
Log Discovery for Troubleshooting Open Distributed Systems with TLQ

NATHANIEL KREMER-HERMAN, University of Notre Dame

DOUGLAS THAIN, University of Notre Dame

Troubleshooting a distributed system can be incredibly difficult. It is rarely feasible to expect a user to know the fine-grained interactions

between their system and the environment configuration of each machine used in the system. Because of this, work can grind to a

halt when a seemingly trivial detail changes. To address this, there is a plethora of state-of-the-art log analysis tools, debuggers, and

visualization suites. However, a user may be executing in an open distributed system where the placement of their components are

not known before runtime. This makes the process of tracking debug logs almost as difficult as troubleshooting the failures these

logs have recorded because the location of those logs is usually not transparent to the user (and by association the troubleshooting

tools they are using). We present TLQ, a framework designed from first principles for log discovery to enable troubleshooting of

open distributed systems. TLQ consists of a querying client and a set of servers which track relevant debug logs spread across an

open distributed system. Through a series of examples, we demonstrate how TLQ enables users to discover the locations of their

system’s debug logs and in turn use well-defined troubleshooting tools upon those logs in a distributed fashion. Both of these tasks

were previously impractical to ask of an open distributed system without significant a priori knowledge. We also concretely verify

TLQ’s effectiveness by way of a production system: a biodiversity scientific workflow. We note the potential storage and performance

overheads of TLQ compared to a centralized, closed system approach.

ACM Reference Format:

Nathaniel Kremer-Herman and Douglas Thain. 2020. Log Discovery for Troubleshooting Open Distributed Systems with TLQ. In

Practice and Experience in Advanced Research Computing 2020, July 26–30, 2020, Portland, OR. ACM, New York, NY, USA, 15 pages.

https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION

As computational research on complex distributed systems has more rapidly become commonplace, users have ex-

perienced growing pains. Scaling up computations and deploying large-scale systems necessitates troubleshooting

failures at scale, especially considering some faulty behaviors may not present themselves when executing on a single

machine or at a small scale. Compared to troubleshooting a failure on their workstation, it can be much more difficult

and intimidating to troubleshoot failures in a large-scale distributed system. There exist plenty of troubleshooting tools

which can perform log analysis, make connections between disparate components, and provide querying capability to

databases which ingest the various debug logs from the system. However, these tools are rendered useless if the user is

not made transparently aware where the debug output of each component (each service, computational unit, etc.) of

their system exists, how to make sense of each log, and how each component may impact the execution of others.

To provide further complication, the user may be executing in an open distributed system. We define an open

distributed system as a set of computing resources whose membership in a cluster, cloud, or grid may not be permanent,

which are assigned computations at runtime (i.e. the system and user do not know in advance which computations

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

Manuscript submitted to ACM

1



PEARC ’20, July 26ś30, 2020, Portland, OR Nathaniel Kremer-Herman and Douglas Thain

will be scheduled where), and may consist of cross-domain resources (e.g. resources coming from multiple cloud

providers, campus clusters, and national-scale infrastructures) which span independent organizational jurisdictions. It is

commonplace for a user1 to have direct knowledge of only a single component of their system which is user-facing,

however the other components of their system (e.g. worker processes, remote services, replica storage) do not need to

have a fixed location at runtime. Instead, it is up to the scheduler of the underlying cluster, cloud, or grid to determine the

placement of these computations. Between executions of a system (and during its execution), the underlying resources

may vary as machines are added or removed from membership. In addition, a system may have active components

communicating across domains which are under different jurisdictions (e.g. running and interacting concurrently on

two clusters at different research institutions).

From first principles, we have encountered the key obstacle preventing straightforward troubleshooting of open

distributed systems: the user must be notified where their components land in an open system and be given a unique

name which can be used to access the debug output of those components. A contemporary state-of-the-art approach is

to require debug output be collected at some centralized, highly performant rendezvous point which we have seen

applied to tools using the Elastic Stack (formerly ELK Stack) [14, 20]. However, this approach is not ideal for open

distributed systems since it requires the user’s knowledge a priori what debug output will be relevant and only applies

for a single domain (whereas an open distributed system may be composed of multiple domains). This state-of-the-art

approach is fantastic for large, cohesive organizations such as businesses or standalone clusters, however it falls short

when the system under test crosses barriers between domains (i.e. the system lives within and between the jurisdictions

of multiple organizations).

