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Abstract—Container technologies are seeing wider use at
advanced computing facilities for managing highly complex
applications that must execute at multiple sites. However, in a
distributed high throughput computing setting, the unrestricted
use of containers can result in the container explosion problem.
If a new container image is generated for each variation of a
job dispatched to a site, shared storage is soon exceeded. On
the other hand, if a single large container image is used to meet
multiple needs, the size of that container may become a problem
for storage and transport. To address this problem, we observe
that many containers have an internal structure generated by
a structured package manager, and this information could be
used to strategically combine and share container images. We
develop LANDLORD to exploit this property and evaluate its
performance through a combination of simulation studies and
empirical measurement of high energy physics applications.

I. INTRODUCTION

Large scale science depends upon high-throughput comput-

ing across multiple facilities in order to meet the demands of

simulation and data analysis. Modern high-throughput applica-

tions are rarely the single statically-linked executables of the

past, but now consist of thousands of software components,

including scripts, modules, libraries, and configuration files

written in many different languages. In the past, deploying

such complex applications at computing sites required either a

globally-deployed filesystem (such as CVMFS [1]) or manual

effort to install each piece. Today, container technologies such

as Docker [2] and Singularity [3] are increasingly used to

deploy complex applications at computing facilities, without

requiring each site to manually install every software package.

However, the combination of distributed high-throughput

computing and container technologies leads to the container

explosion problem. High-throughput jobs are often generated

automatically by submission systems on behalf of multiple

users. For each type of job, a container must be generated

with the necessary dependencies for a set of jobs. Over time,

containers multiply: as a user’s work evolves, different jobs

need different software, and new containers are generated.

Each computing site has a different set of users and projects

that may change dynamically with offered load and resource

availability. Often, containers are replicated across sites and to

many individual nodes. Because related containers share many

elements, a significant amount of storage may be wasted due

to logical duplication.

To address this problem, we observe that containers often

have an internal structure, making use of a standard package

manager, such as RPM for standard OS packages, Pip or

Conda for Python-related packages, and Modules or Spack

for HPC software. Rather than treat each container as a

black box of arbitrary files, we can consider it as a set

of packages drawn from a software repository. From this

perspective, all that is needed is a declarative statement of

dependencies, and the necessary container can be materialized

or destroyed as needed. Further, applications with common

needs could potentially be served by shared containers that

have the union of dependencies present, thus reducing the total

storage needed.

LANDLORD is a system designed to address the container

explosion problem for high-throughput computing. It first

observes or infers the package dependencies of submitted

applications, then generates the execution environment needed

by each application. As required, it creates, merges, splits,

or deletes container images in order to balance the total

storage consumed by containers against the size of individual

containers. A significant design consideration lies in the choice

of a threshold (α) for when to combine similar images. If α

is too high, then too many containers are combined, and the

individual images become impractically large. If α is too low,

then too many individual container images are created, and

the total storage consumption becomes impractically large.

Our prototype of LANDLORD is designed for use with

Singularity containers generated by high energy physics appli-

cations dependent on large software repositories managed by

CVMFS. Using example applications from the ATLAS, CMS,

and LHCb experiments, we evaluate the degree of sharing be-

tween different applications, and the performance of container

analysis and generation. Using trace-driven simulation, we

explore different strategies for managing a limited container

cache area, varying the α parameter. We observe that, first, our

techniques are most effective when the dependency structures

are hierarchical, resulting in a compact distribution of common

packages. Second, we observe that each configuration has a

wide “operational zone” where a moderate value of α (0.65

to 0.95) results in a useful balance between total storage

consumed and container size.
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II. BACKGROUND

A. Containers for Scientific Computing

Modern scientific applications depend upon complex soft-

ware repositories that consist of terabytes of data and mil-

lions of files. Unlike “traditional” high performance appli-

cations that are single, statically-linked executables, modern

applications are agglomerations of software that consist of

high level scripts, multiple executables written in different

languages, support libraries that may be dynamically linked,

and configuration and data files loaded at runtime. Given the

large number of users, software packages, and versions in use

even at a single site, management of external software and

dependencies has become a difficult problem in its own right.

Users and site administrators are embracing containers as a

more flexible method of defining environments for scientific

computing, giving users complete freedom to assemble their

own software stacks. Containers are designed to be isolated

from the host system, so users do not need to consider the

configuration of execution nodes. This also helps to reduce

the burden on administrators maintaining shared software

collections. Container images being (by design) completely

self-contained greatly simplifies management and deployment,

but at the same time limits opportunities for sharing common

components. Much in the same way that a statically linked

executable contains a full copy of each library used, container

images necessarily include a complete set of dependencies.

Docker [2] first popularized the use of container technolo-

gies in industry, but proved to be a difficult fit for scientific

computing facilities, because it required the deployment of

new privileged services and required the use of node-local

storage for running container images. Several competing tech-

nologies emerged for use in large facilities, such as Singular-

ity [3], Shifter [4], and CharlieCloud [5]. These technologies

make direct use of the underlying operating system facilities

to mount container images and run them directly, without an

intervening service. As a result, they more easily integrate with

the shared parallel filesystems in use at large facilities.

Containers are typically defined by a recipe which is used to

construct the image programatically. For example, a Dockerfile

describes a sequence of Unix commands, networking changes,

and package installs that are used to generate a layer of a

Docker image. However, it is important to note that a recipe

describes a sequence of changes that would have a different

effect if the order was changed. Each addition to the sequence

of events adds a new layer which increases the size of the

container, even if the event removed data.

