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Figure 1: Overview of Our Research Questions

ABSTRACT

For smooth conversation, participants must carefully monitor the
turn-management (a.k.a. speaking and listening) willingness of
other conversational partners and adjust turn-changing behav-
iors accordingly. Many studies have focused on predicting the ac-
tual moments of speaker changes (a.k.a. turn-changing), but to
the best of our knowledge, none of them explicitly modeled the
turn-management willingness from both speakers and listeners
in dyad interactions. We address the problem of building mod-

els for predicting this willingness of both. Our models are based
on trimodal inputs, including acoustic, linguistic, and visual cues
from conversations. We also study the impact of modeling will-
ingness to help improve the task of turn-changing prediction. We

introduce a dyadic conversation corpus with annotated scores of
speaker/listener turn-management willingness. Our results show
that using all of three modalities of speaker and listener is im-

portant for predicting turn-management willingness. Furthermore,

explicitly adding willingness as a prediction task improves the
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performance of turn-changing prediction. Also, turn-management

willingness prediction becomes more accurate with this multi-task

learning approach.
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1 INTRODUCTION

Turn-changing is an important aspect of smooth conversation,

where the roles of speaker and listener change during conversation.

For smooth turn-changing, participants must carefully monitor the

willingness of other conversational partners to speak and listen

(a.k.a turn-management) and consider whether to speak or yield

on the basis of their own willingness and that of other partners.

Predicting turn-changing can be helpful to conversational agents

https://doi.org/10.1145/3383652.3423907
https://doi.org/10.1145/3383652.3423907


or robots as they need to know when to speak and take turns at 
the appropriate time. The field of human-computer interaction has 
long been dedicated to computational modeling of turn-changing. 
Furthermore, many studies have focused on developing actual turn-
changing (i.e., next speaker or end-of-turn) models that can predict 
whether turn-keeping or turn-changing will happen using partici-
pants’ verbal and non-verbal behaviors [3, 5, 6, 10, 12, 15, 16, 19ś 
26, 30, 34ś38, 43, 47, 50].

In this paper, we study turn-management willingness during 
dyadic interactions with the goal of incorporating the modeling of 
willingness into the computational model of turn-changing predic-
tion (see Fig. 1). We study four types of willingness for speakers 
and listeners: turn-holding (a.k.a speaker’s willingness to speak), 
turn-yielding (a.k.a speaker’s willingness to listen), turn-grabbing 
(a.k.a listener’s willingness to speak), and listening (a.k.a listener’s 
willingness to listen). We focus on two new research questions:
Q1) Are the verbal and non-verbal behaviors of speakers

and listeners useful in predicting turn-management

willingness?

Q2) Does explicitly modeling willingness help with turn-

changing prediction?

Firstly, we study the behavioral usefulness of features obtained

from acoustic, linguistic, and visual modalities from both speakers

and listeners. Predicting willingness directly could help conversa-

tional agents and robots with starting and ending utterances.

Secondly, we study prediction models for actual turn-changing.

As a first step, we use trimodal inputs (acoustic, linguistic, and

visual inputs) to directly predict turn-changing. As a second step,

we integrate willingness prediction with turn-changing prediction.

This integrated modeling approach is motivated by the intuition

that humans are likely to control actual turn-changing on the ba-

sis of turn-management willingness. We build a multi-prediction

model for turn-changing and willingness using a multi-task learn-

ing paradigm and evaluate the performance improvement.

2 RELATED WORK

2.1 Turn-changing Prediction Technology

Research on the mechanisms of yielding and taking conversation

turns was initiated mainly in the field of sociolinguistics. Sacks et al.

[46] proposed a turn-changing model, arguing that speaker switch-

ing occurs only at transition-related points (TRPs). Kendon [31]

analyzed conversations and discovered that verbal and non-verbal

behaviors contributed to smooth turn-keeping and turn-changing.

Other studies have demonstrated verbal and non-verbal cues for

a person to consider the presence or absence of turn-changing

in two-person conversations [5, 35]. Several studies have recently

examined that non-verbal cues of conversation partners are discrim-

inative for turn-changing. It has been shown that eye-gaze behavior

[15, 24, 26, 30], eye blinking [19], head movement [21, 22], respira-

tion [25], and hand gestures [16] are related to turn-changing.