From this observation, we have designed from first principles TLQ (Troubleshooting via Log Query), a framework

for log discovery and troubleshooting of open distributed systems. It addresses the need to provide the user a name

and location for their components and debug output, and it emphasizes leaving debug output in place rather than

collecting it all at a single location since that approach is at best infeasible and at worst impossible for open distributed

systems. TLQ’s architecture allows troubleshooting tools to be placed atop its software stack to provide users the

troubleshooting experience they expect albeit in a distributed fashion. Broadly, TLQ’s architecture consists of two parts:

a user-end querying client and a set of log watch servers which live on the open system. The user client submits calls

to troubleshooting tools to be performed on logs tracked by the log watch servers. We demonstrate open distributed

system troubleshooting of a biodiversity scientific workflow using the Lifemapper application. We also briefly discuss

the overhead of this distributed approach as it applies to the troubleshooting experience. We conclude by providing

three critical lessons learned about distributed systems troubleshooting which became apparent after implementing

TLQ.

2 CHALLENGES OF DISTRIBUTED TROUBLESHOOTING

To demonstrate why distributed troubleshooting is so complex, consider a typical scientific workflow application.

The workflow management system is executing its workflow via a master-worker execution framework. Figure 1

demonstrates the architecture of this distributed system. The workflow manager sends tasks (i.e. definitions of work to

be done along with inputs and expected outputs) to the master process of the master-worker execution framework. This

master process then dispatches the task’s command and inputs to a chosen worker process on some other compute node.

It does this for each task the workflow manager gives it (assume some considerable scale such as 10, 000 tasks). Each

1We define users as researchers accessing distributed resources to set up their own distributed systems. However, these difficulties are also applicable for
system administrators, developers, or other support assisting these users.

2





PEARC ’20, July 26ś30, 2020, Portland, OR Nathaniel Kremer-Herman and Douglas Thain

worker process on which the task executed. It sees the specified output is created. According to both these logs, the

task was a success. This is because the workflow manager and worker check for file existence rather than file correctness.

It is often infeasible to require they do more than that unless the manager is written for a specific domain or narrow set

of applications. However, the workflow manager and the worker logs give only a fragment of the larger story for this

failure. These two logs, while helpful in indicating possible components to investigate, do not yield the cause of failure.

The user knows that during execution of this notional example, all of task t’s descendants fail according to the

workflow manager and worker logs. So, they would likely next investigate the explicitly failed tasks’ logs to figure out

how they may have failed. From their perspective, it is still entirely possible that the code executing on these tasks

is incorrect rather than task t (which silently failed). Upon inspection through either tools or manual scanning, they

could see that each of these tasks failed shortly after opening the malformed output file of task t.

It is at this point the user has uncovered enough evidence to go to task t’s log. Depending on their technical

knowledge, they may be able to tell from the log that task t failed silently during its execution. They may see a similar

pattern to the dependent tasks where the output file is opened for reading, then the program abruptly fails. The user can

then look at the contents of that output file to find that the data was not completely written before the task ended. At

this point, the problem is now a serial debugging issue rather than a distributed troubleshooting problem now that the

specific component at fault has been identified. The user can now run this task locally to debug the specific low-level

reasons why the program it runs fails early (and silently).

This experience is clunky to the user since the onus is on them to know which logs to read and where each log resides.

Monitoring dashboards or other commonplace tools reduce the overall time spent investigating all these logs, however

they can only enable troubleshooting if the locations of each log are known. In this notional example, we assume

the user can find each log. This is not always the case, however, since the user does not typically decide where their

components execute (e.g. using a batch system to schedule worker processes) nor may they necessarily be explicitly

told after the fact where those components were sent.

3 TROUBLESHOOTING AS DISTRIBUTED QUERYING

The notional example highlights a few key insights as to why troubleshooting distributed systems is so difficult:

• There are many logs located on many machines.

• Failures are not restricted to a single component.

• Often no single log gives all the context for failures.

In the notional example we assumed the user knew where their logs were located (or perhaps they were explicitly

transferred to a front-end machine for manual troubleshooting). However, this is not always the case. The underlying

components of the system may know where their logs are located, but this information is probably not be transparent

to the user. They may not know where their logs are located let alone how to retrieve them, or perhaps it is too

expensive to transfer all the logs to a centralized node. Further, transferring to a centralized node may be impossible

if the system executes across multiple domains, each with their own jurisdiction (e.g. a private cloud provider and a

research institution’s cluster).