An alternate way of specifying a container is to state a

set of dependencies that must be present within the container.

Binder [6], for instance, uses declarative requirement files

in a Python code repository to generate a container for the

application. Unlike a recipe, a set of dependencies has no

order, and so one may combine or break apart sets without

starting over. We use this property to significant effect in the

design of LANDLORD.

B. Distributed HTC

High Throughput Computing (HTC) is an operating regime

where the user’s objective is to complete the greatest amount of

work possible over a long period of time. HTC applications are

often scientific simulations or data analysis applications that

must be run on a large number of independent configurations

or input files. HTC typically involves a pool of work that

is much larger than the available computing resources. HTC

applications are thus well-poised to take advantage of multiple

execution sites (such as the Open Science Grid (OSG) or

the Extreme Science and Engineering Discovery Environment

(XSEDE)) in order to increase the total application throughput.

Some applications also choose their execution environments

strategically, e.g. running most jobs on campus or grid re-

sources, but submitting certain high-priority/critical jobs to a

public cloud at additional cost.

In this work, we will consider the Large Hadron Collider

(LHC) experiments as an example of distributed HTC appli-

cations. The LHC experiments at CERN require a tremen-

dous amount of computational power to simulate high energy

physics (HEP) processes, process the torrent of data produced

by the detectors (88 petabytes of new data in 2018 [7]).

Modelling and statistical analysis jobs rely on a large number

of derived datasets, resulting in a global data volume of

approximately 1 EB [8]. At present, most of this computing

power is provided by the Worldwide LHC Computing Grid

(WLCG), which consists of more than 170 computing centres

in 42 countries. During normal operation, the WLCG carries

out over 400k CPU-hours of computation and transfers more

than 80 PB of data per month. Over the course of a year

this adds up to around 700 million compute jobs or 5 billion

CPU-hours/year [9].

HPC resources are an appealing source of computing power

to supplement the WLCG in meeting the computational de-

mands following the LHC’s high-luminosity upgrade. Un-

fortunately, HPC sites often impose restrictions on network

activity and system configuration, preventing WLCG jobs from

running directly on HPC resources. Containers offer a potential

solution for importing software environments as a guest user

at a site. WLCG jobs, however, are external to the execution

site and must be automatically imported and managed.

The simplest way to handle dependencies for external jobs

is to prepare local images as part of job submission. This

step must be automatic, as it can be difficult or impossible

to tailor distributed jobs to each execution site. With WLCG

jobs, for example, each experiment’s full software repository is

assumed to be available via a specialized transfer mechanism

(CMVFS [1], the CernVM File System). Researchers do not

design WLCG applications with container support in mind, so

any preparation for a particular site must be transparent to the

application. Container creation can also become expensive rel-

ative to job execution, so it would be ill advised to construct a

complete container image for every job. Management systems

such as Docker [2] and Shifter [4] reflect this reality in using

persistent image stores.
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III. THE CONTAINER EXPLOSION PROBLEM

We define the container explosion problem in HTC as

follows: given a large (and probably growing) number of jobs

that require many overlapping software dependencies, simply

creating a container to fulfill each job’s requirements will lead

to a combinatorial explosion in the number of images stored.

In industry, this proliferation of container images to the

point of management difficulty is referred to as “container

sprawl”, just like the related phenomenon for VMs called

“image sprawl” [10]. For larger multi-container applications,

it is not feasible to manually manage all component con-

tainers and ensure stability and compatibility between all

versions. Container orchestration systems such as Kuber-

netes [11] allow users to declaratively define the high-level

services/components of applications, while the orchestration

layer manages the concrete resources (persistent storage, con-

tainer instances, etc.) in the public cloud. To aid in manag-

ing software environments in containers, Kubernetes package

managers such as Helm [12] can instantiate specific versions

of each software component and clean up outdated containers.

In HTC settings, however, there is a key difference: applica-

tions are expressed as a stream of discrete jobs rather than as

services that can be provisioned and then cleanly torn down.

This means that there is not a clearly-defined lifetime for

an application and the containers it requires; jobs from older

applications may be run again at any point in the future, and

individual jobs from many different versions of an application

may run concurrently.

As mentioned previously, container images do not allow

for sharing components as is possible with local installations,

site-wide modules, or copy-on-write filesystems. Instead, each

container carries complete copies of all components. In the

naı̈ve case, each variation in job requirements results in the

creation of a whole new container. In this scenario many iden-

tical copies of common base components and dependencies

are stored across a set of prepared container images. Since

each job-specific variation exists as a completely separate

container, caching does little to alleviate this duplication. Only

jobs with identical requirements can reuse existing containers.

In the case of the LHC, each experiment maintains different

software environments and individual jobs vary frequently

in the components and versions they use. In this situation,

each variation and permutation of job requirements creates

a completely distinct container image, leading to very poor

cache utilization (Section VI quantifies this effect). Our goal

then is to maximize the throughput of jobs that can be run

using some fixed amount of cache space for container images.

We can observe the container explosion problem by examin-

ing the initial use of containers by the LHC experiments, which

as global-scale computational projects provide insight into

the behavior and challenges of new approaches in scientific

computing. CVMFS recently added experimental support for

efficiently serving the contents of container images [13].

