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Abstract—High-throughput computing (HTC) workloads seek
to complete as many jobs as possible over a long period of
time. Such workloads require efficient execution of many parallel
jobs and can occupy a large number of resources for a long
time. As a result, full utilization is the normal state of an HTC
facility. The widespread use of container orchestrators eases
the deployment of HTC frameworks across different platforms,
which also provides an opportunity to scale up HTC workloads
with almost infinite resources on the public cloud. However, the
autoscaling mechanisms of container orchestrators are primarily
designed to support latency-sensitive microservices, and result in
unexpected behavior when presented with HTC workloads. In
this paper, we design a feedback autoscaler, High Throughput
Autoscaler (HTA), that leverages the unique characteristics of
the HTC workload to autoscales the resource pools used by HTC
workloads on container orchestrators. HTA takes into account
a reference input, the real-time status of the jobs’ queue, as
well as two feedback inputs, resource consumption of jobs, and
the resource initialization time of the container orchestrator. We
implement HTA using the Makeflow workload manager, Work
Queue job scheduler, and the Kubernetes cluster manager. We
evaluate its performance on both CPU-bound and IO-bound
workloads. The evaluation results show that, by using HTA, we
improve resource utilization by 5.6× with a slight increase in
execution time (about 15%) for a CPU-bound workload, and
shorten the workload execution time by up to 3.65× for an IO-
bound workload.

Index Terms—Kubernetes, Autoscaling, High-throughput
Workloads

I. INTRODUCTION

High-throughput computing (HTC) workloads consisting of

large numbers of parallel jobs often require a tremendous

amount of computing resources for a long time. As a result,

HTC facilities that have to execute many HTC workloads

ordinarily operate at full utilization of limited resources. On

the other hand, public cloud providers, like Amazon AWS [1]

and Google GCP [2], render rapidly evolving infrastructure

and almost infinite computing resources. Therefore, migrating

HTC workloads to the public cloud may be a solution to the

scarcity of local resources.

Existing solutions for running HTC workloads provided

by the major cloud providers [3]–[5] include four steps:

i) determining compute, network and storage requirements

for workloads; ii) preserving computing instances on the

cloud; iii) building virtual clusters atop of these virtual nodes;

iv) setting up the HTC frameworks on the cluster and execut-

ing workloads. In this process, container orchestrators, like

Kubernetes [6], have been widely adopted to build elastic

virtual clusters on clouds.

However, container orchestrators are designed for latency-

sensitive workloads, which consist of large fleets of services

deployed to meet the varying loads imposed by external users,

such as web servers, video conferencing, and online games.

The performance objective of these workloads is to minimize

the response time observed by external users interacting with

the system. In contrast, HTC workloads consist of large

numbers of discrete parallel jobs that start and end, such as

genome sequence alignment, molecular dynamics simulation,

and parameter space exploration. The performance objective of

HTC workloads is to maximize the amount of work completed

over a long period of time by using resources efficiently. The

optimization goals of these two workload categories are so

distinct that resource optimizations that apply to one do not

work with the other.

One of the public cloud platform’s critical characteristics is

the pay-as-you-go pricing model, which requires the platform

to autoscale a pool of resources to meet the needs of a given

workload. However, as these systems are generally designed

with latency-sensitive services in mind, regardless of what

virtualization technologies (i.e., virtual machine or container)

they use, most of the autoscaling mechanisms [7]–[9] they

adopted are based on the application response time and re-

source metrics set by users. When any metric is too high/low,

the autoscaler increases/decrease the resource pool, which

has the effect of adjusting the metric to the desired degree.

However, such strategies do not work for HTC workloads

because high resource utilization is the ordinary case, and

increasing the allocated pool only allows more jobs to run.

An open challenge of running HTC workloads on container

orchestrators is how to autoscale resource pools accurately.

Figure 1 shows the three essential components of an HTC

system: a workflow manager, a job scheduler, and a cluster

manager. A workflow manager is a user-facing tool that

describes the overall structure of a workload, handles the job

and data dependencies between components, and dispatches

ready jobs to the underlying system. Examples include Ke-

pler [10], Pegasus [11], and Galaxy [12]. A job scheduler

handles the problem of assigning ready jobs to execution

sites by prioritizing work, matching available resources, and

handling runtime failures. Examples include Spark [13], Work

Queue [14], Sparrow [15], or Spring Batch [16]. A cluster





C. Kubernetes

Kubernetes [6] is a container orchestration tool developed

by Google, which allows the developer to manage distributed

applications hosted in containers. Kubernetes allows users to

describe resources using different objects. In this paper, we

use three of them, i) a Pod, which is the primary deployment

unit and a disposable object which might fail or restart; ii) a

StatefulSet, which contains a set of pods and each of them

has a unique and sticky identity; iii) a Service, which defines

the network protocol for accessing the micro-services hosted

on a set of pods.

