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Abstract. Engagement plays a critical role in visitor learning in museums. 
Devising computational models of visitor engagement shows significant promise 
for enabling adaptive support to enhance visitors’ learning experiences and for 
providing analytic tools for museum educators. A salient feature of science 
museums is their capacity to attract diverse visitor populations that range broadly 
in age, interest, prior knowledge, and socio-cultural background, which can 
significantly affect how visitors interact with museum exhibits. In this paper, we 
introduce a Bayesian hierarchical modeling framework for predicting learner 
engagement with FUTURE WORLDS, a tabletop science exhibit for environmental 
sustainability. We utilize multi-channel data (e.g., eye tracking, facial expression, 
posture, interaction logs) captured from visitor interactions with a fully-
instrumented version of FUTURE WORLDS to model visitor dwell time with the 
exhibit in a science museum. We demonstrate that the proposed Bayesian 
hierarchical modeling approach outperforms competitive baseline techniques. 
These findings point toward significant opportunities for enriching our 
understanding of visitor engagement in science museums with multimodal 
learning analytics. 

Keywords: Museum-Based Learning, Visitor Modeling, Multimodal Learning 
Analytics 

1 Introduction 

Engagement is a critical component of learning in informal environments such as 
museums [1–2]. Visitor engagement shapes how learners interact with museum 
exhibits, navigate the exhibit space, and form attitudes, interests, and understanding of 
scientific ideas and practices. Recent developments in multimodal learning analytics 
have significant potential to enhance our understanding of visitor engagement with 
interactive museum exhibits [3–4]. Multimodal learning analytics techniques can be 
utilized to create computational models for uncovering patterns in meaningful visitor 
engagement through the triangulation of multimodal data streams captured by physical 
hardware sensors (e.g., webcams, eye trackers, motion sensors). Multimodal learning 
analytics has shown significant promise in laboratory and classroom environments [5–
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6], but there has been comparatively little work investigating multimodal learning 
analytics in informal contexts, such as science museums. 

Devising computational models of visitor engagement with interactive science 
museum exhibits poses significant challenges. Visitor interactions with museum 
exhibits are brief; dwell times with highly engaging exhibits often last only 3–4 minutes 
[7–9]. Furthermore, museums attract a broad range of visitors of varying age, 
background, knowledge, and learning objectives. Different types of museum visitors 
show distinctive patterns of engagement, including how they interact with specific 
exhibits, as well as how they move about the museum floor [10]. To address these 
challenges, it is important to utilize computational techniques that make efficient use 
of available data and account for inherent differences in how visitors engage with 
interactive exhibits in museums. 

In this paper, we present a multimodal learning analytics framework for 
investigating visitor engagement in science museums that is based upon Bayesian 
hierarchical models. Bayesian hierarchical models explicitly account for differences in 
patterns of visitor engagement between separate visitor groups. We focus on visitor 
interactions with a game-based interactive museum exhibit about environmental 
sustainability, FUTURE WORLDS. By instrumenting FUTURE WORLDS with multiple 
hardware sensors, it is possible to capture fine-grained data on visitors’ facial 
expression, eye gaze, posture, and learning interactions to model key components of 
visitor engagement in science museums. We investigate the relationship between 
multimodal interactions and visitor engagement by analyzing posterior multimodal 
parameter distributions of Bayesian hierarchical models that model visitor dwell time 
with the FUTURE WORLDS interactive exhibit. Results show that Bayesian hierarchical 
linear models more accurately model visitor dwell time than baseline techniques that 
do not incorporate hierarchical architectures and yield valuable insights into which 
features are most predictive for modeling visitor engagement. 

2 Related Work 

Engagement is a critical mechanism for fostering meaningful learning in museums [7]. 
Much work on modeling learner engagement has focused on formal educational 
settings, such as school classrooms [11]. In a museum context, low levels of visitor 
engagement may appear as shallow interactions with an interactive exhibit, or no 
interaction at all, whereas high-level engagement can manifest as extended dwell times 
and productive exploration behaviors. We seek to utilize rich multi-channel data 
streams to identify patterns of meaningful visitor engagement as defined through visitor 
dwell time with a game-based interactive exhibit. Dwell time has been used previously 
to examine visitor engagement with museum exhibits [12–13].  

