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Abstract— Cloth detection and manipulation is a common
task in domestic and industrial settings, yet such tasks remain a
challenge for robots due to cloth deformability. Furthermore, in
many cloth-related tasks like laundry folding and bed making, it
is crucial to manipulate specific regions like edges and corners,
as opposed to folds. In this work, we focus on the problem
of segmenting and grasping these key regions. Our approach
trains a network to segment the edges and corners of a cloth
from a depth image, distinguishing such regions from wrinkles
or folds. We also provide a novel algorithm for estimating the
grasp location, direction, and directional uncertainty from the
segmentation. We demonstrate our method on a real robot
system and show that it outperforms baseline methods on
grasping success. Video and other supplementary materials are
available at: https://sites.google.com/view/cloth-segmentation.

I. INTRODUCTION

Manipulating and interacting with cloth is a key part
of daily life, yet cloth manipulation by robots remains
a challenging problem. Cloth is difficult to perceive and
manipulate because its deformable nature breaks the rigid-
body assumptions of many algorithms. For example, most
pose estimation algorithms assume that objects can only
transform in 6 degrees of freedom (translation and rotation).
However, cloth can deform at any location and thus has
nearly an infinite number of degrees of freedom.

In cloth-based tasks like laundry folding and textile manu-
facturing, it is important to detect and grasp specific regions
of cloth, e.g. corners and edges, for downstream manipula-
tion like folding or smoothing. These edges and corners are
distinct from wrinkles and folds, which are less useful for
downstream tasks.

In order to grasp the cloth along an edge or corner, we
must not only detect the cloth edges and corners but also
estimate the appropriate grasping direction. Given a grasp
position, the grasp direction specifies the approach vector
the gripper follows towards this point. Although estimating
the grasping direction would be relatively simple if the cloth
were lying flat on the table, it is much more challenging
in crumpled configurations. Much work has been done for
perception and manipulation of cloth in both randomized and
predefined cloth configurations, yet cloth-related tasks like
laundry folding and assisted dressing remain challenging due
to the inherent complexity of cloth dynamics.

In this paper, we present an approach for segmenting these
key regions of cloth, even in highly crumpled configurations.
To achieve this, we train a neural network to predict cloth
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(a) Initial Setup (b) Input Depth Image

(c) Cloth Segmentation and Grasp 
Selection

(d) Execute Sliding Grasp

Fig. 1: Grasping using cloth region segmentation: Robot
with depth sensor (a) captures depth image of test cloth
(b). Depth image is segmented into outer edges ( yellow ),
inner edges (green) and corners (blue) using our cloth region
segmentation network (c). Ambiguous regions are colored in
orange. Our method selects a grasp location and direction,
shown as a magenta arrow. The robot executes a sliding grasp
and successfully grips the cloth by its edge.

edges and corners from a depth image. We also train the
network to predict the inner edges, the region interior to
the cloth’s true edges, for grasp direction estimation. The
network is trained on a dataset of RGB-D images extracted
from 8 minutes of video of a human manipulating the
cloth. The ground-truth for the network is provided by
color-labeling the cloth (see Fig. 1), forgoing the need for
expensive human annotations.

The segmentation output of our network allows us to
quickly and robustly estimate the appropriate position and
grasp direction from a crumpled cloth. It also allows us to es-
timate the grasp directional uncertainty for every edge/corner
pixel. This estimation is important for grasping the cloth,
as mis-estimating the grasp direction and approaching at an
angle not orthogonal to the cloth edge is more likely to fail.
Using a dense estimate of grasp directional uncertainty, we
can choose the grasp point most likely to succeed.

We implement our method on a real robot system and
evaluate its performance on grasp success metrics against
a number of baselines; this evaluation demonstrates the
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strength of our system in estimating cloth edge and corner
positions, grasp direction, and grasp uncertainty.

Our contributions include:
• A method to segment regions of cloth critical for

downstream manipulation tasks.
• An algorithm to determine a robust grasp configuration

accounting for uncertainty about the cloth direction.
• An evaluation of our method against baselines on a real

robot system for grasping edges and corners of cloth in
crumpled configurations.

II. RELATED WORK

A. Cloth Perception

Robotic cloth manipulation is a well-studied domain with
a variety of unsolved tasks, including laundry folding [1],
[2], laundry unfolding or smoothing [3], [4], [5], [6], [7],
[8], bed making [9], [10], and grasping [11], [12], [13].