For deploying Work Queue workers on Kubernetes, several

configurations exist depending on which deployment unit we

choose to manage worker containers. We anticipate that if the

cluster needs to be shrunk, some workers will be removed. If

we remove workers by deleting the deployment unit wrapping

them, worker containers and jobs running on them will be

interrupted. To avoid interrupting worker containers, rather

than using advanced deployment units to control the life-cycle

of worker containers, we align each worker container with an

independent pod and manage the life-cycle of each worker

container directly through the Work Queue.

III. PROBLEMS

We divide the autoscaling problem into two subproblems:

what is the size of a worker-pod (section III-A) and how many

total worker-pods are required (section III-B)?

A. Size of a worker-pod

HTC workloads are typically composed of loosely coupled

jobs that can be executed concurrently. However, without

knowing the resource requirements of each job, assigning

multiple resource-intensive jobs to a single worker-pod and

running them simultaneously may lead to resource starvation.

To avoid starvation, if the resource requirements (cores, mem-

ory disk) of jobs are uncertain, the Work Queue framework

will conservatively assign only one job to a worker at a time.

(We will relax this assumption in the next section.) This

setting makes the worker size critical to the performance of

the individual job. Therefore, when setting up Work Queue on

Kubernetes, the size of the worker-pod must be appropriately

specified.

Assuming that the size of the resource pool is fixed, then

a fine-grained configuration that has many small workers

will be able to run more jobs concurrently, while a coarse-

grained configuration with few, large workers will have a

lower degree of parallelism. However, as the master’s egress

network bandwidth is fixed, the fine-grained configuration

has to share limited bandwidth between more workers with

more data movements. This imposes extra network overheads

and might lead to longer workload execution time. Therefore,

which configuration is better depends on whether the target

workload is data-intensive or compute-intensive. However, this

information is difficult to obtain without running the workload

several times.

B. Number of worker-pods

Besides the worker size, another parameter that needs to be

determined is the number of worker-pods. Resource demands

of different workloads vary dramatically. Even for a single

workload, resource usage can diverge significantly during the

runtime. Therefore, the number of worker-pods needs to be

changed frequently.

An existing option of adjusting the number of worker-

pods is using the Horizontal Pod Autoscaler (HPA) of

Kubernetes [22]. HPA adjusts the number of pods based on

the ratio between a metric’s desired value and its current

value. For example, we can get the desired amount of CPU

by equation (1), with CurrentCPU and CurrentCPUUse

reported by Kubernetes and the DesiredCPUUse set by

users.

DesiredCPU = CurrentCPU ×

CurrentCPUUse

DesiredCPUUse
(1)

However, the nature of HPA only allows it to make delayed

responses to the varying resources load. Although this mecha-

nism works well with latency-sensitive micro-services, it does

not work with HTC workloads, resulting in three possible

problems: i) the cluster could scale up too slowly and miss the

peak resource demand. ii) resources could be over-provisioned

when they are no longer needed. iii) workloads might never

scale up to the desired degree.

We show these three results by running the BLAST bioin-

formatics workload [23] on a GKE1 cluster that can be scaled

up to 15 nodes with three different desired CPU usage, 10%,

50% and 99% (hereinafter referred as Config-10, Config-50,

and Config-99). The BLAST workload we used comprises

of 200 parallel jobs with each of them having the same

size of input data. We assume that the resource requirements

of individual jobs are known in advance, and consider four

dimensions: i) the number of worker-pods connected, ii) the

number of idle worker pods, iii) the desired number of worker-

pods calculated by HPA, and iv) the number of worker-pods

required in an ideal scenario. As shown in figure 2, Config-

10, and Config-50 have a similar workload execution time

(1294 versus 1304 seconds), close CPU usage (68.3% versus

65.2%), and the same maximum cluster size, i.e., 15 nodes.

The primary difference is that Config-10 takes longer to scale

up than Config-50. This is due to the larger disparity between

current and target CPU load.

In contrast, Config-99 never scales up and results in four

times longer workload execution time (4682 seconds) than the

previous two configurations. In summary, even though Config-

10 and Config-50 finally scale up to the desired degree, they

are still far from optimal, which is to have the workload

complete in 240 seconds. Therefore, the autoscaler reacting to

system indicators does not always work with HTC workloads.
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164 compared to 34), an optimal autoscaler should resize the

cluster follow the same pattern, i.e., a decrease in resource

demand in the middle of the lifecycle, and a bump up once

the workload entering into the third stage.

