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Sr2CuTeO6 is a square-lattice Néel antiferromagnet with superexchange between first-neighbor S = 1/2
Cu spins mediated by plaquette centered Te ions. Substituting Te by W, the affected impurity plaquettes have
predominantly second-neighbor interactions, thus causing local magnetic frustration. Here we report a study of
Sr2CuTe1−xWxO6 using neutron diffraction and µSR techniques, showing that the Néel order vanishes already
at x = 0.025 ± 0.005. We explain this extreme order suppression using a two-dimensional Heisenberg spin
model, demonstrating that a W-type impurity induces a deformation of the order parameter that decays with
distance as 1/r2 at temperature T = 0. The associated logarithmic singularity leads to loss of order for any
x > 0. Order for small x > 0 and T > 0 is induced by weak interplane couplings. In the nonmagnetic phase
of Sr2CuTe1−xWxO6, the µSR relaxation rate exhibits quantum critical scaling with a large dynamic exponent,
z ≈ 3, consistent with a random-singlet state.

A central theme in modern condensed matter physics is the
evolution of two-dimensional (2D) quantum antiferromagnets
upon doping, as epithomized by the high-Tc cuprates with
charge carriers introduced into the CuO2 layers through off-
layer doping [1, 2]. In-plane static impurities have also been
studied, e.g., non-magnetic Zn substituting the spin S = 1/2
carrying Cu ions [3–5]. In general, impurities and random
frustrated couplings in a quantum magnet will eventually de-
stroy any order and may induce not yet fully understood disor-
dered states, e.g., quantum spin glasses [6–8], spin fluids [9],
valence-bond glasses [10, 11], and random-singlet (RS) states
[12–24].

We here report µSR and neutron diffraction experiments on
Sr2CuTe1−xWxO6, which at x = 0 realizes the 2D S = 1/2
antiferromagnetic (AFM) Heisenberg model with predomi-
nantly first-neighbor interactions J1 generated through su-
perexchange via Te ions at the centers of the plaquettes of 2×2
Cu ions [25, 26]; see Fig. 1(a). At x = 1, the W ions instead
mediate second-neighbor superexchange in the affected pla-
quettes, Fig. 1(b), with J2 ≈ J1 [27–29]. An intriguing mag-
netically disordered state exists within a window [xc1, xc2],
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with xc1 ≈ 0.1 and xc2 ≈ 0.6 estimated [30–32]. The ability
to tune the disorder and frustration by x offers unique oppor-
tunities to systematically study frustrated plaquette impurities
of the J2 type illustrated in Fig. 1(c) for small x and the sub-
sequent randomness-induced non-magnetic state for larger x.

We here demonstrate destruction of the Néel order in
Sr2CuTe1−xWxO6 at xc1 = 0.025±0.005, far below the pre-
vious estimate. We explain this dramatic order suppression
using a classical Heisenberg model with random W and Te
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Figure 1. 2D Heisenberg couplings JijSi ·Sj in Sr2CuTe1−xWxO6.
The small black circles represent the S = 1/2 carrying Cu ions,
while red and blue circles correspond to Te and W ions, respec-
tively. The dominant couplings mediated by Te in (a) and W in (b)
are first-neighbor J1 (solid red lines) and second-neighbor J2 (solid
blue lines), with J1 ≈ J2 ≈ 8 meV [30, 33]. The couplings J ′1 and
J ′2 indicated by the thin dashed lines are roughly 10% of the domi-
nant couplings. The first-neighbor coupling J ′′1 on links between Te
and W ions, the gray dashed line in (c), is about 4% of J1 [33].
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Figure 2. Neutron diffraction results for (a) x = 0 and 0.02, (b) 0.03
and 0.05 (c) 0.1, and (d) 0.2. The peaks correspond to wave-vectors
q = (1/2,1/2,0) and (1/2,1/2,1) in the tetragonal magnetic Brillouin
zone, indicating dominant Néel AFM order (x = 0 and 0.02) and
short-range correlations (x ≥ 0.03). Data at T = 40 K have been
subtracted as background. The x = 0 and 0.03 values have been
shifted vertically for clearity. The curves are Gaussian fits and the
green bars indicate the instrumental resolutions.

ions. Here 2D Néel order at temperature T = 0 is destroyed
even at infinitesimal x, due to a logarithmic singularity caused
by the single-impurity deformation of the spin texture. Order
at x > 0 and T > 0 is stabilized by weak inter-layer cou-
plings. The columnar AFM state extending from x = 1 is
much more robust, which also can be explained by the clas-
sical model. In the non-magnetic phase, the neutron diffrac-
tion measurements reveal short-range Néel correlations and
the µSR relaxation rate exhibits quantum-critical scaling with
dynamic exponent z > 2, both consistent with recent predic-
tions for the 2D RS state [22, 23].