Many of these approaches use traditional computer vision
algorithms to detect cloth regions for various downstream
tasks: [6] chooses candidate grasp points by using Harris
corner detection and discontinuity checks on the depth im-
age for peak ridges and peak corners. [3] uses a pre-task
manipulation, lifting the towel into the air and shaking it to
remove wrinkles before returning it to the table. Canny edge
detection is then used to compute contours for interior and
exterior corner classification. [1] performs background sub-
traction and uses stereo images to select a centered point in a
pile of towels. They grasp the towel from a central point and
and rotate it to obtain a sequence of images. Towel corners
are fit to these images using RANSAC. These perception
algorithms usually require significant pre-manipulations to
get a more structured configuration of the cloth, thus they
are more time consuming than many learning-based methods.
Furthermore, without these pre-manipulations, these methods
are likely to fail under difficult initial configurations, such
as highly crumpled cloth. We will show in Sec. IV-B that
our method is much more robust to these crumpled cloth
configurations compared to these traditional methods.

Another group of methods apply learning-based algo-
rithms for image feature extraction. [11] uses the YOLO
detection network to detect the thickest folded edge and grasp
a folded towel from a stack. [8] uses an autoencoder network
to predict the real edges of towels. This is similar to our
approach; however, their method trains a network to output
latent features and performs nearest-neighbor classification
on input features to predict good grasp points, whereas
our network directly outputs segmentation masks of grasp
regions and also determines good grasp directions. Their
method also operates on RGB images and requires a human-
annotated dataset of corners, whereas our method takes depth
images as input to be invariant to changes in visual texture,
and does not require human labeling.

The most similar method to ours is [10] which learns to
identify a corner of a bed sheet by painting the corner red.
Our method expands upon this work by estimating a dense
segmentation of multiple real edges, inner edges, and corners,

as opposed to regressing to a single corner position. Further-
more, our method outputs dense grasp direction proposals
as well as their corresponding uncertainty estimates. As we
will show in Sec. IV-B, the grasp direction proposals and
uncertainty estimates are crucial for our performance on our
grasping evaluation. Specifically, these two outputs enable us
to handle challenging crumpled cloth configurations.

B. Cloth Grasping

Although the focus of our work is on perception rather
than grasping, we review prior work on cloth grasping
strategies. A simple top-down or angled grasp is commonly
used once a grasp point has been selected [6], [10]. A
top-down grasp followed by a 6DOF grasping on detected
corners of the the hanging cloth has also been studied [1].

Other prior works learn a policy for grasping. [12] learns
parameters for motion and grasp primitives to grasp a folded
towel. [11] uses Q-learning to train a policy for grasping
a folded towel from a stack. [13] uses Soft-Actor-Critic to
train a policy for rope and cloth manipulation.

In our work, we identify the real corners and edges of the
cloth and select a robust grasping point. Then we execute a
hand-designed sliding grasp policy on the selected grasping
point in order to pick up the cloth by a single edge or corner.

III. APPROACH

A. Problem Statement

In cloth manipulation tasks such as laundry folding, it
is important that the robot be able to identify and grasp
key regions of the cloth. These regions typically include
the “real edges” or corners of a cloth. By “real edges,” we
mean the edges of the cloth in the unfolded configuration,
as opposed to any folds or creases that may appear as edges
in a particular configuration. If the robot grasps a cloth fold
or crease and attempts to use such a grasp to neatly fold the
cloth, the result likely will not end up as expected. Thus,
failing to grasp the cloth along the real edges could lead to
failures for many downstream tasks.

As we will show, traditional computer vision algorithms
fail to distinguish the difference between a real cloth edges
and apparent edges created by creases or folds. In addition,
the robot must also determine the appropriate grasping
direction along the cloth edge, which is non-trivial if the
cloth is in a crumpled configuration; we will show that
simple heuristics frequently fail at this task. In this section,
we provide a method that identifies edges and corners of a
cloth, predicts grasp directions, and estimates the uncertainty
of these directions. These predictions will then be used to
quickly and reliably grasp the cloth along its edges and
corners, even from crumpled configurations.

B. Method Overview

Fig. 2 provides the overall pipeline of our method. First,
our segmentation network takes in a depth image and predicts
the outer edges, inner edges and corners. Based on the
segmentation, we estimate the grasp direction by computing
a correspondence between outer edge and inner edge points.



