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SUMMARY
All multicellular organisms develop through one of two basic routes: they either aggregate from free-living
cells, creating potentially chimeric multicellular collectives, or they develop clonally via mother-daughter
cellular adhesion. Although evolutionary theory makes clear predictions about trade-offs between these
developmental modes, these have never been experimentally tested in otherwise genetically identical organ-
isms. We engineered unicellular baker’s yeast (Saccharomyces cerevisiae) to develop either clonally (‘‘snow-
flake’’;Dace2) or aggregatively (‘‘floc’’; GAL1p::FLO1) and examined their fitness in a fluctuating environment
characterized by periods of growth and selection for rapid sedimentation. When cultured independently, ag-
gregation was far superior to clonal development, providing a 35% advantage during growth and a 2.5-fold
advantage during settling selection. Yet when competed directly, clonally developing snowflake yeast rapidly
displaced aggregative floc. This was due to unexpected social exploitation: snowflake yeast, which do not
produce adhesive FLO1, nonetheless become incorporated into flocs at a higher frequency than floc cells
themselves. Populations of chimeric clusters settle much faster than floc alone, providing snowflake yeast
with a fitness advantage during competition. Mathematical modeling suggests that such developmental
cheating may be difficult to circumvent; hypothetical ‘‘choosy floc’’ that avoid exploitation by maintaining
clonality pay an ecological cost when rare, often leading to their extinction. Our results highlight the conflict
at the heart of aggregative development: non-specific cellular binding provides a strong ecological advan-
tage—the ability to quickly form groups—but this very feature leads to its exploitation.
INTRODUCTION

The evolution of complex life on Earth has occurred through key

steps, inwhich formerly autonomousorganismsevolve tobecome

integral parts of a larger, higher level organism [1–5]. These have

been termedmajor transitions in evolution [5] or evolutionary tran-

sitions in individuality [2, 6], one example of which is the transition

from uni- to multicellularity. Multicellularity has evolved at least 25

times in organisms as diverse as bacteria [7, 8], archaea [9], and

among deeply divergent lineages of eukaryotes [10, 11].

There are two basic modes of multicellular development. Cells

can ‘‘stay together’’ after mitotic division, resulting in clonal

development if the life cycle includes a genetic bottleneck [7,

12]. Alternatively, potentially unrelated cells can ‘‘come

together’’ via aggregation, which occurs in a few groups of

terrestrial micro-organisms [13, 14]. Clonal development is

thought to possess several advantages over aggregation for

multicellular construction. First, under clonal development, cells

comprising the multicellular organism have a high degree of ge-

netic relatedness [15], which aligns the fitness interests of
Current Bi
individual cells, facilitating the evolution of cooperative traits

(e.g., division of labor). Additionally, clonal development limits

the potential for evolutionary conflict, as there is little standing

genetic variation within an organism for selection to act on [16–

19]. Through the same mechanism, clonal development stifles

opportunities for the evolution of parasitic cell lineages that infil-

trate and exploit functional organisms [20]. Second, organismal

clonality facilitates cluster-level selection. Genetic uniformity

among the cells in a group results in a direct correspondence be-

tween emergent multicellular traits and heritable information (pri-

marily genes) responsible for generating these traits [21, 22].

Variation in the identity and frequency of different genotypes of

cells within aggregates across multicellular generations under-

mines the heritability of emergent multicellular traits. Further,

clonal development facilitates the shift from selection acting

among cells to whole groups, simultaneously minimizing

within-group genetic variation (thus largely preventing within-

group selection) and maximizing between-group genetic

variation [16]. Perhaps because of these benefits, the majority

of independently evolved multicellular lineages develop clonally.
ology 30, 4155–4164, November 2, 2020 ª 2020 Elsevier Inc. 4155

mailto:will.ratcliff@biology.gatech.edu
https://doi.org/10.1016/j.cub.2020.08.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cub.2020.08.006&domain=pdf


Figure 1. Synthetic Yeast System to Study Clonal and Aggregative

Multicellular Development

(A) Synthetically created floc and snowflake yeast (FLO1 insert and ace2

knockout, respectively) labeled with either a red or green fluorescent marker.

Both strains were created from the same unicellular ancestor. Flocs may be

genetically diverse, although snowflake yeast form clonal clusters.

(B) Settling rate wasmeasured using high-resolution video acquisition of back-

illuminated yeast cultures over 5 min of settling. Individual pixel intensities,

which correlate to yeast density, were used to measure the rate of density

change (see Video S1).

(C) At every frame of the video, we calculated the density of each pixel within

the cuvette. Wemeasured the overall density change of the cuvette as the sum

of individual pixel density changes. Raw density data (shadowed lines) were

smoothed with a Savitzky-Golay smoothing function (dashed line), and the

maximum slope of these dynamics is calculated as the settling rate. Shown are

the density dynamics of fast (80:20 floc:snowflake) and slow (10:90 floc:s-

nowflake) co-cultures, as well as a cell-free control where no density change is

expected.

See also Video S1, Figure S6, and STAR Methods for technical details.
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Yet aggregative development possesses a unique (but largely

unappreciated) advantage: multicellular bodies can form far

more rapidly [12]. If a group is formed via the staying together

of cells after division, then its formation occurs by growth,

causing the time required for body formation to scale with

cellular generation time and organism size. In contrast, aggrega-

tion can occur far more rapidly. For example, aggregation ofDic-

tyostelium into a multicellular mound can occur just 4–6 h after

starvation [23], and flocculation of yeast can occur in seconds

[24]. Indeed, aggregative development is common in organisms

that rapidly switch from unicellular to multicellular life history

strategies upon sudden environmental change (e.g., starvation

in Dictyostelium discoideum [25] and Myxococcus xanthus

[26]). Aggregation may also bring together cells with comple-

mentary properties, taking advantage of mutualistic interactions

[27–31], but the evolutionary stability of this interaction generally

requires amechanism to limit social exploitation, such as a struc-

tured environment [31–34], host sanctions [35, 36], or partner fi-

delity across generations [37].

The origin of complex life cannot be understood in the

absence of evolutionary mechanisms. It thus is imperative that

we understand how basic mechanisms of multicellular develop-

ment effect the subsequent evolution of multicellular complexity.

Mathematical modeling [12, 19, 21, 22, 38–42] and experiments

in diverse systems [20, 43–47] have generated consistent and

robust predictions for the evolutionary consequences of varia-

tion in developmental mode. Yet, because no model organisms

develop through both routes, no experiments have directly

compared ecological versus evolutionary trade-offs between

aggregative and clonal development. Here, we circumvent this

historical limitation by engineering unicellular yeast (Saccharo-

myces cerevisiae) so that they formmulticellular groups via either

clonal development or aggregation.