We demonstrated that the silent failure of task t did not present itself until its descendants failed explicitly. Making

connections between t and its descendant tasks is difficult if the user does not know the relationship between these

tasks beforehand and if that relationship is not made clear in the logs. Moreover, finding the cause in the notional

4



Log Discovery for Troubleshooting Open Distributed Systems with TLQ PEARC ’20, July 26ś30, 2020, Portland, OR

example was made possible because we assumed the user knew the name of the malformed output from t which

allowed them to understand the relationship between it and the failed tasks (often not the case with very large systems).

In the notional example, the user had to read three different types of logs: a workflow manager log, a worker log,

and multiple task logs. Either they or the tools they used had to understand the format of each log type in order to

comprehend the context each log presented toward finding the cause of failure. Further, each log only provided pieces

of the cause of failure until the user found task t’s log. This becomes an issue of finding the needle in the haystack as

the scale of distributed systems continues to increase.

Each of these insights translate into underlying problems with troubleshooting distributed systems as they continue to

become the commonplace method for research and industry computing: quantity of debug output scale, understanding

relationships between components, and discoverability of debug output. Each of these problems can be addressed by

providing a unique name for each log, advertising it to the user, creating a more readily queryable set of metadata about

each log, and applying the user’s troubleshooting tools in a distributed matters which sends to computation to the

data rather than the other way around. We introduce TLQ, a system which keeps debug output in place (removing

the need to transfer a large degree of data to a centralized node), allows for relationships between components to be

more transparent (so it is easier for the user to discover these connections) by parsing out metadata about each log, and

tracks where debug logs are located (leaving the user free to troubleshoot their failures without having to know which

computations happened where).

3.1 Querying Logs in Place Across Domains

Rather than transferring debug output to a centralized node as is done in current state of the art [14, 20], we keep

each log in place. This is due to both performance reasons and to enable us to troubleshoot an open distributed system.

The debug output may be too large to reasonably transfer to a centralized rendezvous node (or may cost too much to

transfer from cloud storage), but that output may also exist across autonomous domains such that transferring them all

to a single node is impossible due to policy restrictions from each domain’s administrators. Further, it is likely that

while the system knows the logs being produced, that information is not transparent to the user. Often when using a

centralized rendezvous node, the user annotates which files to transfer. If they do not know these files’ names, that is

difficult to make happen.

In TLQ, we implement a service on each node of the compute resource (i.e. machines in a cluster, cloud, or grid).

This service is called a log watch server, and it is informed which logs it should track by the various components of a

distributed system under study. In TLQ, each component is programatically wrapped by a simple script which tells the

log watcher the names of the logs that component will create. This same script also reports back to the host which

submitted the component (this is usually a front-end node of a cluster, cloud, or grid in our day-to-day experience with

users) to tell the user where it landed and how to query that log in the future. The log watcher then periodically parses

its tracked logs to draw out metadata about each log and places it as a separate JSON document which acts in part as

a metalog of the environment of that component (the files, processes, and environment variables in the log) and to

summarize the high-level status information about that component such as exit status and total runtime. This provides

an at-a-glance view of each component which helps lower the noise of the total debug log output of a distributed

system.

There are multiple log watch servers monitoring the distributed system’s logs, each representing a fraction of the

collective debug output of the whole distributed systemwhich can then be queried by the user’s choice of troubleshooting

tools. This is done through a user-end client which dispatches either a query upon the servers’ tracked logs or a request

5





Log Discovery for Troubleshooting Open Distributed Systems with TLQ PEARC ’20, July 26ś30, 2020, Portland, OR

The querying client provides the user the capability to use the troubleshooting tools of their choice upon specific

components across their system. In this work, we demonstrate how grep can be used to troubleshoot an open distributed

system. In order to use these tools, the client must be made aware of which logs it can query. The list of logs available

to the client, represented as UUIDs, is accumulated by a server running alongside the client. A wrapper shell script

is used to execute each component of the system, and it communicates with both its respective log watch server (on

whichever machine the component lands) and with the client-end server to ensure both parties know the UUID for the

component in question.