Multimodal learning analytics techniques show significant promise for capturing 
patterns of visitor engagement in museums. By taking advantage of information across 
concurrent sensor-based data channels, multimodal learning analytic techniques have 
been found to yield improved models in terms of accuracy and robustness compared to 
unimodal techniques [14]. Although these applications have shown significant promise, 
the preponderance of work on multimodal learning analytics has been conducted in 
laboratory and classroom settings [15–16]. Using multimodal learning analytics to 
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investigate visitor engagement in informal environments is an important next step for 
the field. 

Traditionally, computational models of learner engagement assume relatively high 
levels of homogeneity across learners in the training data, which is a natural assumption 
for classroom settings where all learners are approximately the same age and have 
similar levels of prior knowledge. However, learners express engagement in different 
ways depending on a range of factors such as prior knowledge and socio-cultural 
background, suggesting that group-based differences should be considered when 
modeling engagement [17]. There are limited examples of research on computational 
models of engagement that account for these differences. Sawyer et al. used Bayesian 
hierarchical models to investigate models of learner engagement with a game-based 
learning environment in both classroom and laboratory settings [18]. We build on this 
work by adopting a Bayesian hierarchical modeling framework for investigating group-
level differences in visitor engagement in a museum context. 

3 FUTURE WORLDS Testbed Exhibit 

To conduct data-rich investigations of visitor engagement in science museums, we 
utilize a game-based museum exhibit called FUTURE WORLDS. Developed with the 
Unity game engine, FUTURE WORLDS integrates game-based learning technologies into 
an interactive surface display to enable hands-on explorations of environmental 
sustainability [19]. With FUTURE WORLDS, visitors solve sustainability problems by 
investigating the impacts of alternate environmental decisions on a 3D simulated 
environment (Fig. 1). Learners interact with the environment through tapping and 
swiping the display to test hypotheses about how different environmental decisions 
impact the environment’s sustainability and future health. Visitors read about different 
regions of the virtual environment and observe how they are impacted by the learner’s 
actions. The effects of visitors’ decisions are realized in real-time within the simulation.  

FUTURE WORLDS’ focus on environmental sustainability targets three major 
themes—water, energy (both renewable and non-renewable), and food—and it 
facilitates exploration of the interrelatedness of these themes. Initial pilot testing with 
both school and summer-camp groups in a science museum in the southeastern United 

Fig. 1. FUTURE WORLDS museum exhibit capturing multimodal visitor data. 
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States has shown that learner interactions with FUTURE WORLDS enhance sustainability 
content knowledge and yield promising levels of visitor engagement as indicated by 
observations of learner behavior [19]. 

4 Multimodal Data Collection 

We leverage a suite of multimodal sensors (e.g., video camera, motion tracking sensor, 
eye tracker, game logs) to capture visitors’ facial expression, body movement, eye gaze, 
and interaction trace data, respectively, to serve as complementary data sources for 
inducing computational models of visitor engagement with FUTURE WORLDS. In this 
work, we focus on modeling visitor dwell time, which is a manifestation of visitors’ 
behavioral engagement, as the ground-truth label of visitor engagement. 

4.1 Study Participants and Procedure 

We conducted a series of three data collections with museum visitors engaging with the 
FUTURE WORLDS exhibit at the North Carolina Museum of Natural Sciences in Raleigh, 
North Carolina. The three groups of visitors were recruited from regional elementary 
schools from different socio-cultural backgrounds (e.g., race/ethnicity, urban vs. rural, 
language diversity). Each of the schools served populations where 70% of the students 
are considered economically disadvantaged. In aggregate, participants included 116 
visitors between 10–11 years of age. Each visitor completed a series of questionnaires 
before and after interacting with FUTURE WORLDS, including a demographics survey, 
science interest scale, sustainability content knowledge assessment, and engagement 
survey. Fourteen of the participants did not complete the surveys, which left 47 female 
and 55 male participants. Approximately 21.6% of the visitors were African American, 
8% Asian, 3% Caucasian, 32.3% Latino, and 11.8% American Indian. Visitors 
interacted with FUTURE WORLDS individually until they were finished or up to a 
maximum of approximately 10 minutes (M = 3.97, SD = 2.24). The resulting dataset 
consisted of complete multimodal data for 86 visitors, following removal of participants 
with missing data from one or more modalities. 