With such knowledge, many studies have developed models

for predicting actual turn-changing, i.e., whether turn-changing or

turn-keeping will take place, on the basis of acoustic features [3, 6,

10, 12, 18, 26, 34, 36ś38, 43, 47, 50], linguistic features [34, 37, 38, 43],

and visual features, such as overall physical motion [3, 6, 8, 43] near

the end of a speaker’s utterances or during multiple utterances.

Moreover, some research has focused on detailed non-verbal behav-

iors such as eye-gaze behavior [3, 6, 18, 20, 24, 26], head movement

[18, 21, 22], mouth movement [23], and respiration [20, 25]. How-

ever, many turn-changing prediction studies use mainly features

extracted from speakers. Several studies used limited features and

modalities of listeners [20, 20ś25, 38].

To the best of our knowledge, our paper is the first to study the

prediction of turn-management willingness in dyad interaction and

the first attempt to explicitly add the willingness prediction task

to the turn-changing prediction model. Furthermore, there is no

prior research that investigates all acoustic, linguistic, and visual

modalities of speakers and listeners for turn-changing prediction.

Our study is the first to construct a model for predicting willingness

and turn-changing using trimodal information, including acoustic,

linguistic, and visual cues of both speakers and listeners.

2.2 Human-Agent Interaction with
Turn-changing Prediction

In the literature, researchers have mainly attempted to ensure

smooth turn-changing, where the agent waits for its turn, which is

not the rule in human-human conversations. For example, in [2, 47],

algorithms were developed that predict turn-endings as soon as

possible such that the system can behave immediate enough to

simulate human-like behavior. In [42], how audio features are used

to detect an end-of-turn as soon as possible was demonstrated; thus,

an agent can start to speak as soon as possible. In human-agent

interaction, an agent attempts to acquire a turn and start uttering

at an appropriate time by using the prediction of a turn-changing

prediction model. In [27, 28], a real-time turn-changing model was

developed that was optimized to minimize the silence gap between

the speech turn of a human and the system.

Also, using our estimation of turn-management willingness,

agents may be able to facilitate users’ speaking on the basis of the

users’ willingness. For example, although a listener may strongly

want to take a turn, they may not actually do so (i.e. the speaker

does not yield to him/her). At such times, the agent may be able to

prompt the listener to start speaking using verbal and non-verbal

behavior (the discrepancies between the turn-management will-

ingness of speakers and listeners and actual turn-changing will be

reported in Section 4.)

3 NEWMM-TMW CORPUS

3.1 Dialogue Collection

We collected a new corpus (named the łMM-TMW Corpusž) that

includes verbal and non-verbal behavioral information on human-

human dialogue. It consists of 12 face-to-face conversations of

people who had never met before (12 groups of 2 different people).

The participants were 24 Japanese in their 20s to 50s (mean: 32.0,

STD: 8.4). They were seated opposite each other. The conversations

were structured to be about multiple topics, including taxes and

social welfare balance. The lengths were unified to be around 10

minutes. The total time of all conversations was 120 minutes. The

participants’ voices were recorded by a headset microphone. The

entire discussions were recorded by a camera. We also took upper

body videos of each participant recorded at 30 Hz. A professional



transcribed all Japanese utterances, and another double-checked 
transcripts.

3.2 Annotation of Turn-management
Willingness

As a first step, professional annotators identified the spoken ut-

terance segments using the annotation scheme of the inter-pausal

unit (IPU) [33]. Each start and end of an utterance was denoted

as an IPU. When a silence interval of 200 ms or more occurred,

the utterance was separated. Therefore, if an utterance was made

after a silent period of less than 200 ms, it was determined to be

a continuation of the same utterance. We excluded back-channels

without specific vocal content from the extracted IPUs. Next, we

considered IPU pairs by the same person in temporally adjacent

IPU pairs as turn-keeping and those by different people as turn-

changing. The total number of pairs was 2208 for turn-keeping and

631 for turn-changing.