The wrapper shell script writes to a file in the log watch server’s working directory. Each line it writes describes a

log the server should watch and includes the name of the distributed system to which the log belongs, the absolute

path to the log (which may be user specified or a defined value by the component’s code), and the component type(s)

contained in the log. The server periodically checks this file, updates its list of files to watch, and writes this list to a

separate file which includes a unique ID used to identify the debug file at the client-side. The wrapper script waits

for the server to update this list with the IDs of the files the wrapper told the server to watch. The script then reports

back to the client the system name, host and port of the server, and relevant file IDs. The wrapper then executes the

command it had wrapped, starting up a component of the system.

5 EVALUATION

We demonstrate the effectiveness of TLQ for facilitating open distributed system troubleshooting by utilizing the

popular tool grep to diagnose intermittent failures encountered while executing the Lifemapper biodiversity workflow

across two separate administrative domains (in this case, two separate campus-scale clusters). TLQ provides the log

discovery mechanism and the capability to run grep at each log watcher by way of TLQ’s user client. We show that,

at Lifemapper’s scale, distributed queries with TLQ perform on par with the collect-and-query approach utilized

by centralized architectures. We further demonstrate, by way of model, the scale at which distributed querying can

outperform collect-and-query given certain conditions.

Lifemapper is a biodiversity scientific workflow executed using the Makeflow workflow management system [17].

Makeflows consist of a set of rules, like a Makefile in GNU Make. Each rule contains a set of inputs, a set of expected

outputs, and a command which utilizes the inputs to create the outputs. Through these rules, Makeflow creates a

directed acyclic graph (DAG) of data dependencies which determine both the parallelism of the workflow and whether

the workflow is complete (i.e. when the final outputs are created). Figure 3 show the DAG structure of Lifemapper at a

small scale. The Lifemapper workflow executed in this work consists of 1, 887 rules, and it has 655MB of input data. It

took approximately 45 minutes to complete the workflow from start to finish.

We made use of the Work Queue master-worker execution engine to run the Makeflow rules. Figure 1 from the

notional example demonstrates how Makeflow and Work Queue interoperate. A single master process accepts rules

from Makeflow and submits them to connected workers as tasks (a roughly equivalent definition of work to be done).

Each worker executes on a separate machine from the master and transfers input and output data to and from the master

node. Each worker also has its own data cache to avoid unnecessary duplicate transfers. The worker processes were

submitted as pilot jobs to the HTCondor batch system, which scheduled the workers onto their respective machines. In

all, the distributed system set up to run Lifemapper consists of five types of components: the workflow management

system, the master process, worker processes, the batch system interface, and the actual computations of Lifemapper

(the commands executed in each Makeflow rule). This creates a hierarchy of communication which, at scale, can become

increasingly difficult to troubleshoot when failures arise. The workflow management system, master process, and batch

7



PEARC ’20, July 26ś30, 2020, Portland, OR Nathaniel Kremer-Herman and Douglas Thain

Fig. 3. Structure of Lifemapper showing data dependencies. Squares represent files, and circles represent processes. Its structure

allows for a high degree of parallelism.

system interface logs are all created at the same node the user accesses, so TLQ does not need to discover and advertise

these logs to the user. The worker logs and traces of the tasks, however, do need TLQ’s help to become transparent to

the user. We used 15 workers to execute Lifemapper (a reasonable scale given the ability of the master to feed work to

its workers [13]).

Approximately two thirds of Lifemapper’s rules execute Java code (the other third being Python). Throughout Lifemap-

per’s runtime, the system encountered intermittent unhandled exceptions (java.util.NoSuchElementException)

which led to a number of rules producing incomplete output. We ran Lifemapper five times to confirm these failures

were intermittent and not a baked-in failure to the workflow’s construction. These failures became apparent from the

STDOUT captured by the Work Queue master process (which captures forwarded console output from its workers).

