PHYSICAL REVIEW RESEARCH 2, 023189 (2020)

Two-time energy spectrum of weak magnetohydrodynamic turbulence
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In this work a weak-turbulence closure is used to determine the structure of the two-time power spectrum
of weak magnetohydrodynamic (MHD) turbulence from the nonlinear equations describing the dynamics. The
two-time energy spectrum is a fundamental quantity in turbulence theory from which most statistical properties
of a homogeneous turbulent system can be derived. A closely related quantity, obtained via a spatial Fourier
transform, is the two-point two-time correlation function describing the space-time correlations arising from
the underlying dynamics of the turbulent fluctuations. Both quantities are central in fundamental turbulence
theories as well as in the analysis of turbulence experiments and simulations. However, a first-principles
derivation of these quantities has remained elusive due to the statistical closure problem, in which dynamical
equations for correlations at order n depend on correlations of order n + 1. The recent launch of the Parker
Solar Probe (PSP), which will explore the near-Sun region where the solar wind is born, has renewed
the interest in the heliophysics community to understand the structure and possible universal properties of
space-time correlations. The weak MHD turbulence regime that we consider in this work allows for a natural
asymptotic closure of the two-time spectrum, which may be applicable to other weak turbulence regimes found
in fluids and plasmas. An integro-differential equation for the scale-dependent temporal correlation function
is derived for incompressible Alfvénic fluctuations whose nonlinear dynamics is described by the reduced

MHD equations.
DOI: 10.1103/PhysRevResearch.2.023189

I. INTRODUCTION

Incompressible magnetohydrodynamics (MHD) not only
provides the simplest framework to describe plasma turbu-
lence in magnetized plasmas, but often provides an accurate
description of the low-frequency nonlinear dynamics at spa-
tial scales much larger than any plasma microscale, such as
particle gyroradii [1]. MHD equations describe the dynamics
of fluctuations of plasma velocity v(x, ¢) and magnetic field
B(x, t) propagating along a background magnetic field By.
However, MHD turbulence is best studied in terms of the
so-called Elsasser variables z* = v £+ b

(% — SV, - V)zs +((z*-V)z'=-VP, )
where s = +, v4 = Bg//4m pg is the Alfvén velocity asso-
ciated with the constant background magnetic field By, b =
B/\/4mpy is the fluctuating Alfvén velocity, P = (p/po +
b%/2), p is the plasma pressure, and pg is the background
plasma density. Incompressibility imposes the additional con-
dition V -z’ = 0. The advantage of the Elsasser description
stems from the fact that nonlinear interactions responsible for
the turbulence take place only when fields z* and z~ spatially
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overlap, otherwise z* behave as noninteracting, nondispersive
counterpropagating Alfvén waves.

Most of the recent theoretical and numerical progress in
MHD turbulence so far has been concerned with understand-
ing the spectral distribution of energy among spatial scales at
a fixed time [1-14]. Moreover, solar wind turbulent signals
are used to investigate the spatial properties of the turbulent
solar wind by relying on Taylor’s hypothesis (TH) [15], which
posits that the temporal variation of spacecraft signals is
solely due to the spatial variation of frozen structures passing
by the observation point. In contrast, the actual space-time
structure of the turbulence has been investigated to a much
lesser extent, perhaps in part because most testable theoret-
ical predictions and models are concerned with its spatial
structure, and because comparison with observations strongly
relies on the TH [16]. However, it has been recently shown
that TH might not be valid in the near-sun region where the
Parker Solar Probe (PSP) mission [17] will explore, and that
the accurate interpretation of PSP time signals will require
an understanding of how turbulent structures decorrelate in
time [18,19]. In other words, modeling the two-point two-time
correlation function of MHD turbulence becomes a necessity
for the interpretation of single-probe turbulent signals in the
PSP era, motivating our interest in this work on the physics of
temporal decorrelation of turbulent fluctuations.