Fig. 2: Pipeline for our method. Cloth region segmentation takes a depth image and outputs segmentation masks for cloth
edges and corners. Grasp selection uses the masks to compute a grasp point and direction in the camera frame. Grasp
execution transforms the grasp configuration into the robot frame and executes the grasp.

Next, we compute the grasp direction estimation and select
a grasp point based on our uncertainty estimate U(p) for an
outer edge point p. Finally, we estimate the 6D robot pre-
grasp pose based on the grasp point selected and execute
our sliding grasp policy. These components are explained in
greater detail in the following sections.

C. Cloth Region Segmentation

We frame the problem of identifying important regions
cloth as semantic segmentation. We train a neural network
which receives as input a depth image of the scene containing
the cloth. The network predicts semantic labels for each
pixel, giving the probability that the pixel contains a cloth
outer edge, inner edge, corner, or none of these. We can then
threshold this probability to obtain a semantic segmentation
mask for the cloth edge and corner locations. Fig. 1c shows
an example output of our network.

Fig. 3: Training the segmentation network. The network
receives a depth image as input. A paired RGB image
supervises the network through the color labels of the cloth.
Different colors are used to label the corners, outer edges,
and inner edges. The ground-truth color for corner labels
was changed from red to blue in the outputs to be color-
blind friendly.

To train such a network, we need ground-truth labels for
the cloth edges and corners. Unfortunately, these are difficult
to obtain in images with crumpled cloth, as this would
require a large amount of human annotation effort. Instead,
we adopt an approach similar to that of [10], in which they

mark a single corner of a cloth with a red marker, and train
a network to regress to the single corner location. In our
case, we mark all edges and corners with different colors of
paint and set up the problem as semantic segmentation, to
estimate the position of all cloth edges and corners in the
image (other differences from [10] are explained in Sec. II).

As we will show, these labels will allow our network to
differentiate between real edges or corners of the cloth from
cloth folds, which may appear similar to edges in an image.
Fig. 3 is a visualization of our training method.

To train the segmentation network parameters θ using
these labels, we define the loss L to be the mean of the
pixel-wise binary cross-entropy loss `k for each class k ∈ K:

L(θ) =
1

K

K∑
k

`k (1a)

`k = −
∑
i∈I

wk(yi log ŷi) + (1− yi) log(1− ŷi) (1b)

where i is a pixel in the input depth image I , wk is a per-
class weight to handle the imbalanced distribution between
positive and negative labels, yi is the binary pixel label, and
ŷi is the network prediction for pixel i.

D. Grasp Configuration Selection

1) Grasp Direction Estimation: Once the edges and cor-
ners are estimated, the next step is to determine the appropri-
ate grasp direction. To achieve this, we augment the above
pipeline by also predicting the cloth “inner edges.” We define
the cloth outer edge as the region within 1.5 cm of the cloth
edge, the cloth corners as the region within 3×3 cm of the
corner, and the inner edge as a 1.5 cm region interior to the
cloth outer edge. The inner edge labels are shown in green
in Fig 3. As before, we obtain cloth inner edge ground-truth
labels using another color to paint the inner edge of a cloth,
and we train a neural network to predict the cloth inner edge
from a depth image.

Given the predicted segmentation for these cloth regions,
we now select a grasp point and direction. We want to
select the direction that allows our sliding grasp policy
to most easily grasp the cloth. A sliding grasp that starts
with the gripper oriented towards a cloth edge as in Fig. 5
will intercept the edge upon translation. However, a grasp
oriented parallel to the edge or approaching from the reverse
direction will not intercept the edge and will fail to grasp.



Fig. 4: Illustration of grasp configuration selection. Corners
are labeled in blue, outer edges in yellow , inner edges in
green. Overlapping outer edge and inner edge segmentations
are in orange; After obtaining the cloth region segmentation,
(b) shows the cropped section in (a); (c) shows a subsample
of grasp direction proposals for each outer edge points; (d)
shows the grasp directional uncertainty for each outer edge
points.

Grasp direction is similarly important for corners, as sliding
grasps that approach the corner head-on or aligned with the
edge of the cloth are more likely to succeed than other
orientations.

