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Abstract—Container technologies are seeing wider use at
advanced computing facilities for managing highly complex
applications that must execute at multiple sites. However, in a
distributed high throughput computing setting, the unrestricted
use of containers can result in the container explosion problem.
If a new container image is generated for each variation of a
job dispatched to a site, shared storage is soon exceeded. On
the other hand, if a single large container image is used to meet
multiple needs, the size of that container may become a problem
for storage and transport. To address this problem, we observe
that many containers have an internal structure generated by
a structured package manager, and this information could be
used to strategically combine and share container images. We
develop LANDLORD to exploit this property and evaluate its
performance through a combination of simulation studies and
empirical measurement of high energy physics applications.

I. INTRODUCTION

Large scale science depends upon high-throughput comput-
ing across multiple facilities in order to meet the demands of
simulation and data analysis. Modern high-throughput applica-
tions are rarely the single statically-linked executables of the
past, but now consist of thousands of software components,
including scripts, modules, libraries, and configuration files
written in many different languages. In the past, deploying
such complex applications at computing sites required either a
globally-deployed filesystem (such as CVMEFS [1]) or manual
effort to install each piece. Today, container technologies such
as Docker [2] and Singularity [3] are increasingly used to
deploy complex applications at computing facilities, without
requiring each site to manually install every software package.

However, the combination of distributed high-throughput
computing and container technologies leads to the container
explosion problem. High-throughput jobs are often generated
automatically by submission systems on behalf of multiple
users. For each type of job, a container must be generated
with the necessary dependencies for a set of jobs. Over time,
containers multiply: as a user’s work evolves, different jobs
need different software, and new containers are generated.
Each computing site has a different set of users and projects
that may change dynamically with offered load and resource
availability. Often, containers are replicated across sites and to
many individual nodes. Because related containers share many
elements, a significant amount of storage may be wasted due
to logical duplication.
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To address this problem, we observe that containers often
have an internal structure, making use of a standard package
manager, such as RPM for standard OS packages, Pip or
Conda for Python-related packages, and Modules or Spack
for HPC software. Rather than treat each container as a
black box of arbitrary files, we can consider it as a set
of packages drawn from a software repository. From this
perspective, all that is needed is a declarative statement of
dependencies, and the necessary container can be materialized
or destroyed as needed. Further, applications with common
needs could potentially be served by shared containers that
have the union of dependencies present, thus reducing the total
storage needed.

LANDLORD is a system designed to address the container
explosion problem for high-throughput computing. It first
observes or infers the package dependencies of submitted
applications, then generates the execution environment needed
by each application. As required, it creates, merges, splits,
or deletes container images in order to balance the total
storage consumed by containers against the size of individual
containers. A significant design consideration lies in the choice
of a threshold («) for when to combine similar images. If «
is too high, then too many containers are combined, and the
individual images become impractically large. If « is too low,
then too many individual container images are created, and
the total storage consumption becomes impractically large.

Our prototype of LANDLORD is designed for use with
Singularity containers generated by high energy physics appli-
cations dependent on large software repositories managed by
CVMES. Using example applications from the ATLAS, CMS,
and LHCD experiments, we evaluate the degree of sharing be-
tween different applications, and the performance of container
analysis and generation. Using trace-driven simulation, we
explore different strategies for managing a limited container
cache area, varying the a parameter. We observe that, first, our
techniques are most effective when the dependency structures
are hierarchical, resulting in a compact distribution of common
packages. Second, we observe that each configuration has a
wide “operational zone” where a moderate value of o (0.65
to 0.95) results in a useful balance between total storage
consumed and container size.
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II. BACKGROUND

A. Containers for Scientific Computing

Modern scientific applications depend upon complex soft-
ware repositories that consist of terabytes of data and mil-
lions of files. Unlike “traditional” high performance appli-
cations that are single, statically-linked executables, modern
applications are agglomerations of software that consist of
high level scripts, multiple executables written in different
languages, support libraries that may be dynamically linked,
and configuration and data files loaded at runtime. Given the
large number of users, software packages, and versions in use
even at a single site, management of external software and
dependencies has become a difficult problem in its own right.

Users and site administrators are embracing containers as a
more flexible method of defining environments for scientific
computing, giving users complete freedom to assemble their
own software stacks. Containers are designed to be isolated
from the host system, so users do not need to consider the
configuration of execution nodes. This also helps to reduce
the burden on administrators maintaining shared software
collections. Container images being (by design) completely
self-contained greatly simplifies management and deployment,
but at the same time limits opportunities for sharing common
components. Much in the same way that a statically linked
executable contains a full copy of each library used, container
images necessarily include a complete set of dependencies.

Docker [2] first popularized the use of container technolo-
gies in industry, but proved to be a difficult fit for scientific
computing facilities, because it required the deployment of
new privileged services and required the use of node-local
storage for running container images. Several competing tech-
nologies emerged for use in large facilities, such as Singular-
ity [3], Shifter [4], and CharlieCloud [5]. These technologies
make direct use of the underlying operating system facilities
to mount container images and run them directly, without an
intervening service. As a result, they more easily integrate with
the shared parallel filesystems in use at large facilities.

Containers are typically defined by a recipe which is used to
construct the image programatically. For example, a Dockerfile
describes a sequence of Unix commands, networking changes,
and package installs that are used to generate a layer of a
Docker image. However, it is important to note that a recipe
describes a sequence of changes that would have a different
effect if the order was changed. Each addition to the sequence
of events adds a new layer which increases the size of the
container, even if the event removed data.

