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Eulerian space-time correlation of strong magnetohydrodynamic turbulence
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The Eulerian space-time correlation of strong magnetohydrodynamic (MHD) turbulence in strongly mag-
netized plasmas is investigated by means of direct numerical simulations of reduced MHD turbulence and
phenomenological modeling. Two important results follow from the simulations: (1) Counterpropagating
Alfvénic fluctuations at each scale decorrelate in time at the same rate in both balanced and imbalanced
turbulence and (2) the scaling with wave number of the decorrelation rate is consistent with pure hydrodynamic
sweeping of small-scale structures by the fluctuating velocity of the energy-containing scales. An explanation
of the simulation results is proposed in the context of a recent phenomenological MHD model introduced
by Bourouaine and Perez [Astrophys. J., Lett. 879, L16 (2019)] when restricted to the strong turbulence
regime. The model predicts that the two-time power spectrum exhibits universal, self-similar behavior that is
solely determined by the probability distribution function of random velocities in the energy-containing range.
Understanding the scale-dependent temporal decorrelation of MHD turbulence as well as its possible universal
properties is essential in the analysis and interpretation of spacecraft observations when the Taylor’s hypothesis
may not be valid, which could well be the case in near-Sun regions to be explored by the recently launched

Parker Solar Probe (PSP).
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I. INTRODUCTION

Since the first observations by Belcher and Davis [1]
that noncompressive Alfvén-like fluctuations of velocity and
magnetic field dominate the solar wind, incompressible mag-
netohydrodynamics (MHD) [2] has been often invoked to
describe the observed Kolmogorov-like power spectrum of
low-frequency fluctuations of the solar wind plasma; for ex-
tensive reviews, see Refs. [3-5]. The majority of advances in
MHD turbulence in the past few decades have been largely
concerned with its spatial statistical properties, such as the
three-dimensional structure of the power spectrum and higher
order structure functions [2-19]. Most of these properties
can be derived from two-point one-time correlations, which
quantify the covariance between simultaneous values of a
turbulent quantity at two different points.