The ATLAS and CMS experiments uploaded several dozen

software environments as part of their evaluations of container

Fig. 1: Refining via layers vs. Composition.

technologies. At present CVMFS stores nearly 150 versions

of these base environments, with around 1,000 distinct layers.

CVMFS retains all historical versions to ensure reproducibility

and backwards compatibility, making simple garbage collec-

tion impossible. Since transferring the entire container repos-

itory for every job quickly becomes prohibitively expensive,

it is necessary to create tailored images based on a required

subset of the full software repo. There are a number of poten-

tial approaches to work around the combinatorial explosion in

job-specific images, but none are satisfactory.

Imperfect Solution: Full-repo Images. Rather considering

the precise requirements for each job, the simplest way to

reduce the number of containers in use is to place an entire

software repository into a single image, which can then support

a large number of jobs. In the case of the LHC experiments,

each full CVMFS repo is measured in TB (see Figure 2 for

exact sizes). Likewise, a complete copy of the Python Package

Index (PyPI) would be roughly 190,000 packages consuming

over 6 TB (at the time of writing). Unfortunately, this approach

is likely to exceed a number of practical limits on container

size. Individual worker nodes may have limited local disk

space and be unable to store large container images. Even

if the large container fits, it is likely that a given job does not

need all of the repository simultaneously, so it is wasteful to

transfer unneeded data. This concept is a driving influence on

projects like Slacker [14].

It also becomes prohibitively expensive to update and

transfer such large container images. The US collaboration of

the ATLAS, ALICE, and CMS projects are currently experi-

menting with CVMFS applications on computing resources at

various supercomputers in the United States including Cori at

NERSC [15]. When full-repo images were built and scaled out

onto a large number of nodes inside the NERSC infrastructure,

the process took around 24 hours, making it difficult to

deploy up-to-date versions of the software on a regular basis.

In addition, the process requires administrative involvement

in image creation, deployment, and cleanup. As additional

projects want to take advantage of the resources at NERSC, the

administrative burden of managing multiple CVMFS images

on multiple software versions increases accordingly. Taking

this approach negates the flexibility and hands-off administra-

tion that containers were intended to provide.

Imperfect Solution: Layering. Docker allows container

environments to be composed from reusable image lay-

ers. Docker can take advantage of modern filesystems like

BTRFS [16] that provide efficient snapshots and transparent
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sharing of files and directories between different revisions. As

a practical matter, Docker is generally not available in HPC en-

vironments for administrative and security reasons. Likewise,

guest users at large sites do not generally have the ability

to directly manipulate file system snapshots or export/load

local filesystem volumes. More conceptually, layering images

addresses a different problem than the issue at hand. With

Docker, base images can be extended and refined over time by

appending layers. When preparing to run external HTC jobs,

however, we must compose a set of largely independent pieces

to fit specific job requirements, without any particular ordering

relationship to previous images. It is therefore difficult to map

this set of semi-independent pieces into a linear sequence of

refinements that will fit future job requests.

Figure 1 compares layering and composition after process-

ing several jobs. Although item C is hidden in the lower layer,

it still exists in a previous layer and must be transferred and

stored. Since changes to layered images are strictly additive,

old content can be masked but not removed. Also note that

the first and third jobs in Figure 1 have identical requirements

and the corresponding layers are functionally equivalent, yet

this is not apparent to Docker based on their contents. With

composition, on the other hand, it is immediately clear when

images are equivalent and can be reused.

Imperfect Solution: Block Deduplication. Another poten-

tial avenue to deal with the container explosion problem is data

deduplication for disk images. The virtualization community

has developed a number of solutions for efficiently dedupli-

cating disk images [17] and running virtual machines with

many incremental changes [18]. There has also been extensive

research on deduplication [19], [20] of filesystem data [21],

[22] and disk blocks [23], [24]. It is not difficult to identify

duplicated files or blocks within container images. However,

we lack a means to combine the extraneous copies; each

container image by design contains complete copies of all data,

and sharing of data across images is not possible for users of

the system. When supporting multiple users with a potentially

large number of container images, utilization of site-wide

storage becomes a concern. Simply adding storage capacity

to accommodate each user or application is not a sustainable

solution over the life of a system [25]. Rather, we would prefer

to make better use of what site storage is available by reducing

unnecessary duplication among container images.

IV. KEY INSIGHT: SPECIFICATION-LEVEL MANAGEMENT

Having discussed the methods for defining container im-

ages, we arrive at a key insight of this work: container

specifications offer more opportunities for management

and optimization than containers themselves. While a build

script gives a sequence of steps to produce a final container

image, it does not give information about the desired properties

of the resulting image. Likewise when examining a previously

built container, it is difficult to determine how it can be used

(whether it provides a particular version of a package), since

recipes allow for arbitrary modifications to an image. It is not

generally safe to substitute one image with another, even if

Running Prep. Minimal Full

Time Time Image Repo

alice-gen-sim 131s 59s 6.0G 450GB

atlas-gen 600s 37s 2.7G 4.8TB

atlas-sim 5340s 115s 7.6G 4.8TB

cms-digi 629s 62s 8.4G 8.8TB

cms-gen-sim 2360s 71s 6.1G 8.8TB

cms-reco 961s 78s 7.3G 8.8TB

lhcb-gen-sim 1010s 67s 3.7G 1.0TB

Fig. 2: Benchmark applications for LHC experiments [26].

the two have some subset of their contents in common. Con-

versely, two container images may be functionally identical

despite having different contents if the build process is not

strictly deterministic. Note that almost all build systems will

produce variations in timestamps, logs, configuration files, etc.

that make direct comparison of images difficult.

