features as well such as Apsd_pk7 and Apsd_pk6. While it is difficult 
to interpret their physical meaning, they can distinguish tool conditions 
effectively. This indicates that the tool wear mechanism is challenging to 
fully understand and the proposed TCM system can provide essential 
information that is not easily obtainable using physical knowledge about 
UMW. 

5. Conclusion and future work 

Despite significant research work done in the area of TCM, limited 
research exists on the TCM of UMW. Some studies have been performed 
to develop TCM systems for UMW, but the existing methods require a 
high-resolution measurement of tool surface profiles, which leads to 
undesirable production downtime and delayed decision-making. This 
research developed a completely online TCM system for UMW using 
sensor fusion and ML techniques. A DAQ system was designed and 
implemented to obtain multiple sensor signals including AE, displace
ment, power, and sound signals during the welding process. A subset of 
monitoring features were selected from a large feature pool and subse
quently used by classification models. Experimental data was recorded 
for four tool conditions and used to test the performance of the devel
oped classifiers. The best classifiers achieved accuracy close to 100% 
and their performance was very stable. AE and displacement signals 
proved to be very useful in recognizing the four tool conditions. 

The TCM system only classifies the tool condition but does not pro
vide any information about RUL of tools. One future research topic can 
be focused on developing an online system for RUL prediction. For this 
purpose, it is required to record sensing signals for the complete life- 
cycle of a tool. Once we have data for a sufficient number of tools, an 
RUL prediction algorithm can be developed and integrated with the 
TCM system. 

Another interesting direction is to model the relationships between 
tool conditions, weld quality and welding parameters such as pressure, 
amplitude, energy and weld time. Response surface models can be 
developed to characterize these relationships. These models along with 
sensing signals can then be used to control the UMW process and 
enhance weld quality when worn tool conditions are present, thus 
increasing the tool service life and reducing the production cost. 
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