
Dynamic Sizing of Continuously Divisible Jobs for

Heterogeneous Resources

Nicholas Hazekamp

University of Notre Dame

Notre Dame, Indiana 46556

nhazekam@nd.edu

Benjamin Tovar

University of Notre Dame

Notre Dame, Indiana 46556

btovar@nd.edu

Douglas Thain

University of Notre Dame

Notre Dame, Indiana 46556

dthain@nd.edu

Abstract—Many scientific applications operate on large
datasets that can be partitioned and operated on concurrently.
The existing approaches for concurrent execution generally rely
on statically partitioned data. This static partitioning can lock
performance in a sub-optimal configuration, leading to higher
execution time and an inability to respond to dynamic resources.

We present the Continuously Divisible Job abstraction which
allows statically defined applications to have their component
tasks dynamically sized responding to system behaviour. The
Continuously Divisible Job abstraction defines a simple interface
that dictates how work can be recursively divided, executed,
and merged. Implementing this abstraction allows scientific
applications to leverage dynamic job coordinators for execution.
We also propose the Virtual File abstraction which allows read-
only subsets of large files to be treated as separate files.

In exploring the Continuously Divisible Job abstraction, two
applications were implemented using the Continuously Divisible
Job interface: a bioinformatics application and a high-energy
physics event analysis. These were tested using an abstract job
interface and several job coordinators. Comparing these against a
previous static partitioning implementation we show comparable
or better performance without having to make static decisions
or implement complex dynamic application handling.

I. INTRODUCTION

Many scientific applications consist of large datasets that

can be decomposed for concurrent execution. Fields such as

bioinformatics, high energy physics, and astrophysics leverage

concurrent execution to decompose and analyze data of all

scales. Most of these applications have consistent analysis

steps, particularly in pre-processing, which allows for clean

mapping to any size data. In this context, the methods for

partitioning large datasets into smaller and more manageable

components are well understood, which allows data analysis

to be described using common templates or frameworks.

The prevalence of concurrent execution is such that new

technologies are regularly developed and execution is deployed

across many different compute sites.

The proliferation of concurrent approaches has lead to a

wide variety of models, methods, and techniques that ap-

plication developers can leverage for execution and scale.

For many of these applications, decomposition into a bag-

of-tasks approach allows for a variety of execution platforms.

Examples are seen in areas of batch systems (HTCondor, AWS

Batch, SLURM), job execution frameworks such as MapRe-

duce (Hadoop, Spark), or more general workflow management

systems (Makeflow, Pegasus, Work Queue, Swift, etc.). These

systems explore different ways to handle application execu-

tion, data management, and scalability. Application developers

chose from a variety of concurrent systems based on needed

features and then design an application using their knowledge

of the underlying scientific application and the chosen system.

However, having made a predetermined partition the bag-of-

tasks approach often limits how responsive these systems can

be. Furthermore, the application designer may not be an expert

in either the underlying scientific application, scalable design,

or both, producing an application that makes naive design and

partitioning decisions which lead to sub-par performance and

resource utilization.

Bag-of-tasks approaches create a set of jobs that are passed

to the execution system. The common approach for speci-

fying bag-of-tasks applications predicates that the partitions

are already defined when submitted. The static nature of

the partitioning limits the ability of the execution system to

influence the size and performance of partitions. This static

definition either locks the applications performance or requires

a more complex application that uses feedback to adjust the

partitions. In many concurrent approaches the cost of creating

partitions is high, further increasing performance overhead.

In this paper, we propose the Continuously Divisible Job ab-

straction, which introduces a dynamic sizing job interface for

scientific applications. The Continuously Divisible Job inter-

face is used with an abstract job for portability and operation

abstraction and managed using a job coordinator that scales

abstract jobs based on resources and utilization. The Continu-

ously Divisible Job abstraction relies on a user specified inter-

face to define the mechanism for how inputs are partitioned,

jobs are executed, and the output handled. This interface

exploits the application developers domain knowledge and

allows for dynamic behavior via job abstractions. To further

enhance data partitioning, we also propose Virtual Files which

manage data indexing, lightweight partitioning, and just-in-

time file instantiation. Virtual Files help to limit the amount

of redundant file reads and writes, exploit cached or shared

files, and allow lightweight partitioning.

To show the Continuously Divisible Job abstraction we ex-

amine the performance of two applications, BWA for genome

sequence alignment and a high-energy physics event analysis

for detecting dimuon candidates. Using BWA, results were

compared between a static bag-of-tasks approach and as a

involves a more nuanced understanding of both the appli-

cation (i.e. partitioning, performance, resource requirements)

and distributed design (i.e. task scheduling/ordering, failure

management, resource acquisition). Examples include Work

Queue [12], RADICAL Cybertools [13], Swift [14], and Parsl

[15] allow for simple dynamic task definitions, but decisions

about sizing and task handling are still largely user burdens.