The yeast S. cerevisiae can aggregate to form large clumps

consisting of thousands of cells termed ‘‘flocs.’’ Aggregation oc-

curs via a lectin-like bonding between cell-surface FLO proteins

and cell wall sugars in adjacent cells [44, 48]. Flocs preferentially

form among mutual FLO+ cells; FLO� cells tend to be excluded

from the group [49]. However, genetically diverse strains can

join a floc if they are FLO+ (Figure 1A). In contrast, ‘‘snowflake

yeast’’ develop clonally, forming multicellular groups as a

consequence of failed septum degradation after cytokinesis

[50] (Figure 1A). When a cell-cell connection is severed, the

group produces a viable propagule. This propagule experiences

a single-cell genetic (but not physiological) bottleneck, as the

most basal cell in the propagule is the mitotic parent of every

cell in the group [50].

We engineered isogenic floc and snowflake yeast from a com-

mon unicellular ancestor and grew them in an environment that

favors a rapid transition from unicellularity to multicellularity.

Specifically, yeast were cultured with 24 h of shaking incubation,

which selects for high growth rates, followed by selection for

rapid sedimentation, which favors fast-settling groups. Aggrega-

tion was a superior strategy in monocultures: floc yeast, which

spend most of the growth phase as unicells or small groups,

grew 35% faster than snowflake yeast and rapidly formed large

flocs during settling selection, settling 2.5 times as fast as snow-

flake yeast. Yet, in competition, snowflake yeast rapidly outcom-

pete floc, the result of an unexpected social interaction. Despite



Figure 2. Aggregative Floc Yeast AreMore Fit

Than Clonally Developing Snowflake Yeast in

an Environment Favoring Rapid Group For-

mation

Floc yeast are superior in two important life history

traits that affect fitness in our experimental system.

(A) Floc yeast settle 2.5 times faster than snowflake

yeast (t8 = 9.82; p < 0.0001; two-tailed t test). Error

bars are the standard deviation of the mean (n = 8).

(B) Floc yeast outcompete snowflake yeast over one

24-h growth period. Fitness was measured as the

ratio of Malthusian growth parameters [55] for one

24-h period. The error bar is the standard deviation

of the mean (n = 5).

See also Video S2.
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being FLO�, snowflake yeast embed themselves within floc clus-

ters, making up a disproportionately high fraction of the biomass

within flocs. Spatial analysis of chimeric aggregates

demonstrates that snowflake yeast are uniformly, not randomly,

distributed within the floc, suggesting a simple physical interac-

tion between floc and snowflake is necessary for the formation of

chimeric aggregate clusters. In principle, this parasitism could

be prevented if floc evolved a partner choice mechanism,

excluding heterospecific genotypes. We examined the invasion

of such a ‘‘choosy’’ floc genotype using mathematical modeling.

In our model, selective binding is ecologically costly, as there is

an advantage for individual cells to form groups with as many

other cells as possible (this way they form the largest groups).

Rare choosy floc is therefore unable to invade permissive floc,

snowflake yeast, or a population consisting of both. Because

choosy floc’s aggregative performance is strongly frequency

dependent, it should perform poorly (relative to a permissive

floc) in genetically diverse populations. This ecological cost

may limit the evolution of strong kin recognition during aggrega-

tive development, paving the way for persistent evolutionary

conflict.

RESULTS

There are two important life history traits that affect fitness in our

fluctuating environment: growth during 24-h batch culture and

settling rate during settling selection [51–53]. Tomeasure settling

rate, we developed a novel method to quantify the dynamical ef-

fects of aggregation and settling in real time (Figures 1B and 1C;

Video S1; see STAR Methods section for details). Floc yeast are

superior in both traits. First, floc yeast settle 2.5 times faster than

snowflake yeast, rapidly forming large aggregates during settling

selection (Figure 2A; Video S2; t8 = 9.82; p < 0.0001; two-tailed t

test). In direct competition, floc yeast outcompete snowflake

yeast over one 24-h growth cycle (Figure 2B). This is likely a

consequence of nutrient and oxygen limitation in snowflake clus-

ters, which, in contrast to floc yeast, are always multicellular. To

exclude the possibility that elevated rates of cell death in
Current Biol
engineered snowflake yeast [51] may be

contributing to differential fitness during

growth, we measured the percentage of

dead cells during stationary phase of floc

and snowflake yeast. Both strains dis-
played similar rates of cell death (Figure S6C; p = 0.18; two-tailed

t test). This is consistent with previous work showing that exper-

imentally evolved snowflake yeast with loss-of-function muta-

tions in ace2 had apoptosis rates similar to that of the ancestor

[54].

Co-culturing floc and snowflake yeast introduced markedly

different behaviors. The settling rates of mixed populations

increased dramatically (Figure 3A) and was highest when snow-

flake yeast were at an intermediate frequency (20%–50%;

F10,33 = 25.5; p < 0.0001; ANOVA, pairwise differences assessed

with Tukey’s honestly significant difference [HSD] with a = 0.05).

To examine the effects of co-culture on fitness, we performed a

series of competition experiments (two rounds of growth and

settling) across a range of starting snowflake frequencies, from

1% to 99%, as determined by the ratio of initial inoculum volume

given that both strains grow to similar final cell densities at sta-

tionary phase. Surprisingly, snowflake yeast were more fit than

floc in all competitions, and their fitness was highly frequency

dependent. When snowflake yeast were rare (starting at 1% of

the initial culture inoculum), they had a small competitive advan-

tage over floc (Figure 3B). This increased dramatically when they

were slightly more common (10%–20% of initial culture inoc-

ulum) and then declined until snowflake yeast reached 80%.

Flocculation was impeded when snowflake yeast constituted

>80% of the population, allowing multicellular snowflake yeast

to compete against largely unicellular floc, causing their relative

fitness to again increase dramatically (Figures 3B and 3D). These

dynamics appear to be the result of an unexpected interaction:

when mixed together, snowflake yeast and floc form chimeric

clusters during the settling phase of the experiment (Figure 3C).

However, snowflake and floc yeast possess similar fitness

(competitive success of 1) when snowflake yeast are at 80% fre-

quency, suggesting that snowflake yeast may not be able to fully

displace floc over longer evolutionary timescales. To test this, we

performed an invasion assay with snowflake yeast starting at

2.5% of the initial population. Snowflake yeast were not only

capable of invading floc, they drove them extinct after 10 days

of competition (Figure 3E).
ogy 30, 4155–4164, November 2, 2020 4157



Figure 3. Co-culturing Floc and Snowflake Yeast

(A) Mixed populations settle more rapidly than snowflake yeast or floc alone. Settling occurs the most rapidly at intermediate frequencies (20%–50%; F10,33 =

25.5; p < 0.0001; ANOVA followed by Tukey’s HSD). Error bars are the standard deviation of four biological replicates; settling rate units are arbitrary.

(B) We measured the competitive success of snowflake yeast across two rounds of growth and settling. Snowflake yeast were more fit than floc at all genotype

frequencies. Error bars are the standard deviation of five biological replicates.

(C and D) Snowflake yeast form chimeric aggregates with floc. Shown are snowflake yeast and GFP-tagged floc yeast starting at an initial inoculation ratio of

30:70 snowflake:floc-GFP (C) or 99:1 (D). Note that floc are below the concentration threshold required for aggregation, existing as unicells. Scale bars are

100 mm.