However, more often than not turbulence experiments and
solar wind observations can only provide single-probe mea-
surements along the plasma at different positions and times, in
which case a methodology to relate the time signals measured
in the probe’s frame to the spatial properties in the plasma
frame is required to test theoretical predictions. For instance,
in solar wind observations the so-called Taylor hypothesis
(TH) [20] (or frozen-flow approximation) is commonly used.
This approximation essentially assumes that when the mean
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flow speed U (as seen in the probe’s frame) is much larger than
any other characteristic speed, such as the flow’s turbulent
amplitude and wave-propagation speed, the time signal of
a turbulent quantity measured in the probe’s frame is due
to the advection of frozen spatial structures passing by the
instrument at the local mean flow speed U. In contrast, when
these conditions are violated, the temporal variation observed
in single-probe measurements arises instead from a dynamic
structure passing by the probe; i.e., the time variation is a com-
bination of advection and evolution of the passing structures.
The recently launched Parker Solar Probe (PSP) [21] has
spurred a renewed interest in understanding the space-time
structure of solar wind turbulence [22-26], precisely because
it will explore the near-Sun region where the conditions for the
validity of the TH might not be satisfied. In this case, an under-
standing of the structure of two-point two-time correlations of
turbulent quantities and any possible universal properties are
essential to successfully relate the turbulent time signals (mea-
sured by the probe) to the spatial structure of the turbulence.
Analyses of spacecraft data to date have provided increasing
evidence that many turbulent properties of low-frequency
fluctuations in the solar wind are consistent with various pre-
dictions from current MHD turbulence models [4]; however,
the subject remains open and under considerable debate. In
this paper we address the physics of temporal decorrelation of
Alfvénic fluctuations, which may be relevant to the analysis of
solar wind fluctuations to the extent that they can be described
by incompressible MHD [22-28], such as in the first two
perihelia around 36 solar radii where the solar wind was found
to be highly Alfvénic [29-35]. The physics of the temporal
decorrelation in solar wind observations when MHD is not ap-
plicable is outside the scope of this work and deserves further
investigation.
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A number of works have investigated the structure of the
Eulerian space-time correlation in MHD turbulence in the past
decade. Servidio et al. [27] investigated the scale-dependent
temporal correlation in isotropic MHD using numerical simu-
lations. The authors reported that the Eulerian decorrelation
time is consistent with a sweeping-like scaling 7. ~ k~!,
which they attributed to a combination of convective sweeping
by the large-scale flow and magnetic sweeping from large-
scale magnetic fluctuations. Lugones et al. [28] studied the
same problem for the anisotropic case of MHD turbulence
with a guide field, using simulations with small, moderate,
and large guide fields to investigate the role of the magnetic
field in the decorrelation time. Their findings are consistent
with Servidio et al. [27] for small guide field, while the decor-
relation becomes dominated by Alfvén-wave propagation for
large guide field. One shortcoming of the works of Servidio
et al. [27] and Lugones et al. [28] is that they focused on the
correlation function of the fluctuating magnetic field and not
on the Elsasser fields. Narita [36] investigated the temporal
decorrelations of the Elsasser fields in MHD, by extending a
hydrodynamic (HD) sweeping model of the Eulerian corre-
lation of Wilczek and Narita [37] with a mean flow. Narita’s
model suggests that the temporal decorrelation of the Elsasser
fields z* at small scales arises from the random sweeping by
large-scale Elsasser fluctuations propagating in the opposite
direction zT¥, resulting in different decorrelation rates when
turbulent amplitudes of Elsasser fluctuations are different (im-
balanced turbulence). However, Bourouaine and Perez [23]
measured the Eulerian correlation of Elsasser fields in highly
imbalanced, reflection-driven MHD turbulence simulations
with high space-time resolution and found that the decorre-
lation of both fields is consistent with sweeping by large-scale
fluctuations at a common speed that is comparable to the root
mean squared (rms) value of the fluctuating velocity, suggest-
ing that the sweeping is hydrodynamic in nature. Based on
the evidence from the numerical simulations, Bourouaine and
Perez [[24], hereafter BP19] introduced a sweeping model of
MHD turbulence that relies on the local mean field and is
consistent with a common sweeping characteristic timescale
for both Elsasser fields plus Alfvenic propagation. In this
work, we show that when the BP19 model is applied in strong
MHD turbulence, the Eulerian space-time correlation is solely
dominated by HD sweeping, which we confirm in numerical
simulations of homogeneous MHD turbulence.

This paper is organized as follows. In Sec. II, we discuss
the theoretical framework for the simulations and phenomeno-
logical models presented in this work, including a brief de-
scription of Kraichnan’s idealized convection model in HD
and its generalization to strong MHD turbulence. In Sec. III,
we discuss the numerical simulation setup and simulation pa-
rameters and a brief description of the methodology that will
be used to validate the MHD sweeping model in simulations.
In Sec. IV, we present and discuss the simulation results, and
in Sec. V we conclude.

II. THEORETICAL FRAMEWORK

We assume that the fluctuating velocity v(x,?) and mag-
netic field B(x, ¢) are described by the equations of incom-

pressible MHD, which in terms of the Elsasser variables 7 =
v = b take the form

0 1
(— FVa- V>zi =27 .Vz* — —Vp 45 4 0VizE,
P)

at

1)
where b =B/\/(47p) is the fluctuating Alfvén velocity,
Va =By//(4mp) is the background Alfvén velocity, p is
the background plasma density (assumed constant), and p is
the combined thermal and magnetic pressure. Random forcing
f*+ and viscous dissipation terms, with constant coefficient v,
have been included to investigate the case of steadily driven
turbulence.

For a strong background magnetic field (By = |Bg|€;, say,
with |Bg| > |B]), the universal properties of MHD turbulence
can be accurately described by neglecting the field-parallel
component, zli, of the fluctuating fields (the pseudo-Alfvén
fluctuations) that play a subdominant role in the turbulence
dynamics (see Ref. [13] and references therein). It can be
further demonstrated that setting zy = 0 in Eq. (1) leads to
a set of equations that is equivalent the simpler reduced
MHD (RMHD) model [38,39]. It is worth noting that the
RMHD model is commonly invoked to describe the dominant
nonlinear interactions and resulting turbulence of noncom-
pressive Alfvén-like fluctuations, which account for most of
the energy in the solar wind. It has also been shown, from
gyrokinetics [40] and from comparisons with MHD simula-
tions [14,41], that RMHD accurately describes the essential
nonlinear interactions responsible for the turbulence cascade
of noncompressive Alfvénic fluctuations.