We collected turn-management scores with multiple external

observers using as reference an annotation method for multiple

external observers [17]. The 10 annotators carefully watched each

video from the beginning of one utterance (IPU) to the point just

one frame (33 ms) before the beginning of the next utterance to

annotate willingness scores. The annotators were not aware of who

would become the next speaker because they could only watch the

video until the point just before the start of the next speaker. This

approach was taken to avoid affecting the annotators’ judgement

on the willingness of the speakers and listeners to speak and listen.

For very short IPUs of less than one second, we set the start of the

video to a moment earlier than the start time of the IPUs so that

the annotators could view at least one second of video. In addition,

the content of the current utterance and that of the past dialogue

were considered to be important for judging turn-management

willingness. Therefore, the annotators observed the utterances in

order, starting with the first at the beginning of the dialogue. They

could refer to contextual information on past dialogue to annotate

the willingness score. The annotation order for the 12 dialogues was

randomized for each annotator. For each video, they gave scores

to four types of turn-management willingness of speakers and

listeners.

• Turn-holding willingness (a.k.a speaker’s willingness to

speak: Does the speaker have the will to hold the turn (continue

speaking)?

• Turn-yielding willingness (a.k.a speaker’s willingness to

listen: Does the speaker have the will to yield the turn (listen to

listener speak)?

• Turn-grabbing willingness (a.k.a listener’s willingness to

speak): Does the listener have the will to grab the turn (start

speaking)?

• Listeningwillingness (a.k.a listener’swillingness to listen):

Does the listener have the will to continue listening to the speaker

speak?

The annotators scored each willingness index on a 5-point Lik-

ert scale, where 1 meant łHe/she is not showing willingness," 5

meant łHe/she is showing strong willingness," and 3 meant łun-

certain." We had 10 annotators score all videos to ensure good re-

liability. We calculated the rater agreement using the Intraclass

Figure 2: Box plots of turn-management willingness scores

in turn-keeping (top) and turn-changing (bottom).

Correlation Coefficient (ICC). The ICC scores for all four cate-

gories were over 0.870: 𝐼𝐶𝐶 (2, 10) = 0.904 for speaker’s willing-

ness to speak, 𝐼𝐶𝐶 (2, 10) = 0.877 for speaker’s willingness to lis-

ten, 𝐼𝐶𝐶 (2, 10) = 0.878 for listener’s willingness to speak, and

𝐼𝐶𝐶 (2, 10) = 0.875 for listener’s willingness to listen. This suggests

that the data was very reliable. We used the average values of the

10 annotators as willingness scores.

4 ANALYSIS OF WILLINGNESS IN
TURN-KEEPING/CHANGING

In this section, we analyze the relationship between willingness

scores and the actual turn-changing or turn-keeping as an empirical

study. Figure 2 shows box plots of each score in our corpus, sepa-

rated between turn-keeping and turn-changing to investigate the

overall relationship between them. When turn-keeping happened,

the average scores of the speaker’s turn-holding willingness and

listener’s willingness to listen were more than 4.5, which was very

high. In contrast, those for the speaker’s turn-yielding and listener’s

turn-grabbing willingness were less than 2.0, which was very low.

This means that a current speaker who continues to speak always

has a high turn-holding willingness and a listener who continues to

listen is highly willing to listen in turn-keeping. This suggests that

a person’s turn-management willingness and actual next speaking

behavior are always consistent in turn-keeping.

When turn-changing happened, all average willingness scores

were from 3.0 to 3.5, with larger standard deviations. This sug-

gests that the current listener who becomes the next speaker may

not always have a high turn-grabbing willingness and the current

speaker who becomes the listener next may not always have high a

turn-yielding willingness. We explored the discrepancies between

the turn-management willingness of speakers and listeners and

actual turn-changing, where turn-changing happens even though

scores of turn-yielding and turn-grabbing willingness are not high.

In detail, we calculated the occurrence probability of the discrep-

ancies where the scores of turn-holding willingness were higher

than those of turn-yielding willingness or those of willingness



to listen were higher than those of turn-grabbing willingness in 
turn-changing. As a result, the discrepancies were 44.8% in turn-
changing. This means that the willingness scores sometimes had 
discrepancies with actual turn-changing. The accuracy could be 
further improved by performing multi-task learning on willing-
ness and turn-changing since they have a strong relationship [44]. 
Therefore, simultaneously predicting turn-management willingness 
could improve turn-changing prediction.