Similar to dynamic workflows are task based systems such

as Charm++ [16] that allow low level control, but need

more management. The challenge is that these approaches

require both knowledge of the application behavior and an

understanding of distributed application behavior.

The existing solutions provide many options for defining

and executing work, but lack flexibility when running bag-of-

tasks style work. In general, these approaches rely on static

partitions, either defined by the developer or the underlying

system, which constrain work similarly. Some of the common

challenges that arise from static sizing are high partition and

execution overhead, long tail execution from imbalanced work,

and rigid mapping to resources. Additionally, when the execu-

tion system is unable to further manipulate sizing it is difficult

to model solutions for more complex execution configurations,

such as adapting to heterogeneous resources, nested resources

for data distribution, or identifying and isolating failures.

IV. CONTINUOUSLY DIVISIBLE JOBS

Continuously Divisible Jobs are applications with defined

minimum computational units, such as an events, sequences, or

slices of input data that can be processed in large batches. This

structure is common and can be seen in high-energy physics

event processing for particle collisions, genome sequence

alignment in large queries, and large batch simulations for

model observation and validation. Each computational unit

has a short execution time, often on the order of seconds to

minutes. However, the collection of these units are large, often

processing thousands to millions of events in a single batch,

greatly increasing the execution time and resource needs.

Continuously Divisible Job interfaces are implemented in

terms of five functions: SPLIT, JOIN, EXECUTE, TO_DESC,

and FROM_DESC, that can be used to dynamically handle

and execute these large datasets, with each function operating

on any amount of data, from a single slice of data to the

full dataset. Applications that have implemented this interface

can be started and managed using a job coordinator that

partitions and executes the data. These job coordinators can

be designed for a number of execution platforms such as

batch systems, execution managers, or run locally. Using the

abstract jobs, the job coordinators can be chained together to

create flexible hierarchical stacks of resources that can share

work and load balance as needed. These job coordinators can

also be designed to tune the partitions to more efficient sizes,

but more importantly can be used to escape from bad initial

configurations (i.e. naive job partitions).

In this section we will define the design and capabilities of

the Continuously Divisible Job interface implemented by an

application, abstract jobs, and job coordinators that operate

on abstract jobs to partition and execute the application.

Dividing the Continuously Divisible Job abstraction allows

the mechanism of partitioning and executing to be defined by

the application domain expert, and the policy of executing

these job with job coordinators is left to the distributed system

expert or system administrator of a site.

A. Operations

To achieve the dynamic sizing and resource utilization

of the Continuously Divisible Job abstraction we define

a set of operations and attributes that applications need to

implement. These definitions can be implemented directly by

the application designer or domain scientist, as decisions on

how and where to partition data, what parameters are needed

for executions, and the expected environment can directly

impact the validity of the results. The Continuously Divisible

Job interface instructs the abstract job on the mechanism of

job handling, and are the only components the application

designer needs to implement.

SPLIT(JOBs, COUNT, SIZE)::[JOBs1,..,JOBsn]

Given a number and the size of splits this creates a set of new

jobs, containing the number of created jobs at the specified

size and an additional job containing any remaining slices.

Each new job should be able to reconcile its context in the

origin job and the dataset as a whole. If the split job does

not contain enough slices for the full count of partitions,

split should return a set with as many as possible. Splitting

a job does not necessarily perform partitioning, but logically

separates the slices for execution. In a base approach this may

partition data, but as will be explored later in Section V there

are other methods for late or just-in-time data partitioning.

JOIN(JOBa, JOBb)::[JOBjoin]||[JOBa, JOBb]

Join takes the specified job and joins it with the calling job

returning a set of new jobs. The implementing application

should determine if the two jobs are joinable and either return

a single combined job or the passed-in jobs in sorted order.

This allows for application specific join behavior for either

contiguous, ordered or unordered slice combinations. The join

operation may be called on jobs that have or have not been

executed, requiring the application developer to handle both

cases. As provided by abstract jobs, the application will not

need to join executed and non-executed jobs. If the application

chooses to allow for more application level management,

the application can simply merge all jobs, and hold its own

application level slices.

EXECUTE(JOB)::RESULT

The execute operation performs the application core computa-

tion. Application execution could be in the form of spawning

a process, running a shell command, or simply calling a

function. There are no parameters for the execute functions as

all application level variables should be specified in the jobs

definition. This operation may be executed remotely, addition-

ally requiring the list of files, environment, and resources.