For homomogeneous and stationary Elsasser fluctuations
7t (x, 1), the two-point two-time Eulerian correlation is de-
fined as

CE(r,7) = (z5(x,1) - 25 (X + 1,1 + 7)), ()

where (---) denotes an ensemble average over many tur-
bulence realizations. These correlations measure the degree
to which each Elsasser field at any position X and time
t is correlated with itself at another location with relative
position r after a time t has elapsed. In a turbulent system,
correlations arise due to the presence of coherent structures
of many characteristic lengthscales, which are undergoing
random advection and nonlinear straining by other structures
in the flow according to the dynamics determined by Eqs. (1).
Although turbulence correlations can, at least formally, be
related to the governing equations of the fluctuating variables,
turbulence theories have been unable to produce exact analyt-
ical solutions even in the simplest case of incompressible HD
turbulence, because of the well-known closure problem [42].
In MHD turbulence, a perturbative closure for the temporal
decorrelation is possible when the turbulence is weak [43].

The correlation in Eq. (2) can be expressed in terms of its
spatial Fourier transform

Ct(r,7) = / Wk, ©)e* dk, 3)

where h*(k, 1) are the so-called two-time power spectra
defined so that

ZF K, 1) 25K, t + 1)) =ht(k, )8k +K) (4

023357-2



EULERIAN SPACE-TIME CORRELATION OF ...

PHYSICAL REVIEW RESEARCH 2, 023357 (2020)

and z*(k,t) is the spatial Fourier transform of the field
z%(x, t). The scaling properties and three-dimensional struc-
ture of the spatial power spectra h(jf(k) = h*(k, 0) (for t = 0)
have been the subject of extensive investigation in theory,
numerical simulations, and solar wind observations [4]. In this
work, we make very few assumptions about the structure of
the spatial power spectrum and focus our investigation on the
structure of the scale-by-scale dependency on the time lag 7,
which accounts for the scale-dependent temporal decorrela-
tion of the turbulence. As t increases, the Fourier amplitudes
at wave vector k decorrelate and one can thus conveniently
define the scale-dependent time correlations I'*(k, T)

h*(k, 7) = hy (k) (k, 7). (35)

By definition I'*(k, 0) = 1 for all k, which means that at
zero time lag t, the fluctuations are perfectly correlated. The
advantage of Eq. (5) is that it allows for the separation of the
spatial part of the two-time power spectrum from the scale-
dependent temporal part, which is the subject of this work.
The two-time power spectra h*(k, r) are simply different
representations of the correlation functions C *(r, 7) and thus
contain the same information.

A. Kraichnan’s idealized convection model in hydrodynamics

In the Eulerian formulation of turbulence, temporal decor-
relation of the velocity field at a given point can arise from two
main effects: (1) random sweeping of the small-scale eddies
by large ones and (2) eddy straining (or shear) associated
with nonlinear inertial forces. Scaling arguments can be used
to argue that the temporal decorrelation in HD is dominated
by the first of these two effects, which is also known as the
Kraichnan’s sweeping hypothesis (KSH) [44]. The sweeping
decorrelation mechanism is a nonlocal-in-scale process, in
the sense that it involves eddies of disparate scales, and its
characteristic timescale is g ~ 1/(kug) for a fluctuation of
scale A ~ 1/k swept by a large-scale fluctuation with velocity
up. The second timescale associated with nonlinear straining
scales as Ty ~ k23, a slower decrease with k than the
sweeping timescale 7. These scaling arguments suggest that
the Kraichnan’s hypothesis is expected to hold better for
sufficiently large values of k for which the ratio 7g/tnp, ~
k~1/3 is small [45].