(E) Snowflake, starting at 2.5% population frequency, were able to fully displace floc over a 10-day competition experiment. Error bars are standard deviation of

five biological replicates (n = 5).
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To determine which phase of the periodic environmental

regime (i.e., growth versus settling) favored snowflake yeast dur-

ing competition with floc, we measured snowflake yeast

competitive success across one culture cycle. Consistent with

earlier experiments (Figure 2B), snowflake yeast lost to floc

over one 24-h growth cycle (Figure 4). Snowflake yeast fitness

during growth was negative frequency dependent (y =

�0.005x + 0.91; p < 0.0001; linear regression). This is likely a

consequence of overall nutrient consumption rates within our

populations. When slower growing snowflake yeast make up a

larger fraction of the population, they consume resources less

quickly, extending the time over which their floc competitors

can compound their growth rate advantage. In contrast to

growth, however, snowflake yeast possessed an advantage dur-

ing settling selection (Figure 4).
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One way that snowflake yeast could gain an advantage during

settling selection is if they are overrepresented in large, fast-

settling chimeric aggregates. This would be unexpected, as

FLO1 yeast preferentially adhere to other floc cells, efficiently

excluding non-flocculating unicells from flocs [49] (Figure S1A).

We imaged co-cultures in which snowflake yeast were either

rare (20% initial culture inoculum; Figure 5A) or common (80%

initial culture inoculum; Figure 5B). Surprisingly, snowflake yeast

were overrepresented in chimeric flocs (i.e., groups larger than

the largest individual snowflakes; Figure 5C) at both genotype

frequencies (Figures 5A and 5B).

One feature of chimeric aggregates that stands out is the

appearance of a relatively uniform distribution of snowflake yeast

within the aggregate (Figure S1B). We rarely see large patches of

pure floc cells and never see large patches of just snowflake



Figure 4. Snowflake Yeast Outcompete Floc during Settling Selec-

tion when Forming Chimeric Aggregates

We examined the competitive success of snowflake yeast in competition with

floc during both growth (over 24 h of culture) and settling selection (5min at 13

g). Snowflake yeast had lower fitness at all starting genotype frequencies

during the growth phase of the culture yet had higher fitness during settling

selection. This is in stark contrast to what we observe in pure culture, where

floc yeast settle 2.5 times as quickly as snowflakes (Figure 1B). Error bars are

standard deviation of five biological replicates (n = 5).
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yeast. To quantify the spatial distribution of snowflake yeast

within chimeric aggregates, we first measured the spatial auto-

correlation function (Moran’s I). We found that the correlation

length of snowflake cells is similar in size to the cluster radius

(14.1 ± 0.2 mm, 14.2 ± 0.2 mm, 13.9 ± 0.1 mm, and 11.7 ±

1.3 mm for 30%, 20%, 10%, and 1% snowflake yeast,

respectively), as expected. We next characterized the spatial

distribution of whole snowflake clusters by calculating the pair

correlation function, g(r), which measures the probability of

finding two whole clusters separated by a given distance (Fig-

ure S1C), normalized by a random distribution (measured be-

tween clusters, not among cells within snowflake yeast) at the

same density. We find that the distribution of snowflake yeast

clusters is highly structured within aggregates. Clusters are un-

likely to be found very close to each other; specifically, clusters

are less likely to be found with a center-to-center separation

less than or equal to 1.3 times their diameter than expected if

everything that collided during aggregation adhered. Relatedly,

clusters are more likely to be found with center-to-center sepa-

rations between 1.3 and 1.9 times their diameter than expected

by chance. Thus, the distribution of clusters within an aggregate

is more evenly dispersed than would be expected by a random

mixing of genotypes. This even dispersal suggests that snow-

flake yeast are capable of binding to floc yeast, but not other

snowflake yeast, during aggregate formation. Consistent with

this hypothesis, floc yeast appear to act as an adhesive, binding

together snowflakes (Figure S1D; we do not see any evidence of

direct snowflake-snowflake adhesion). This analysis suggests a

biomechanical mechanism for snowflake yeast’s ability to invade

flocs: snowflake yeast efficiently adhere to floc yeast, likely being

coated by floc during aggregation and facilitating their ability to

join floc aggregates.
A classic solution to social conflict in aggregating multicellular

organisms is kin recognition, allowing individuals to avoid cheat-

ing by only cooperating with close relatives [56–59]. Here, we

examine whether kin recognition would solve the cooperative

dilemma faced by floc yeast by constructing a mathematical

model (see STAR Methods). Briefly, we assume that there are

three types of yeast: a snowflake yeast strain (S); a ‘‘choosy

floc’’ (C) that uses a self-recognition mechanism to adhere just

to clonemates; and a ‘‘permissive floc’’ (P) that has no such

self-recognition mechanism, adhering to both permissive floc

and snowflake yeast.We simplify our analysis by focusing strictly

on the role of self-recognition in the formation of groups. Thus,

we assume that, after some initial period of population growth,

there is an aggregation phase in which cells stop reproducing

and the flocculating yeast aggregate to form groups. Rather

than modeling the complex dynamics of group size and shape

during settling selection, we make the simplifying assumption

that only the largest groups survive. Although floc yeast rapidly

form groups, increasing in size as a function of time (Figures

S2C and S2D), snowflakes themselves do not change in size

(as there is no growth; Figures S2A and S2B), though they may

join aggregates with permissive floc. When floc are growing at

higher density, it takes less time to form groups that can outcom-

pete snowflake yeast during settling selection (Figure S2C).

We consider all pairwise competitions between permissive

floc, choosy floc, and snowflake yeast for different starting geno-

type frequencies (Figures 6A–6C). For each competition, we

simulate the aggregation process and then select 10% of the

population from the largest groups (selection that is roughly anal-

ogous to the experimental protocol). We find that snowflake

yeast are overrepresented within large, fast-settling flocs (reca-

pitulating our experimental data; Figure 6A), allowing them to

outcompete permissive floc, regardless of their starting fre-

quency. We also find that the largest chimeric aggregates, rep-

resenting the fastest settling aggregates, form with intermediate

frequencies of snowflake yeast (peaking at 40% S; Figure S2E).

This is similar to our experimental data (Figure 3A), where the

fastest settling aggregates are also found at intermediate fre-

quencies (20%–50%). In contrast, if snowflake and choosy floc

compete, then choosy floc increases in abundance whenever it

constitutes themajority (specifically,more than~60%; Figure 6B)

of the population, though the precise frequency depends on

model parameters, like density, aggregation time, and binding

probability (Figures S3B, S3D, and S4F). Thus, neither snowflake

yeast nor choosy floc can invade each other when rare. Finally,

because permissive and choosy floc behave the same in the

absence of snowflake yeast (they do not co-aggregate), their dy-

namics are positively frequency dependent and neither can

invade from rare (Figures 6C, S3C, S3F, and S4E). We observed

the same dynamics as in our deterministic model (Figure 6) using

a stochastic approach (see Figure S5 and STAR Methods for

details).