4.2 Multimodal Data Channels 

The study utilized a suite of multimodal sensors to gather data on visitor interactions 
with FUTURE WORLDS. These data streams included facial expression, eye gaze, 
posture, gesture, and interaction trace logs. 
 
Facial expression. Facial movement data has been widely used to devise computational 
models for automatically recognizing learning-centered affective states [15]. In our 
work, we capture facial expression data using video recordings from an externally 
mounted Logitech C920 USB webcam. The resulting data is analyzed using OpenFace, 
an open-source facial behavior analysis toolkit that provides automated facial landmark 
detection and action unit (AU) recognition for 17 distinct AUs [20]. 
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Eye gaze. A growing body of empirical work has demonstrated the importance of eye 
gaze for modeling learner interactions [21]. To track visitor eye gaze, we utilize a 
mounted eye-tracking sensor which uses near-infrared light to track eye movements 
and gaze points during visitor interactions with the interactive exhibit. We 
automatically identify in-game targets of visitor attention in FUTURE WORLDS using a 
gaze target-labeling module that processes eye tracking data using ray casting 
techniques. 
Body Movement. Recent years have seen growing interest in research on affective 
modeling using human body movement data [22–23]. To capture data on visitor posture 
and gesture, we utilize Microsoft Kinect for Windows v2, a dedicated motion sensing 
camera that provides skeletal tracking for 26 distinct vertices, in addition to raw pixel 
data for depth and color camera sensors [24]. The Kinect sensor was mounted on a 
tripod five feet away from the exhibit and allowed for tracking of body movement. 
Interaction Trace Logs. FUTURE WORLDS provides support for detailed logs of learner 
interactions with the digital interactive exhibit software. The log data consists of 
timestamped records (at the millisecond level) of visitor taps and multitouch gestures, 
as well as learning events and simulation states, that arise during visitor experiences. 

4.3 Multimodal Features 

We extracted several features from each modality to serve as predictors of visitor dwell 
time. We selected a relatively small number of features for each modality due to the 
limited size of our dataset. For visitor facial expression, we used AU data captured by 
OpenFace. We calculated the proportional duration that each AU was exhibited 
throughout the visitor’s interaction with FUTURE WORLDS. Each visitor’s facial 
expression data was standardized and the duration of an AU was recorded if its tracked 
intensity exceeded one standard deviation above the mean intensity for that AU. Each 
duration was only recorded if it was present for longer than 0.5 seconds to avoid noise 
associated with facial micro expressions [25]. We selected 5 AU values: AU2 (Outer 
Brow Raiser), AU7 (Lid Tightener), AU10 (Upper Lip Raiser), AU12 (Lip Corner 
Puller), and AU14 (Dimpler). These AUs were selected based upon related work on 
modeling learner engagement with facial expression data [25–27]. We adopted a similar 
approach to previous work using facial expression for student modeling [25] by scaling 
the durations of AU data by the total time spent engaging with FUTURE WORLDS. 

To capture patterns in visitor attention with FUTURE WORLDS, we used the Tobii 
EyeX eye tracker to pinpoint areas of interest (AOIs) on the interactive exhibit’s 
display. Visitor fixations on in-game objects exceeding 210 milliseconds in duration 
were automatically tracked [28]. We aggregated the gaze fixation data to compute the 
proportion of time visitors spent looking at five categories of in-game objects: virtual 
locations (AOI-Location), environmental sustainability imagery (AOI-Imagery), 
environmental sustainability labels (AOI-Labels), environmental sustainability 
selection menus (AOI-Menu), and user interface elements (AOI-Interface). The AOI-
Location category included fixations on any of the nine discrete, hexagon-shaped 
regions of the virtual environment in FUTURE WORLDS. The AOI-Imagery category 
included high-resolution images associated with the exhibit’s environmental 
sustainability content. The AOI-Labels category encompassed all textual labels about 
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environmental sustainability topics within FUTURE WORLDS (e.g., text descriptions 
about renewable vs. non-renewable energy, sustainable farming practices). The AOI-
Menu category referred to a pop-up menu that appeared when a visitor tapped on a 
particular location of the virtual environment to learn more about that region or make a 
change to the region’s environmental practices (e.g., add solar panels, introduce organic 
farming). The AOI-Interface category contained user interface elements for navigating 
the exhibit software (e.g., restart button). Leveraging an approach similar to related 
work on gaze-enhanced student modeling [29], we calculated the total time spent 
fixated on each category of in-game element and scaled by the total time spent engaging 
with FUTURE WORLDS. 