Rather than trying to recover information from previously

built images, the specifications used to construct them offer

higher-level information about their functional characteristics.

These specifications give minimal requirements that an image

must fulfill without specifying anything about the exact image

contents. If a specification requires a subset of packages

in a previously built image, we should be able to use the

latter to satisfy the former specification; the concrete image

meets the specified requirements and includes some additional

(unrequested) packages. Using this approach, we could per-

form more sophisticated image caching based on container

capabilities rather than strictly comparing file contents. Using

higher-level information from specifications, the system has

additional flexibility in how it fulfils specifications that allows

for reduced storage in a very narrow case (strict subset).

Specifications afford another opportunity to a container

management system: unlike build scripts or recipes, it is

possible to automatically manipulate or combine specifica-

tions. A composite specification can be formed as the union

of requirements from two or more specifications. This kind

of composite image could be used in place of any of its

constituent specifications, since it meets the minimum require-

ments given in each. Note that in some cases, incompatibilities

among requirements make combination impossible.

While caching and merging specifications gives a mecha-

nism to reduce duplication among stored container images,

we still do not know which specifications to merge. Choosing

randomly or by order of job submission, for example, is

liable to join specifications with little in common. This would

increase the sizes of images to be transferred among worker

nodes, while doing little for de-duplication. Instead, we want to

merge specifications with many common components. We now

introduce a simple metric for similarity between specifications

and an algorithm for automatically managing an image store,

with a tunable parameter controlling how aggressively to

reduce duplication and increase storage utilization.
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V. ONLINE MANAGEMENT

When working on campus computing resources or cloud

environments that support software-defined infrastructure, it

might be possible to make system-level adjustments to mount

global filesystems or otherwise meet the needs of a particular

user or application. In national-scale HPC settings or across a

large number of sites, however, we would prefer to leverage

the capabilities available to guest users of computing sites to

mitigate the container explosion problem. Rather than employ-

ing techniques like block deduplication in reaction to existing

images, we propose proactively managing the collection of

container images before they are created.

We therefore define LANDLORD, a system for making a

decision online to efficiently satisfy the dependency require-

ments for submitted jobs. This method must be suitable for

inclusion either in individual researchers’ workflows or as part

of the setup for batch job or pilot job scheduling, and must

be efficient in terms of both computation time and storage

space. We suppose that some local storage is available (e.g.

a few terabytes of scratch space attached to a head node) for

caching exported repository contents and a cache of generated

container images. We also suppose that each compute node has

scratch space available for storing container images locally,

but that the total repository contents or the collection of all

container images may be too large to store on every worker

node. We would thus like to make good use of the available

storage, acknowledging that there must be some repeated

work and waste. For each user-submitted job LANDLORD

must automatically prepare a suitable container image, and

(if possible) avoid creating a new one for each job request.

LANDLORD Deployment. We designed LANDLORD to

operate as an automated step during job submission. Since

this work supposes that scientists may need to run jobs across

many sites and will need to work with the privileges of a

guest user, our prototype of LANDLORD is implemented as a

lightweight job wrapper. To use LANDLORD when submitting

a job, a scientist must first prepare an image specification for

each job. Simple specifications may be hand-written; we also

developed several simple analysis tools to automatically gener-

ate specifications by scanning for Python import statements,

module load directives, or logs from previous jobs. Re-

searchers would also set up their particular submission systems

to wrap invoked jobs. Then on job submission, LANDLORD

first scans its configured cache directory for existing images

that are “close” to the job’s specification, creates/updates

images in the cache as necessary, and finally launches the job

inside the prepared container.

While our user-level prototype is a good fit for a single

unprivileged user, administrators may wish to employ LAND-

LORD for site-wide container management. The same core

functionality of LANDLORD could easily be adapted into a

plugin for a site’s batch system. For the LHC experiments,

CVMFS data is normally public and shareable, making a

LANDLORD plugin particularly simple to implement. A more

general-purpose plugin would need to take into account data

security and privacy, which we leave as future research. In

addition to batch systems, there are other situations where

this plugin approach is applicable. When using a pilot job

system, for example, scientists are effectively operating a

“user-level scheduler”. Scientists have the option of using

this same plugin approach to connect LANDLORD to a pilot

job system, allowing LANDLORD to transparently optimize

container storage without requiring application changes.

Similarity Metric. In order to make decisions about how to

optimize the storage for a collection of container images, we

need a means to quickly identify containers that are “close”

(for some definition of close) as candidates for optimization.

Rather than examining the containers themselves, we will

compare the specifications used to generate them. We are less

concerned here with the particular choice of metric than with

choosing a simple, adequate, and non-controversial metric.

We chose the Jaccard distance under appropriate choice of

set elements as it gives a straightforward way to group sets

with similar contents and is very well used and studied. When

working with software repositories, each package is usually

assigned a name/version string that is defined to be unique

within the repo. We can thus use the Jaccard distance to

determine the similarity between sets of package requirements.