We see an interesting ecological interaction in our model: in a

three-way competition, snowflakes can invade populations of

choosy floc with the help of permissive floc (Figure 6D; see re-

sults from longer or shorter durations of aggregation in Figures

S3G and S4G–S4I). By forming large, fast-settling chimeric ag-

gregates, mixtures of snowflake and permissive floc gain an

ecological advantage over choosy floc, outcompeting it
Current Biology 30, 4155–4164, November 2, 2020 4159
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Figure 5. Snowflake Yeast Are Overrepresented in Large Chimeric

Aggregates

(A and B) Snowflake yeast constitute a larger fraction of the biomass within

large flocs than is expected by their overall population frequency (red dashed

line). Shown are snowflake yeast at 20% (A) and 80% (B) overall frequency.

(C) Size distributions of pure snowflake and floc cultures.

See also Figure S1.
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(Figure 6D). Of course, this is an unstable alliance, as snowflake

yeast’s exploitation of permissive floc will ultimately drive all

aggregative strategies to extinction (Figures 6A, 6D, and S3H).

Sometimes, however, this social exploitation of floc is costly

for snowflake yeast. When snowflake and permissive floc are

below the threshold required to displace choosy floc, exploita-

tion of permissive floc results in a rapid deterioration of their abil-

ity to make large chimeric aggregates, to the detriment of both
4160 Current Biology 30, 4155–4164, November 2, 2020
snowflake and permissive floc (Figures 6D and S3I). These re-

sults were not qualitatively changed by the inclusion of a growth

phase in our model, in which floc cells had a 35% growth advan-

tage to snowflake yeast (Figures 2B, S4J, and S4K).

A simple extrapolation of our model highlights the cost of kin

discrimination during aggregative development. Consider a

genetically diverse population of aggregative organisms, each

of which only adheres to clonemates. Because aggregation

rate is frequency and density dependent (Figures 6, S3, and

S4), any genotypes that are locally rare will be unable to rapidly

form large groups, as they will be capable of interacting with only

a small fraction of the population. Strict kin recognition during

aggregation therefore undermines the ecological advantage of

aggregation upon its initial evolution, suppressing its origination.

This is even more of a problem if the benefits of aggregation

require that a size threshold be met (e.g., enough individuals to

form a multicellular fruiting body) [60].

DISCUSSION

Development is a fundamental aspect of multicellularity,

orchestrating the pattern of cellular behaviors that give rise to

multicellular phenotype and influencing a lineage’s evolutionary

potential. Despite significant theoretical work, the lack of appro-

priate model systems has limited our ability to directly test the

role of developmental mechanism on the subsequent evolution

of multicellularity. We circumvent this limitation by engineering

aggregative and clonal development from an isogenic unicellular

yeast ancestor (Figure 1A).

We grew our yeast under conditions in which selection favored

a rapid transition from a unicellular tomulticellular stage, the type

of environment that is thought to favor aggregative multicellu-

larity [12]. The advantage that aggregative floc yeast showed in

monoculture (Figure 2) evaporated once they were competed

directly with clonally developing snowflake yeast (Figure 3), the

result of a wholly unexpected social exploitation. Snowflake

yeast, which do not produce adhesive Flo1 proteins, embed

themselves within large floccy aggregates at a higher frequency

than the floc genotype (Figures 3C, 3D, 5, and S1B–S1D). As a

result of this social exploitation, snowflake yeast rapidly displace

floc (Figures 3B and 3E). This result is even more striking in light

of prior work in other yeast systems. First, Driscoll et al. [61]

observed the evolution of a stable coexistence between unicel-

lular and multicellular genotypes in Kluyveromyces lactus

following selection for multicellularity, where unicellular yeast

act as ‘‘free riders’’ that associate with fast-settling snowflake

clusters via flocculation. Here, snowflake yeast act as the unre-

lated free riders, exploiting the benefits of rapid, non-specific

aggregation in flocculating yeast but, rather than resulting in

coexistence, are competitively dominant (Figure 3E). Second,

Smukalla et al. [49] showed that FLO1 acts as a greenbeard

gene, excluding unicellular FLO1� competitors from the floc.

This is thought to be a consequence of preferential binding be-

tween FLO1+ cells, leading to phase separation. In our case,

the ability for FLO1� snowflake yeast to co-aggregate with floc

appears to arise as a consequence of their branchy structure, al-

lowing them to become entangled within a floc. Our results also

provide context for understanding the results of a prior experi-

ment, in which five wild isolates of flocculating yeast were



Figure 6. Modeling the Dynamics of Kin

Recognition in Floc Yeast

(A) Snowflake yeast, S, were capable of displacing

permissive floc, P, at all frequencies during ag-

gregation and settling selection.

(B and C) In contrast, the fitness of choosy floc, C,

in competition with snowflake yeast (B) and

permissive floc (C) were positively frequency

dependent.

(D) Phase portrait showing the changes in

permissive floc and snowflake yeast after one

round of settling selection in competition with

choosy floc. Arrows show the direction of change

in proportion of S and P as a function of different

starting frequencies. Choosy floc were only able to

increase in frequency (red shading) when they

were common enough to rapidly find clonemates

for aggregation.

See also Figures S2–S5.
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evolvedwith daily settling selection. Here, snowflake yeast arose

de novo and largely displaced their floc ancestors in 35/40 repli-

cate populations [46].

Self/nonself recognition systems play a key role during the

evolution of multicellularity, limiting the potential for within-or-

ganism genetic conflict [57, 58, 62]. This may be especially

important in lineages that develop aggregatively, as they are

more likely to form genetically diverse multicellular groups.

Kin-recognition mechanisms have evolved independently in

cellular slime molds [57, 62] and Myxococcus bacteria [58, 63],

both of which develop via aggregation. We explored the evolu-

tion of self-recognition in our system using a mathematical

model.We considered our standard permissive floc, which binds

to other permissive floc or snowflake yeast, and a hypothetical

choosy floc, which only attaches to clonemates. Although it

might seem like choosy floc (which axiomatically cannot experi-

ence social conflict) would always be at an advantage, this was

not true. Permissive binding increases opportunities for cell-cell

adhesion, increasing aggregation speed and group size. Indeed,

our experiments show striking support for this hypothesis: floc

that formed chimeric aggregates were capable of settling

much faster than floc alone (Figure 3A). In our model, choosy

floc pay an ecological cost when rare, as they can only bind a

small fraction of the cells in the population, forming small groups.

This strong positive-frequency-dependent selection makes it

difficult for strong kin recognition to arise from a population of

permissive ancestors, a cost that is compounded if the
Current Biolog
population is composed of multiple

choosy genotypes, each of which is only

capable of adhering to clonemates.