Kraichnan introduced an idealized convection model of
incompressible HD to describe the random sweeping of small-
scale fluctuations by large ones. In this model, the fluid ve-
locity consists of two parts v = v’ + u, with the following as-
sumptions: (1) v/, describing the large-scale eddies, is constant
in space and time but is a zero-mean random variable with an
isotropic Gaussian distribution, (2) the field u(x, ), describing
the small-scale eddies, is much smaller in magnitude than v’,
and (3) v’ and u(x, 0) are statistically independent. From the
first two assumptions, the Navier-Stokes equation becomes

M waiw-ve~ (L iv.viu=0. ()
ot —\or -

where we ignored viscous dissipation (considering fluctua-
tions in the inertial range) and dropped the pressure term
whose only role is to ensure fluctuations remain incom-
pressible. As opposed to the Navier-Stokes (NS) equation,

the idealized model given by Eq. (6) is a stochastic linear
equation in u, without the statistical closure problem. The
essence of this idealized model is that the dominant variation
of u simply arises from advection of frozen structures by
a constant but random velocity at each point. For instance,
if we assume for the moment that v/ =V is not a random
variable, Eq. (6) forms the basis for the TH approximation.
In this sense, the random sweeping model can be interpreted
as the application of TH to a statistical ensemble of systems,
each one with a different large-scale flow velocity drawn from
a random distribution associated with the large-scale eddies.
Straightforward solutions to Eq. (6) can be found to obtain
the scale-dependent time correlation

F(k, T) — (e—ik-v'r> — /e—ik-v’tp(vl)d:iv/, (7)

where P(v’) is the probability density for the random variable
v'. Kraichnan’s model assumed P(v’) to be an isotropic Gaus-
sian distribution

P(V) = ! ( ﬂ) (®)
T (va2)3/2 o )

0

in which case Eq. (7) becomes
I'k,t)=e %7, ©)

where y, = kvg/ /2 is the decorrelation rate and Vo is the rms
value of the velocity v’ along any given direction. The decor-
relation rate is defined at each k as y, = 1/7;, where i is
the time lag for which the correlation I'(k, ) drops to 1/e =~
0.37. This idealized model provides a phenomenological de-
scription of the temporal decorrelation when the timescale
7. ~ 1/(kvg) is much faster than the Kolmogorov estimate of
the nonlinear cascade time ty; ~ k~%/3. Wilczek and Narita
[37] revisited the HD case with a constant mean flow U, which
simply adds a phase factor to the correlation I'(k, 7).

It is important to note that Kraichnan’s assumption of
Gaussianity for the random variable v’ is unnecessary and the
validity of his model can be extended to other distributions
P(V') by noticing that the average in Eq. (7) is nothing but the
characteristic function ¢y (€) of the probability density P(v’),
and hence

I'(k, 7) = ¢y (k1), (10)

where
ov(&) = (e V) = / e BV PV (11)

This result shows that the scale-dependent time correlation
can be obtained from characteristic function of the probability
density of the large-scale eddies [46], by setting & = kt, and
is therefore self-similar. In the next subsection, we extend this
idealized model for the case of strong MHD turbulence.

B. Sweeping model for strong MHD turbulence

The Kraichnan’s picture acquires greater complexity in
MHD turbulence for a number of reasons. First, in the Elsasser
formulation MHD contains two fluctuating fields z* that are
being advected in opposite directions along the background
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magnetic field and undergo mutual straining only when coun-
terpropagating fields encounter each other or “collide,” re-
sulting in various limiting regimes. For instance, when the
energies of the fluctuating fields z* and z~ are comparable
the turbulence is called balanced; otherwise, it is called im-
balanced. For both the balanced and imbalanced cases, the
turbulence can be weak [6] or strong [47]. The weak turbu-
lence regime occurs when the time it takes two eddies to cross
one another is much shorter than the nonlinear interaction
time, thereby requiring a large number of successive collisions
before eddies can cascade their energy to smaller scales [6].
In the strong regime, the crossing and nonlinear times are
comparable and the cascade occurs in about one collision.
Although it is still a matter of debate, a number of models
assume that for imbalanced turbulence z* have different
nonlinear straining times 75, ~ A/z; due to the amplitude
difference [8,48,49], with the exception of the model by Perez
and Boldyrev in which a scale-dependent dynamic alignment
effect leads to comparable straining times [12].