Experiments.—Polycrystalline Sr2CuTe1−xWxO6 samples
were synthesized as described previously [25–27, 29]. The
experiments were carried out at J-PARC (µSR) and China
Advanced Research Reactor and Key Laboratory of Neutron
Physics and Institute of Nuclear Physics and Chemistry, China
(neutron diffraction); see also Supplemental Material [34].

Figure 2 shows our neutron diffraction results. Resolution
limited magnetic peaks are observed at x = 0 in Fig. 2(a), con-
sistent with Néel AFM order [25, 30]. We have also confirmed
(Supplemental Material [34]) columnar AFM order [31, 32]
for x ∈ [0.7, 1]. The W doped sample with x = 0.02, Fig. 2(a),
is still ordered, with resolution limited peaks (corresponding
to a correlation length > 180 Å ≈ 35 lattice spacings). The
broader peaks for x ≥ 0.03 in Figs. 2(b)-2(d) indicate the loss
of long-range order between x = 0.02 and 0.03. At x = 0.1 the
correlation length is still about 40 Å.

The µSR asymmetry A(t) was fitted to

A(t) = A0exp(−λt)Gz(t) +ABG, (1)

where A0 is the initial asymmetry, λ the relaxation rate of
the muon spins, ABG the constant background, and Gz(t) the
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Figure 3. Time-dependent zero-field µSR spectra for (a) x = 0.05 and
(b) x = 0.1 samples at different temperatures (the highest and lowest
indicated) along with fits to Eq. (1). (c) Temperature dependent µSR
asymmetry for x = 0, 0.05, and 0.1, normalized by the values at T =
30 K. (d) Temperature dependent relaxation rate λ for x = 0.05 and
0.1. The fitted lines correspond to critical scaling, λ ≈ T−γ , with γ
= 0.35 ± 0.03 (x = 0.05) and 0.42 ± 0.03 (x = 0.1).

Kubo-Toyabe function [35]. The function A(t) cannot actu-
ally describe the complete muon spectra of the magnetically
ordered samples. It has already been shown that, for columnar
AFM ordered systems at x = 1, 0.9, and 0.8, the asymmetry
initially drops very rapidly and oscillates [28, 32]. These fea-
tures take place within 1 µs, beyond the resolution of our mea-
surements. Instead, Eq. (1) describes the relaxation at longer
times and A0 is close to the asymmetry after the rapid initial
drop. While the fits of Eq. (1) are not perfect for the long-
range ordered samples (Supplemental Material [34]), the form
describes the data for x = 0.05 and 0.1 very well, as shown in
Figs. 3(a) and 3(b).

The temperature dependent A0 is graphed in Fig. 3(c) for
x = 0, 0.05 and 0.1. A sharp change is observed at the pre-
viously known ordering temperature Tc at x = 0 [25, 26]. In
contrast, in the x = 0.05 and 0.1 samples A0 only decreases
slowly below a characteristic temperature T ∗. This behav-
ior reflects gradual changes of the local fields as a result of
the onset of short-range magnetic correlations but no order-
ing, which is consistent with the neutron results in Figs. 2(b)
and 2(c). It should be noted that the value of A0 for x = 0 at
low temperatures is about 4/5 of that above Tc, while in the
case of x = 1 it is only 1/3 [27, 34]. It is beyond the scope of
this work to explain the detailed form of A0; some additional
analysis is provided in Supplementary Material [34].

Fig. 3(d) shows the temperature dependence of the relax-
ation rate λ for x = 0.05 and 0.1. Power-law behaviors reflect
quantum-critical scaling in what is likely the RS phase. As ex-
plained in Supplemental Material, standard scaling arguments
[36, 37] in combination with a constraint imposed by the re-
cently discovered 1/r2 form of the spin correlations in the 2D
RS phase [22–24] can be used to derive the form λ ∝ T−γ

with γ = 1 − 2/z, where z is the dynamic exponent. The
values of γ extracted from the fits in Fig. 3(d) correspond to
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Figure 4. (a) Magnetic phase diagram of Sr2CuTe1−xWxO6. NAF
and CAF denote Néel and columnar AFM correlations, respectively,
either short-range (SR) or long-range (LR). The ordering temperature
Tc and characteristic short-range correlation temperature T ∗ were
determined by µSR measurements, except for T ∗ of the x = 0.2
sample, which was obtained (Supplemental Material [34]) by neutron
diffraction (b) Transition temperatures of the classical Heisenberg
model of coupled layers, determined using Monte Carlo simulations.
In the notation of Fig. 1 the 2D couplings are J1 = J2 = 1, J ′1 =
J ′2 = 0.1, and J ′′1 = 0. Two different interlayer couplings are used;
J⊥ = 10−2 and 10−3. Curves are drawn through the data points as
guides to the eye.