The result raises the possibility that willingness prediction could 
be beneficial for realizing an agent with smooth turn-management 
according to the discrepancies between willingness and actual turn-
changing. For example, the agent may be able to prompt the listener 
to take a turn and start speaking using verbal and non-verbal be-
havior.

5 TURN-MANAGEMENT WILLINGNESS AND
TURN-CHANGING PREDICTION MODELS

5.1 Motivation

To address Q1, we implemented three kinds of models for predict-
ing turn-management willingness using the multimodal behaviors 
of either speaker or listener or both of them. To address Q2, we 
also implemented models for predicting turn-changing that jointly 
predict turn-management willingness on the basis of single turn-
management prediction models.

5.2 Multimodal Features
We used the feature values of behaviors extracted during IPUs (i.e., 
the time between the start and end of an IPU) as input for the 
prediction models the same as other research on turn-changing 
prediction [3, 5, 6, 10, 15, 16, 19, 26, 30, 34ś36, 38, 47]. This means 
that our models could predict willingness and turn-changing at the 
end of a speaker’s utterance (IPU). Since the duration between the 
end of ones speaker’s utterance and the start of the next speaker’s 
utterance is about 620 ms on average, our models could predict 
willingness and turn-changing about 620 ms before actual turn-
keeping and turn-changing happens.

Our goal is not necessarily to implement the most complex mul-

timodal fusion but we aim to study willingness and its impact on 
turn-changing precision. Recently, high-level abstracted features 
have been very useful for many various prediction tasks. For exam-

ple, in one of the most recent pieces of research [49], a model was 
implemented that estimates self-disclosure utterances using multi-

modal features of acoustic, linguistic, and visual modalities while 
utterances take place. It demonstrated that the latest high-level 
abstracted features, such as those of VGGish [14], BERT [7], and 
ResNet-50 [13], are more useful than interpretable features, such 
as those of MFCC [9], LIWC [29], and action unit [1], for estimat-

ing self-disclosure utterances in dyad interactions. To implement 
willingness prediction models, we used automatically extracted 
high-level features from the recorded data of the acoustic, linguistic 
and visual modalities on the basis of an existing study [49].

Acoustic Modality. We used VGGish [14], which is a deep con-
volutional neural network, to extract features of the acoustic modal-

ity from audio data. VGGish is a variant of the VGG model [48], 
trained on a large YouTube dataset to classify an ontology of 632

different audio event categories [11], involving human sounds, ani-

mal sounds, natural sounds, etc. The audio files were converted into

stabilized log-mel spectrograms and fed into the VGG model to per-

form audio classification. The output 128-dimensional embeddings

were post-processed by applying a PCA transformation (which

performs both PCA and whitening). Therefore, each audio sample

was encoded as a feature with a shape of 𝑇 × 128, where 𝑇 is the

number of frames. During natural conversations, listeners are not

always absolutely silent; there are short backchannel responses or

echoes of what speakers have said. Therefore, the VGGish features

could be extracted from listeners’ acoustic signals in addition to

speakers’ acoustic signals.

Linguistic Modality. We applied a data-driven method (BERT)

[7] to extract linguistic representations. BERT is a multi-layer bidi-

rectional Transformer network that encodes a linguistic sequence

into a fixed-length representation. We used a pre-trained BERT

model on Japanese Wikipedia1 to transfer each utterance into a

768-dimensional feature. The BERT feature could be extracted from

listeners’ speech in addition to speakers’ speech similarly to acous-

tic features since listeners often have short backchannel responses.

Visual Modality. For visual information, high-level representa-

tions were extracted using ResNet-50 [13], which is a deep residual

convolutional neural network for image classification. We used

a ResNet-50 model that was trained on ILSVRC2012 [45], a large

scale dataset that contains about 1.2 million training samples in

1000 categories, to provide good generalization and yield robust

features. The feature vector for a video sequence consisted of a

2048-dimensional vector obtained from the penultimate layer for

each frame. As a result, the extracted feature was in the shape of

𝑇 × 2048.