Although dynamical equations governing the evolution of
these space-time correlations can be formally obtained from
the dynamical equations of the turbulent fluctuations, they
inevitably result in an under-determined system of equations,
i.e., one in which there are more unknowns than equations.
Because this so-called closure problem requires additional
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ad hoc assumptions about undetermined quantities, a first-
principles derivation of the space-time correlation has re-
mained elusive even in the simpler case of incompressible
hydrodynamic turbulence. As a result, investigations of space-
time correlations in MHD turbulence have been limited to nu-
merical simulations and phenomenological modeling [20-23].
For instance, Servidio et al. [21] and Lugones et al. [22]
investigated the space-time correlation of magnetic fluctua-
tions in simulations of MHD turbulence, with and without a
guide field, and suggested that the temporal decorrelation of
fluctuations may be associated with hydrodynamic and mag-
netic sweeping and/or Alfvénic propagation depending on the
degree of magnetization. Recently, a number of phenomeno-
logical models have been proposed to explain results from
numerical simulations and to develop new methodologies to
interpret solar wind observations beyond TH [23-25], by ex-
tending Kraichnan’s sweeping hypothesis of hydrodynamics
[26], which states that the temporal decorrelation of small-
scale turbulent fluctuations is due to the random advection by
large-scale velocity fluctuations.

For spatial correlations (two-point one-time) in MHD, a
successful asymptotic closure has been accomplished in the
weak turbulence (WT) regime to leading order in the turbulent
amplitudes and without any ad hoc assumptions [2]. The
main objective of this work is to obtain a similar WT closure
for the space-time correlation function. Although there is no
evidence yet for the existence of weak MHD turbulence in the
solar wind, the results of this work can potentially be used to
establish the existence of such a regime from observations of
current multi-spacecraft missions, such as Cluster [27] and
Magnetospheric Multiscale (MMS) [28], as well as future
missions currently being proposed to investigate solar wind
turbulence by multipoint measurements from an array of
spacecraft [29,30].

Aside from its potential relevance for current and future
solar wind missions, the WT regime allows for a system-
atic asymptotic closure that can shed new physical insights
and/or provide new theoretical constraints on the temporal
decorrelation mechanisms of MHD turbulence. Furthermore,
our results may also be applicable to other regimes of fluid
and plasma turbulence, such as surface gravity waves [31],
compressible MHD waves [32], gravitational waves in the
early universe [33], waves in rotating planetary flows [34], and
non-Newtonian electrohydrodynamic flows [35].

II. BACKGROUND
A. Governing equations

For a strong background magnetic field By = |Bg|€;, with
|Bo| > |b|, the universal properties of MHD turbulence can
be accurately described by neglecting the field-parallel com-
ponent (z)) of the fluctuating fields (the pseudo-Alfvén fluc-
tuations) that play a subdominant role in the turbulence dy-
namics (see Ref. [10] and references therein); i.e., we can set
zj = 0 in Eq. (1) to obtain the following governing equation
for the Fourier amplitudes

(% — sik vA>zs(k, 1) =—elz*- V)L, (2

where z°(k, 1) = (z}(k, 1), zj.(k,t), 0), kj is the component
of the wave vector k along the background magnetic field
and ¢ is an ordering parameter that quantifies the strength of
the fluctuation amplitudes'. The right-hand side of Eq. (2)
represents the Fourier-transformed nonlinear terms, which
have the form of a convolution of the Fourier amplitudes
with the pressure properly chosen to ensure the fluctuations
remain noncompressive (nc). It can be shown that this model
is equivalent to the two-field reduced MHD (RMHD) model
[36,37].

By virtue of the incompressibility condition k; -z* = 0,
we can introduce two Elsasser potentials ¥°(Kk, t)

2’ (k, 1) = iy*(k, 1)efuargy 3)

where €, =k, x &,/k;. The complex exponential in this
definition is introduced as an integrating factor to account
for the linear dynamics, in which case the fields ¥*(k,t)
describe the evolution of the wave amplitudes due to the
nonlinear dynamics. From Eq. (2), the governing equations
for the shear-Alfvén Fourier amplitudes ¥*(k, ) become

0 .
S = / A daM pg SOV (e 5008, 0 (4)
where

_ (ki -po)ke xqu)
e kipiq.

and () =¥’ (k,1). (6)

My , &)

8k,pq = 5(k -—p—- q)’

B. The two-point two-time correlation

The space-time structure of MHD turbulence is investi-
gated using the two-point two-time correlation function

Cx, x;t,t)=&'(x,t)- X, 1)), @)

which measures the covariance between the values of each
Elsasser variable z° at two different locations separated by
a distance r = x’ — x and with a time delay (or lag) 7 =
t' —t. In Eq. (7), (---) is used to denote ensemble average
over turbulence realizations. For homogeneous turbulence this
correlation depends on only the relative vector r and can be
written as