An alternate way of specifying a container is to state a
set of dependencies that must be present within the container.
Binder [6], for instance, uses declarative requirement files
in a Python code repository to generate a container for the
application. Unlike a recipe, a set of dependencies has no
order, and so one may combine or break apart sets without
starting over. We use this property to significant effect in the
design of LANDLORD.
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B. Distributed HTC

High Throughput Computing (HTC) is an operating regime
where the user’s objective is to complete the greatest amount of
work possible over a long period of time. HTC applications are
often scientific simulations or data analysis applications that
must be run on a large number of independent configurations
or input files. HTC typically involves a pool of work that
is much larger than the available computing resources. HTC
applications are thus well-poised to take advantage of multiple
execution sites (such as the Open Science Grid (OSG) or
the Extreme Science and Engineering Discovery Environment
(XSEDE)) in order to increase the total application throughput.
Some applications also choose their execution environments
strategically, e.g. running most jobs on campus or grid re-
sources, but submitting certain high-priority/critical jobs to a
public cloud at additional cost.

In this work, we will consider the Large Hadron Collider
(LHC) experiments as an example of distributed HTC appli-
cations. The LHC experiments at CERN require a tremen-
dous amount of computational power to simulate high energy
physics (HEP) processes, process the torrent of data produced
by the detectors (88 petabytes of new data in 2018 [7]).
Modelling and statistical analysis jobs rely on a large number
of derived datasets, resulting in a global data volume of
approximately 1 EB [8]. At present, most of this computing
power is provided by the Worldwide LHC Computing Grid
(WLCG), which consists of more than 170 computing centres
in 42 countries. During normal operation, the WLCG carries
out over 400k CPU-hours of computation and transfers more
than 80 PB of data per month. Over the course of a year
this adds up to around 700 million compute jobs or 5 billion
CPU-hours/year [9].

HPC resources are an appealing source of computing power
to supplement the WLCG in meeting the computational de-
mands following the LHC’s high-luminosity upgrade. Un-
fortunately, HPC sites often impose restrictions on network
activity and system configuration, preventing WLCG jobs from
running directly on HPC resources. Containers offer a potential
solution for importing software environments as a guest user
at a site. WLCG jobs, however, are external to the execution
site and must be automatically imported and managed.

The simplest way to handle dependencies for external jobs
is to prepare local images as part of job submission. This
step must be automatic, as it can be difficult or impossible
to tailor distributed jobs to each execution site. With WLCG
jobs, for example, each experiment’s full software repository is
assumed to be available via a specialized transfer mechanism
(CMVES [1], the CernVM File System). Researchers do not
design WLCG applications with container support in mind, so
any preparation for a particular site must be transparent to the
application. Container creation can also become expensive rel-
ative to job execution, so it would be ill advised to construct a
complete container image for every job. Management systems
such as Docker [2] and Shifter [4] reflect this reality in using
persistent image stores.
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III. THE CONTAINER EXPLOSION PROBLEM

We define the container explosion problem in HTC as
follows: given a large (and probably growing) number of jobs
that require many overlapping software dependencies, simply
creating a container to fulfill each job’s requirements will lead
to a combinatorial explosion in the number of images stored.

In industry, this proliferation of container images to the
point of management difficulty is referred to as “container
sprawl”, just like the related phenomenon for VMs called
“image sprawl” [10]. For larger multi-container applications,
it is not feasible to manually manage all component con-
tainers and ensure stability and compatibility between all
versions. Container orchestration systems such as Kuber-
netes [11] allow users to declaratively define the high-level
services/components of applications, while the orchestration
layer manages the concrete resources (persistent storage, con-
tainer instances, etc.) in the public cloud. To aid in manag-
ing software environments in containers, Kubernetes package
managers such as Helm [12] can instantiate specific versions
of each software component and clean up outdated containers.

In HTC settings, however, there is a key difference: applica-
tions are expressed as a stream of discrete jobs rather than as
services that can be provisioned and then cleanly torn down.
This means that there is not a clearly-defined lifetime for
an application and the containers it requires; jobs from older
applications may be run again at any point in the future, and
individual jobs from many different versions of an application
may run concurrently.

As mentioned previously, container images do not allow
for sharing components as is possible with local installations,
site-wide modules, or copy-on-write filesystems. Instead, each
container carries complete copies of all components. In the
naive case, each variation in job requirements results in the
creation of a whole new container. In this scenario many iden-
tical copies of common base components and dependencies
are stored across a set of prepared container images. Since
each job-specific variation exists as a completely separate
container, caching does little to alleviate this duplication. Only
jobs with identical requirements can reuse existing containers.
In the case of the LHC, each experiment maintains different
software environments and individual jobs vary frequently
in the components and versions they use. In this situation,
each variation and permutation of job requirements creates
a completely distinct container image, leading to very poor
cache utilization (Section VI quantifies this effect). Our goal
then is to maximize the throughput of jobs that can be run
using some fixed amount of cache space for container images.