For two sets A and B, the Jaccard distance dj is:

dj(A,B) = 1−
|A ∩B|

|A ∪B|
=

|A ∪B| − |A ∩B|

|A ∪B|

The Jaccard distance captures several desirable properties

when dealing with specifications. In the case of two speci-

fications that differ only by one element, the Jaccard distance

will be small. For a pair of specifications with nothing in

common, the distance will be high. In addition, a constant-

time approximation of the Jaccard metric (MinHash [27]) is

available for making an efficient first pass at selecting similar

images when the number of packages or components is large.

This approximation is important in practice due to the sizes

of the data involved; metadata listings alone for full-repository

CVMFS images consumed multiple gigabytes of storage, so

it is desirable to robustly support very large specifications.

A limitation of using the Jaccard distance this way is that

it does not capture conflicts between components. Public soft-

ware repositories generally support explicit version constraints,

so two specifications may include constraints that cannot

be simultaneously satisfied. This compatibility checking is

dependent upon the specific package manager or system in

use. For LHC applications this is a non-issue, since CVMFS

is normally append-only and all previous versions remain

available. If conflicts between specifications are possible, this

additional checking step can be performed after using the Jac-

card distance to prioritize the set of candidate specifications.

The fundamental operation for LANDLORD’s storage opti-

mization strategy is merging container specifications that are

“close enough”. Using the Jaccard distance metric, we can

quickly identify cached specifications that are similar to a new

request. To decide if two specifications are “close enough” to

optimize, we define the parameter α as the maximal Jaccard
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distance between closely related specifications. Since Jaccard

distance is by definition between zero and one, α must be

in the same range. This α parameter is something like the

“globbiness” of the system. Using this α parameter, we can

define a very simple caching algorithm for managing and

optimizing a central image store.

Given: Cached container image collection I

Input : Container specification s

Result: Suitable container image satisfying

specification s

for i ∈ I do

if s ⊆ i then

// An existing image satisfies s

return i;

end

end

for j ∈ I such that dj(s, j) < α do

// Selection can be sorted by dj()
// Attempt to merge

if s and j do not conflict then

Replace j in the cache with merge(s, j);
return j;

end

end

// Couldn’t re-use or merge

Insert new image s in the cache;

return s;
Algorithm 1: Container cache management

Choosing α near zero requires that specifications are ex-

tremely similar before considering them for merging. In the

extreme case with α = 0, only identical images will be

considered close, so no images will be merged. This results

in a larger number of independent images. Choosing α to

be larger makes it more likely for images to be considered

similar and merged. This results in more augmented images

that serve multiple tasks. In the extreme case of α = 1, every

pair of images is considered close and merged if possible.

This results in large container images that have accumulated

many specifications. Using the α parameter, it is possible to

continuously vary between these two extreme behaviors.

A potential issue with this automatic merging strategy is

“bloated” images that accumulate infrequently used dependen-

cies and increase overhead indefinitely for future tasks. The

Jaccard distance gives a natural way to capture and address

this effect. As an image becomes bloated due to repeated

merges, its distance from any individual request increases.

After sufficient growth, the image will become too far from

any request to even be considered. Without regular use, the

bloated image will eventually be evicted from the cache.

Choice of α therefore places an upper limit on the amount

of undesirable bloat in images. Later, we examine the effect

of the α parameter by simulating image management over a

large number of application requests.

VI. CASE STUDY: LHC EXPERIMENTS

We now explore the container explosion problem and

LANDLORD more thoroughly in the context of the LHC

experiments at CERN. Figure 2 shows several LHC benchmark

applications run under Shrinkwrap, a tool developed as part

of this work for efficiently building container images from

CVMFS. Here gen (generation), sim (simulation), digi

(digitization), and reco (reconstruction) are phases of the

experiment pipelines. Running Time gives the average run

time for a single instance of the application. These benchmark

applications were run using local container images, where

preparation time is the amount of time required to create

such an image by downloading the contents via Shrinkwrap

and compressing the resulting data into an image file. Note

that this time does not include any tracing or dependency

analysis. If static analysis or manually-defined specifications

are not available, runtime tracing (possibly over multiple runs

to try to capture all behaviors) becomes necessary, significantly

increasing the preparation time. Minimal Image indicates the

size of the tailored container image.

Characterizing Package Dependencies. Our first step in

evaluating a storage optimization strategy for a global software

repository is to characterize its contents, which will inform our

simulations later. In the SFT CVMFS repository, where many

of the core research packages at CERN are hosted, dependency

information is included in build metadata associated with each

package. This metadata gives a convenient way to construct

a dependency tree of the entire repository. We constructed

such a dependency tree for the SFT repository to use in the

simulations discussed later. Figure 3 gives an indication of the

structure and sizes of software components in the repository.

For each fixed specification size (on the x axis), we selected a

random sample of packages. The lower line shows the storage

size of only that selection. Recursively including the package

dependencies is shown in the upper two curves. We repeated

this procedure 100 times for each specification size, taking

the median. The on-disk size of the selections appears to

increase proportionally to selection size. Recursively including

the dependencies of these same selections, however, results

in a significant increase in number of packages and size

on disk. For small selections (less than 100 packages), the

complete images with dependencies might contain 5x as many

packages as requested, with storage increasing proportionally.

With larger selections, however, this increase becomes less

pronounced. This non-linear change is the result of the tree

structure of the software dependencies. There are a number

of core components that are transitive dependencies of a large

number of packages. These common dependencies are only

included once, so subsequent selections that depend on them

do not add them again. As the number of selections increases,

this curve will approach the total repository size.