z = 3.0 ± 0.2 for x = 0.05 and z = 3.5 ± 0.3 for x = 0.1.
These values conform with the expectations in the RS phase,
where z equals 2 at the Néel–RS transition and grows upon
moving into the RS phase [22]. It should be noted that the
value of ABG in Eq. (1) somewhat affects the determination
of γ but we consistently find power law behavior of λ and
z(x = 0.1) > z(x = 0.05) (further discussed in Supple-
mental Material [34]). We note that the low-temperature µSR
relaxation in quasi-2D spin glasses is very different [38].

Combining our µSR and neutron results with previous
works, the magnetic phase diagram of Sr2CuTe1−xWxO6 is
shown in Fig. 4(a). The columnar order at x = 1 is robust even
for large Te substitution, which is indicative of only minor
effects of magnetic frustration and remaining large connected
ordered regions. The mean order parameter may then be grad-
ually reduced in a way similar to diluted systems [39]. In
contrast, introducing W in the x = 0 sample rapidly destroys
the Néel order at xc1 = 0.025 ± 0.005. Short-range correla-
tions with Néel structure still remain at low temperatures even

at x = 0.2 based on our neutron-diffraction experiments and
likely persist throughout what we argue is the 2D RS phase.

Modeling.—The width of the Néel phase in Fig. 4(a) is less
than 1/3 of the previous estimates [30–32]. The Néel phase at
finite W doping being narrower than the columnar phase at fi-
nite Te doping can be understood already at the classical level
with the dominant Heisenberg coupling constants J1 and J2
in Fig. 1: Introducing a single Te impurity in the J2-coupled
columnar system, we simply lose the J2 couplings in the af-
fected plaquette and there is only weak frustration from the
much smaller J ′1 and J ′′1 couplings. However, with a W im-
purity in the J1-dominated Néel state the two new J2 bonds
are completely frustrated. To quantitatively understand the
extremely narrow Néel phase requires further insights.

Ideally, we would like to carry out calculations with the full
quantum mechanical Heisenberg Hamiltonian. Even though
progress has been made on some frustrated 2D quantum mag-
nets with density-matrix renormalization group (DMRG) [40]
and tensor-product [41] methods, including Heisenberg sys-
tems with random couplings [24], in practice calculations for
frustrated systems are still challenging and it would be hard
to extract a reliable phase diagram. However, we have found
that already the classical Heisenberg model can explain the
extreme fragility of the Néel state to W-plaquette impurities
and also gives an overall reasonable phase diagram.

The long-range Néel order at T = 0 in the 2D Heisenberg
model with uniform exchange J1Si · Sj on all first neighbors
(i, j) is destroyed by thermal fluctuations at T > 0 [42, 43].
In weakly coupled planes of classical or quantum spins, Tc ∝
J1 ln−1(J1/J⊥), where J⊥ is the coupling between spins in
adjacent planes [44, 45]. Since a quantum magnet with AFM
order or a long correlation length behaves in many respects
as a “renormalized classical” system [43], the initial effects
of doping the x = 0 and x = 1 system should be captured
correctly by a classical model, up to O(1) factors.

In the notation of Fig. 1, we set the 2D couplings to J1 =
J2 = 1, J ′1 = J ′2 = 0.1, and J ′′1 = 0, with |Si| = 1. For cou-
pled planes we consider J⊥ = 10−2 and 10−3. We used stan-
dard Monte Carlo methods for frustrated Heisenberg models
[46, 47], with Binder cumulant techniques [48] for extracting
Tc at fixed x, based on averages over several hundred realiza-
tions of the random W and Te plaquettes on systems with up
to 72× 72× 18 spins. The resulting infinite-size extrapolated
phase boundaries are shown in Fig. 4(b). When comparing
with the experiments, it should be noted that T = 25 K cor-
responds roughly to 0.3 in units of J1 and that Tc in uniform
coupled S = 1/2 planes with J⊥ of order 10−2 is lower by
about 50% than our classical result at x = 0 [45]. We ex-
pect quantum fluctuations to shrink the ordered phases also in
the x direction, and the differences between the numerical and
experimental results for the columnar phase boundary should
also be due to quantum effects (and possibly weak interactions
beyond those included here).

As seen in Fig. 4(b), upon changing J⊥ from 10−2 to 10−3,
Tc at x = 0 is only slightly reduced, as expected on account
of the logarithmic form discussed above. For x > 0 the phase
boundary drops more rapidly to zero for the smaller J⊥, and
the size of the Néel phase is substantially smaller. A very
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narrow Néel phase with high sensitivity of the T = 0 tran-
sition point to J⊥ is not expected within a simple picture of
conventional local impurity suppression of the order [39]. We
therefore investigate the deformation of the Néel order around
a single impurity plaquette at T = 0, which we have done by
minimizing the energy with a combination of simulated an-
nealing and energy conserving spin moves.