We can observe the container explosion problem by examin-
ing the initial use of containers by the LHC experiments, which
as global-scale computational projects provide insight into
the behavior and challenges of new approaches in scientific
computing. CVMFS recently added experimental support for
efficiently serving the contents of container images [13].
The ATLAS and CMS experiments uploaded several dozen
software environments as part of their evaluations of container
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Fig. 1: Refining via layers vs. Composition.

technologies. At present CVMEFES stores nearly 150 versions
of these base environments, with around 1,000 distinct layers.
CVMES retains all historical versions to ensure reproducibility
and backwards compatibility, making simple garbage collec-
tion impossible. Since transferring the entire container repos-
itory for every job quickly becomes prohibitively expensive,
it is necessary to create tailored images based on a required
subset of the full software repo. There are a number of poten-
tial approaches to work around the combinatorial explosion in
job-specific images, but none are satisfactory.

Imperfect Solution: Full-repo Images. Rather considering
the precise requirements for each job, the simplest way to
reduce the number of containers in use is to place an entire
software repository into a single image, which can then support
a large number of jobs. In the case of the LHC experiments,
each full CVMEFS repo is measured in TB (see Figure 2 for
exact sizes). Likewise, a complete copy of the Python Package
Index (PyPI) would be roughly 190,000 packages consuming
over 6 TB (at the time of writing). Unfortunately, this approach
is likely to exceed a number of practical limits on container
size. Individual worker nodes may have limited local disk
space and be unable to store large container images. Even
if the large container fits, it is likely that a given job does not
need all of the repository simultaneously, so it is wasteful to
transfer unneeded data. This concept is a driving influence on
projects like Slacker [14].

It also becomes prohibitively expensive to update and
transfer such large container images. The US collaboration of
the ATLAS, ALICE, and CMS projects are currently experi-
menting with CVMES applications on computing resources at
various supercomputers in the United States including Cori at
NERSC [15]. When full-repo images were built and scaled out
onto a large number of nodes inside the NERSC infrastructure,
the process took around 24 hours, making it difficult to
deploy up-to-date versions of the software on a regular basis.
In addition, the process requires administrative involvement
in image creation, deployment, and cleanup. As additional
projects want to take advantage of the resources at NERSC, the
administrative burden of managing multiple CVMFS images
on multiple software versions increases accordingly. Taking
this approach negates the flexibility and hands-off administra-
tion that containers were intended to provide.

Imperfect Solution: Layering. Docker allows container
environments to be composed from reusable image lay-
ers. Docker can take advantage of modern filesystems like
BTREFS [16] that provide efficient snapshots and transparent
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sharing of files and directories between different revisions. As
a practical matter, Docker is generally not available in HPC en-
vironments for administrative and security reasons. Likewise,
guest users at large sites do not generally have the ability
to directly manipulate file system snapshots or export/load
local filesystem volumes. More conceptually, layering images
addresses a different problem than the issue at hand. With
Docker, base images can be extended and refined over time by
appending layers. When preparing to run external HTC jobs,
however, we must compose a set of largely independent pieces
to fit specific job requirements, without any particular ordering
relationship to previous images. It is therefore difficult to map
this set of semi-independent pieces into a linear sequence of
refinements that will fit future job requests.

Figure 1 compares layering and composition after process-
ing several jobs. Although item C is hidden in the lower layer,
it still exists in a previous layer and must be transferred and
stored. Since changes to layered images are strictly additive,
old content can be masked but not removed. Also note that
the first and third jobs in Figure 1 have identical requirements
and the corresponding layers are functionally equivalent, yet
this is not apparent to Docker based on their contents. With
composition, on the other hand, it is immediately clear when
images are equivalent and can be reused.

Imperfect Solution: Block Deduplication. Another poten-
tial avenue to deal with the container explosion problem is data
deduplication for disk images. The virtualization community
has developed a number of solutions for efficiently dedupli-
cating disk images [17] and running virtual machines with
many incremental changes [18]. There has also been extensive
research on deduplication [19], [20] of filesystem data [21],
[22] and disk blocks [23], [24]. It is not difficult to identify
duplicated files or blocks within container images. However,
we lack a means to combine the extraneous copies; each
container image by design contains complete copies of all data,
and sharing of data across images is not possible for users of
the system. When supporting multiple users with a potentially
large number of container images, utilization of site-wide
storage becomes a concern. Simply adding storage capacity
to accommodate each user or application is not a sustainable
solution over the life of a system [25]. Rather, we would prefer
to make better use of what site storage is available by reducing
unnecessary duplication among container images.

IV. KEY INSIGHT: SPECIFICATION-LEVEL MANAGEMENT

Having discussed the methods for defining container im-
ages, we arrive at a key insight of this work: container
specifications offer more opportunities for management
and optimization than containers themselves. While a build
script gives a sequence of steps to produce a final container
image, it does not give information about the desired properties
of the resulting image. Likewise when examining a previously
built container, it is difficult to determine how it can be used
(whether it provides a particular version of a package), since
recipes allow for arbitrary modifications to an image. It is not
generally safe to substitute one image with another, even if
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Running Prep. Minimal Full

Time Time  Image Repo
alice-gen-sim 131s 59s 6.0G | 450GB
atlas-gen 600s 37s 2.7G | 4.8TB
atlas-sim 5340s  115s 7.6G | 4.8TB
cms-digi 629s 62s 8.4G | 8.8TB
cms-gen-sim 2360s 71s 6.1G | 8.8TB
cms-reco 961s 78s 7.3G | 8.8TB
Ihcb-gen-sim 1010s 67s 3.7G | 1.0TB

Fig. 2: Benchmark applications for LHC experiments [26].

the two have some subset of their contents in common. Con-
versely, two container images may be functionally identical
despite having different contents if the build process is not
strictly deterministic. Note that almost all build systems will
produce variations in timestamps, logs, configuration files, etc.
that make direct comparison of images difficult.