Simulating HTC Jobs. We tested two schemes for gener-

ating image requests for HTC jobs, taking into account the

properties of the software collections and generating images

via a uniform random scheme for comparison. We consulted
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with the developers of CVMFS, as well as HEP researchers

at our university collaborating with CERN to determine how

current users interact with CVMFS, with the benchmarks in

Figure 2 as examples. We expect significant variability in files

accessed and total size among different users and experiments.

We nonetheless observed that certain core components are

used near-universally. While multiple versions and variations

might exist, these components have a very high likelihood

of appearing in every container image. These components

correspond to the base frameworks, setup scripts, calibration

data, etc. needed for most jobs. For the purposes of simulation,

we would like to see these components in a large proportion

of jobs across all simulated jobs from different users and

experiments. There is also a large set of components that must

be available and are used in some applications, but which are

very rarely used overall. It is important to make these “long

tail” components available for researchers that need to use

them, but it would be wasteful to include them universally

when they are rarely used.

For the purpose of simulation we assume that the require-

ments of a job are given as a set of packages. While the

Shrinkwrap utility can operate at the granularity of individual

files, allowing for partial packages tends to produce unreliable

container images. The previously-described dependency tree

extracted from the SFT repository consists of 9660 packages,

where a program or library typically provides packages for

multiple versions, platforms, and configurations. When build-

ing a simulated image, we recursively include dependencies

of requested software. This approximates the structures of

actual container images, while still allowing for variation in

package requests. For each simulated request, we chose a

random selection of packages and then added the closure

of the package dependencies. This image simulation scheme

captures the structure inherent in the software collection, in

that packages in addition to those requested are automatically

included so as to ensure a functional image. The initial

selection of packages, however, is simply uniformly random.

To generate an image for a simulated job request, we

randomly made an initial selection of up to 100 packages.

We then used one of the two schemes (dependency tree-based

or random) to expand the initial selection into a full image.

Repeating this procedure, we can create streams of container

specifications for simulated jobs.

Simulated Container Caching. Figure 5 shows a single

simulation of LANDLORD with α = 0.75 and cache size of

1.4 TB processing 500 unique job specifications, each one

repeated five times. First, we note that most of the operations

are merges. This is to be expected, as this simulation ran with

a fairly high α value. The total bytes written also closely tracks

merges, indicating that merging is the dominant source of I/O.

We still see inserts over the course of the simulation. At more

extreme α values, we expect to see one of these operations

almost exclusively. As the data in cache continues to rise, we

eventually see the cache limit, after which the delete count

increases. Over the course of the simulation, inserts and deletes

are filling and emptying the cache such that it remains close

to its storage limit. We also observe the number of cache hits

continue to rise despite deletions. As we will see, merging

allows for a greater proportion of hits even if the amount of

data remains constant. This is because frequently used data can

be merged, reducing duplication. The cache limit then ensures

that infrequently used parts are eventually removed.

To evaluate the viability of our approach in automatically

optimizing a container image store, we simulated the behavior

of the system over time for a range of α values. Choice of α

is important here to ensure that common components can be

detected and merged in container images, and that old images

or poor decisions are eventually removed from the system.

Choosing α too far in either direction will result in excessive

storage overhead due to duplicated components, or excessive

compute and network overhead repeatedly merging largely

unrelated images. Our goal in this evaluation is therefore to

choose α so as to minimize the storage and compute costs

associated with maintaining a collection of images.

Since our simulation uses random simulated requests, there

is noticeable variability between individual simulations. Thus

for a given choice of cache size, job count, etc. we repeated the

simulation 20 times and reported the median behavior over the

runs. At each choice of α (in steps of 0.05) we performed a set

of 20 simulated runs, allowing us to plot various measurements

of the system versus α.

Sweeping over the range of α values in this way, we can

immediately see differences in the frequency of simulated

operations. Figure 4a shows the upper range of α values

where behavior differences appear. From the lower values

on the left, the insert and delete counts are the primary (or

only) operations, with number of hits relatively constant. This

corresponds to a simple LRU-based cache. The insert count

is higher due to cache filling, but the two tend to increase in

lockstep. As α increases, image merges become more frequent.

The merge count steadily increases throughout most of the

upper range, while inserts and deletes decrease. This suggests

that at high α values, the cache space would be more efficiently

used, with some of the duplication merged out. In the extreme

case with α = 1, every request is merged into a single image

in cache, hence the sudden increase in hit rate and decrease in

total merges at the far right of Figure 4a. As merging increases,
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Fig. 5: Behavior of a single simulation

the proportion of hits generally also increases. This indicates

more of the requests can be satisfied by previously merged

images in the cache. From the perspective of the system, this

is beneficial as there is no extra time or compute cost for

handling a larger proportion of images.

Metrics for Cache Utilization When sweeping over the

range of α values, there are a number of metrics available

to summarize each simulation run. Many, however, are highly

coupled with the particular system configuration and difficult

to compare as we vary the parameters of the simulations. We

therefore chose to define two metrics, cache efficiency and

container efficiency, to indicate the relative utilization of the

system. We defined cache efficiency as the ratio of unique data

to total data in the cache. In our case, this is equivalent to the

ratio of the size of the unique packages to the total cache size.