Consistent with the hypothesis that the

evolutionary benefits of strong kin

discrimination may not be worth the

ecological costs, kin discrimination sys-

tems in extant aggregative organisms

are relatively permissive. Genetic diver-

sity is often high at small spatial scales

in both myxobacteria [58, 64] and slime

molds [65–67], and wild-collected iso-
lates readily form multi-clonal groups under laboratory condi-

tions [58, 62, 65–67]. Allorecognition in both D. discoideum

and myxobacteria are mediated by a single protein pair:

TgrB1/TgrC1 [68, 69] and TraA/B [69, 70], respectively. Single-

locus recognition systems face numerous challenges: first, the

ability of a single locus to act as a proxy for genome-wide relat-

edness can be degraded by recombination, mutation, and hori-

zontal gene transfer [71]. Once decoupled from either overall

relatedness or genes underlying cooperative traits, a recognition

system can no longer be used to drive positive assortment

among cooperators. Second, selection acting on recognition-

mediated cooperation tends to reduce the diversity in recogni-

tion alleles in the population, undermining the variation

necessary to provide effective discrimination between coopera-

tors and cheats [71] (i.e., Crozier’s paradox) [72]. There is nothing

in principle that would restrict aggregative organisms to single-

locus recognition systems. Multilocus recognition systems are

more robust and precise [71, 73] and are common in nature

(e.g., in bacterial systems [74, 75]; unicellular protists, such as

fungi and slime molds [76]; major histocompatibility complex

[MHC] loci [77–79]; and self-incompatibility loci in outbreeding

plants [80]), raising the possibility that permissive aggregation

is in fact a desirable feature in an aggregative life cycle, not a

yet-to-be-improved bug.

Our results highlight a fundamental trade-off faced during

aggregative development: selection for rapid group

formation often favors permissive binding, but the resulting
y 30, 4155–4164, November 2, 2020 4161
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high within-group genetic diversity lays the foundation for persis-

tent evolutionary conflict. This has important implications for the

evolution of multicellular complexity, as the resulting genetic

conflict can undermine multicellular adaptation [45]. Indeed, ag-

gregation is relatively uncommon among independently evolved

multicellular lineages [14, 81], and all known examples of inde-

pendently evolved ‘‘complex multicellularity’’ (i.e., metazoans,

land plants, mushroom-forming fungi, brown algae, and red

algae) [11] develop clonally. In the context of major evolutionary

transitions, aggregation appears to be self-limiting, the evolu-

tionary potential of aggregative lineages constrained by an

ecological imperative for effective group formation.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Organisms/Strains

See Table S1 for list of strains This study

Oligonucleotides

50CAAAGAAATCTATAGGACCAAA

AAC GGTGTTAATACAATCcg

tacgctgcaggtcgac30 Fwd primer for

deletion of ACE2

This study ace2mx_F

50ATTATTTACTATGTTAATATCAT

GCATA GATAAATGTTCGatc

gatgaattcgagctcg30 Rev primer

for deletion of ACE2

This study ace2mx_R

50-ACTGCACAGAACAAAAA

CCTGCAGGAA ACGAAGAT

AAATCGAATTCGAGCTCGT

TTAAAC-30 Fwd primer for deletion

of

URA3 to replace with GAL1p-FLO1

This study ura3::FLO1_F

50GTGAGTTTAGTATACAT

GCATTTACTTATAATACAGT

TTT tgaaagtatggaggagaaacag30

Rev primer for deletion of URA3 to

replace with GAL1p-FLO1

This study ura3::FLO1_R_2

50CCGAGCAGAAGGAAGAACGA30

Fwd primer to diagnose GAL1p-

FLO1 insert

This study ura3::FLO1_dia_F

50TGCCTCGGTGAGTTTTCTCC30

Rev primer to diagnose GAL1p-

FLO1 insert

This study ura3::FLO1_dia_R

50 AACTGCTAATTATAGAGA

GATATCACAG AGTTACTCACTAgg

tcgacggatccccgggtt30 Fwd primer

to delete LYS2 and replace with red

or green fluorescent marker

This study LYS2::TEF_GFP_F

50 TAATTATTGTACAT

GGACATATCATACGT

AATGCTCAACCtcga

tgaattcgagctcgtt30 Rev primer to

delete LYS2 and replace with red or

green fluorescent marker

This study LYS2::TEF_GFP_R

Recombinant DNA

pFA6-hphNT1 [82] Euroscarf

pFA6a-TEF2Pr-eGFP-ADH1-

Primer-NATMX4

N/A

pFA6a-TEF2Pr-dTomato-ADH1-

Primer-NATMX4

N/A

Software and Algorithms

JMP Statistical Software from SAS SAS https://www.jmp.com/en_gb/

software/data-analysis-software.

html

Fiji [83] N/A
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, William

Ratcliff (william.ratcliff@biology.gatech.edu).

Materials Availability
This study did not generate new unique reagents.

Data and code availability
The raw data supporting the conclusions of this manuscript will be made available by the authors upon request. The code

analyzing microscopy images generating data for Figure 5 is available at Github (https://github.com/jenntpentz/

Pentzetal2020_biomass_measurement).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All strains used in this study are listed in Table S1. We constructed snowflake and flocculating genotypes from a single clone of the

initially unicellular S. cerevisiae strain Y55. Snowflake yeast were made as in [78], but we replaced the ACE2 ORF with HYGMX. Floc-

culating yeast were made by amplifying the KAN-GAL1p::FLO1 cassette from DNA template from S. cerevisiae strain KV210 [79, 80]

and replacing the URA3ORF in our ancestral strain. ura3D::KAN-GAL1p::FLO1/ura3D::KAN-GAL1p::FLO1 diploids were obtained by

autodiploidization of single spores collected via tetrad dissection onto Yeast Peptone Dextrose plates (YPD; per liter: 20 g dextrose,

20 g peptone, 10 g yeast extract, 15 g agarose) then replica plated onto YPD + 200 mg/L G418. Transformants were confirmed by

PCR as well as phenotype when grown in YPGal medium (per liter: 20 g galactose, 20 g peptone, 10 g yeast extract). For microscopy

and competition experiments, strains were tagged with green and red fluorophores. To do this, plasmids pFA6a-TEF2Pr-eGFP-

ADH1-Primer-NATMX4 and pFA6a-TEF2Pr-dTomato-ADH1-Primer-NATMX4 were amplified and inserted into the LYS2 locus,

and transformants were confirmed via fluorescent microscopy. All transformations were done using the LiAc/SS-DNA/PEG method

of transformation [84].

METHOD DETAILS

Measuring settling rate
Unlike snowflake yeast, floc yeast form groups as they are settling, so we needed to measure the properties of flocs during the pro-

cess of settling directly. To do this, we developed a novel, robust, high-throughput method of measuring the settling speed of yeast

populations. Various methods to measure aggregation and settling in yeast exist [24, 85–88], but most of them introduce experi-

mental variables that limit their relevance to our system [85], and no method is considered standard in yeast research in general

[85, 88, 89]. Importantly, most of them lack the temporal resolution needed (seconds) to capture the fast-settling profiles of some

of our strains. In our method, we placed the yeast in back-illuminated cuvettes, and used high-speed high-resolution video acqui-

sition (24 fps, 38403 2160 pixels, Sony a7R II, 90mmmacro lens) to capture changes in pixel densities over the settling time (Figures

1B and 1C). Our method relies in the fact that settling and flocculation produce optically denser regions, relative to the initial density

distribution (Video S1), thus allowing us to measure the rate of this density changes. We pre-processed our raw density data with a

Savitzky-Golay smoothing function in order to preserve the signal over the noisewithout sensibly changing the shape of the dynamics

(Figures 1C and S6A). We then calculated a characteristic settling rate, as the maximum slope in the density dynamics. We validated

our method by quantifying the percentage of biomass settled at 5 min in floc and snowflake cultures, showing that, as expected, a

higher settling rate indicate a higher proportion of settled cells (Figure S6B).