BP19 [24] introduced a new model for the scale-dependent
time correlations by writing the large-scale Elsasser variables
Z% = v £ in terms of their corresponding fluctuating ve-
locity and magnetic fields in (1) to obtain

3
(5 FVA -V +V- Vl>8zi =827 -V 825, (12)

where v/, b/, and 8z are taken to be perpendicular to the mag-
netic field, consistent with the RMHD approximation. Here
8z* represent the small-scale Elsasser fluctuations, V' =
Va + b’ is the modified Alfvén velocity resulting from the
superposition of the mean background magnetic field and the
fluctuating component /47w pb’ from the large-scale eddies,
and V |, V| are the field-perpendicular and field-parallel gra-
dient operator defined with respect to the local magnetic field,
respectively. Hereafter, primes are used to represent random
variables with known statistics. Under the assumption that
the characteristic timescales of the right-hand side (RHS) of
equation (12) are much smaller than those in the left-hand side
(LHS), for a strongly magnetized plasma (|b’| < V) and for
Gaussian-distributed outer-scale velocities v’ one obtains [24]

Tk, 1) = ThViTe o7, (13)

where Vy is the Alfvén speed, k is the component of k in
the direction of the local magnetic field, and yx = kj vo/ V2is
the decorrelation rate. This result is very similar to the model
obtained by Narita [36], with the important difference that
both Elsasser fields decorrelate at a common rate, determined
by pure HD sweeping and Alfvénic propagation along the
local magnetic field (rather than the background field). Noting
that vy represents the rms of the fluctuating velocity in any
direction and v’ lies in the field-perpendicular plane, the
velocity rms is ug = +/2vg, in which case Vi = kiug/2.
Similar scaling arguments can be used to obtain a model for
the I'*(k, 7) functions in the strong turbulence regime. Let A
and [ be the field-perpendicular and field-parallel length scales
of an eddy with respect to the local magnetic field and of
amplitude v;. If the turbulence is driven isotropically, A ~ [,
the turbulence is necessarily weak when v, < V4. Because
weak turbulence cascades energy to smaller perpendicular

scales without affecting the parallel structure [ [6], eddies
will progressively become elongated along the field until
the nonlinear time 7, ~ A/v; becomes comparable to the
linear timescale t4 ~ [/V,4. Therefore, the turbulence will un-
avoidably become strong when the critical balance condition
[47] ©. ~ ta = AJv, ~ 1/V, is satisfied, which means the
timescale of Alfvén wave propagation becomes comparable to
that of the nonlinear terms in the RHS of Eq. (12). In this case,
the Alfvénic propagation can be neglected and the correlation
function takes the form

Tk, 1) = gy (k.7), (14)
or in the case of a Gaussian distribution P(v’)
Tk, 1) =e »7, (15)

Equations (14) and (15) imply that the decorrelation is solely
determined by HD sweeping and is the same for both Elsasser
fields.

It is worth mentioning that the assumption of a Gaussian
distribution of large-scale velocities is made here for concrete-
ness, to make calculations simpler, and also because the simu-
lations used in next section to validate the model are driven
at the outer scale in a Gaussian fashion. However, for the
application of this model to solar wind observations (see, for
instance, Ref. [26]), the actual distribution of velocities at the
outer scale can be used. Previous solar wind observations have
shown evidence that large-scale velocities and magnetic field
fluctuations are Gaussian [3], although some observations
suggest these fluctuations can show strongly non-Gaussian,
skewed tails [50].

III. NUMERICAL SIMULATIONS

RMHD equations, obtained by setting zy = 0 in Eq. (1),
are solved using a fully dealiased three-dimensional (3D)
pseudospectral code in a rectangular domain with aspect ratio
Xx = L/L, defined as the ratio between the perpendicular (L)
and parallel (L) box sizes (with respect to the background
magnetic field By = Byé;). The normalization chosen in the
simulations is such that the rms values of fluctuating plasma
and Alfvén velocity are of order umys ~ 1 (in code’s units),
and the magnitude By so that uyy,s/Vy is of order x. The box
size in the xy plane (perpendicular to the guide magnetic
field) is chosen as L = 2w and time is normalized to the
large-scale eddy turnover time 19 = L/27 ums. The turbulence
is driven by random forcing in the field-perpendicular and
field-parallel wave numbers 0 < k; <4 and 0 < k < 2, re-
spectively, which due to the aspect ratio of the simulation box,
allows one to drive strong RMHD turbulence by controlling
the degree to which outer-scale eddies satisfy the critical bal-
ance condition ky V4 ~ ki ums [11]. The Reynolds number is
defined as Re = us(L/27)/v. Approximately at every eddy
turnover time in the steady state, the code outputs full spatial
snapshots of the Elsasser fields z*, as well as their entire
time history on eight selected xy planes z = ¢,, where o =
1,2,---,8. In the simulations, correlations between v and b
are introduced through the random forcing to investigate the
role of cross-helicity (or level of imbalance) H. = E* — E~,
which measures the energy difference between counterprop-
agating Elsasser fluctuations. Cross-helicity is conveniently
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TABLE I. Simulation list and relevant parameters as follows: normalized cross-helicity o., rms values of v, b, z* of most energetic scales,