If many images contain copies of the same packages, the cache

efficiency decreases. This metric captures duplication within

the cache across all images. With no merging there is a high

degree of duplication, so the cache efficiency is low. On the

other end of the spectrum, maintaining a single, large image

containing all data results in cache efficiency of 100%, as the

entire cache resides in that single image.

We defined container efficiency as the ratio of the size of

the requested container (a set of requested packages plus all

dependencies) to the size of the container the system actually

used for the job. In the absence of merging, these two are equal

so the container efficiency is 100%; jobs are run with exactly

what was requested. By merging to allow for image reuse,

we include additional, unrequested data in container images.

The container efficiency measures this difference between

requests and containers. In the extreme case of α = 1 with

a single large image, for example, the container efficiency is

poor because the entire repository is used for every request,

regardless of size. These two extreme cases, no merging

among many images and a single merged image, can both

be useful in some situations. Rather than defining where these

limits fall, we discuss choosing limits in Section VI.

Figure 4b shows the actual data sizes used to calculate

the cache efficiency. Without merging, the unique data makes

up a small proportion of the cache. With increased merging,

the amount of unique data increases. For sufficiently high α,

merges occur more frequently than cache inserts, resulting a

drop in total storage size. On the far right of Figure 4b, the

entire cache contents are merged into a single large image, so

that the unique and total data sizes become equal. The cache

efficiency metric is affected both by the increase in unique

data and by the decrease in total cache size.

Overhead of LANDLORD. Under LANDLORD’s approach,

we use compute and I/O capacity during job submission in

order to improve utilization of storage space. At some point,

however, this additional I/O cost could become prohibitively

expensive. To quantify this computational and I/O overhead,

we can measure the cumulative amount of data written over the

course of simulated cache operation. We observed that almost

all of the additional overhead/latency of LANDLORD was due

to disk I/O in creating merged images, while LANDLORD

spent very little time performing computation. We thus use

cumulative write size as a metric for overhead/latency that

is independent of specific hardware or disk performance.

Figure 4c shows the amount of data written during simulations

over a range of α values. “Requested Writes” gives the

total amount of data actually requested by each job over the

course of the simulations. This value is on average constant

since the same procedure was used to generate all simulated

job requirements. “Actual Writes” gives the total amount of

data written to cache over the course of simulations. If, for

example, an image were evicted and then re-inserted later in a

simulation, then the cost of generating and writing the image

would be added again.

Without merging, the actual I/O and compute costs in the

system closely follow the requests. At low α the actual I/O

is slightly smaller than the requested amount due to caching:
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Fig. 6: Effects of Simulation Parameters on System Efficiency

the system can sometimes reuse images without performing

any additional I/O. As α increases, the cost of updating and

merging images comes to dominate the total I/O cost. Each

time a merge occurs, the resulting image must be written out

in its entirety. Thus when merges are frequent at high α, some

data will be written and re-written many times to satisfy new

job requests. Thus while extremely high α makes better use of

available storage space, LANDLORD introduces a significant

amount of latency/overhead in the form of additional I/O

operations. Choice of α thus gives administrators a way to

balance between storage utilization and I/O overhead using

LANDLORD, e.g. allowing at most a twofold increase in the

compute and I/O time compared to directly creating the re-

quested images. (This would correspond to the upper compute

limit shown on Figure 8, discussed later in Section VI.)

Sensitivity Analysis. In Figure 6, we plot efficiency curves

for a range of simulation conditions. The left column shows

container efficiency, while the right column shows cache

efficiency. In the first row, the number of jobs and the amount

of repetition are constant while the cache size is varied. In the

second row, the number of unique requests is varied with the

other parameters constant.

The size of the cache has an inverse relationship with

both the container and cache efficiency. As seen in Figure 6a

and Figure 6b, a larger cache can of course hold a larger

number of images, but since each image contains significant

duplicated portions, increasing cache size tends to decrease

cache efficiency. Conversely, small caches more quickly evict

images so that ineffective merges and similar images tend

not to remain in cache too long. A larger cache also allows

for more opportunities to merge images, leading to decreased

container efficiency. When deciding how to handle a request,

a large cache full of images is much more likely to contain an

image suitable for merging. With a small cache, opportunities

to merge are much more dependent on the order of requests.

The effect of varying the number of unique jobs is less

pronounced than the effect of cache size. As seen in Figure 6c

and Figure 6d, streams of 500 and 1000 unique jobs show

nearly indistinguishable behavior, indicating that by 500 jobs

the system has reached a steady state. Continuing with an arbi-

trarily long stream should not result in significant performance

changes. However, 100 unique jobs were not sufficient to fill

the cache and reach a steady state. In this case the container

efficiency is slightly decreased over α, suggesting that some

ineffective merges had not made their way out of the cache.

Cache efficiency in this case is slightly increased. This would

suggest that before reaching a steady state, the cache contents

are more assorted and some unnecessary data remains cached.

Effects of Package Dependencies. To evaluate the effects

of container contents, we also generated simulated images

consisting of packages chosen in a uniform random way. To

ensure that total size (or at least total number of packages)

is comparable to images generated by the previous method,

for this approach we started with an image request generated

via the previous scheme (uniform random core selection with

dependencies added). We considered only the total number of

software packages in the resulting image, and then chose the

same number of packages uniformly randomly from the entire

repository, ignoring usage information and package dependen-

cies. While images generated in this way are not particularly
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Fig. 7: Impact of dependencies on duplication

realistic, they are useful for evaluating image management

schemes. By comparing results with random images to those

with the previous image generation scheme, we can compare

the general case of containers as collections of arbitrary data to

the specific focus of this work, i.e. containers with selections

of experiment software with dependency relationships.