Rather than trying to recover information from previously
built images, the specifications used to construct them offer
higher-level information about their functional characteristics.
These specifications give minimal requirements that an image
must fulfill without specifying anything about the exact image
contents. If a specification requires a subset of packages
in a previously built image, we should be able to use the
latter to satisfy the former specification; the concrete image
meets the specified requirements and includes some additional
(unrequested) packages. Using this approach, we could per-
form more sophisticated image caching based on container
capabilities rather than strictly comparing file contents. Using
higher-level information from specifications, the system has
additional flexibility in how it fulfils specifications that allows
for reduced storage in a very narrow case (strict subset).

Specifications afford another opportunity to a container
management system: unlike build scripts or recipes, it is
possible to automatically manipulate or combine specifica-
tions. A composite specification can be formed as the union
of requirements from two or more specifications. This kind
of composite image could be used in place of any of its
constituent specifications, since it meets the minimum require-
ments given in each. Note that in some cases, incompatibilities
among requirements make combination impossible.

While caching and merging specifications gives a mecha-
nism to reduce duplication among stored container images,
we still do not know which specifications to merge. Choosing
randomly or by order of job submission, for example, is
liable to join specifications with little in common. This would
increase the sizes of images to be transferred among worker
nodes, while doing little for de-duplication. Instead, we want to
merge specifications with many common components. We now
introduce a simple metric for similarity between specifications
and an algorithm for automatically managing an image store,
with a tunable parameter controlling how aggressively to
reduce duplication and increase storage utilization.
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V. ONLINE MANAGEMENT

When working on campus computing resources or cloud
environments that support software-defined infrastructure, it
might be possible to make system-level adjustments to mount
global filesystems or otherwise meet the needs of a particular
user or application. In national-scale HPC settings or across a
large number of sites, however, we would prefer to leverage
the capabilities available to guest users of computing sites to
mitigate the container explosion problem. Rather than employ-
ing techniques like block deduplication in reaction to existing
images, we propose proactively managing the collection of
container images before they are created.

We therefore define LANDLORD, a system for making a
decision online to efficiently satisfy the dependency require-
ments for submitted jobs. This method must be suitable for
inclusion either in individual researchers’ workflows or as part
of the setup for batch job or pilot job scheduling, and must
be efficient in terms of both computation time and storage
space. We suppose that some local storage is available (e.g.
a few terabytes of scratch space attached to a head node) for
caching exported repository contents and a cache of generated
container images. We also suppose that each compute node has
scratch space available for storing container images locally,
but that the total repository contents or the collection of all
container images may be too large to store on every worker
node. We would thus like to make good use of the available
storage, acknowledging that there must be some repeated
work and waste. For each user-submitted job LANDLORD
must automatically prepare a suitable container image, and
(if possible) avoid creating a new one for each job request.

LANDLORD Deployment. We designed LANDLORD to
operate as an automated step during job submission. Since
this work supposes that scientists may need to run jobs across
many sites and will need to work with the privileges of a
guest user, our prototype of LANDLORD is implemented as a
lightweight job wrapper. To use LANDLORD when submitting
a job, a scientist must first prepare an image specification for
each job. Simple specifications may be hand-written; we also
developed several simple analysis tools to automatically gener-
ate specifications by scanning for Python import statements,
module load directives, or logs from previous jobs. Re-
searchers would also set up their particular submission systems
to wrap invoked jobs. Then on job submission, LANDLORD
first scans its configured cache directory for existing images
that are “close” to the job’s specification, creates/updates
images in the cache as necessary, and finally launches the job
inside the prepared container.

While our user-level prototype is a good fit for a single
unprivileged user, administrators may wish to employ LAND-
LORD for site-wide container management. The same core
functionality of LANDLORD could easily be adapted into a
plugin for a site’s batch system. For the LHC experiments,
CVMES data is normally public and shareable, making a
LANDLORD plugin particularly simple to implement. A more
general-purpose plugin would need to take into account data
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security and privacy, which we leave as future research. In
addition to batch systems, there are other situations where
this plugin approach is applicable. When using a pilot job
system, for example, scientists are effectively operating a
“user-level scheduler”. Scientists have the option of using
this same plugin approach to connect LANDLORD to a pilot
job system, allowing LANDLORD to transparently optimize
container storage without requiring application changes.
Similarity Metric. In order to make decisions about how to
optimize the storage for a collection of container images, we
need a means to quickly identify containers that are “close”
(for some definition of close) as candidates for optimization.
Rather than examining the containers themselves, we will
compare the specifications used to generate them. We are less
concerned here with the particular choice of metric than with
choosing a simple, adequate, and non-controversial metric.
We chose the Jaccard distance under appropriate choice of
set elements as it gives a straightforward way to group sets
with similar contents and is very well used and studied. When
working with software repositories, each package is usually
assigned a name/version string that is defined to be unique
within the repo. We can thus use the Jaccard distance to
determine the similarity between sets of package requirements.
For two sets A and B, the Jaccard distance d; is:

_|AnB| _|AUB|-|ANB|
|[AUB| |AU B|

The Jaccard distance captures several desirable properties
when dealing with specifications. In the case of two speci-
fications that differ only by one element, the Jaccard distance
will be small. For a pair of specifications with nothing in
common, the distance will be high. In addition, a constant-
time approximation of the Jaccard metric (MinHash [27]) is
available for making an efficient first pass at selecting similar
images when the number of packages or components is large.
This approximation is important in practice due to the sizes
of the data involved; metadata listings alone for full-repository
CVMEFS images consumed multiple gigabytes of storage, so
it is desirable to robustly support very large specifications.