Ci(r;t,t) = / dkh*(k, 1,1 )e~*r, (8)

where
Wk, t,t) = Z'(—k, 1) - 2°(k, 1)) )

is the two-time power spectrum and z’(k, t) are the Fourier
amplitudes of the Elsasser fields. The two-time spectra defined
in Eq. (9) are related to the two-time spectra for Elsasser
potentials through the simple transformation

Rk, t,1') = ik, t, 1)t =0, (10)
where

Rk, t,t) = (¥ OviE). (11)

I'The ordering parameter ¢ can set to one after perturbative expan-
sions are obtained to the desired order.
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The space-time correlation function defined in Eq. (7) is
not only one of the most fundamental quantities in turbulence
theory but is also important in the analysis and interpretation
of experimental and simulation data, such as the interpretation
of PSP measurements in the spacecraft frame in terms of
space-time properties in the plasma frame when the TH is
no longer applicable [23-25]. A better understanding of the
space-time dynamics of the turbulence will allow observers to
maximize the information and interpretation of PSP measure-
ments.

C. The two-time vs one-time energy spectrum

The one-time (spatial) three-dimensional power spectra
follows from the two-time spectra when t’ =,

ek, )= (VO 0) =1k, t,1) =k Kk, 1t,1), (12)

which allows one to define the scale-dependent time correla-
tion function as

Rk, t,t") = ek, O (k, 1, 1), (13)

where by definition I}(¢,1) = I'*(k, ¢, 1) = L.

It is important to point out that two-time correlations and
two-time power spectra capture additional information not
present in their one-time counterparts. The former provide
information about the time memory of the turbulence by
relating turbulence properties at two separate times, while the
latter contain only spatial information at any given time during
the turbulence evolution.

A better interpretation of two-time correlations is nor-
mally provided through the simple change of variables ¢, 1’ —
t, T =t —t. The role of each of these time variables in the
two-time correlations is very different. On one hand, the time
t tracks the temporal evolution of the turbulence from some
initial state at ¢t = fy, after which the turbulence can either
decay in an undriven system or transition to a steady state in
the driven case. On the other hand, the time variable 7 simply
represents a time delay introduced to investigate the time
memory of the system at any given time ¢ through temporal
correlations. Because fluctuations decorrelate in a finite time,
it follows that I"*(k, 7, t) — 0 when © — oco. Equation (13)
thus becomes

Kk, t, )=k NIk, t, 7). (14)

Weak turbulent closures for one-time quantities, in both fluids
and plasmas [38,39], provide a closed wave-kinetic equation
describing the true time evolution of the energy spectrum
e°(k, t) in the variable ¢. The wave-kinetic equation thus poses
an initial value problem from which decaying or steady-state
solutions can be obtained.

In the steady state, the one-time spectrum e*(k) is inde-
pendent of ¢ and two-time quantities are a function of t only;
therefore (14) becomes

&k, t) =€ &Ik, 7). (15)

The two-time power spectrum can also be Fourier trans-
formed with respect to the variable t to define the wave-
vector-frequency power spectrum

1 )
k) = o / 1 (K, 7)e" dr, (16)

which measures the spectral distribution of energy by wave
vector and frequency. Because the Fourier transform in this
equation involves only 7, it follows from Eq. (15) that

Kk, w) = e (K)T(k, w), 17)

where I'(k, ) is the Fourier transform of I'*(k, ) with
respect to the variable 7. The advantage of Eqs. (15) and (17)
is that they allow for the separation of the purely spatial part of
the correlation function, typically investigated in theory and
simulations, from the scale-dependent temporal part, which
is the subject of this work. The two quantities ~°(k, 7) and
h*(k, w) are simply different representations of the correla-
tion function C*(r, 7), obtained via Fourier transforms, and
thus contain the same information as the two-point two-time
correlation function.