Competitive success assay
To determine if snowflake yeast had a competitive advantage over floc yeast, we competed snowflake and floc starting at a range of

initial genotypic frequencies (0%–100% snowflake in 10% increments) over two days of daily selection for fast settling for 5 min on

the bench as in Ratcliff et al., 2012 [51]. We varied initial genotypic frequencies by changing the ratio of initial inoculum volume (e.g., a

50:50 ratio of snowflake:floc would have equal volumes of stationary phase cultures in the starting inoculum). To initiate competitions,

we grew up snowflake and flocculating yeast in a mixture of galactose and glucose (YPGal+Dex; per liter; 18 g galactose, 2 g

dextrose, 20 peptone, 10 g yeast extract) for 24 h at 30�C, shaking at 250 rpm. This concentration of galactose and glucose was

used because it yielded clusters of similar size after 24 h of growth in snowflake and floc yeast (mean floc log(volume) = 12.5,

mean snowflake log(volume) = 11.5, t(2) = �0.39, p = 0.73). Then, we mixed five replicates of 500 mL of each starting genotypic fre-

quency from overnight cultures and 100 mL of this culturewas diluted into 10mLYPGal+Dex for the competition experiment.We used

the remaining 400 mL tomeasure the initial count of snowflake and floc yeast. To do this, we used EDTA (50mM, pH 7) to deflocculate

cells to run through a CyFlow�Cube8 flow cytometer where two distinct peaks corresponding to unicellular floc cells and snowflake

cultures could be counted. Then, wemeasured the change in frequency of snowflake yeast over the course of the experiment by flow

cytometry. Specifically, we deflocculated flocswith EDTA (which does not affect group affect group size in snowflake yeast), and then
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measured their cell number density (cells / mL) and the number of snowflake yeast clusters (clusters / mL). Because the distribution of

snowflake yeast cluster sizes is stable in these short-term experiments, we can calculate the change in ratio between floc cells and

snowflake clusters across the experiment, and infer the change in strain frequencies. Wemeasured the number of unicellular floc and

snowflake yeast after inouculation but before any growth and after three days of competition. We calculated the competitive success

of snowflake yeast as the ratio of snowflake to floc yeast after competition relative to before competition using the Equation (1):

Competitive success =
f2ð1� f1Þ
f1ð1� f2Þ (Equation 1)

where f1 is the frequency of snowflake yeast before competition and f2 is the frequency of snowflake yeast after competition [43]. This

fitness measure is simple and general (i.e., it doesn’t assume any underlying model of population dynamics, like exponential growth),

and accommodates different starting frequencies.

Invasion from rare experiment
To determine if snowflake and floc yeast stably coexist when they constitute 80% of the population, we ran a longer competition

experiment. To start the competition, we grew floc and snowflake yeast in YPGal+Dex for 24 h at 30�C, shaking at 250 rpm.

Next, we mixed overnight cultures of floc and snowflake yeast at a 2.5:97.5 floc:snowflake initial inoculum ratio (t0 on Figure 3E).

We inoculated a 10 mL culture of fresh media with 100 ml of the mixed culture (t1) with 5 independent replicates. Everyday, after

24 hours of growth, we transferred 1.5 mL of each culture into eppendorf tubes, and applied 5 minutes settling selection on bench

top. After 5 minutes, we discarded the top 1.4 mL and transferred the remaining bottom 100 mL into a fresh 10mL culture. In total, we

applied 10 rounds of settling selection.

Tomeasure the daily fraction of both genotypes, prior to the settling selection, we first de-flocculated the floc yeast by pelleting and

resuspending in 1 mL of overnight culture in 50 mM EDTA. Next, we vortexed cultures for 10 s and pipetted 10 mL of each replicate

onto microscope slides. Finally, we imaged each microscope slide using the bright field channel on a Nikon Eclipse Ti inverted mi-

croscope at 100xmagnification. We ensured all cells on themicroscope slide were imaged by combining 81 separate images images

(9x9 composite image). We saved each frame as individual TIFF files (81 frames x 11 time points x 5 replicates), then inspected each

frame for their quality and deleted frames of images with large air bubbles. Then, we ran an ImageJ Marcro script to automatically

count the number of floc and snowflake yeast clusters. Next, we removed all tiny dirt particles by applying an ‘awk’ one-liner on

Bash (Unix) by removing particles that were smaller than the size of single cells, which corresponded to the ‘arbitrary unit’ of 400

(a.u.) in our images. To assign particles as floc or snowflake yeast, we first detected the minimum ‘arbitrary unit’ (a.u.) size for the

smallest snowflake yeast clusters given by the ImageJ Macro. As a result, we assigned particles that are between 500-3000 (a.u.)

as floc yeast and particles that were larger than 3000 (a.u.) as snowflake yeast. We validated these size-based thresholding param-

eters manually for each sample at every time point. When calculating the fraction of snowflake yeast in mixtures of floc and snowflake

yeast populations, we counted every single snowflake yeast cluster as ‘one’ single individual regardless of their cluster size, and

measured the fraction of snowflake yeast for each day (11 days in total).

Competitive success during growth and settling
There are two important life history traits in our experimental system: growth rate and settling rate [51, 53].Wemeasured the competitive

success of snowflake yeast during both stages. To do this, we grew snowflake and floc yeast separately for 24 h in YPGal+Dex. As

above,wemixed five replicatesof 500 mL of various starting genotypic frequencies (10%–90%snowflake in 20% increments) fromover-

night cultures and we used 100 mL to dilute into fresh YPGal+Dex and used the remaining 400 mL to calculate initial snowflake and uni-

cellular floc counts asdescribed above. Tomeasure snowflake competitiveness during growth, wedeflocculated 500 mL of each culture

using EDTAandmeasured snowflake and floc counts using flowcytometry after 24 h of growth at 30�C, shaking at 250 rpm. Tomeasure

competitive success over one round of settling selection, we aliquoted 2mLof each snowflake/floc co-culture into 2mLmicrocentrifuge

tubes. Next, we aliquoted 500 mL into 1 mL microcentrifuge tubes and deflocculated to obtain pre-selection snowflake and floc con-

centrations as described above. We allowed the remaining 1.5 mL to settle on the bench for 5 min, after which the top 1.4 mL was dis-

carded. Finally, we deflocculated the remaining 100 mL and obtained post-selection snowflake and floc counts via flow cytometry.