5.3 Prediction Models

Turn-management willingness and turn-changing were first pre-

dicted individually using regression models (for predicting turn-

management willingness scores) and classification models (for turn-

changing/keeping prediction). A multi-task model was then learned

to jointly predict willingness and turn-changing/keeping. This will

help to understand the impact of modeling willingness explicitly.

Our architecture for the multi-task model is illustrated in Figure 3.

Turn-management willingness prediction. We formulated

the turn-management willingness prediction as a regression prob-

lem and average willingness scores from the 10 annotators as the

ground truth. We used the neural networks to learn our regres-

sion problem. The unimodal features were first fed into individ-

ual processing modules to be further processed as 64-dimensional

embeddings. For acoustic and visual modalities, the processing

module was a one hidden layer gated recurrent unit (GRU) [4]. A

fully connected (FC) layer as used for the linguistic modality. The

embeddings were then concatenated together and forwarded into a

FC layer with an output size of 192 for fusion. A final linear layer

followed, outputting four predicted willingness scores. We used

mean squared error (MSE) as our loss function.

1http://nlp.ist.i.kyoto-u.ac.jp/index.php?BERT%E6%97%A5%E6%9C%AC%E8%AA%9E
Pretrained%E3%83%A2%E3%83%87%E3%83%AB



Figure 3: Architecture of Multi-task Model with Input Features of Acoustic, Linguistic, and Visual Modalities from Speaker

and Listener.

Turn-changing prediction. Turn-changing predictionwas con-

sidered a classification problem. Each turn was labeled as either

turn-changing or turn-keeping, depending on whether the current

listener became the next actual speaker. The classification model

followed the same structure as the regression one, except that it

output a two-dimensional vector for prediction. Cross entropy (CE)

was used as the loss function.

Multi-task prediction. To embed willingness knowledge into

turn prediction, our proposed multi-task model jointly predicts

willingness scores and turn-changing/keeping. The model follows

the main structure discussed above, with the difference being that,

after the fusion layer, it has an FC layer for each task. The entire

loss function is a weighted average of MSE and CE with weights of

1 and 2.

6 EXPERIMENTS

6.1 Experimental Methodology

To answer question Q1, we implemented the three kinds of models

of turn-management willingness prediction using the multimodal

behaviors of either the speaker or listener or both. We investi-

gated and compared the performance of the models to demonstrate

that turn-management willingness can be predicted using multi-

modal behaviors of speakers and listeners. To answer question Q2,

we also implemented the models of turn-changing prediction that

jointly predict turn-management willingness and turn-changing.

We compared the performance of the multi-task learning models

and single-task models to demonstrate that incorporating willing-

ness into turn-changing prediction models improve turn-changing

prediction.

All models were trained using the Adam [32] optimizer with

a learning rate of 0.0001 for 50 epochs. The batch size was 64.

Furthermore, we added dropout layers with a rate of 0.1 for the

FC layers. Leave-one-dyad-out testing (12-hold cross-validation

method) was used to evaluate model performance. With the testing,

we evaluated how much willingness and turn-changing of new

dyads can be predicted.

For the willingness prediction task, we report the concordance

correlation coefficients (CCCs) between predicted and actual scores

(i.e., annotated ground truth). A high CCC value indicates high

agreement between the values of the predicted scores and ground

truth. This means that prediction and ground truth values are sim-

ilar to each other, and general trend changes for both signals are

the same [40]. We compared the predictions of pairs of regression

models by means of two-sided Wilcoxon signed rank tests at a

0.05 significance level [51]. For the classification task, we evaluated

the performance using F1 scores weighted by the label proportion

since the numbers of turn-changing and turn-keeping labels were

imbalanced in our dataset. The predictions of pairs of classifiers

were made by means of a McNemar test at a 0.05 significance level

[39].

6.2 Results

Models were built using combinations of different input features.

The results of willingness and turn prediction are shown in Table 1.