To extract features on visitor body movement, we focused on four skeletal vertices 
tracked by the Microsoft Kinect motion sensor: Head, SpineShoulder (upper-back), 
SpineMid (mid-back), and Neck. Selection of these vertices was informed by prior work 
on multimodal affect detection with motion-tracking sensor data [30]. For each skeletal 
vertex, we calculated the sum variance of its distance from the Kinect sensor across the 
visitor’s entire interaction with FUTURE WORLDS. Additionally, we utilized the four 
vertices to calculate the total posture change for each visitor based upon the sum 
movement of all vertices within the Kinect’s coordinate tracking space. 

For interaction log features, we calculated the total number of times the visitor 
tapped on the FUTURE WORLDS exhibit’s touch display (Total Taps) and the total 
number of times the visitor tapped to examine environmental sustainability imagery 
and labels (Total Info Taps). The two interaction log features were computed by scaling 
the above measures by the total dwell time for that visitor (i.e., taps per second), which 
measured how actively participants interacted with FUTURE WORLDS and its embedded 
environmental sustainability content. 

In sum, we extracted five facial expression features, five eye gaze features, five body 
movement features, and two interaction log features for a total of 17 multimodal 
features for this analysis. 

5 Bayesian Linear Models 

To predict visitor dwell time with the FUTURE WORLDS exhibit, we induced linear 
models using Bayesian Lasso regression. Lasso regression is a regression analysis 
method that privileges simpler models by forcing a subset of model coefficients to be 
set to zero, which serves as a form of feature selection and regularization [31]. We 
utilized a Bayesian framework to incorporate prior distributions for parameter 
estimation, account for uncertainty in modeling, and share information across groups 
of data. Because our dataset contained multimodal data from 86 participants, linear 
models provided a natural machine learning framework to prevent overfitting and 
support parameter interpretability. We implemented Bayesian linear models using 
double exponential prior distributions on all feature coefficients, serving as a form of 
L1 (Lasso) regularization to limit the number of features utilized in the induced models.  

In addition to utilizing prior distributions for model parameters, we also used a 
logarithmic link function in the regression model to better predict visitor dwell time. In 
standard Bayesian linear regression, a normal distribution is used to model the 
relationship between the predictor variables and the dependent variable. The mean of 
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this distribution is the linear combination of the input features and their coefficients. 
Due to use of the normal distribution, the predictions can be negative. In our case, dwell 
time cannot be a negative value, so we exponentiate the linear combination of features 
and coefficients before using it as the mean of the normal distribution. Varying the link 
function is a form of generalized linear modeling [31]. The formulation for the base 
linear regression used in our analysis is as follows: 

𝑌! ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇! , 𝜎"), where 𝑙𝑜𝑔(𝜇!) = 𝛼 + ∑ 𝑋!#𝛽#
$
#%&    (1) 

𝑌!is the dwell time for visitor i. 𝛼 is a fixed intercept added to all predictions in the 
regression, 𝑋!# is the value of the input feature k for student i, 𝛽# is the coefficient for 
feature k, p is the total number of features (of which there are 17), and 𝜎"is the fixed 
variance used for all predictions.  

5.1 Baseline Models 

We investigated two baseline models using the regression formula (Equation 1) 
described above for modeling visitor dwell time. First, we use a Pooled Model, where 
all visitor data was grouped together and treated equally. Second, we used a Group-
Specific model, where a separate linear model was trained on each visitor group. The 
Pooled Model loses information about the individual groups and does not characterize 
group-based differences in visitor interest, background, or demographics. This can lead 
to underfitting of the data. The Group-Specific model is a more specialized form of the 
regression model, where each visitor group has its own distinct set of model parameters. 
In comparison to the Pooled Model, this approach risks overfitting the data and is 
unlikely to generalize effectively due to the limited number of data samples per group 
and inherent differences between the visitor groups.  