Examining aggregate composition
Wemeasured the composition of snowflake and floc yeast within large chimeras by fluorescent microscopy, using a Nikon Eclipse Ti

invertedmicroscopewith a computer-controlled Prior stage. Specifically, we grew up snowflake and floc-GFP for 24 h in YPGal+Dex.

Next, we mixed four replicates of snowflake and floc co-cultures with differing amounts of starting snowflake (20% or 80%, respec-

tively) into fresh medium and grew these co-cultures for another 24 h. We placed 10 mL of this culture between a slide and a 25 3

25 mm coverslip and imaged the whole coverslip by combining 150 separate images at 100 3 magnification, yielding a 42456 3

42100 pixel (1.78 billion pixels; 1.233 1.22 cm) composite image. To determine the per pixel area of each genotype in all yeast clus-

ters within the composite image (including yeast cell ‘clusters’ of size 1), we used a custom Fiji Macro script [83]. Then, we calculated

the percentage of biomass in different cluster size classes belonging to either snowflake or floc yeast using a custom Python script.

Briefly, we first binned all yeast clusters into 10 cluster size classes. Then, we calculated the frequency of floc and snowflake yeast

within each cluster size class using the per pixel areas determined using Fiji. This script has beenmade available at GitHub (see Data

and Code Availability for details). ‘‘Large flocs’’ were considered to be anything larger than the largest snowflake clusters (Figure 5C).
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Mathematical modeling
Weconsider a settling competition between snowflake clusters and flocculating cells. If flocculation, settling, and reproduction all occur

togetherwemight expect a complicated set of dynamics resulting from the interplay between these processes.We simplify our analyses

by focusing strictly on aggregation. We assume that aggregation and settling happen after the primary growth phase and occur faster

than reproduction such that the populations of cells are large as a result of several generations of reproduction in media. Furthermore,

we consider aggregation and settling selection as two separate processes such that there is some time in which cells aggregate and

afterward the groups are exposed to settling selection. This assumption allows us to focus on modeling the dynamics of aggregation

and circumvent explicit spatial models that would be required to consider the dynamic interactions between aggregation and settling.

Based on these assumptions, wemodel the dynamics of aggregation using a system of differential equations, where the concentration

of snowflakeclusters composedof i cells is denoted asSi, flocsof i choosycells is denoted asCi, and permissive flocsof size i is denoted

as Pi. (see Equations 2, 3, 4, and 5). Because our model considers a fixed volume, concentrations are proportional to population size.

The equation for flocs of i choosy cels (Equation 2) relates the difference in concentration of Ci to the difference between two terms.

The first term counts the ways that two smaller choosy cell flocs can bind to give rise to a floc of size i. The second term counts the

ways a floc of size i can bind to other flocs, thereby forming larger flocs that are no longer size i. The di,j term is a delta function that

accounts for the extra loss if two identically-sized flocs interact, i.e., if twoCi bind then the loss is double that of aCi binding aCjwhere

i s j.

dCi

dt
=

Xi
2

j = 1

pði� j; jÞCjCði�jÞ �
XN�i

j = 1

pði; jÞð1 + di;jÞCiCj (Equation 2)

Since the number of differential equations scales with the maximum floc size, we assume thatthere is a maximum size N (N = 1000 in

our computations) for numerical tractability. In addition, we choose a time for the aggregation process such that the concentration of

flocs of maximum size is small in comparison to the total concentration. Because we are modeling the process of aggregation alone,

we also note that ourmodel ignores the possibility of group fragmentation, i.e., flocs can bind to form larger flocs but not break up into

smaller flocs.

An influential component of Equation 2 is p(i,j) which describes the rate that flocs of choosy cells bind to form larger flocs, i.e., Ci +

Cj / Ci+j, where i + j% N. The actual rate function p(i,j) likely depends on many factors including the geometry of the two flocs, the

probability of collision, the probability of a collision resulting in binding, etc.. We assume that it is a simple function of the radii of the

two flocs: p(i,j) = b (ri + rj)
3 where b is a rate constant and ri and rj are the radii of Ci and Cj that result from approximating the flocs as

spheres. Thus, if the volume of a single cell is 4
3pr

3, then the volume of Ci is ðiÞ 43pr3 which makes the radius of Ci equal to i1=3r. We

consider r = 1 to simply the calculations. As a result the probability function p(i,j) has the form pði; jÞ = ði1=3 + j1=3Þ3.
The equations describing the aggregation dynamics of permissive flocs and snowflake clusters are similar to those used for choosy

flocs but with the feature that snowflake cells and permissive cells can bind. To allow for this provision, we usePi to denote permissive

flocs which contain permissive cells and possibly snowflake cells. Thus, a Pi cluster may be composed of k permissive cells and i – k

snowflake cells for any k R 1. In contrast, Si denotes a group of only snowflake cells. Equations 3 and 4 describe the changes in

concentrations of permissive flocs and snowflake cell clusters that result from permissive flocs binding each other as well as snow-

flake clusters.

dPi

dt
=

Xi�1

j = 1

pðj; i� jÞSjPi�j +
Xi

2

j = 1

pðj; i� jÞPjPði�jÞ �
XN�i

j = 1

pði; jÞPiSj �
XN�i

j =1

pði; jÞð1 + di;jÞPiPj (Equation 3)
dSi

dt
= �

XN�i

j = 1

pði; jÞSiPj (Equation 4)

For our calculations wewant to track the concentrations of snowflake cells bothwithin snowflake clusters and permissive flocs. Since

the differential equation approach is based on concentrations of cells, we assume that there are a large number of both clusters and

cells and track the concentration of snowflake cells in Pi clusters for each size i, which we denote ni. This assumption corresponds to

treating the aggregativemixture as a classic tankmixing problem. As a result, the total concentration of snowflake cells is
PN

i = 1ði Si +

niÞ.

dni

dt
=

Xi�1

j = 1

pðj; i� jÞSjPi�j

�
j +

ni�j

Pi�j

�
+

Xfloor
�

i
2

�

j = 1

pðj; i� jÞPjPi�j

�
nj

Pj

+
ni�j

Pi�j

�
�
XN�i

j = 1

pði; jÞPiSj

�
ni

Pi

�
�
XN�i

j = 1

pði; jÞð1 + di;jÞPiPj

�
ni

Pi

�

(Equation 5)

In all competitions except for Figures S3 and S4, we assume an initial inoculum of 1000 concentration units that is split betweenC, S,

and P. The initial distribution of Si is fit to a lognormal distribution that matches empirical data (Figure S3A). This distribution only

changes in the presence of permissive floc. The winner of the settling competition is determined by solving Equations (2, 3, 4,
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and 5) for some time t and selecting the largest 10% of the population, using group size as a proxy for settling speed. This is anal-

ogous to our experimental system, where 10% of fastest-settling yeast biomass gets passaged to the next tube following settling

selection. For C cells, as time increases, more of the distribution is represented in the largest fractions (zi = N; Figures S2C and

S2D). Thus, the amount of C cells in the top 10% of possible clusters size increases with time, but levels out for longer t (Figure S2D).