From this output, we can then match the error to the command executed in Makeflow’s log. From here, we look up

that command in the collection of logs which the various log watchers are tracking (provided to us by the wrapper

script wrapped around each component in the system). We find it, and through the TLQ client we query the relevant

8



Log Discovery for Troubleshooting Open Distributed Systems with TLQ PEARC ’20, July 26ś30, 2020, Portland, OR

Distributed Query Collect-and-Query

One Log 0.02s 2.45s

All Logs 10.30s 2.56s

Table 1. Query Roundtrip Time for Lifemapper.

log using grep. Based on the error (and unhandled exception) we would expect that a search for SIGSEGV would turn

up some useful results. From STDOUT to local higher-level logs to the raw debug logs, we have found out why certain

rules failed in Lifemapper. Indeed, we find that certain rules in Lifemapper fail early (producing only partial output)

because multiple threads of the command encountered segmentation faults due to the unhandled exception:

11026 3.629026 --- SIGSEGV (Segmentation fault) ---

11041 0.412124 --- SIGSEGV (Segmentation fault) ---

11044 0.880959 --- SIGSEGV (Segmentation fault) ---

Table 1 briefly summarizes the time taken to perform queries using TLQ and performing collect-and-query. In total,

Lifemapper produced 144MB of log data remotely. These were Work Queue worker logs and traces recorded from

running ltrace on each rule. This demonstrates the scale at which smaller workflows generate log data (roughly 22%

the size of the input dataset). We see that querying only one log (to verify the Java exception resulting in a segfault)

using TLQ outperforms the collect-and-query approach since this second method requires the transfer of all logs before

queries can occur. However, given the scale of the log data, collect-and-query performs better querying all logs once it

has collected them than TLQ does querying each log individually. This is due to the overhead of opening connections

one-by-one rather than transferring all the files en masse and performing queries locally. What these results tell us is

that the most common approach to troubleshooting (i.e. asking questions of one log at a time) provides a performance

benefit compared to the centralized collect-and-query approach. However, TLQ’s performance does not scale as well

as collect-and-query if the user needs to query each log. Conceptually, querying all the logs via TLQ is akin to the

difference between performing a SELECT * query upon a single, local database and performing a SELECT * query upon

multiple, remote databases.

5.1 DistributedQueries at Scale

Lifemapper, while a real-world example of an open distributed system, does not produce a large degree of log output data

(measuring O(100)MB) to demonstrate the performance of TLQ as compared to collect-and-query at larger scales. So,

we model and discuss the effects of distributed querying versus collect-and-query to elaborate upon initial observations

gleaned from TLQ in use. Specifically, we demonstrate the (in)efficiency of data transfers compared to the amount of

relevant data to be queried. We also look at the impact upon system throughput at the collection node when all logs are

streamed to one location.

TLQ keeps logs in place, allowing queries to be performed at each log watch server. State-of-the-art architectures

require collecting logs to a centralized node before queries can be performed. The names and locations of logs in the

centralized approach must be known before creation thus avoiding the log discovery problem at the cost of flexibility.

Figure 4 demonstrates the scale at which benefits of querying logs in place rather than collecting them at a centralized

node become apparent. We can easily model the scalability of distributed queries against the collect-and-query approach

in a waywhich is fair to bothmethods.Wemake the generous assumption that the network transfer speed is equivalent to

9







PEARC ’20, July 26ś30, 2020, Portland, OR Nathaniel Kremer-Herman and Douglas Thain

architectures like it are a necessity. They provide a mechanism for log discovery and log querying when centralization

is not a practical possibility.

6 THREE LESSONS LEARNED

We learned three critical lessons about open distributed system troubleshooting when implementing TLQ. These pertain

to how the querying experience for distributed systems troubleshooting is often only partially satisfied by current

tools, how a component of a distributed system essentially provides a scope and context for computations, and how the

differing structure of logs makes it difficult to connect one component to another explicitly (and introduces the need to

write multiple parsers for logs).

Current tools, as demonstrated with our use of grep, are typically used to investigate one context at a time. This

translates to one component or log in TLQ. However, we have shown that there are relationships between components

in distributed systems. These relationships can be uncovered and investigated with iterative queries from the client.

This would result in chaining tools together, performing successive invocations of the same tool, etc. The current state

of troubleshooting and querying tools which can be added atop TLQ’s software stack does not yet provide this, and we

see this as a potentially information-rich aspect of distributed systems troubleshooting to be explored further.