Model (1) is the base model of prediction. It was a random prediction

model that randomly generates scores and classes from learning

data without using the feature values of speakers and listeners. The

CCCs of the willingness prediction for model (1) were -0.011 for

turn-holding, -0.013 for turn-yielding, -0.025 for turn-grabbing, and

0.007 for listening. The F1 score of turn-changing prediction was

0.528. All models (2) ~ (7) for turn-management willingness and

turn-changing prediction tasks significantly outperformed model

(1) (𝑝-value < 0.001). This suggests that feature values from speaker

and listeners are useful for prediction.

Results of turn-management willingness prediction using

speaker/listener behaviors (related to Q1). As shown in Table 1,

models (2), (3), and (4) used feature values of speaker, listener, and

both independently.

Comparingmodels (2) and (3), the CCCs of turn-holding and turn-

yielding prediction for model (2), 0.433 and 0.379, were significantly

higher than those of model (3), 0.310 and 0.292 (𝑝-value < 0.001).

In contrast, the CCC of turn-grabbing prediction for model (3),

0.403, was significantly higher than that of model (2), 0.272 (𝑝-

value < 0.001). These suggest that speaker/listener feature values

are more useful for predicting speaker/listener turn-management

willingness than listener/speaker willingness.

Comparing model (4) with (2) and (3), model (4) with all features

performed best, 0.502 for turn-holding, 0.464 for turn-yielding, 0.521



Table 1: Results of turn-management willingness and turn-changing prediction. Each row represents results of model with

different configuration of input features. Section 6 describes experiments in detail. CCC is reported for each model for

turn-management willingness prediction. F1 score is reported for turn-changing prediction. Results of runnning two-sided

Wilcoxon signed rank among models (2) ~ (4) and among (5) ~ (7) are shown. Results for three pairs of two conditions under

(2) vs (5), (3) vs (6), and (4) vs (7) are shown. ∗ stands for p-value < 0.05, while ∗∗ stands for p-value ≪ 0.001.

Features Multi Willingness Prediction (CCC) Turn-changing

Model
Speaker Listener

-task Speaker Listener Prediction

# learning Turn-holding Turn-yielding Turn-grabbing Listening (F1 score)

(1) -0.011 -0.013 -0.025 0.007 0.528

(2) × 0.443 (3)∗∗ 0.379 (3)∗∗ 0.272 0.327 0.759 (3)∗∗

(3) × 0.310 0.292 0.403 (2)∗∗ 0.373 0.711

(4) × × 0.502 (2)∗∗,(3)∗∗ 0.464 (2)∗∗,(3)∗∗ 0.521 (2)∗∗,(3)∗∗ 0.492 (2)∗∗,(3)∗∗ 0.771 (2)∗∗,(3)∗∗

(5) × × 0.433 0.381 (2)∗∗ 0.272 0.321 0.760

(6) × × 0.320 (3)∗∗ 0.303 (3)∗∗ 0.422 (5)∗∗ 0.400 (3)∗∗ 0.730 (3)∗∗

(7) × × × 0.534 (5)∗∗,(6)∗∗ 0.497 (5)∗∗,(6)∗∗ 0.517 (5)∗∗,(6)∗∗ 0.503 (5)∗,(6)∗ 0.797 (4)∗∗,(5)∗∗,(6)∗∗

for turn-grabbing, and 0.492 for listening, being significantly than

models with speaker’s feature values (2) or listener’s feature values

(3) (𝑝-value < 0.001). This suggests that a model using feature val-

ues from both speakers and listeners outperforms a model using

them from one person. We found an overall improvement in turn-

management willingness prediction by fusing multiple features of

speaker and listener.

Results of turn-changing prediction using speaker/listener

behaviors. We implemented and evaluated the performance of

turn-changing prediction models (2), (3), and (4) similarly to the

turn-management prediction models to assess the effect of multi-

task learning on turn-changing prediction. We report the perfor-

mance of the models to confirm whether our extracted speaker and

listener features were useful for turn-changing prediction.

Comparing models (2) and (3), the F1 score of turn-changing

prediction for model (2), 0.759, was significantly higher than that

of model (3), 0.711 (𝑝-value < 0.001). This suggests that the speaker

features are more useful for predicting turn-changing than those

of listeners.