The deviation ∆m of the local ordered moment from the
bulk value is graphed in Fig. 5 versus the distance r from the
impurity. The form ∆m ∝ 1/r2 causes a logarithmic diver-
gence when integrated over r (but the total energy cost of the
deformation stays constant, with the energy density decaying
as 1/r4). This single-impurity response suggests that any im-
purity fraction x > 0 destroys the long-range order, and this
is demonstrated explicitly in the Supplemental Material [34].
A similar fragility of non-colinear bulk order in the presence
of certain impurities was previously pointed out [8], but the
profound impact of the plaquette impurity (which can be un-
derstood as a composite of two dipoles; see Supplemental Ma-
terial [34]) on the colinear Néel state had not been anticipated.

For the weakly coupled planes in Fig. 4(b), the Néel or-
der is stabilized for a range of x > 0 depending on J⊥/J1,
but we have not studied the functional form of xc1 versus J⊥.
The disorder should be irrelevant at the T > 0 phase transi-
tions according to the Harris criterion [49, 50], and we expect
standard three-dimensional O(3) universality. We do not have
sufficient data for large systems to test the critical exponents.
In an S = 1/2 system such as Sr2CuTe1−xWxO6, quantum
fluctuations should further suppress the order and reduce xc1,
and we expect the same type of logarithmic singularity as in
the classical case when J⊥/J1 → 0, on account of the renor-
malized classical picture of the quantum Néel state [43].

Discussion.—The extreme effect of the W impurities in the

Néel state was not captured by the density functional calcu-
lations in Ref. [32], which suggested destabilization of the
Néel order for x ≈ 0.1-0.2 in Sr2CuTe1−xWxO6, significantly
above xc1 ≈ 0.025 found in our experiments. The mechanism
we have uncovered here relies on a singular effect of frustrated
plaquette impurities in 2D, with weak 3D couplings pushing
the transition from x = 0 to to small x > 0.

Once the Néel order vanishes, from the classical perspec-
tive a spin glass phase is expected [8, 51]. In the presence
of strong quantum fluctuations in S = 1/2 systems, there is
mounting evidence from model studies that the spin glass can
be supplanted by an RS state [8, 19, 22–24]. A particular real-
ization of the RS state amenable to large-scale quantum Monte
Carlo calculations exhibits criticality with a dynamic expo-
nent z ≥ 2 and dominant Néel-type spin correlations decaying
with distance as 1/r2 at T = 0 [22, 23]. This form of the cor-
relations was recently confirmed in a frustrated random-bond
system with DMRG calculations [24], thus further supporting
universal RS behavior. The significant staggered correlations
well past the Néel phase in Sr2CuTe1−xWxO6, as revealed
by our neutron difraction experiments at x = 0.1 and 0.2,
are thus expected within the RS scenario. Previous results at
x = 0.5 also showed remnants of Néel correlations [33]. We
here further demonstrated quantum-critical scaling of the µSR
relaxation rate with varying z > 2, as recently predicted in the
2D RS state [22, 23].

It would be interesting to further test the proposed RS scal-
ing forms experimentally in Sr2CuTe1−xWxO6. A re-analysis
[22] of susceptibility data for x ≥ 0.2 [31] supported the
predicted form χ ∝ T−γ with γ < 1. Detailed inelastic
netron scattering studies would be very useful, but our at-
temps to grow large single-crystals have so far not been suc-
cessful. With polycrystalline samples, NMR experiments may
be able to further elucidate the nature of the RS state and the
Néel–RS transition. RS signatures were previously reported
in YbMgGaO4 [20] and α-Ru1−xIrxCl3 [52], but in addition
to random frustration these materials have Dzyaloshinskii-
Moriya interactions and spin vacancies, respectively. Beyond
its intrinsic importance, the 2D RS state should also be a use-
ful benchmark for experiments on potential uniform spin liq-
uids [53, 54], where it is often difficult [11, 20, 55, 56] to dis-
tinguish between impurity physics and theoretically predicted
properties of clean systems.
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We provide additional experimental (Sec. 1), theoretical (Sec. 2), and Monte Carlo simulation (Sec. 3) results supporting the
conclusions of the main paper. Additional µSR A(t) data are presented in Sec. 1 A and the fitting procedures are explained.
Neutron diffraction data in the columnar AFM state are presented in Sec. 1 B and in Sec. 1 C we explain how the cross-over
temperature T ∗ was determined from the neutron data. In Sec. 2, we derive the scaling form of the µSR relaxation rate λ. In
Sec. 3, we present additional Monte Carlo results for the classical 2D Heisenberg model with W-type impurities.