5.2 Bayesian Hierarchical Model 

The regression formula (Equation 1) assumes that the residual variance for all visitor 
observations are the same. In many contexts this is a reasonable assumption, but in a 
museum setting, different groups of visitors may arrive with highly different socio-
cultural backgrounds, interests, knowledge levels, and learning objectives, among other 
relevant characteristics. Different groups of visitors may not only spend different 
amounts of time at exhibits, but their dwell times may have higher or lower variance 
depending on the group. Thus, it is important that the multimodal models of visitor 
engagement account for these differences, and therefore treat the error variances 
differently in the regression formulation. The assumption of equal variance by standard 
linear models, or homoskedasticity, can result in reduced model fit and information loss 
when the observations come from groups. We propose an extension to Equation 1 to 
incorporate a learned variance parameter that is unique to each visitor group to ensure 
that the variance of the residual errors is treated differently depending on the group 
from which the visitor came. To avoid overfitting to the visitor groups, we used a shared 
latent distribution to model the three groups’ variance parameters. This Bayesian 
hierarchical model is shown below: 

𝑌! ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇! , 𝜎'"), where 𝑙𝑜𝑔(𝜇!) = 𝛼 + ∑ 𝑋!#𝛽#
$
#%&    (2) 
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The only difference in this regression formulation compared to Equation 1 is that the 
variance, 𝜎'", varies based on the school group, g.  

6 Results 

The predictive models of dwell time were trained and compared using student-level 
leave-one-out cross-validation. We used cross-validation to compare the performance 
of the Pooled Model, the Group-Specific Model, and the Hierarchical Model. We report 
R2, root mean squared error (RMSE), and mean absolute error (MAE) averaged across 
each cross-validation fold. The performance of each model is reported on the entire 
dataset as well as the performance for each visitor group.  

Each model was trained using Markov chain Monte Carlo (MCMC) sampling in R 
using the JAGS framework [32]. To check the convergence of the sampling, we used 
the Gelman-Rubin diagnostic, which is commonly used for evaluating MCMC 
convergence [33]. For each of the models, we drew 3,000 MCMC samples after 
omitting the first 1,000 for burn-in. The process of burn-in is performed to ensure the 
convergence of the Markov chain in MCMC sampling. The final predictive models 
used the means of the 3,000 samples for each model parameter. Within each of the 
predictive models, the coefficients of the features, 𝛽s, are assigned a prior distribution. 
For each 𝛽, we used a double exponential prior with mean 0 to operate in the same 
manner as Lasso regression priors. This encouraged many of the feature coefficients to 
be as close to 0 as possible, resulting in only a few selected features as significant. The 
group-level variance parameters, 𝜎'", also used a shared prior distribution to relate 
information across groups. We chose the Gamma distribution with shape and scale 
parameters equal to 0.1. Each of the prior distributions chosen for this work were 
relatively uninformative and thus weak. This forced the posterior distributions of the 
model parameters to be largely affected by the data rather than our prior beliefs.  

6.1 Predictive Accuracy 

We compared the accuracy of the three Bayesian linear models: the Pooled Model, 
Group-Specific Model, and Hierarchical Model. Table 1 shows the results for each 
model in predicting visitor dwell time (seconds). The Hierarchical Model outperformed 
both the Pooled and Group-Specific models for all visitor groups. For Group 1, the 
Pooled Model outperformed the competing models, but for Groups 2 and 3, the 
Hierarchical Model performed best with respect to the three evaluation metrics.  

The Group-Specific models were each trained on data from a single group, and then 
each model was evaluated only using data from that group. The total predictive 
performance of the Group-Specific Models was calculated by aggregating the 
predictions of each of the three models and calculating R2, RMSE, and MAE with the 
total data. An explanation for why this modeling approach performed relatively poorly 
its risk of overfitting to a specific group; each visitor group only consisted of 20–40 
visitors. Pooling the data and ignoring group-level characteristics yield good results but 
risks underfitting the data by losing group-specific information about the visitors. The 
Hierarchical Model takes advantage of both modeling approaches by incorporating 
group-level information but keeping all data instances pooled using a shared prior for 
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the group-level variance. An alternative approach to hierarchical modeling is to train a 
set of feature coefficients for each visitor group. However, this approach would 
multiply the number of model parameters by the number of visitor groups, which risks 
poor performance due to the limited size of the data sample. 