A limitation of using the Jaccard distance this way is that
it does not capture conflicts between components. Public soft-
ware repositories generally support explicit version constraints,
so two specifications may include constraints that cannot
be simultaneously satisfied. This compatibility checking is
dependent upon the specific package manager or system in
use. For LHC applications this is a non-issue, since CVMFS
is normally append-only and all previous versions remain
available. If conflicts between specifications are possible, this
additional checking step can be performed after using the Jac-
card distance to prioritize the set of candidate specifications.

The fundamental operation for LANDLORD’s storage opti-
mization strategy is merging container specifications that are
“close enough”. Using the Jaccard distance metric, we can
quickly identify cached specifications that are similar to a new
request. To decide if two specifications are “close enough” to
optimize, we define the parameter v as the maximal Jaccard

d;(A,B) =1
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distance between closely related specifications. Since Jaccard
distance is by definition between zero and one, o must be
in the same range. This o parameter is something like the
“globbiness” of the system. Using this o parameter, we can
define a very simple caching algorithm for managing and
optimizing a central image store.

Given: Cached container image collection [

Input: Container specification s

Result: Suitable container image satisfying
specification s

for i € I do

if s C i then

// An existing image satisfies s

return ¢;

end

end

for j € I such that d;(s,j) < o do

// Selection can be sorted by d;()
// Attempt to merge

if s and j do not conflict then

Replace j in the cache with merge(s, j);
return j;

end

end

// Couldn’t re-use or merge
Insert new image s in the cache;

return s;
Algorithm 1: Container cache management

Choosing « near zero requires that specifications are ex-
tremely similar before considering them for merging. In the
extreme case with o« = 0, only identical images will be
considered close, so no images will be merged. This results
in a larger number of independent images. Choosing « to
be larger makes it more likely for images to be considered
similar and merged. This results in more augmented images
that serve multiple tasks. In the extreme case of o = 1, every
pair of images is considered close and merged if possible.
This results in large container images that have accumulated
many specifications. Using the « parameter, it is possible to
continuously vary between these two extreme behaviors.

A potential issue with this automatic merging strategy is
“bloated” images that accumulate infrequently used dependen-
cies and increase overhead indefinitely for future tasks. The
Jaccard distance gives a natural way to capture and address
this effect. As an image becomes bloated due to repeated
merges, its distance from any individual request increases.
After sufficient growth, the image will become too far from
any request to even be considered. Without regular use, the
bloated image will eventually be evicted from the cache.
Choice of « therefore places an upper limit on the amount
of undesirable bloat in images. Later, we examine the effect
of the o parameter by simulating image management over a
large number of application requests.
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VI. CASE STUDY: LHC EXPERIMENTS

We now explore the container explosion problem and
LANDLORD more thoroughly in the context of the LHC
experiments at CERN. Figure 2 shows several LHC benchmark
applications run under Shrinkwrap, a tool developed as part
of this work for efficiently building container images from
CVMEFS. Here gen (generation), sim (simulation), digi
(digitization), and reco (reconstruction) are phases of the
experiment pipelines. Running Time gives the average run
time for a single instance of the application. These benchmark
applications were run using local container images, where
preparation time is the amount of time required to create
such an image by downloading the contents via Shrinkwrap
and compressing the resulting data into an image file. Note
that this time does not include any tracing or dependency
analysis. If static analysis or manually-defined specifications
are not available, runtime tracing (possibly over multiple runs
to try to capture all behaviors) becomes necessary, significantly
increasing the preparation time. Minimal Image indicates the
size of the tailored container image.

Characterizing Package Dependencies. Our first step in
evaluating a storage optimization strategy for a global software
repository is to characterize its contents, which will inform our
simulations later. In the SFT CVMEFS repository, where many
of the core research packages at CERN are hosted, dependency
information is included in build metadata associated with each
package. This metadata gives a convenient way to construct
a dependency tree of the entire repository. We constructed
such a dependency tree for the SFT repository to use in the
simulations discussed later. Figure 3 gives an indication of the
structure and sizes of software components in the repository.
For each fixed specification size (on the x axis), we selected a
random sample of packages. The lower line shows the storage
size of only that selection. Recursively including the package
dependencies is shown in the upper two curves. We repeated
this procedure 100 times for each specification size, taking
the median. The on-disk size of the selections appears to
increase proportionally to selection size. Recursively including
the dependencies of these same selections, however, results
in a significant increase in number of packages and size
on disk. For small selections (less than 100 packages), the
complete images with dependencies might contain 5x as many
packages as requested, with storage increasing proportionally.
With larger selections, however, this increase becomes less
pronounced. This non-linear change is the result of the tree
structure of the software dependencies. There are a number
of core components that are transitive dependencies of a large
number of packages. These common dependencies are only
included once, so subsequent selections that depend on them
do not add them again. As the number of selections increases,
this curve will approach the total repository size.