1. ADDITIONAL EXPERIMENTAL INFORMATION

Polycrystalline samples of Sr2CuTe1−xWxO6 were synthe-
sized from stoichiometric mixtures of SrO, CuO, TeO2, and
WO3 powders by the solid-state reaction method reported pre-
viously [25–27, 29]. The µSR experiments were performed at
the S1 ARTEMIS spectrometer (Proposal No. 2018B0156),
J-PARC, with the mini cryostat down to 4 K. The neutron-
diffraction experiments were carried out at Bamboo (λ =
2.358 Å) and Xingzhi (λ = 2.7302 Å) triple-axis spectrome-
ters, and at the PKU High-Intensity Powder Neutron Diffrac-
tometer (λ = 2.3 Å) at China Advanced Research Reac-
tor (CARR), and the Kunpeng triple-axis spectrometer (λ =
2.7302 Å) at Key Laboratory of Neutron Physics and Institute
of Nuclear Physics and Chemistry, China. Neutron speed ve-
locity selectors were used before the monochromator with the
Bamboo and Xingzhi spectrometers.

A. Raw µSR data

The time dependent asymmetry A(t) from our µSR exper-
iments for x = 0 and 1 are shown in Fig. S1. As discussed
in the main text, the x = 0 sample [Fig. S1(a)] has long-rage
Néel AFM order, while the x = 1 sample [Fig. S1(b)] has
long-range columnar order. It is clear that the fits by Eq. (1)
are not good at low temperatures. This is in contrast with the
good fits at x = 0.05 and 0.1, as shown in Figs. 3(a) and 3(b).

The reason for the suboptimal fits at x = 0 and 1 is that,
in the ordered states, we need multiple relaxation rates to de-
scribe the data, as shown in Ref. [28]. Here we test the fol-
lowing simpler function:

A(t) = A0[f + (1− f)exp(−λt)]Gz(t) +ABG. (S1)

Compared to the fitting function in the main text, the new
function introduces a factor f to effectively account for a sec-



2

(b)

2 4 6 8 10
0.05

0.10

0.15

0.20

0.25

Time ( μs )

As
ym

m
et

ry

x
 
=

 
1 4.3 K

35.8 K

(c)

2 4 6 8 10
0.050

0.075

0.100

0.125

Time ( μs )
As

ym
m

et
ry

2 4 6 8 10 12

0.05

0.10

0.15

0.20

Time ( μs )

As
ym

m
et

ry

x = 0

T = 3.9 K

2 4 6 8 10

0.05

0.10

0.15

0.20

0.25

Time ( μs )

As
ym

m
et

ry

x = 0 3.9 K

30.9 K (a)

(d)
T = 4.3 K

x = 1

Figure S1. (a) and (b) show zero-field µSR spectra of Sr2CuTe1−xWxO6 samples with x = 0 and 1, respectively. Results for several
temperatures are shown, witth the highest and lowest indicated for both samples. The curves are fits to the form Eq. (1) with a single relaxation
rate. (c) and (d) show the spectra for x = 0 and 1, respectively, at the corresponding base temperatures. The curves are fits to the modified
form Eq. (S1), which provides a better description of the data in the ordered state.

ond relaxation rate that is very small, so that its value is ef-
fectively zero on the time scale of the experiment. The very
well fitted low-temperature results for x = 0 and 1 are shown
in Figs. S1(c) and S1(d). It is worth noting that f is close to
1/3 for x = 0, and 1/2 for x = 1. We stress that we need the
modified fitting form only for analyzing the ordered samples.
As noted in the main text and shown in Figs. 3(a) and 3(b), for
the short-range correlated samples with x = 0.05 and 0.1 the
form Eq. (1) works essentially perfectly.

When fitting the µSR spectra, we have chosen a
temperature-independent background ABG = 0.035 for all the
samples. This value is derived from the fact that the value of
A(t) at 1 µs at base temperature is about 1/3 of that above Tc,
as shown in Ref. [28]. The same instrument was used for all
the µSR measurements and all the samples have similar mass
and were mounted in similar holders. For all these reasons we
expect that the background should be close to the same for all
the samples. Reasonable fits can be obtained for ABG rang-
ing from 0 to 0.1, and using different values in this range does
not affect the conclusion of low-temperature power-law scal-
ing λ ∼ T−γ for x = 0.05 and 0.1; the exponent changes only
marginally and γ(0.1) > γ(0.05) always holds.