 
Table 1. Predictive performance of the three linear models. 

Model Type Context R2 RMSE MAE 

Pooled 

All Groups 0.514 93.720 68.334 

Group 1 0.425 85.846 72.532 

Group 2 0.727 70.429 47.583 

Group 3 0.370 118.319 82.637 

Group-Specific 

All Groups 0.285 110.882 81.457 

Group 1 0.303 96.270 74.216 

Group 2 0.685 75.616 54.567 

Group 3 -0.116 157.409 117.060 

Hierarchical 

All Groups 0.536 91.593 67.690 

Group 1 0.411 88.488 72.649 

Group 2 0.742 68.444 47.338 

Group 3 0.428 112.713 80.582 

6.2 Posterior Distributions of Model Parameters 

Bayesian models allow summarization and comparison of model parameters by using 
the MCMC samples that were directly taken from their posterior distribution. As the 
Hierarchical Model outperformed both the Pooled and Group-Specific models, we 
summarize the model parameters’ posterior distributions of the Hierarchical Model.  
 

Table 2. Posterior parameter distributions for Bayesian Hierarchical linear model. 
 Mean SD 

Intercept 5.344 0.046 
AU12 -0.197 0.050 

AOI-Interface -0.197 0.080 
Total Position Change -0.151 0.052 

AU7 -0.130 0.049 
Head Variance 0.082 0.095 

AOI-Labels 0.081 0.040 
AU2 -0.080 0.044 

Total Info Taps 0.068 0.056 
Total Taps -0.060 0.043 
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Table 2 displays the mean and standard deviation (SD) for each of the model parameters 
from the Hierarchical Model. Since each model induced double exponential priors on 
the feature coefficients, many of the features resulted in non-significant coefficients. 
We report the 10 features with the largest coefficients in terms of absolute value, 
including the model intercept, noting that features from each modality were chosen as 
being significant. The remaining features had posterior distributions that resulted in a 
mean of 0. The significant features for the posture modality were Total Position Change 
and Head Variance. For eye gaze, the significant features were AOI-Labels and AOI-
Interface. For facial expression, the features were AU12, AU7, and AU2. The features 
for the interaction log modality were Total Taps and Total Info Taps. 

7 Conclusion and Future Work 

Multimodal learning analytics offers significant potential to advance our understanding 
of museum visitor engagement. However, museums pose distinctive challenges for 
modeling learner engagement, including the brief duration of visitor dwell times, as 
well as visitor populations that range broadly in age, prior knowledge, and socio-
cultural background. To address these challenges, we have introduced a multimodal 
Bayesian hierarchical modeling framework for modeling visitor engagement with 
interactive science museum exhibits. Leveraging multimodal data on visitor 
interactions with an interactive game-based exhibit for environmental sustainability 
education across three diverse groups of visitors, we found that Bayesian hierarchical 
models outperform competing baseline methods. Furthermore, results indicate that 
features from each modality contributed significantly toward predicting visitor dwell 
time, underscoring the promise of multimodal learning analytic techniques for 
modeling visitor engagement. 

There are several promising directions for future research. First, extending 
multimodal models of visitor engagement beyond predicting visitor dwell time to 
capture patterns of visitors’ cognitive, affective, and behavioral engagement is a key 
next step. Furthermore, adapting multimodal learning analytic techniques to account 
for the “messiness” of free-choice learning, including fluid grouping at exhibits [12] 
and complex patterns of movement across the museum floor [10], is an important 
challenge. Extending this work to other science museums as well as other informal 
learning contexts (e.g., science centers, aquariums, zoos, and other public spaces) will 
help reveal and strengthen the generalizability of this approach. Finally, it will be 
critical to investigate how multimodal learning analytics can inform iterative cycles of 
design and development by exhibit designers, as well as best practices of museum 
educators to enhance high-quality visitor engagement in science museums. 
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