aspect ratio x, numerical resolution, and Reynolds number.

Run Regime Normalized cross-helicity (o) U I zr 7y X Resolution Re

RB1 Balanced 0.2 0.81 1.06 1.22 1.43 1:6 5123 2400
RB2 Balanced 0.0 0.79 1.12 1.36 1.37 1.6 10243 6000
RI1 Imbalanced 0.5 0.74 0.97 1.48 0.9 1:10 5123 2400

quantified in the simulations through the normalized cross-
helicity o, = H./E defined as the amount of cross-helicity
normalized to the total energy E = E™ + E . The normalized
cross-helicity takes values in the range —1 < 0. < 1, with
zero corresponding to balanced turbulence, and imbalanced
turbulence otherwise.

Three simulations of steadily driven RMHD turbulence,
listed in Table I, are used to investigate the scaling proper-
ties of the time correlations I'*(k, 7) and to compare with
phenomenological models. These simulations have been ex-
tensively used to investigate the structure and scaling of the
spatial spectrum hg(k) of balanced and imbalanced MHD
turbulence in previous works [11-13]. Because the parameters
of the simulations in Table I are the same as simulations RB1,
RB2, and RI1 in Perez er al. [13], we adopt the same labeling
convention.

The random force drives the outer-scale velocities toward
an isotropic two-dimensional Gaussian distribution of the
form given in Eq. (8), and whose characteristic function is

Oy (E) = e 50lE", (16)

where uy is the rms value of velocities in the energy-
containing range and £ is a velocity wave vector on which the
characteristic function depends. The Gaussian nature of the
outer-scale flow is verified by measuring the angle-averaged
characteristic function @y (§) = (@ (&)) » for the most ener-
getic fluctuations, taken as wave numbers k; < 7. Figure 1
shows that when the characteristic functions ¢y, for all three
simulations are plotted versus & = £uy, they all overlap almost
exactly with the Gaussian function

g€ =e 1%, 17)

1.0

0.5 1

(Pv/(é)

0.0 1

FIG. 1. Angle-averaged characteristic function ¢, versus nor-
malized velocity wave number £ = £uy associated with the random
distribution of large-scale velocities v’ in the plane perpendicular to
the background magnetic field (xy plane). The statistical nature of the
eddies in the driving range is the same in all three simulations, and
only differ by the rms values of uj listed in Table 1.

The field-perpendicular, two-time power spectrum of each
Elsasser field

B (kL T) = /

—00

[ee]

h*(ky, ky, T)dk; (18)

is calculated through the average
hon (kL. T) = (25 (=KL, 1) - 2, (KL, +f)>¢ (19)

in terms of the Fourier transforms zgf ki, 1) =25k, ¢y, 1)
at each transverse plane z = ¢y, with o« =1,...,8. The
ensemble average (---), in this equation also includes an
average over the polar angle ¢ in the k; plane, due to the
expected isotropy of the two-dimensional power in the field-
perpendicular plane. The scale-dependent time correlations
can be related to the field-perpendicular two-time power spec-
tra by integrating Eq. (5) over k;

By (ki, T) =/

oo

R ko, k)T=(ky, ky, T)dky.  (20)
{oo]

Assuming that the scale-dependent time correlations
Ik 1,k),7) weakly depend on k; as predicted by the
model, it follows that

hyp kL, T)
Mk, 1) = 22—, 21
(ki) = 2 @1
where

o0
PEk)) = / hE (kL ky)dky (22)

—00
is the two-dimensional power spectrum. The field-

perpendicular energy spectra, defined as
E=(k1) = 2k PE(k)) (23)

obtained from simulations RB1, RB2, and RI1, are shown in
Fig. 2. As previously reported, the simulations are consistent
with the scale-dependent dynamic alignment phenomenology
of strong MHD turbulence for balanced [9] and imbalanced
turbulence [12].