B. Neutron diffraction results for the columnar AFM state

Neutron diffraction data for x from 0.7 to 1 are shown in
Fig. S2. At these W fractions the system is expected from

previous studies [32] to have columnar AFM order at low tem-
perature, which we confirm here with the resolution limited
peaks at the corresponding wave-vectors.
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Figure S2. Neutron diffraction data along with Gaussian fits for x =
1 (a) 0.9 (b), 0.8 (c), and 0.7 (d). The peak locations correspond
to q = (0.5, 0, 0.5) and (0, 0.5, 0.5), i.e., columnar AFM structure.
The temperature is indicated in each panel and data taken at T = 40
K have been subtracted as background contributions. The green bars
indicate the instrumental resolution.
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Figure S3. Temperature dependence of the magnetic peak intensity at q = (0.5, 0.5, 0) in the sample with x = 0.1 in (a) and x = 0.2 in (b).
The curves are guides to the eye and the cross-over temperature is defined as the point where the signal above background becomes significant,
which implies errors of up to 3 K in these cases.

C. The cross-over temperature T ∗ from neutron diffraction

For the samples showing no phase transition into an or-
dered phase, in Fig. 4 we have indicated a temperature T ∗

where both the µSR and netron data show the onset of signif-
icant short-range correlations. It should be noted that, strictly
speaking, T ∗ can not be defined unambiguously or uniquely
as it merely signifies a sharp cross-over. Therefore, T ∗ deter-
mined from the neutron-diffraction measurements is not nec-
essarily exactly equal to that from the µSR data, since these
two techniques measure the system in different ways and with
very different energy resolution. We here show that both ex-
periments nevertheless produce compatible results for T ∗.

Figures S3(a) and S3(b) show the temperature dependence
of the magnetic peak intensity measured with neutron diffrac-
tion at wave-vector q = (0.5, 0.5, 0) (corresponding to Néel
AFM order) for the x = 0.1 and 0.2 samples, respectively. T ∗

is determined to be the temperature where a signal is detected
above the high-T background, which is T ∗ ≈ 25 and T ∗ ≈ 6
K, respectively, for x = 0.1 and x = 0.2, with rather large
error bars of 2-3 K due to the weak signal. Comparing with
the µSR result for x = 0.1 in Fig. 4, the results agree well.
We do not have µSR results for x = 0.2.

2. CRITICAL SCALING OF THE RELAXATION RATE

As discussed in the main paper, the x = 0.05 and 0.1 sam-
ples exhibit quantum-critical scaling in the µSR relaxation
rate and are candidates for the RS state at low temperatures.
According to QMC simulations of a “designer model” relizing
the RS phase in a 2D quantum magnet [22, 23], this state is
critical with large dynamic exponent, z ≥ 2, with z = 2 at the
transition from the Néel state and z increasing upon moving
into the RS phase, and with dominant Néel type spin correla-
tions decaying with distance r as r−2 universally. This cor-
relation function formally implies that the exponent η in the
standard form [36] of the quantum-critical correlation func-
tion for a system in d space dimensions,

C(r) ∝ r−(d+z−2+η), (S2)

depends on z through the relationship η = 2− z. Thus, in the
RS state this exponent is negative, which is normally not pos-
sible in uniform systems but is not uncommon in disordered
systems.

The exponent η appears also in dynamical scaling forms,
e.g., the NMR relaxation rate 1/T1 scales as T η at the O(3)
quantum-critical point in uniform antiferromagnets, where
z = 1 [37]. One can expect the µSR relaxation rate λ, which
like 1/T1 depends on local low-energy spin fluctuations, to
scale in the same way. However, since the dynamic expo-
nent z 6= 1 in the RS state, the T η form has to be modified
as follows: The correlation length in a quantum-critical sys-
tem scales as ξ ∝ T−1/z , and we can therefore formally ex-
press the temperature as T ∝ ξ−z . For z = 1, we can write
λ ∝ T η ∝ ξ−η , and the generalization to z 6= 1 is obtained by
inserting the correct T -dependent expression for the correla-
tion length. Thus, λ ∝ ξ−η ∝ T η/z . Using the form η = 2−z
in the RS state, we expect λ ∝ T−γ , where we have defined
the positive exponent γ = 1− 2/z, with z ≥ 2. This is the
exponent that was extracted from the data fits in Fig. 3(d).

The asymptotic scaling form of λ(T ) can also be derived in
a more transparent way: First, consider the well known NMR
spin-lattice relaxation rate 1/T1, which for a spin-isotropic
system is given by [57]

1

T1
=
γ2

2

∑
q

A2(q)S(q, ωN), (S3)

where γ is the gyromagnetic ratio, Aq is the Fourier trans-
form of the hyperfine constants describing the coupling be-
tween the nuclear and electronic spins, and ωN is the field-
dependent nuclear resonance frequency. The hyperfine cou-
pling is short-ranged in space, and if the nucleus considered
is in the ion hosting the localized electronic spins (e.g., Cu
NMR in the material considered here), it is often sufficient to
consider purely local on-site interactions A0, so that the mo-
mentum sum in Eq. (S3) reduces to A2

0S0(ωN), where S0(ω)
is the on-site (single-spin) dynamic structure factor.