TO_DESC(JOB)::DESCRIPTION

FROM_DESC(DESCRIPTION)::JOB

The TO_DESC and FROM_DESC define the basics for seri-

repeatedly written. This leads to a multiplicative effect on the

necessary storage for execution, not even accounting to the

redundant file reads and writes. To prevent this, methods for

just-in-time or late file realization may be needed when using

the Continuously Divisible Job abstraction. Two examples of

file partitioning are shown in the analysis of this paper, the first

being a naive split-on-partition where files are written when

the SPLIT operation is called. This creates unnecessary files,

but allows the application to be executed without modification

similar to more static invocations. The second uses Virtual

Files, defined in Section V, to reference data slices. The Virtual

File abstraction allows for flexible data handling, such as the

just-in-time file instantiation or direct data access.

2) Job Namespaces: A job’s namespace consists of all the

files needed to complete the job. In the base case this is

simple as the namespace contains the uniquely named files

used to execute. Each job is invoked the same way, so it

is often tempting to use consistent generic names in the

invocation, but this fails when scaling as each partition loses

file name uniqueness. This leads to the more general issue

of clearly defining the namespace such that any split and

join results in uniquely identifiable files and names. There

are several approaches to resolving this, from the easiest and

often most straight forward of utilizing the partition name,

generating and tracking unique identifiers for each name, or

creating names based on content derived hashes. Each of

these methods prevents collision within a single Continuously

Divisible Job application, but with the possibility of other

executions and concurrently running instances, these methods

have varying success and should be considered carefully.

3) Execution Sandbox: Similar to job namespaces, many

applications operate naively in an execution environment.

Naive environment usage is common where standard data is

used or when the applications relies on complex configurations

of libraries and references. Common examples of this could be

using hardcoded paths and file names for inputs or resolving

reference databases from environment variables. In these cases

and more, it is likely the application will not operate correctly

when run concurrently in the same namespace, either file

namespaces, process namespaces, or both. As a result it may

be necessary to run an application in a sandbox to isolate

both the file and process namespaces. The common nature

of this problem has provides many solutions, such as using

containers [17], [18], sandboxes, and wrappers [19] to isolate

each application instance.

4) Job Ordering: Continuously Divisible Job applications

require the implementation of the join operation, which incor-

porates combining and consolidating application results. The

type and structure of this output data can have dramatic affects

on the overall performance of the applications. To illustrate

this let us consider two different potential applications, X and

Y. X is large data parallel analysis, where future pipeline steps

require sorted result ordering. Joining X jobs together requires

only combining contiguous jobs. Further, for performance, the

application only joins from the first job upward, appending, to

prevent repeatedly writing and re-writing data as out-of-order

jobs are joined. Y is a complex simulation with a small input

and output datasets consisting mainly of statistics. Joining Y

jobs requires only combining the statistics and can be done

completely out-of-order. This allows Y to quickly join results

are they are completed and retrieved

V. VIRTUAL FILE ABSTRACTION

A Virtual File defines a subset of a physical file, allowing

large data files to be logically partitioned quickly. A Virtual

File points to a source file, keep bounds on the logical slices

(logical offset and range), and can quickly resolve a slice’s

actual location in the large file (byte offset and range). Virtual

Files offer a lightweight mechanism for partitioning and sub-

referencing larger datasets, without the need to copy out the

actual subset of data. To facilitate quick repeated resolution

from a logical slice to a physical position, an index should be

be constructed. Using this quick translation, a sub-set of the

larger file can be realized as a physical file just prior to use.

As the physical offset is only needed prior to file realization,

data can be partitioned, re-partitioned, or joined with little

actual computational cost. Using virtual files, an application

can adapt quickly to performance feedback, without making

redundant copies of data.

A. Operations on Virtual Files

Virtual Files have several operations that allow for faster

or more lightweight operation on data than standard files.

Operations such as indexing, partitioning, location, and in-

stantiation can be done on standard data files, but introduce

considerable overhead in file system activity and redundant

work. In addition to the core Virtual File operations, Virtual

File serialization is also key to allowing for recursive parti-

tioning expected of jobs.

1) Indexing: Indexing a Virtual File, as with any index,

parses the origin data file and tracks the location of each

logical slice in the data source. If the logical slices are uniform

in size, the indexing step is quick and only the size of slice

needs to be tracked. If, however, the data is non-uniform in

size the byte offset for each slice needed for tracking. This

indexing step may be time intensive initially, but as more

partitions are created the cost is amortized over execution by

avoiding file accesses and redundant data copies. Though it is

possible to store this information in memory, it is advisable

to use a more compact persistent representation that can

be distributed and recovered. Due to the speed provided by

indices, many applications and formats have existing methods

for creating and accessing indexes, which can be leveraged for

an application’s Virtual File.

2) Partitioning: Partitioning allows for quick logical split-

ting of data source to virtual files. This partitioning can be

done with no handling of underlying data, using only logical

slices. Partitioning at the Virtual File level is much faster than

partitioning physical file because it handles logical slices that

are resolved as needed. Resolving the byte range can be done

lazily when the range is actually needed to limit accesses to

the index. Operating on the Virtual Files allows for partitions