In the next section, we present results from the scale-
dependent time correlations measured in the simulations from
Eq. (21), and perform two important tests to compare with
the theoretical formula given in Egs. (14) and (15). The
first test is to show that decorrelation rates )/,‘,i scale linearly
with &, , consistent with sweeping characterized by the rms
speed of the outer-scale flow. In the second test, the scale-
dependent time correlations I'*(k,, 7), as defined in Eq. (21),
are calculated in numerical simulations for wave numbers
k, in the inertial range. The resulting correlations are then
compared with the characteristic function ¢y (k1 ), computed
from Eq. (11) using the random distribution of outer-scale
velocities P(V').
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FIG. 2. Field-perpendicular energy spectra compensated by ki/ 2
for the three simulations. All compensated spectra become flat at
ky =~ 4, consistent with power-law scaling kf/ % for k, 2> 4. The
vertical dotted line indicates the beginning of the inertial range.

IV. SIMULATION RESULTS

The modeled scale-dependent time correlations for strong
MHD turbulence given in Eq. (15) have the following impor-
tant features: (1) temporal decorrelation is solely due to the
random sweeping by the large-scale flow, (2) the decorrelation
rates are the same for both Elsasser fluctuations z*, whether
the turbulence is balanced or imbalanced, and scale linearly
with k, as y* =k u/2 in the inertial range, and (3) they
exhibit universal, self-similar behavior as they can all be
written in terms of the characteristic function associated with

I(ky,7)

Fi (kJ_a T)

Fi (kJ_v T)

0.4 0.0 0.2 0.4
T T

0.0 0.2

FIG. 3. Scale-dependent time correlations I'*(ky, 7) (left) and
'~ (ky., ) (right) from simulations: (a) RB1, (b) RB2, and (c) RI1,
for selected wave numbers in the range k;, = 16 to 64. Dotted lines
correspond to Gaussian least-squares fits in which the decorrelation
rate y; is the only free parameter at each k. The inertial range of
these simulations according to Fig. 2 is between k; ~ 4 and 20 for
RBI1 and RI1, and k; >~ 4 to 30 for RB2.

A —
10° 10! 102
k|

FIG. 4. Sweeping velocities ¢* = 2y* /k, estimated from mea-
sured decorrelation rates ]/,\,i vs k,, obtained from Gaussian fits
shown in Fig. 3. The decorrelation rates are similar for both Elsasser
fields at all wave numbers k,, for both balanced and imbalanced
turbulence. Flat regions of ¢* correspond to wave numbers for which
the decorrelation is consistent with sweeping, and the characteristic
sweeping speed agrees with rms of the velocity at the outer scale.
The rms values z(f, by, and 1 at the outer scale, given in Table I, are
indicated as horizontal lines on the plot. The vertical dotted lines
approximately represent the inertial range observed in the energy
spectrum of each simulation in Fig. 2.

the random distribution of large-scale velocities with a simple
rescaling of the wavenumber & .

The scale-dependent time correlations T'#(k, , ) are cal-
culated for each simulation according to Eq. (21) and shown in
Fig. 3 for selected values of the field-perpendicular wave num-
ber between k; = 16 and k; = 64. Dotted lines correspond to
Gaussian fits of each correlation of the form given in Eq. (15),
where the only free parameter at each k is the corresponding
decorrelation rate yki. As noted by Bourouaine and Perez
[23] in simulations of reflection-driven Alfvén turbulence,
the scale-dependent time correlations closely follow Gaussian
behavior in 7, consistent with the statistics associated with the
energy-containing scales.