Typically, the resonance frequency is much lower than other
energy scales in the system, and the zero-frequency limit
can be considered (unless there are significant spin diffusion
contributions, which can cause low-frequency divergencies).
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Thus, with these simplifications, which are often completely
valid, the relaxation rate is proportional to S0(ω → 0) (with
prefactors that are known or can be measured). Since µSR
also is a probe of low-frequency local spin fluctuations, we
expect the same form;

λ ∝ S0(ω → 0). (S4)

The local dynamic spin structure factor S0(ω) (and also its
q dependent variant) can be calculated in various analytical
approximative schemes or numerically; for example, it was
calculated in the case of the 1D RS state in Ref. 58. However,
the low-frequency limit is often challenging, especially in
QMC calculations, where the corresponding imaginary-time
dependent spin correlation function G0(τ) has to be calcu-
lated and analytically continued to real frequency. To circum-
vent the latter step, Randeria et al. suggested a very useful ap-
proximation [59], which was expressed in a slightly different
form in Ref. 58. Neglecting unimportant factors, the approxi-
mation amounts to

S0(ω → 0) ∝ 1

T
G0(τ = β/2), (S5)

and then the relaxation rate Eq. (S4) is approximated as

λ ∝ 1

T
G0(τ = β/2), (S6)

where β = 1/T . Here we will use this form, which is ex-
pected in general to become better with decreasing T , to de-
rive the critical scaling behavior of λ in the RS phase.

As already mentioned above, a quantum-critical spatial cor-
relation function is conventionally written as Eq. (S2), where
d = 2 in our case. The on-site correlation in imaginary time
is modified by the dynamic exponent [36]

G0(τ) ∝ τ−(d+z−2+η)/z, (S7)

reflecting that space and (imaginary) time distances are related
as τ ∼ rz , which is used to obtain Eq. (S7) from Eq. (S2).
Thus, in the RS state with the staggered spatial spin corre-
lation function C(r) ∝ r−2, the time correlations take the
form G0(τ) ∝ τ−2/z . Using this form in Eq. (S6) immedi-
ately gives the scaling form λ ∝ T−(1−2/z), in agreement
with the result presented earlier. The fact that we observe
this kind of scaling with z > 2, Fig. 3(d), with z also in-
creasing upon moving further away from the Néel phase as
predicted [22], constitutes strong support for an RS phase in
Sr2CuTe1−xWxO6.

3. 2D HEISENBERG MODEL

For the Monte Carlo simulations of the classical Heisenberg
models, we used methods that have been previously explained
in detail in the literature [46, 47]. The simulations combine
heat-bath sweeps with energy conserving “over-relaxation”
updates. We found the latter to be particularly important for
reaching the ground state of systems with a small number of
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Figure S4. Plaquette impurity induced deformation of the Néel order
parameter for different system sizes, as in Fig. 5 but with J ′2 = 0.

W-type impurities. In all simulations, we started at a high
temperature and gradually lowered the temperature in order
to alleviate problems with long autocorrelation times. For the
systems with more than one W impurity (random mixes of Te
and W plaquettes) disorder averages were taken over hundreds
of realizations of random locations of the impurities.

In Fig. 5 in the main text we demonstrated an impurity in-
duced deformation of the sublattice magnetization that decays
with the distance r from the impurity as 1/r2. This decay
implies that the total response of a single impurity diverges
logarithmically with increasing system size. We here provide
additional results demonstrating that the order parameter in-
deed vanishes for any concentration x > 0 of the impurities.

In the main paper, the Monte Carlo simulations were car-
ried out with parameters approximating those estimated [33]
for Sr2CuTe1−xWxO6. The bulk parameters for x = 0, illus-
trated in Fig. 1(a), were J1 = 1 and J ′2 = 0.1. Even with the
small frustrating J ′2 terms, the T = 0 order parameter is the
fully colinear Néel state, and we do not expect that the frustra-
tion is in any way required to obtain the r−2 decay of the de-
formation. To explicitly demonstrate that the classical Heisen-
berg model with only the first-neighbor couplings J1 also has
the same impurity response as in Fig. 5, here in Fig. S4 we
show simulation results for J ′2 = 0. These results confirm
that the r−2 form emerges as the system size increases.