Simulating HTC Jobs. We tested two schemes for gener-
ating image requests for HTC jobs, taking into account the
properties of the software collections and generating images
via a uniform random scheme for comparison. We consulted
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with the developers of CVMES, as well as HEP researchers
at our university collaborating with CERN to determine how
current users interact with CVMEFS, with the benchmarks in
Figure 2 as examples. We expect significant variability in files
accessed and total size among different users and experiments.
We nonetheless observed that certain core components are
used near-universally. While multiple versions and variations
might exist, these components have a very high likelihood
of appearing in every container image. These components
correspond to the base frameworks, setup scripts, calibration
data, etc. needed for most jobs. For the purposes of simulation,
we would like to see these components in a large proportion
of jobs across all simulated jobs from different users and
experiments. There is also a large set of components that must
be available and are used in some applications, but which are
very rarely used overall. It is important to make these “long
tail” components available for researchers that need to use
them, but it would be wasteful to include them universally
when they are rarely used.

For the purpose of simulation we assume that the require-
ments of a job are given as a set of packages. While the
Shrinkwrap utility can operate at the granularity of individual
files, allowing for partial packages tends to produce unreliable
container images. The previously-described dependency tree
extracted from the SFT repository consists of 9660 packages,
where a program or library typically provides packages for
multiple versions, platforms, and configurations. When build-
ing a simulated image, we recursively include dependencies
of requested software. This approximates the structures of
actual container images, while still allowing for variation in
package requests. For each simulated request, we chose a
random selection of packages and then added the closure
of the package dependencies. This image simulation scheme
captures the structure inherent in the software collection, in
that packages in addition to those requested are automatically
included so as to ensure a functional image. The initial
selection of packages, however, is simply uniformly random.

To generate an image for a simulated job request, we
randomly made an initial selection of up to 100 packages.
We then used one of the two schemes (dependency tree-based
or random) to expand the initial selection into a full image.
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Repeating this procedure, we can create streams of container
specifications for simulated jobs.

Simulated Container Caching. Figure 5 shows a single
simulation of LANDLORD with o = 0.75 and cache size of
1.4 TB processing 500 unique job specifications, each one
repeated five times. First, we note that most of the operations
are merges. This is to be expected, as this simulation ran with
a fairly high « value. The total bytes written also closely tracks
merges, indicating that merging is the dominant source of 1/O.
We still see inserts over the course of the simulation. At more
extreme « values, we expect to see one of these operations
almost exclusively. As the data in cache continues to rise, we
eventually see the cache limit, after which the delete count
increases. Over the course of the simulation, inserts and deletes
are filling and emptying the cache such that it remains close
to its storage limit. We also observe the number of cache hits
continue to rise despite deletions. As we will see, merging
allows for a greater proportion of hits even if the amount of
data remains constant. This is because frequently used data can
be merged, reducing duplication. The cache limit then ensures
that infrequently used parts are eventually removed.

To evaluate the viability of our approach in automatically
optimizing a container image store, we simulated the behavior
of the system over time for a range of « values. Choice of «
is important here to ensure that common components can be
detected and merged in container images, and that old images
or poor decisions are eventually removed from the system.
Choosing « too far in either direction will result in excessive
storage overhead due to duplicated components, or excessive
compute and network overhead repeatedly merging largely
unrelated images. Our goal in this evaluation is therefore to
choose o so as to minimize the storage and compute costs
associated with maintaining a collection of images.

Since our simulation uses random simulated requests, there
is noticeable variability between individual simulations. Thus
for a given choice of cache size, job count, etc. we repeated the
simulation 20 times and reported the median behavior over the
runs. At each choice of « (in steps of 0.05) we performed a set
of 20 simulated runs, allowing us to plot various measurements
of the system versus a.

Sweeping over the range of « values in this way, we can
immediately see differences in the frequency of simulated
operations. Figure 4a shows the upper range of « values
where behavior differences appear. From the lower values
on the left, the insert and delete counts are the primary (or
only) operations, with number of hits relatively constant. This
corresponds to a simple LRU-based cache. The insert count
is higher due to cache filling, but the two tend to increase in
lockstep. As « increases, image merges become more frequent.
The merge count steadily increases throughout most of the
upper range, while inserts and deletes decrease. This suggests
that at high « values, the cache space would be more efficiently
used, with some of the duplication merged out. In the extreme
case with o = 1, every request is merged into a single image
in cache, hence the sudden increase in hit rate and decrease in
total merges at the far right of Figure 4a. As merging increases,
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Fig. 5: Behavior of a single simulation

the proportion of hits generally also increases. This indicates
more of the requests can be satisfied by previously merged
images in the cache. From the perspective of the system, this
is beneficial as there is no extra time or compute cost for
handling a larger proportion of images.

Metrics for Cache Utilization When sweeping over the
range of « values, there are a number of metrics available
to summarize each simulation run. Many, however, are highly
coupled with the particular system configuration and difficult
to compare as we vary the parameters of the simulations. We
therefore chose to define two metrics, cache efficiency and
container efficiency, to indicate the relative utilization of the
system. We defined cache efficiency as the ratio of unique data
to total data in the cache. In our case, this is equivalent to the
ratio of the size of the unique packages to the total cache size.
If many images contain copies of the same packages, the cache
efficiency decreases. This metric captures duplication within
the cache across all images. With no merging there is a high
degree of duplication, so the cache efficiency is low. On the
other end of the spectrum, maintaining a single, large image
containing all data results in cache efficiency of 100%, as the
entire cache resides in that single image.