A large body of works have been devoted to understanding
the structure of the two-time power spectrum, or equivalently
the scale-dependent time correlations I'*(k, ) and corre-
sponding Fourier transform I'’(k, w), from analytical clo-
sures, numerical simulations, and phenomenological model-
ing, in both hydrodynamics and MHD turbulence [20-23]. For
instance, based on purely heuristic arguments Zhou et al. [20]
proposed the following general form for the scale-dependent
time correlation of MHD turbulence

FS(k, 'L') — ei.kavArefylfl(k)ref[yss“,(k)r]z’ (18)

where v, v3, represent the decorrelation frequencies from
nonlinear shearing and sweeping, respectively. More recently
new phenomenological models have been proposed, such as
Narita [25] who extended Kraichnan’s sweeping hypothesis
to MHD turbulence to obtain a model of I'*(k, w) that is
consistent with Eq. (18) for y» = 0 and where the sweeping
decorrelation frequency is yg, & 7.5k, where z;, represents
the root mean square (rms) value of the z*° field at the outer
scale. However, Bourouaine and Perez [18] determined from
simulations of imbalanced, reflection-driven MHD turbulence
that the two Elsasser fields decorrelate at a common speed
consistent with the rms of velocity at the outer scale and later
developed a model for the correlation in which the sweeping
is solely attributed to hydrodynamic sweeping and yg, (k)
kiug [23].

The main goal of this work is to obtain a closed equation
that describes the t dependence of the temporal correlations
h*(k, t), when the system is in steady state with respect to
t, in the WT regime. The advantage of the WT turbulence
regime is that a first-principles, albeit asymptotic, closure
for the correlation can be obtained and compared with other
models for the scale-dependent time correlations. In the next
section we will first present a brief derivation of Galtier [2]
WT closure for e°(k, t), which will later be extended to the
two-time power k*(k, 7).

III. WT CLOSURE FOR THE ONE-TIME SPECTRUM

In this section we present a concise derivation of Galtier
et al. [2] WT closure for MHD turbulence with respect to
the time ¢. For this purpose, Eqgs. (4) and (12) are used to
obtain the governing equation for the one-time spectrum e} (t)
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as follows

8 S 8 s s a A S A 8 N
5 0= E(Iﬁ,k(t)lﬂk(t» = <5wk(t)lﬁk(t)> + <1ﬂk(t)§¢k(t)>

= / AP dq[M i pg U OV, ()8 -kpg + Mipg 0 L (OUS W ()8 pg e 2000 (19)

The two terms in the last integral can be regrouped by chang-
ing p — —p and q — —q in the first integral to get

9 :
e =2e / dpdqM; pgRe[Q° ,(1)e 215y g,
(20)

with the third-order correlation defined as

(W OWSOY, ) = 0,8k +p+a). QD

Similarly, the evolution of the third-order correlation
8 s s —5
WOV OY, )

—e / dldnMy {07 OV VSOV, @)

Xeizi‘mHUAt(Sk,ln + (sk < sp < —sq) (22)

depends on fourth-order correlation functions. Here (sk <>
sp < —sq) indicates two more similar terms obtained from
all unique permutations of sk, sp, —sq. Fourth-order correla-
tions can be rewritten in terms of the fourth-order cumulant,
which for zero-mean random fields is defined as

(U Ov g Ov, O} = (W Ov; @Ov,* (Ov, @)
— (YO Oy O, @)
— (Y Ov O)i @, (0)

— (O, O)wi Oy, @)
(23)

Assuming negligible correlations between * and ¥~ wave
amplitudes it follows

(Vv OV, O, () = e,()e,*()8(p +1S(q +n)

WOV Ov Y, ().
24)

The WT closure becomes possible, as can be rigorously
shown [38,39] for small ¢, because the fourth-order cumulant
evolves over two disparate timescales: a fast linear wave
timescale at zero order £t and a much slower nonlinear
timescale at order &% associated with the energy transfer due
to nonlinear interactions between counterpropagating waves.
Hence, to leading order in ¢, the contribution from the fourth
order cumulant to the evolution of O* » arises from the zero-

order (¢°) wave amplitudes. However, at zero order the linear
dynamics irreversibly drives the wave amplitudes towards a
state of joint Gaussianity, in which case the fourth order
cumulant vanishes to zero order in €. As rigorously shown by

(

Benney et al. [39] for general systems of weakly interacting
waves, the zero-order wave amplitudes can then be assumed
to be Gaussian random fields in Eq. (22), thereby closing the
moment hierarchy. Although nonlinear wave couplings regen-
erate fourth-order cumulants over the longer &%t timescale,
they do not contribute to leading order in Eq. (22). Combining
(21), (22), and (24) and discarding the fourth-order cumulant
we obtain a set of closed equations for the third-order moment