The 1/r2 form with no angular dependence of the defor-
mation of the order parameter may appear surprising in light
of there being no such momopole-like solution of the Pois-
son equation, which provides the long-distance continuum de-
scription of the Néel state with impurities [60]. As will be
discussed in more detail elsewehere [61], the plaquette impu-
rity considered here can be regarded as a composite of two
dipoles, with the relative angle of the deformation vectors in
the xy plane chosen to minimize the energy. The angular de-
gree of freedom of the deformation is missing in treatments of
impurities in long-range ordered systems of spins with only
two components [62].

For the following results we go back to J ′2 = 0.1, and
we expect the same kinds of behaviors also for J ′2 = 0. In
Fig. S5(a) we show results for the disorder-averaged T = 0
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Figure S5. (a) Disorder averaged order parameter versus the concen-
tration of W-type plaquette impurities, graphed for several system
sizes. (b) Order parameter at several fixed impurity concentrations x
graphed vs the inverse system size.

Néel order parameter m versus the concentration of impuri-
ties. Increasing the system size consistently leads to a smaller
value of m. In Fig. S5(b) we show results versus the inverse
system size for several low impurity concentrations. Here we
can observe thatm always decreases with increasingL. Given
the logarithmic singularity suggested by the single-impurity
response, the most natural scenario is that m vanishes in the
thermodynamic limit for all x > 0, but it is difficult to demon-
strate that reliably using results such as those in Fig. S5, be-
cause of the logarithmic-type singularity that makes extrapo-
lations difficult.

A better way to investigate the presence or absence of order
for small x, introduced in Ref. 5, is to consider a system with
a single impurity to have concentration x = 1/L2, and to
compute the initial slope,

R =
dm

dx
, (S8)

of the order parameter vs x based on this value;

R1(L) = L2[1−m1(L)], (S9)

wherem1 is the value ofm computed with the single impurity
(averaged over the entire system). Then, if indeed m = 0 for
L → ∞ at x = 0+, the slope R1(L) will diverge. In order to
take into account possible subtle interaction effects, we here
additionally use a modified approach with L randomly placed
impurities in the L2 system, for which the concentration is
x = 1/L and the slope is

RL(L) = L[1−mL(L)], (S10)
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Figure S6. (a) Néel order parameter vs inverse system size in systems
with a single impurity (blue symbols) and with L impurities (red
symbols), graphed versus the inverse of the system size L. (b) Slope
graphed on a log-linear plot of the magnetization curve at x = 0
based on the size-dependent definitions, Eqs. (S9) and (S10), with
the data in (a). The lines are fits corresponding to the logarithmically
divergent formsRn(L) ∼ an+bn log(L) with both definitions (with
systems containing n = 1 and n = L impurities).

where mL(L) is the impurity-averaged order parameter for L
impurities in the lattice with L2 spins.

In Fig. S6(a) we show m1(L) and mL(L) versus 1/L. In
the former, we can see clearly the expected approach to the
fully saturated bulk order parameterm = 1 when L increases.
For mL(L) we also have to asymptotically approach the same
limit, and this appears plausible though the convergence is
slower, as expected, because of the higher concentration x
for a given system size. In Fig. S6(a) we graph the initial
slopes defined in Eqs. (S9) and (S10). Both quantities diverge
logarithmically, confirming that the impurity response in the
x → 0 limit has a logarithmic singularity. Any other inter-
pretation than m(x) = 0 for all x > 0 is then unlikely, as
indicated also by the results in Fig. S6 for small but finite im-
purity concentrations.

The Néel order suppression for any x > 0 is also supported
by the strong sensitivity of Tc(x) to the 3D coupling J⊥ in
Fig. 4(b), which suggests that the transition into the ordered
phase at x > 0 and T > 0 is due to the inter-layer effect. It
would be intersting to also study the deformation induced by
a single-impurity in the 3D coupled-layer system, but we have
not yet done so. We should expect the 1/r2 decay to be cut off
at some distance depending on J⊥ (diverging as J⊥/J1 → 0)
and, therefore, the slopes defined in Eqs. (S9) and (S10) to be
finite for any J⊥ > 0.
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Related issues were recently discussed by Dey et al. in the
context of a host system (the Heisenberg model on the tri-
angular lattice) with coplanar AFM order [8]. While previ-
ous works have considered distruction of long-range order by
dipolar impurities in two-component spin systems (the XY
model) [62], this system lacks the rotational degree of free-
dom of the distortion field of impurities in the Heisenberg

case. The lack of previous works on the plaquette impurity
(which, as we pointed out, can be regarded as a composite
of two dipoles at a certain relative angle) likely reflects the
absence of experimental motivation before the investigations
of Sr2CuTe1−xWxO6 demonstrated these particular coupling
patterns [30–33].
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