We defined container efficiency as the ratio of the size of
the requested container (a set of requested packages plus all
dependencies) to the size of the container the system actually
used for the job. In the absence of merging, these two are equal
so the container efficiency is 100%; jobs are run with exactly
what was requested. By merging to allow for image reuse,

(b) Duplication of Data in Cache
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(¢) Cumulative I/0 Overhead

Cache behavior over a range of « values

we include additional, unrequested data in container images.
The container efficiency measures this difference between
requests and containers. In the extreme case of a = 1 with
a single large image, for example, the container efficiency is
poor because the entire repository is used for every request,
regardless of size. These two extreme cases, no merging
among many images and a single merged image, can both
be useful in some situations. Rather than defining where these
limits fall, we discuss choosing limits in Section VI.

Figure 4b shows the actual data sizes used to calculate
the cache efficiency. Without merging, the unique data makes
up a small proportion of the cache. With increased merging,
the amount of unique data increases. For sufficiently high «,
merges occur more frequently than cache inserts, resulting a
drop in total storage size. On the far right of Figure 4b, the
entire cache contents are merged into a single large image, so
that the unique and total data sizes become equal. The cache
efficiency metric is affected both by the increase in unique
data and by the decrease in total cache size.

Overhead of LANDLORD. Under LANDLORD’s approach,
we use compute and I/O capacity during job submission in
order to improve utilization of storage space. At some point,
however, this additional I/O cost could become prohibitively
expensive. To quantify this computational and I/O overhead,
we can measure the cumulative amount of data written over the
course of simulated cache operation. We observed that almost
all of the additional overhead/latency of LANDLORD was due
to disk I/O in creating merged images, while LANDLORD
spent very little time performing computation. We thus use
cumulative write size as a metric for overhead/latency that
is independent of specific hardware or disk performance.
Figure 4c shows the amount of data written during simulations
over a range of « values. “Requested Writes” gives the
total amount of data actually requested by each job over the
course of the simulations. This value is on average constant
since the same procedure was used to generate all simulated
job requirements. “Actual Writes” gives the total amount of
data written to cache over the course of simulations. If, for
example, an image were evicted and then re-inserted later in a
simulation, then the cost of generating and writing the image
would be added again.

Without merging, the actual I/O and compute costs in the
system closely follow the requests. At low « the actual I/O
is slightly smaller than the requested amount due to caching:
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Fig. 6: Effects of Simulation Parameters on System Efficiency

the system can sometimes reuse images without performing
any additional I/O. As « increases, the cost of updating and
merging images comes to dominate the total I/O cost. Each
time a merge occurs, the resulting image must be written out
in its entirety. Thus when merges are frequent at high o, some
data will be written and re-written many times to satisfy new
job requests. Thus while extremely high o makes better use of
available storage space, LANDLORD introduces a significant
amount of latency/overhead in the form of additional I/O
operations. Choice of « thus gives administrators a way to
balance between storage utilization and I/O overhead using
LANDLORD, e.g. allowing at most a twofold increase in the
compute and I/O time compared to directly creating the re-
quested images. (This would correspond to the upper compute
limit shown on Figure 8, discussed later in Section VI.)

Sensitivity Analysis. In Figure 6, we plot efficiency curves
for a range of simulation conditions. The left column shows
container efficiency, while the right column shows cache
efficiency. In the first row, the number of jobs and the amount
of repetition are constant while the cache size is varied. In the
second row, the number of unique requests is varied with the
other parameters constant.

The size of the cache has an inverse relationship with
both the container and cache efficiency. As seen in Figure 6a
and Figure 6b, a larger cache can of course hold a larger
number of images, but since each image contains significant
duplicated portions, increasing cache size tends to decrease
cache efficiency. Conversely, small caches more quickly evict
images so that ineffective merges and similar images tend
not to remain in cache too long. A larger cache also allows
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for more opportunities to merge images, leading to decreased
container efficiency. When deciding how to handle a request,
a large cache full of images is much more likely to contain an
image suitable for merging. With a small cache, opportunities
to merge are much more dependent on the order of requests.

The effect of varying the number of unique jobs is less
pronounced than the effect of cache size. As seen in Figure 6¢
and Figure 6d, streams of 500 and 1000 unique jobs show
nearly indistinguishable behavior, indicating that by 500 jobs
the system has reached a steady state. Continuing with an arbi-
trarily long stream should not result in significant performance
changes. However, 100 unique jobs were not sufficient to fill
the cache and reach a steady state. In this case the container
efficiency is slightly decreased over «, suggesting that some
ineffective merges had not made their way out of the cache.
Cache efficiency in this case is slightly increased. This would
suggest that before reaching a steady state, the cache contents
are more assorted and some unnecessary data remains cached.

Effects of Package Dependencies. To evaluate the effects
of container contents, we also generated simulated images
consisting of packages chosen in a uniform random way. To
ensure that total size (or at least total number of packages)
is comparable to images generated by the previous method,
for this approach we started with an image request generated
via the previous scheme (uniform random core selection with
dependencies added). We considered only the total number of
software packages in the resulting image, and then chose the
same number of packages uniformly randomly from the entire
repository, ignoring usage information and package dependen-
cies. While images generated in this way are not particularly
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realistic, they are useful for evaluating image management
schemes. By comparing results with random images to those
with the previous image generation scheme, we can compare
the general case of containers as collections of arbitrary data to
the specific focus of this work, i.e. containers with selections
of experiment software with dependency relationships.