0 .
EQX—kp = eMkyP(k—P) (6‘; - ei)e;jpeﬁs(ku*pu)UAI. (25)

Long-time solutions of Eq. (25) can be used in Eq. (20) to
obtain the wave-kinetic equation

9 s 82]-[ 2 s s\ ,—S
2% = o /dpquk’pq(ep — ek)eq 8(q))8k,pg-  (26)

One important consequence of this closure is the fact
that turbulent energy is strictly transferred to small field-
perpendicular scales, given that three-wave interactions al-
ways involve modes with g =0 and the resonance condi-
tion k = p + q implies k; = p;. As a consequence, kj-planes
evolve independently and the parallel spatial structure of the
turbulence is not altered. The power spectrum can then be
factored out as e*(k) = & (k1 )g’(k|), where &°(k,) is the
field-perpendicular power spectrum for z° waves defined so
that

ES = f dk, & (k) Q27)

is the total energy of z* waves. g°(k|) is a nonuniversal func-
tion that determines how the energy of the waves is distributed
among the field-parallel scales.?

IV. WT CLOSURE FOR THE TWO-TIME SPECTRUM

A similar procedure is followed to obtain a closure for the
two-time correlation function, defined in Eq. (11), to leading
order in &. From the governing equations of ¥ (¢) it follows

a s s 7 s 8 Sre!
mw,k(r)wk(r )) = <wk<t>§wk<t >>
—¢ /dpquk,quS_kp(t, t/)eizisq”vﬂlgk,pq,
(28)

where we again run into a similar problem in which the
equations for second-order correlations depend on third-order

2t is worth stressing that this structure remains unchanged during
the nonlinear cascade, so long as the turbulence remains weak.
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ones, in this case involving two different times,

(WS O W () = @4, (1, )8k —p — @) (29)

In turn, the evolution of the third-order correlation is

a S /s /—s
@(1/’71( 1/[17 Ipq >

—¢ / R e

+8/dlanq,ln(WikW/;W/l_s‘p/,s1>€2isn”UAI,Sq,ln’ (30)

where ' is a shorthand for amplitudes evaluated at ¢'. As
expected, the third-order correlation depends also on two-
time fourth-order correlations. Expressing the fourth-order
correlations in terms of second-order ones and fourth-order
cumulants?

(WS WP ) = Ry, 1R (@ 1)8(k — DS (g +n)
s} 31)

The fourth-order cumulants in the last equation can also be
discarded from Eq. (30) for long times (of order 2¢) for the
same reason they are discarded in the one-time case, namely,
that the leading contribution to the right-hand side of Eq. (30)
arises from zero-order wave amplitudes, which reach a state
of joint Gaussianity over the linear timescale of order £%f.
Therefore it follows from Eq. (30) that for long ¢

0 s 7s —s isquat’
@Q‘_,q,(t, ') = —eMy pghy (2, t’)eq‘ (t")eHsamat’, (32)
Equations (28) and (32) now become a closed set of equations

for the second- and third-order correlations. Equation (32) can
be integrated between ¢ and ¢’ to obtain

t/
Q' (1, 1) = =My g / di" R (1, 1" e (1)
t

(33)
which upon substitution in Eq. (28) leads to

8 7 7
Whi(t’t ) = —SZ/dpqu]%,pqSk,pq

r/
% / dt”/:li(t, t//)e;s(t//)efzz.vq”vA(r’fr”)‘ (34)
t

Considering long-time and steady-state behavior (in the vari-

able t) with #', ¢ > t, the two-time power*

Rt t") =I5t — 1) (35)
can be used in Eq. (34) to obtain

9 . _
EF,S((I) = _82/dpqu1%,pqaksl7qeqs

T
x / df/f‘,x((r/)efﬁxquvA(rfr’), (36)
0

3The last term in Eq. (30) vanishes under the assumption of
negligible correlations between counterpropagating fluctuations, as
was done for the WT closure of the one-time spectra.