However, as shown in figure 10b, if HPA is applied, cluster

size will gradually increase and stay at the capacity limit (i.e.,

20 nodes, 60 cores) until workload complete. This is because

to avoid pods from thrashing, there is a stabilization interval

between two downscale operations, and the default value is

5 minutes. Even though we can increase the frequency of

downscale by tuning this value, different workloads have

various resource changing rates, without running the same

workload multiple times, it is challenging to pick the right

value.

In contrast, HTA autoscale the cluster as expect. To take As

shown in table 10c, even though we see a slight increase in

workload execution time (12.5% compare to HPA-20%, 16.6%

compare to HPA-50%), HTA reduces the resource waste

dramatically (5.6× compare to HPA-20%, 4.30× compare to

HPA-50%).

In general, when resizing resource pool for workload with

fluctuant resource demands, HTA can make a more accurate

autoscaling plan compare to HPA as HTA considering infor-

mation from every component of the software stack.

B. I/O Intensive Workload

While CPU load is often a good indicator of system load,

applications’ performance might be bound by other resources.

Choosing a wrong indicator might cause HPA scaling cluster

to an inappropriate degree. To reveal how will the autoscaler

behave for workload bounded by resources other than CPU,

we create a synthetic workload that contains 200 I/O intensive

parallel tasks. Each task of them runs dd commands to

read/write data from the disk device. We consider the same

dimensions as the previous benchmark VI-A.

As shown in sub-figures (i) and (ii) of figure 11b, while tasks

are queuing up on Work Queue, the cluster size maintain in

1. The reason is that each task is busy at reading/writing data,

and the CPU load is rarely over 20%. In contrast, HTA can

scale up the cluster to the desired size as it considering CPU

load as well as usages of other resources (e.g., max number of

processor required by task) when establishing an autoscaling

plan. As a result, by using HTA, we successfully scale up the

cluster and shorten workload execution time by around 3.66×.

In terms of resource waste, even though configuration using

HPA does not have resource waste, the significant resource

shortage and small cluster scale result in unacceptable through-

put and execution time. In contrast, when running with HTA,

even though there is a small amount of resource waste at the

beginning as Work Queue master assigning tasks to workers,

once the cluster upscaled to the desired degree, we see no

resource waste during the entire lifecycle of workload.

In general, using HPA require users to know the workload

well and pick the correct resource indicator. Moreover, in order

to scale the cluster to the desired degree, users need to fine-

tune multiple system options. However, it is challenging for

regular users to choose appropriate parameters without running

workloads multiple times. By contrast, HTA estimates the

resource shortage based on the real-time status of different

system components, and dynamically adjust the stabilization

cycle by considering the latest resource initialization time.

Therefore, by using HTA, we can resize cluster on-demand

without user intervention.

VII. RELATED WORK

A. Autoscaling on the cloud

Autoscaling on the cloud is not a new topic, regardless

of the underlying virtualization technology, researchers in

previous studies have proposed various efficient autoscaling

mechanisms that can be divided into three categories.

Rule-based autoscaling mechanisms [26], [27] usually re-

quire users to specify a set of fixed thresholds (e.g., CPU,

I/O, bandwidth), and resize the cluster once these thresholds

are reached. These mechanisms are generic, work to different

workloads, but they only consider infrastructure-level met-

rics and, hence, do not work with HTC workloads that are

not resource-bound. HTA takes into account infrastructure-

level (resource initialization time), framework-level (job queue

length) as well as application-level metrics (resource require-

ment and execution time of jobs) to resize the cluster more

accurately.

Learning-model based approaches apply linear regres-

sion [28], reinforcement learning [29]–[31] or other machine

learning models [32] to predict future resource demands and

resize the cluster in advance. However, these approaches

usually require a long time to train the models before they can

accurately predict the resource demands, which might result in

the poor quality of service (QoS) during the early stage of the

learning period. In contrast, by leveraging the fact that HTC

workloads usually comprise of many small parallel jobs with

similar resource requirements, HTA can accurately estimate

the resource requirement of workloads at the early stage.

Control-theory based mechanisms [33]–[35] use adaptive

feedback controllers to scale the resource pool by monitoring

not only the system load but also taking application-specific

metrics (e.g., requests arrival rate) into account. Comparing

to them, HTA considers the resource initialization time of the

cluster manager and estimates the resource demands on the job

level, which allows HTA to predict future resource demands

more accurately and perform proper autoscaling actions more

timely.

B. Autoscaling batch workloads with Kubernetes

With the rise of Kubernetes as the new standard of container

orchestration, there emerged many systems that attempt to

autoscale batch workloads on Kubernetes.

KFServing [36] is designed for serving machine learn-

ing (ML) frameworks, like Tensorflow [37] and PyTorch [38],

on Knative platform [39]. It leverages Knative’s request-based

autoscaling mechanism [40], which autoscales the cluster

based on how many concurrent requests can be handled by

a container. This mechanism works well with ML workloads
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