Figure 7 shows a representative simulation with both syn-
thetic image types included. In the purely random case, there
is no correlation between different images. Thus, it is much
more difficult to find images similar enough to merge until
the « value is very lax. This would indicate that our merging
strategy is not applicable to arbitrary collections of data.
Random images show little to no effect for most o values. Our
merging strategy, which takes advantage of duplicated content
included as a result of dependencies in software, would be
ill advised for situations that are not known to follow similar
patterns of duplication. Even with non-realistic job requests,
the tree structure of package dependencies is sufficient to
produce pronounced duplication in the cache, which gives an
opportunity to apply our storage optimization strategy.

Limits on Cache Utilization. For any choice of container
management scheme, there is some non-trivial management
cost. This could be in the form of time and manual effort
on the part of individual users, or a portion of the system’s
compute and storage space used in the background. In the
case of an extremely well-provisioned system, the best solution
might simply be to retain everything. In terms of our simulated
management scheme this corresponds to the extreme cases,
holding a large number of single-purpose images at o = 0 or
building a single all-purpose image at o« = 1. In the case
of high-throughput computing, we expect the total size of
applications and data to be much larger than any individual
job or even larger than the capacity of the system. In this
setting, it becomes necessary to balance the management cost
against system constraints on compute and storage. Under
the simple management algorithm presented here, choosing
an intermediate o value gives researchers or administrators a
tunable way to trade some computing power and IO activity
for improved storage utilization.

If the requirements of all jobs are known in advance and
worker storage and bandwidth are sufficient, maintaining a
single, large image for all jobs on all workers is an useful
strategy. After the initial (costly) image creation and transfer,
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Fig. 8: Limits on efficiency

there are no continuing costs or delays. When resources
are limited or requirements change regularly, however, this
approach becomes prohibitively expensive. The high compute
and bandwidth overhead apply for every image update, which
in the worst case could be every job.

The other extreme situation, simply caching requests with
no merging, can also be viable. This approach is simpler and
does not come with extreme per-job overhead. In addition,
frequent changes to the jobs and requirements do not degrade
the efficiency of each job. At large scale, however, the overall
system efficiency suffers. Due to duplication among images,
larger caches contain less and less unique data. To support a
given repository, it becomes necessary to provision a cache
much larger than the size of the repository. With CVMFS
repositories consuming several terabytes of storage each, the
amount of cache space required grows quickly.

These two limiting factors, the compute and transfer cost
in the highly merged case and the cache efficiency in the
unmerged case, serve as limits on the viable range of « values
for a system and its users/applications. Figure 8 shows two
vertical lines indicating these limits on a plot of efficiencies.
The left line shows a lower limit of around 30% on the cache
efficiency in this simulated configuration. Choosing « too low
results in cache efficiency reaching below 20%. On the right,
the line gives an upper limit on the likelihood of merging.
As shown in Figure 4a, the amount of I/O and compute to
update images becomes much larger if « is set too high. These
two limits define a range of viable values for . There is no
general rule for the placement of these limits, which depends
strongly on the performance characteristics of the execution
environment, as well as the priorities of the administrators in
optimizing the system.

Tuning LANDLORD. Using a simulated workload based on
applications from HEP researchers, we instead aimed to illus-
trate the viability of a straightforward approach to automatic
storage optimization when managing containers from multiple
users. Considerations at each site such as the amount of scratch
storage available for caching container images and upper
bounds on the computational cost to prepare each container
ultimately dictate the viability of any particular approach.
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LANDLORD provides a good deal of flexibility to match the
properties of a given execution site and workload(s).

In our simulations, we found that the choice of o« was not
particularly important, as long as it falls within a wide “op-
erational zone” (0.65 to 0.95). Figure 8 shows that choosing
extreme values of « results in a large number of overlapping
container images or excessive overhead creating and updating
massive images. These extremes correspond to the naive ap-
proaches discussed previously, i.e. many single-use containers
or a single all-purpose container, respectively. Choosing «
anywhere within the operational zone strikes a reasonable
balance between storage utilization and overhead. A new
application employing LANDLORD should choose a moderate
a (e.g. 0.8) to start, with finer tuning possible to meet specific
application or site requirements. A moderate choice of «
allows LANDLORD to avoid extremely poor behavior in either
direction, without attempting to attain “optimal” performance.
LANDLORD thus offers a lightweight mechanism to avoid
cases of pathologically poor performance.

VII. CONCLUSION

To address the container explosion problem for HTC appli-
cations, we developed LANDLORD, a prototype system that
generates an execution environment for containerized jobs,
exploiting the hierarchical package dependency structures to
better manage a limited cache area. LANDLORD is tunable
to meet application and site-specific requirements, but based
on trace-driven simulation of LHC applications we observed a
wide operational zone that achieves reliably acceptable results.
We developed tools for integrating LANDLORD into HEP
applications based on CVMFS, but the underlying concepts
are easily applicable to other systems. As container-based
applications and multi-site computing continue to increase
in prevalence, employing higher-level knowledge such as
package specifications will be critical in automatically and
intelligently managing available resources.
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