Comparing model (4) with (2) and (3), model (4) with all fea-

tures performed best, 0.771, significantly better than models with

speaker features (2) or listener features (3) (𝑝-value < 0.001). This

suggests that a model using features from both speaker and listener

outperforms using features from one person. We found an over-

all improvement in turn-changing prediction by fusing multiple

speaker and listener features. These results are in line with previous

research that similarly used both speaker and listener behaviors

for turn-changing prediction [20, 23ś25, 30].

The performance of our turn-changing prediction models was

high [i.e., 0.771 for model (4)] even though the prediction task is

known to be difficult and our dataset is relatively small. As an

alternative, features from a pre-training model such as VGGish,

BERT, and ResNet-50 could be used to mitigate our relative small

dataset. Turn-changing prediction models (2) ~ (4) can serve as a

baseline for evaluating the effect of using multi-task learning.

Results ofmulti-task prediction of turn-management will-

ingness and turn-changing (related to Q2). We first analyzed

whether applying multi-task learning to turn-management will-

ingness and turn-changing prediction can improve turn-changing

prediction. Models (5), (6), and (7) used multitask-learning in ad-

dition to models (2), (3), and (4), independently. We compared the

performance between models (2) and (5), (3) and (6), and (4) and (7)

for turn-changing prediction. Model (6) had a significantly higher F1

score, 0.730, than model (3), 0.711. Model (7) also had a significantly

higher F1 score, 0.797, than model (4), 0.771 (𝑝-value < 0.001). This

suggests that multi-task learning incorporating turn-management

willingness prediction into turn-changing prediction models im-

proves the performance of turn-changing prediction.

We compared the performance among models (5) ~ (7), which

used multi-task learning for turn-changing prediction. Model (7)

with all features performed best, 0.797, being significantly better

than models with speaker feature values (5) or listener feature val-

ues (6) (𝑝-value < 0.001). This suggests that multimodal fusion using

speaker and listener behaviors and multi-task learning incorporat-

ing turn-management willingness prediction were most useful for

turn-changing prediction in our experiments.

We also analyzed whether multi-task learning is useful for pre-

dicting turn-management willingness. We compared the perfor-

mance between models (2) and (5), (3) and (6), and (4) and (7). Model

(6) only had significantly higher CCCs, 0.320 for turn-holding, 0.303

for turn-yielding, and 0.400 for listening, than model (3), 0.310 for

turn-holding, 0.292 for turn-yielding, and 0.373 for listening (𝑝-

value < 0.001). This suggests that multi-task learning improved

the performance of turn-management willingness prediction only

when using the listener features.

We compared the performance of models (5) ~ (7), which use

multi-task learning incorporating turn-management willingness

prediction. Model (7) with all features performed best, 0.534 for turn-

holding, 0.497 for turn-yielding, 0.517 for turn-yielding, and 0.503

for listening, being significantly higher than models with speaker

feature values (5) or listener ones (6) (𝑝-value < 0.001). These re-

sults suggest that multi-modal fusion using speaker and listener

behaviors and multi-task learning applied to turn-management

willingness prediction and turn-changing prediction are also useful

for turn-changing prediction.



7 DISCUSSION

7.1 Relationship between Turn-management
Willingness and Actual Turn-changing

In Section 4, we observed discrepancies between the willingness 
score and actual next speaking in turn-changing. We hypothesized 
that estimating willingness may be a helpful prediction target for 
avoiding such discrepancies. This is in contrast to prior works 
that ignored willingness information. For conversational agents 
or robots to start or stop speaking at the right time, we do be-
lieve that predicting human turn-management willingness is im-

portant, rather than simply predicting the next speaker (actual 
turn-changing). In this study, we tried to predict the willingness 
of two people simultaneously during dyad interaction. When ap-
plied to human-agent interaction (HAI) scenario, our approach will 
need to the adapted to predict only one user’s willingness using 
the trimodal feature values, either the speaker or listener role. We 
see this as a great future direction.