Our definition of a component also ended up being quite different at the end of this implementation of TLQ than it was

from its outset. In this work, we have presented a component as a service or computation which is an atomic definition

of work in the distributed system. It interacts with its runtime environment (i.e. files, processes, and environment

variables). It is a piece of the whole system which the user submits to a compute resource. However, after implementing

TLQ using this working definition we learned this was not sufficient in describing a component. Really, a component in

a distributed system is a (hopefully) sane environment context in addition to being the unit of work for a user. We figured

this out after running into a problem: names are hard, especially in a set of uncoordinated distributed components. We

cannot trust, even on the same machine, that component 1’s file /a/b/c is equivalent to component 2’s file /a/b/c. We

must treat all the environment used by a component to be contained within the context of that component though that

component may interact with others.

We found a significant pain point to implementing TLQ was the necessity to write a set of parsers able to read in

multiple log formats, extract the uniquely defined records from those logs, and then have the log watch server give

each of those unique records an ID. Addressing the previous lesson of how names are hard, it would be preferable

to have components name themselves in some statistically unique manner, placing this name in its own log(s) front

and center. Whenever its log(s) are read by the log watcher, the server knows exactly who it is dealing with. Further,

when one component communicates with another, it should pass along its name which should in turn be noted in the

recipient’s log (e.g. łI communicated with worker ABC-123, and it sent me the following message: ...ž). This would make

relationships between components concrete rather than implied through data exploration as is done in TLQ. Further, it

allows for a straightforward implementation of tool chaining as discussed previously.

In addition, there would be no need for specialized parsing if logs shared a common, transactional format. This

format, possibly in JSON due to its ubiquity, would capture each recorded state change as a transaction listing as much

information as is relevant all on one line, with keys and values defined for the log watcher. Having a large body of

independent developers adopt a common debug log format like this, however, is wishful thinking currently.

12



Log Discovery for Troubleshooting Open Distributed Systems with TLQ PEARC ’20, July 26ś30, 2020, Portland, OR

7 RELATEDWORK

There are perennial problems in distributed computing which make troubleshooting distributed systems more difficult

than troubleshooting their serial counterparts. There is no common time scale between compute nodes, so many

problems arise when trying to create a single history of events across a distributed system [15]. On a related note, it

is also difficult to produce a snapshot of the state of a distributed system [5]. There are many other complications to

troubleshooting distributed systems namely heterogeneity, concurrency, distributed state, and partial failures covered

in [3]. Some of these problems have been addressed in earlier works. While many focused on low-level debugging

[16, 18] of specific bugs in applications, TLQ focuses on higher-level environment interactions of a system which is

more akin to [2] while leaving the more fine-grained debugging to the user’s choice of tools.

There exist many tools to troubleshoot distributed applications. We note only a few here to capture the breadth of

the field. The Pegasus workflow management system [7] has its own native troubleshooting tools. It has a log analyzer

and web tool which can provide aggregated metrics. It can also pull up specific debug logs for the user on demand.

TLQ builds upon this kind of approach, allowing a user to query the total collection of known logs such that they do

not have to investigate debug logs one-by-one unless as a last resort. There are also network troubleshooting tools

such as [9] which proposes the tracing of packet histories much like we provide the set of environment interactions

for each component. There exist plenty of recent tools which perform low-level debugging of distributed systems and

applications [8, 11, 12]. Another tool provides troubleshooting of resource provisioning issues [13] using a dashboard.

Finally, another tool using code injection allows for the creation of a minimum set of events needed to recreate a known

state in a distributed system [19]. Each of these approaches give users different methods of diagnosing failures in their

systems, however they are not designed for open distributed systems. Invoking these tools as distributed queries with

TLQ allows their benefits to be reaped in open systems.

In addition to various monitoring dashboards and interactive debugging tools, there exists a large body of log

analyzers as well. Anomaly detection [10] is important for high-volume logging. Other works provide diagnosis

capability focusing on resource usage logs [6] and network logs [21]. TLQ adds in an emphasis on environment

interactions which can bolster the analysis of these two approaches. A particularly relevant tool is ShiViz [1, 4] which

provides vector timestamps and space-time diagrams about events which occur in a distributed application. TLQ’s JSON

metalogs provide context for how components may be related or have related environments. Invoking log analyzers

like ShiViz atop TLQ can make these relationships more concrete in terms of when relationships are formed. Most

similar to our approach in terms of architecture and capability is the Elastic Stack (formerly ELK stack) consisting of the

Elasticsearch, Logstash, and Kibana tools. Their use has been shown in [14, 20]. TLQ, while having a similarly modular

capability of adding more tools to its software stack, differs in that a distributed query does not require continuous

streaming of logs to a centralized rendezvous point as in Logstash. The query moves to the data rather than the other

way around.