Figure 4 shows sweeping velocities ¢ = 2)/,(jE /k, versus
k. from the measured decorrelation rates for each Elsasser
field z*, which are consistent with the phenomenological
model described in Sec. II B in a number of ways. First,
the decorrelation rates for both fields remain approximately
equal at all wave numbers for both balanced and imbalanced
simulations. Second, ¢* approximately starts to plateau at
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FIG. 5. Scale-dependent time correlation functions of z* (left
panels) and z~ (right panels) vs k, T in simulations RB2 (a) and RI1
(b), for selected values of the wave number in the inertial range. The
black line on all plots represent the characteristic function computed
from the random distribution of velocities at the outer scale. Similar
results are found in balanced simulation RB1.

wave numbers above k; 2 4 and remains approximately con-
stant up to wave numbers around k; =~ 20 for simulations
RBI1 and RIl and up to k; >~ 30 for RB2, which indicates
the decorrelation rates exhibit linear behavior consistent with
sweeping in the inertial-range scales for each simulation.
Moreover, the phenomenological model predicts that c¢* is
a common speed for both Elsasser variables z* and z~ and
equal to the rms velocity of the large-scale eddies ug. Figure 4
shows four horizontal lines corresponding to the rms values
of v, b,z* of the most energetic eddies, and c* is clearly
consistent with the rms of the outer-scale velocities only, as
indicated by the solid horizontal line.

The second test of the theoretical model is found in Fig. 5,
which shows the computed scale-dependent time correlation
functions for selected values of k, in runs RB2 and RIl
of balanced and imbalanced RMHD turbulence. In all these
plots, it is observed that when the corresponding temporal
correlation function is plotted versus the normalized velocity
wave number é = k Tuyp, the scale-dependent correlations for
all wave numbers are essentially indistinguishable from the
characteristic function arising from the random distribution
of velocities of the most energetic scales, as predicted by the
model in Eq. (14).

V. CONCLUSION

In this work, we investigated the temporal decorrelation
of strong MHD turbulence through phenomenological mod-
eling and numerical simulations of RMHD turbulence. Scale-
dependent time correlations of Elsasser fluctuations were
modeled by restricting the recent BP19 phenomenology to the
strong MHD turbulence regime. In the BP19 phenomenology,
which extends Kraichnan’s idealized convection model of

hydrodynamics to MHD, the Eulerian decorrelation is the
result of HD sweeping and Alfvénic propagation along the
local magnetic field. In this work, we have shown that, for the
particular case of strong turbulence regime, the decorrelation
is solely governed by HD sweeping. The resulting scale-
dependent time correlations exhibit an universal, self-similar
behavior that is entirely determined by the statistics of ve-
locities at the largest, energy-containing eddies, and it clearly
shows that the decorrelation rates for both Elssaser variables
are the same regardless of whether the turbulence is balanced
or imbalanced. All these features were tested using numerical
simulations of strong RMHD turbulence, and were found to
be in very good agreement with the theoretical predictions.

An earlier model of the Eulerian temporal decorrelation
in MHD turbulence was also proposed by Narita [36], in
which the decorrelation rates are predicted to scale as yki =
k Lzrfns/\/i. This model is physically appealing at a first
glance, as it is natural to assume that the decorrelation rate
of z* is determined by the rms value of z', and vice
versa. If this were the case, as Narita pointed out in [36],
the decorrelation rates would be different for imbalanced tur-
bulence where one of the Elsasser component has a larger rms
amplitude. One shortcoming of the Narita [36] model is that it
does not take into account the fundamentally different effects
that the large-scale flow and magnetic field fluctuations have
on the small-scales. For instance, large-scale fluctuations in
velocity will sweep small-scale Elsasser fluctuations equally,
while large-scale fluctuations in the magnetic field simply
modify the background magnetic field along which small-
scale Elsasser fluctuations propagate. It is therefore important
that a sweeping model captures these different characteristics
associated with the nature of large-scale velocity and magnetic
field fluctuations, as done in Eq. (12) in the context of the
BP19 phenomenology.

The outcomes from this study will in fact be very beneficial
for the analysis of the spacecraft signals beyond the valid-
ity of Taylor’s hypothesis whenever solar wind observations
are compared with predictions from phenomenological MHD
turbulence models (see, for instance, Ref. [26]). Finally, we
conjecture that the results we present in this work may be
suitably extended to kinetic (non-MHD) regimes found in the
solar wind, but it requires further investigation.
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