The mathematical model captures a single round of aggregation and selection without regard to how populations grow in between

selective events. In cases where we consider multiple rounds of aggregation and selection (Figures S3H and S3I), we do not use any

explicit models of population growth. Rather, wemultiply the final proportions of cells after selection by the inoculum size and use that

as the input to the next iteration of aggregation and selection. This bypasses the possibility that different population growth dynamics

might alter the proportions of cell types. In addition, we also assume that the P and S cells dissociate from their mixed groups and

begin the next aggregation and selection phase as separate entities. We also consider a stochastic model for aggregation described

below that does not require a limit to themaximum group size nor large numbers of clusters and cells. Figure S5 shows that its results

agree with the deterministic differential equations model.

Stochastic model
To further verify the findings of our deterministic model, we consider an alternative stochastic model. The model has the same qual-

itative features in that there are three types of cells: choosy (C), snowflake (S), and permissive (P). As with the deterministic model,

choosy cells can only form clusters with themselves while permissive cells can form clusters with themselves or with snowflakes. We

use a Gillespie algorithm approach [90] with the reaction scheme shown below.Cn denotes a choosy floc of n cells, Pn is a permissive

floc of n cells, Sn is a snowflake cluster of n cells, and SP(n,m) is a floc with n snowflake cells andm permissive cells. The binding rates

are the same as those found in the deterministic model such that pði; jÞ = bði1=3 + j1=3Þ3.

Ci + Cj /
pði;jÞ

Ci + j (Equation 6)
Pi + Pj/
pði;jÞ

Pi + j (Equation 7)
Si +Pj/
pði;jÞ

SPi;j (Equation 8)
SPi;j +Pk/
pði + j;kÞ

SPi;j + k (Equation 9)
SPi;j +Sk/
pði + j;kÞ

SPi + k;j (Equation 10)
SPi;j +SPk;l/
pði + j;k + lÞ

SPi + k; j + l (Equation 11)

We simulate the aggregation dynamics using the Gillespie algorithm [90] which involves repeated iterations of determining when the

next reaction occurs and which reaction it is. Both decisions require calculating the reaction propensity for each reaction. The reaction

propensity of a specific reaction is simply the product of the number of combinations of substrates and the reaction constant. For

example, the reaction propensity of two choosy flocs of size i and j binding is the product of the number of Ci flocs, the number of

Cj flocs, and p(i,j). After calculating the reaction propensity for every reaction, we determine the time for the next reaction by sampling

from an exponential distributionwith amean of 1/X, where X is the sum of all reaction propensities. We determinewhich reaction occurs

by transforming the reaction propensities into probabilities; this can be done by dividing each reaction propensity by X.We assign each

reaction a unique range of values within [0,1], sample a random number from a uniform distribution over [0,1], and then choose the

matching reaction. Thus, if the probability of two choosy flocs of size i and j binding is 0.01, then the reaction may have the range of

values [0,0.01] and will only occur if the random number sampled is within this range. Once a reaction is chosen wemodify the number

of reactants of each type and repeat the process until there are no more reactions to occur or a specified time has occurred.

We simulate the aggregate dynamics using this stochastic approach for 100,000 cells until no more aggregation events can occur,

which usually occurs around time = 0.1, although the value depends on the scaling of p(i,j). In simulations with only choosy cells, the

flocs do not reach sizes comparable to snowflake clusters until some time between 0.005 and 0.02. Thus, we choose a time of 0.01

and show the same type of plots as displayed in Figures 6A–6C in which there are pairwise competitions of the various cell types and

the largest 10% of clusters are selected (Figure S5). The initial distribution of snowflake clusters follows the same exponential dis-

tribution as used in the deterministic equations.
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The results confirm the original findings of our deterministic approach in which snowflake cells have an advantage over permissive

cells for all initial proportions while the outcomes of competitions involving choosy cells depend on the initial proportions (Figure S5).

Direct measurement of settled biomass
To validate our imaging-based approach for quantifying settling speed, we measured biomass settling for floc and snowflake yeast

directly. We grew five replicates of floc or snowflake yeast in 10 mL YPGal+Dex for 24 h at 30�C, shaking at 250 rpm. Then we placed

1.5 mL of stationary-phase cultures in a pre-weighed 2 mL microcentrifuge tube. We allowed yeast to settle for 5 min at 1 3 g, after

which we transferred the top 1.4 mL to a different pre-weighed tube. After this, we pelleted and double-washed yeast with deionized

water, then we removed the excess water and the pellet was airdried 50�C for two days. We determined the settling rate as the per-

centage of total biomass in the bottom 100mL pellet.

Measuring the ratio of FLO+ and FLO- unicells in flocs
We measured the ratio of flocculating (FLO1) and non-flocculating (flo1) cells in flocs to determine of flo1 cells are preferentially

excluded. We grew FLO1-GFP and flo1 cells separately for 24 h in YPGal+Dex. Then, we mixed three replicates of FLO1-GFP

and flo1 cocultures with a starting ratio of 90:10 FLO1-GFP: flo1 or 50:50 FLO1-GFP: flo1, and inoculated 100 mL of these co-cultures

into fresh medium and grew them for another 24 hours. We separated flocs from planktonic cells and deflocculated the flocs with

EDTA. We measured the number of cells of each type in the floc and planktonic populations via flow cytometry.

Measuring the frequency of dead cells
Wemeasured the rate of dead cells in ‘floc’ and ‘snowflake’ yeast by growing six biological replicates of each genotype. Both strains

were grown in 10 mL of liquid YPGal+Dex cultures for 24 hours at 30�C, shaking at 250 rpm. Next, we diluted each strain 1:100 into

fresh YPGal+Dex cultures and grew them for 12 hours at 30�C, shaking at 250 rpm. We then pipetted 1 mL of all 12 samples into

1.5 mL microcentrifuge tubes, pelleted them, discarded the liquid media and washed them in 1 mL sterile water. Next, we incubated

the yeast with the red dead-cell stain propidium iodide (PI) for 5 minutes (in 1:1000 dilution of 1mg/ml PI stock solution). After the

incubation period, we centrifuged and washed the cells in sterile water. To measure the fraction of dead cells, we imaged them

on a Nikon Eclipse Ti inverted microscope. Briefly, we imaged 6 replicates of each strain at 100x magnification by taking 4x4 frames

of images under both bright field and red fluorescence (FITC) channels. Wemeasured the number of total individual cells using bright

field images. Tomeasure the number of dead cells, wemerged red and bright field channels using Fiji [83] and counted the number of

red cells. Finally, we calculated the fraction of dead cells in each sample.

QUANTIFICATION AND STATISTICAL ANALYSIS

Standard statistical analyses were performed using JMP statistical analysis software (https://www.jmp.com/en_us/home.html). Stu-

dent’s t test and ANOVA with post hoc Tukey honestly significant difference (HSD) test were performed where p < 0.05 was consid-

ered statistically significant. See Results and figure legends for the statistical details.
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