8 CONCLUSIONS

We introduced TLQ, an architecture which enables log discovery for open distributed systems. Because of the complexities

of open distributed systems, it is not feasible to establish the name and location of all the debug output of that system a

priori. This information is determined at runtime. Instead, each debug log must be discovered and its existence must be

advertised to users of the system. This is made possible with TLQ. By making log locations transparent to a user, they

can analyze their logs with the troubleshooting tools of their choice which are executed as queries in TLQ’s client. We

13



PEARC ’20, July 26ś30, 2020, Portland, OR Nathaniel Kremer-Herman and Douglas Thain

demonstrated the necessity of an architecture like TLQ through a notional example, a real-world scientific workflow

in action, and two models which demonstrate observations about open distributed systems which makes centralized

approaches to log collection and discovery infeasible at certain scales. We also note three key lessons learned about

troubleshooting open distributed systems which became apparent during the design and implementation of TLQ. In the

future, we plan to provide further functionality to TLQ. Namely, we seek to implement an effective JSON querying

language which will enable a user to quickly ask questions of the JSON metalogs, add interactive visualizations to a

web-based TLQ client, and to add the concept of log custody to TLQ (where the TLQ log watchers take active ownership

of the debug logs produced, thus keeping them alive after ephemeral components finish execution).

9 ACKNOWLEDGMENTS AND AVAILABILITY

This work was supported by National Science Foundation grant ACI-1642409. The source code is distributed under the

GNU General Public License. The following URLs provide the source code and examples used in this work:

github.com/cooperative-computing-lab/tlq/tree/pearc

github.com/cooperative-computing-lab/makeflow-examples

REFERENCES

[1] Jenny Abrahamson, Ivan Beschastnikh, Yuriy Brun, and Michael D. Ernst. 2014. Shedding Light on Distributed System Executions. In Companion

Proceedings of the 36th International Conference on Software Engineering (Hyderabad, India) (ICSE Companion 2014). ACM, New York, NY, USA,

598ś599. https://doi.org/10.1145/2591062.2591134

[2] Peter C Bates and Jack C Wileden. 1983. High-level debugging of distributed systems: The behavioral abstraction approach. Journal of Systems and

Software 3, 4 (1983), 255ś264.

[3] Ivan Beschastnikh, Patty Wang, Yuriy Brun, and Michael D Ernst. 2016. Debugging distributed systems. Queue 14, 2 (2016), 50.

[4] Ivan Beschastnikh, Patty Wang, Yuriy Brun, and Michael D. Ernst. 2016. Debugging Distributed Systems. Commun. ACM 59, 8 (July 2016), 32ś37.

https://doi.org/10.1145/2909480

[5] K. Mani Chandy and Leslie Lamport. 1985. Distributed Snapshots: Determining Global States of Distributed Systems. ACM Trans. Comput. Syst. 3, 1

(Feb. 1985), 63ś75. https://doi.org/10.1145/214451.214456

[6] Edward Chuah, Arshad Jhumka, Samantha Alt, Theo Damoulas, Nentawe Gurumdimma, Marie-Christine Sawley, William L Barth, Tommy Minyard,

and James C Browne. 2017. Enabling Dependability-Driven Resource Use and Message Log-Analysis for Cluster System Diagnosis. In 2017 IEEE 24th

International Conference on High Performance Computing (HiPC). IEEE, 317ś327.

[7] Ewa Deelman, Karan Vahi, Gideon Juve, Mats Rynge, Scott Callaghan, Philip J Maechling, Rajiv Mayani, Weiwei Chen, Rafael Ferreira da Silva,

Miron Livny, and Kent Wenger. 2015. Pegasus: a Workflow Management System for Science Automation. Future Generation Computer Systems 46

(2015), 17ś35. https://doi.org/10.1016/j.future.2014.10.008 Funding Acknowledgements: NSF ACI SDCI 0722019, NSF ACI SI2-SSI 1148515 and NSF

OCI-1053575.

[8] Nikoli Dryden. 2014. Pgdb: A debugger for mpi applications. In Proceedings of the 2014 Annual Conference on Extreme Science and Engineering

Discovery Environment. ACM, 44.