Figure 7 shows a representative simulation with both syn-

thetic image types included. In the purely random case, there

is no correlation between different images. Thus, it is much

more difficult to find images similar enough to merge until

the α value is very lax. This would indicate that our merging

strategy is not applicable to arbitrary collections of data.

Random images show little to no effect for most α values. Our

merging strategy, which takes advantage of duplicated content

included as a result of dependencies in software, would be

ill advised for situations that are not known to follow similar

patterns of duplication. Even with non-realistic job requests,

the tree structure of package dependencies is sufficient to

produce pronounced duplication in the cache, which gives an

opportunity to apply our storage optimization strategy.

Limits on Cache Utilization. For any choice of container

management scheme, there is some non-trivial management

cost. This could be in the form of time and manual effort

on the part of individual users, or a portion of the system’s

compute and storage space used in the background. In the

case of an extremely well-provisioned system, the best solution

might simply be to retain everything. In terms of our simulated

management scheme this corresponds to the extreme cases,

holding a large number of single-purpose images at α = 0 or

building a single all-purpose image at α = 1. In the case

of high-throughput computing, we expect the total size of

applications and data to be much larger than any individual

job or even larger than the capacity of the system. In this

setting, it becomes necessary to balance the management cost

against system constraints on compute and storage. Under

the simple management algorithm presented here, choosing

an intermediate α value gives researchers or administrators a

tunable way to trade some computing power and IO activity

for improved storage utilization.

If the requirements of all jobs are known in advance and

worker storage and bandwidth are sufficient, maintaining a

single, large image for all jobs on all workers is an useful

strategy. After the initial (costly) image creation and transfer,
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there are no continuing costs or delays. When resources

are limited or requirements change regularly, however, this

approach becomes prohibitively expensive. The high compute

and bandwidth overhead apply for every image update, which

in the worst case could be every job.

The other extreme situation, simply caching requests with

no merging, can also be viable. This approach is simpler and

does not come with extreme per-job overhead. In addition,

frequent changes to the jobs and requirements do not degrade

the efficiency of each job. At large scale, however, the overall

system efficiency suffers. Due to duplication among images,

larger caches contain less and less unique data. To support a

given repository, it becomes necessary to provision a cache

much larger than the size of the repository. With CVMFS

repositories consuming several terabytes of storage each, the

amount of cache space required grows quickly.

These two limiting factors, the compute and transfer cost

in the highly merged case and the cache efficiency in the

unmerged case, serve as limits on the viable range of α values

for a system and its users/applications. Figure 8 shows two

vertical lines indicating these limits on a plot of efficiencies.

The left line shows a lower limit of around 30% on the cache

efficiency in this simulated configuration. Choosing α too low

results in cache efficiency reaching below 20%. On the right,

the line gives an upper limit on the likelihood of merging.

As shown in Figure 4a, the amount of I/O and compute to

update images becomes much larger if α is set too high. These

two limits define a range of viable values for α. There is no

general rule for the placement of these limits, which depends

strongly on the performance characteristics of the execution

environment, as well as the priorities of the administrators in

optimizing the system.

Tuning LANDLORD. Using a simulated workload based on

applications from HEP researchers, we instead aimed to illus-

trate the viability of a straightforward approach to automatic

storage optimization when managing containers from multiple

users. Considerations at each site such as the amount of scratch

storage available for caching container images and upper

bounds on the computational cost to prepare each container

ultimately dictate the viability of any particular approach.
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LANDLORD provides a good deal of flexibility to match the

properties of a given execution site and workload(s).

In our simulations, we found that the choice of α was not

particularly important, as long as it falls within a wide “op-

erational zone” (0.65 to 0.95). Figure 8 shows that choosing

extreme values of α results in a large number of overlapping

container images or excessive overhead creating and updating

massive images. These extremes correspond to the naı̈ve ap-

proaches discussed previously, i.e. many single-use containers

or a single all-purpose container, respectively. Choosing α

anywhere within the operational zone strikes a reasonable

balance between storage utilization and overhead. A new

application employing LANDLORD should choose a moderate

α (e.g. 0.8) to start, with finer tuning possible to meet specific

application or site requirements. A moderate choice of α

allows LANDLORD to avoid extremely poor behavior in either

direction, without attempting to attain “optimal” performance.

LANDLORD thus offers a lightweight mechanism to avoid

cases of pathologically poor performance.

VII. CONCLUSION

To address the container explosion problem for HTC appli-

cations, we developed LANDLORD, a prototype system that

generates an execution environment for containerized jobs,

exploiting the hierarchical package dependency structures to

better manage a limited cache area. LANDLORD is tunable

to meet application and site-specific requirements, but based

on trace-driven simulation of LHC applications we observed a

wide operational zone that achieves reliably acceptable results.

We developed tools for integrating LANDLORD into HEP

applications based on CVMFS, but the underlying concepts

are easily applicable to other systems. As container-based

applications and multi-site computing continue to increase

in prevalence, employing higher-level knowledge such as

package specifications will be critical in automatically and

intelligently managing available resources.
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