“Note that I'{ is the scale-dependent time correlation associated
with the fields ;.

where the one-time spectra e; factored out from the evolution
in#’. Integrating over variable p and using explicit expression
for My, ,q, the following equation is obtained for the correla-
tion function [ (7)

%F,ﬁ(f) = —szl(kl)/T do' Ty’ (r — 7)), (37)
0

where

Pk =K /0 dg 675Gk, (38)

[T d$ (1 —Ecosp)’sin’ ¢
G(§)=/ 7 1 +E2—26cos¢ 49

h(t) = / ” dkyg(ky)e* v, (40)

Equation (37) is an integro-differential equation describing
the scale-dependent correlation for the wave amplitudes v/ (¢)
and is the main result of this work. Solutions to this equation,
which are discussed below, can then be used to obtain the two-
time energy spectrum of MHD turbulence from Eq. (10)

Bk, 1) = & (K)I(k, 7)ekimr, (41)

V. DISCUSSION

The governing equation for the turbulence correlation func-
tion I'*(k, 7) is an integro-differential equation of the general
form

d T
—I(7)= —aZ/ I'(t)Hho(t — ') d7’ (42)
dt 0

in which I', &2, and hy(7) play the role of sk, 1), 21(ky),
and h,*(7), respectively. It can be shown that the correlation
function /(7 ) defined in Eq. (40)

k(1) = R*(r| = 2us7) (43)

results from the substitution of r; = 2v,7 in the spatial cor-
relation function R*(r)) between points separated a distance
r) in the direction of the background magnetic field By. It
then follows that the function 4{(7) can be interpreted as the
spatial correlation function of z° as seen in a frame moving
with z7° waves, in which case the speed is 2v4. Therefore,
the decorrelation time of A, *(z) corresponds to the time it
takes z7° waves to propagate through z* waves one parallel
correlation length, i.e., 7o) ~ 1/2kjv,.

General solutions to Eq. (42) will be presented and dis-
cussed in detail in a separate publication; however, it is worth
noting that a closed solution can be obtained to leading order
in a ~ ¢ as follows. First, by formally integrating from time
lagt'tot

T rL
r@-re) == [ [ rene—eaedc, @

it is shown that the difference between I'(t) and I'(z’) is of
order 2. As a consequence, replacing I'(t") >~ I'(t) inside the
integral in Eq. (42) will result only in an &* error, and the
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equation becomes

d 2

—I'(t) = —a"TI'(1)H(7), 45)

dt
where H(t) = for h(t — 7’). This simplified form of (42)
becomes a regular differential equation that can be integrated
through elementary methods, subject to the initial condition
I'(0) = 1, namely,

[(r) = e Jo HEAT (46)

A few interesting properties stand out from this solution.
First, note that for short times we have to leading order

Ht)=HO)+H O)t +---=hy(0)T---, 47)
from where it follows
[(7) = e @2, (48)

This last approximate solution has the same functional
form of previous models of the correlation function in the
context of strong MHD turbulence [18,23,25]. A second in-
teresting property of the solution is that because ho(7) is a
localized function that vanishes for times much longer than
7|, for large T we have

H(t)~ lim H(t) = const, 49)
T—>00
which leads to the asymptotic solution
(7)) = e @A, (50)

In summary, for short t the solution exhibits Gaussian
behavior, while for long time it exhibits exponential behavior.

This might explain why exponential decay has been useful
in previous analysis of spacecraft and simulation data by a
number of authors; see, for instance, Refs. [21,40].

VI. CONCLUSION

A weak turbulence closure was obtained for the first time
for the two-time energy spectrum of MHD turbulence to lead-
ing order in the wave amplitudes. The resulting closure leads
to an integro-differential equation for the scale-dependent
correlation function (K, 7) in the variable T = ' — ¢, which
describes the temporal decorrelation of waves with wave
vector k. The rate of decrease of the correlation at a given
scale for z° waves is determined by the convolution of the
correlation function itself with the spatial correlation of z~*
waves, measured along the propagation direction, as seen in
the frame moving with the z°* waves. Approximate solutions
were found by assuming the variation of the correlation func-
tion is small during the crossing time of counterpropagating
waves, exhibiting Gaussian behavior for sufficiently small
values of 7 and exponential decay for long time lags 7.
These results are largely consistent with similar models of the
scale-dependent correlations measured in simulations and in
the solar wind, and may find applications in other WT regimes
in fluid and plasma turbulence.
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