[9] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, David Mazières, and Nick McKeown. 2014. I Know What Your Packet Did Last Hop:

Using Packet Histories to Troubleshoot Networks.. In NSDI, Vol. 14. 71ś85.

[10] Shilin He, Jieming Zhu, Pinjia He, and Michael R Lyu. 2016. Experience report: system log analysis for anomaly detection. In Software Reliability

Engineering (ISSRE), 2016 IEEE 27th International Symposium on. IEEE, 207ś218.

[11] Stephen T Jones, Andrea C Arpaci-Dusseau, Remzi H Arpaci-Dusseau, et al. 2006. Antfarm: Tracking Processes in a Virtual Machine Environment..

In USENIX Annual Technical Conference, General Track. 1ś14.

[12] Mohammad Maifi Hasan Khan, Hieu Khac Le, Hossein Ahmadi, Tarek F Abdelzaher, and Jiawei Han. 2008. Dustminer: troubleshooting interactive

complexity bugs in sensor networks. In Proceedings of the 6th ACM conference on Embedded network sensor systems. ACM, 99ś112.

[13] Nathaniel Kremer-Herman, Benjamin Tovar, and Douglas Thain. 2018. A Lightweight Model for Right-sizing Master-worker Applications. In

Proceedings of the International Conference for High Performance Computing, Networking, Storage, and Analysis (Dallas, Texas) (SC ’18). IEEE Press,

Piscataway, NJ, USA, Article 39, 13 pages. http://dl.acm.org/citation.cfm?id=3291656.3291708

[14] Abdelkader Lahmadi and Frédéric Beck. 2015. Powering Monitoring Analytics with ELK stack. https://hal.inria.fr/hal-01212015

[15] Leslie Lamport. 1978. Time, Clocks, and the Ordering of Events in a Distributed System. Commun. ACM 21, 7 (July 1978), 558ś565. https:

//doi.org/10.1145/359545.359563

14



Log Discovery for Troubleshooting Open Distributed Systems with TLQ PEARC ’20, July 26ś30, 2020, Portland, OR

[16] Johan Scholten and PG Jansen. 1990. Distributed debugging and Tumult. In Distributed Computing Systems, 1990. Proceedings., Second IEEE Workshop

on Future Trends of. IEEE, 172ś176.

[17] Tim Shaffer, Nathaniel Kremer-Herman, and Douglas Thain. 2019. Flexible Partitioning of Scientific Workflows Using the JX Workflow Language.

In Proceedings of the Practice and Experience in Advanced Research Computing on Rise of the Machines (Learning) (Chicago, IL, USA) (PEARC ’19).

Association for Computing Machinery, New York, NY, USA, Article 103, 8 pages. https://doi.org/10.1145/3332186.3338100

[18] Steve Sistare, Don Allen, Rich Bowker, Karen Jourdenais, Josh Simons, and Rich Title. 1994. A scalable debugger for massively parallel message-passing

programs. In Proceedings of IEEE Scalable High Performance Computing Conference. IEEE, 825ś832.

[19] Michael Whittaker, Cristina Teodoropol, Peter Alvaro, and Joseph M Hellerstein. 2018. Debugging Distributed Systems with Why-Across-Time

Provenance. In Proceedings of the ACM Symposium on Cloud Computing. ACM, 333ś346.

[20] K. Yamnual, P. Phunchongharn, and T. Achalakul. 2017. Failure detection through monitoring of the scientific distributed system. In 2017 International

Conference on Applied System Innovation (ICASI). 568ś571. https://doi.org/10.1109/ICASI.2017.7988485

[21] Yanyan Zhuang, Eleni Gessiou, Steven Portzer, Fraida Fund, Monzur Muhammad, Ivan Beschastnikh, and Justin Cappos. 2014. NetCheck: Network

Diagnoses from Blackbox Traces.. In NSDI. 115ś128.

15


	Abstract
	1 Introduction
	2 Challenges of Distributed Troubleshooting
	3 Troubleshooting as Distributed Querying
	3.1 Querying Logs in Place Across Domains

	4 Implementation
	5 Evaluation
	5.1 Distributed Queries at Scale

	6 Three Lessons Learned
	7 Related Work
	8 Conclusions
	9 Acknowledgments and Availability
	References