Modeling turn-management willingness may help to detect dis-
crepancies between the willingness toward turn-changing and ac-
tual turn-changing. A conversational system can then recognize 
users having a high willingness to speak (speaker’s turn-holding 
or listener’s turn-grabbing willingness) even though they cannot 
speak. It could even help to mediate meetings by possibly inter-
rupting the current speaker if a person does not notice that the 
conversation partner has a low willingness to listen. Many studies 
are conducted to facilitate human interactions with agents and 
robots. For example, robots have been proposed that prompt the 
user who has the least dominance in conversation [41]. With such 
facilitation, the appropriate time when an agent can prompt a user 
to speak could be recognized with our prediction results on turn-
management willingness and turn-changing.

7.2 Answer to Q1 research question
Our results show that the features of both speaker and listener 
are useful for predicting turn-management willingness. Individual 
turn-management willingness can be predicted better using fea-
tures from individuals than from others. Individual willingness is 
well reflected in an individual’s behavior. Moreover, the models 
using features of both speaker and listener performed better than 
those using only speaker or listener features. This suggests that the 
multimodal approach with trimodal features of speaker and listener 
is most useful in predicting the turn-management willingness of 
both persons. In the other words, the turn-management willingness 
of a speaker and listener can influence the verbal and non-verbal 
behaviors of both. This suggests that predicting the internal state of 
an individual, such as willingness, using features from not only the 
individual but also conversational partners could be greatly useful 
in dyad interaction.

7.3 Answer to Q2 research question
Turn-changing prediction becomes most accurate when turn-man 
agement willingness and turn-changing are predicted simultane-

ously using multi-task learning. This demonstrates that explicitly 
adding willingness as a prediction target improves the performance 
of turn-changing prediction. This introduces new possibilities for

more accurately predicting human behavior by predicting human

psychological states at the same time in conversations. Moreover,

models that jointly learn two tasks also improve the performance of

turn-management willingness compared with models that perform

just one task. Multi-task learning leads a model to learn the under-

lying relationship between willingness scores and turn-changing.

This results in both improved turn-changing and turn-management

willingness prediction. These results also suggest that a multi-task

prediction approach that predicts the internal state of people, such

as their willingness and actual behaviors, could be greatly useful in

dyad interaction. Applying such an approach to tasks other than

turn-changing prediction will be part of our further investigation.

7.4 Future Work

Our goal is to study turn-management willingness and its impact

on turn-changing precision. We used automatically high-level ab-

stracted features extracted from acoustic, linguistic, and visual

modalities. We plan to use other interpretable features, such as

prosody [10, 15, 16, 19, 37, 38, 43] and gaze behavior [3, 20, 24, 26,

30], and implement more complex prediction models [37, 38, 43, 50]

that take into account temporal dependencies.

Hara et al. [12] proposed a prediction model that can predict

backchannels and filers in addition to turn-changing using multi-

task learning. To analyze and model the relationship between turn-

management willingness, backchannels and filers would be inter-

esting future work.

We also plan to incorporate prediction models into conversa-

tional agent systems that can leverage the smooth turn-changing

and facilitate the start of speaking for those who cannot speak

despite having a high turn-holding or turn-grabbing willingness.

8 CONCLUSION

We found that many turn-changes happen even when the speaker

has a high turn-holding willingness to continue speaking and the

listener has a low turn-grabbing willingness to continue listen-

ing. This means that there are discrepancies between willingness

and actual speaking behavior (i.e., turn-changing). Conversational

agents would perform smooth turn-changing and facilitate the user

in speaking with prediction results of turn-management willing-

ness and actual turn-changing. We built models for predicting the

turn-management willingness of speakers and listeners as well as

turn-changing with trimodal behaviors, acoustic, linguistic, and

visual cues, in conversations. An evaluation of our models showed

that turn-management willingness and turn-changing are predicted

most precisely when all of the modalities from speaker and listener

are used. Furthermore, turn-changing prediction becomes more

accurate when turn-management willingness and turn-changing

are predicted jointly using a multi-task learning. Turn-management

willingness prediction also becomes more accurate with it. These

results suggest that more accurate prediction models of human

behaviors could be built by incorporating other predictions related

to human psychological states.
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