The following is our procedure for computing the appro-
priate grasp direction. We first threshold the output of the
network described in Sec. III-C to obtain a set of points
estimated to belong to the outer edge EO and a set of points
that belong to the inner edge EI. Then, for each outer edge
point p = [px, py] ∈ EO, we find the closest inner edge
point q∗ = [qx, qy]. More formally, we define q∗ to be

q∗ = arg min
q∈EI

‖p− q‖2 (2)

With the correspondence between p and q∗, we further
define the grasp direction at point p to be the direction along
the vector from p to q∗. Fig. 4c shows a subset of those
grasp directions. The vector from p to q∗ often defines an
appropriate grasp direction at point p. This direction can be
used by the robot to grasp the cloth.

2) Directional Uncertainty Estimation: Fig. 4c also shows
a few cases where, due to the complex folds of the cloth,
the vector from p to q∗ does not indicate an appropriate
grasp direction. Thus, for robust grasping, we also compute
a measure of the uncertainty in this grasp direction.

We define the uncertainty of the grasp direction for a single
point p to be the variance of the grasp directions predicted by

its neighbours. To compute this variance, let Nk(p) be the
set of k closest pixel points in EO of p in Euclidean distance;
let α be the angle between

#     »

pq∗ and a unit vector along the
horizontal x axis. Formally we can define the cosine and sine
of the grasp direction at p as

fcos(p) = cos(α) =
qx − px
‖q∗ − p‖2

(3)

fsin(p) = sin(α) =
qy − py
‖q∗ − p‖2

(4)

We can then define observation vectors x0(p) and x1(p)
to contain the cosine and sine of the grasp direction of all
points in Nk(p):

x0(p) =
{
fcos(n) | n ∈ Nk(p)

}
(5)

x1(p) =
{
fsin(n) | n ∈ Nk(p)

}
(6)

Next, we define the sample covariance matrix K(p) in the
usual manner from the observations x0(p) and x1(p)

Kij(p) =
1

N − 1

N∑
k=1

(xik(p)− x̄i(p)) (xjk(p)− x̄j(p))

(7)

where xij(p) is the jth element of xi(p), and x̄i(p) is the
mean of xi(p).

Finally, we define the uncertainty of our grasp direction
prediction to be the sum of the variances of the individual
dimensions, or the trace of K: Tr(K(p)) = V ar(x0(p)) +
V ar(x1(p)), where V ar(xi(p)) is the variance of xi(p).
Since the trace of a matrix is equal to the sum of its eigen-
values, this means that Tr(K) measures the summation of
the uncertainty in the principal directions for the covariance
matrix K. The trace therefore captures the uncertainty of the
grasp direction while being invariant to axis transformations.
Fig. 4d shows an example of our uncertainty estimate.

3) Grasp Point Selection: Finally, we describe our method
for grasp point selection, which considers the outer edge
predictions of Sec. III-C and the directional uncertainty
estimates of Sec. III-D.2. For each outer edge point p ∈ EO,
we compute an uncertainty estimate U(p) = Tr(K(p)) as
described above. Finally, for grasp point selection, we pick
the outer edge point p that has the lowest uncertainty:

p = arg min
p∈EO

U(p) (8)

45˚

(a) Pre-slide pose. (b) Post-slide pose. (c) Pinch grasp.

Fig. 5: Sequence of poses for the sliding grasp policy. The
sliding action is a translation from the pre-slide to post-slide
pose. The slide intercepts the target grasp point on the cloth.



E. Grasp Execution

Once a grasp configuration with point and direction is
chosen, we execute a hand-designed grasping policy to slide
one of the gripper’s fingertips under the cloth for a pinch
grasp. We use this sliding grasp policy instead of a simpler
top-down grasping routine, because top-down pinch grasps
on edges and corners that are folded over (and hence overlap
parts of the cloth) often result in grasping multiple layers of
the cloth. A tilted sliding grasp can separate one layer of
cloth from another.

The configuration (p, α) specifies the grasp point on the
cloth and the direction for the sliding grasp. This config-
uration is specified in image coordinates; to transform it
into the world frame, we perform a 2D-to-3D projection
using known camera intrinsics and extrinsics. This provides
an intermediate 6D pre-grasp pose g̃ consisting of the 3D
position of the target cloth point (corresponding to p in 2D),
and the 3D orientation of the end-effector (corresponding to
α in 2D). The intermediate pre-grasp pose g̃ is oriented top-
down and rotated about the z-axis in the world frame. We
apply a final transformation that tilts the grasp pose about
the horizontal x-axis by 45-degrees to obtain a new pre-grasp
pose g. This pose allows one of the fingertips to get under
the cloth during the slide action. This transformation also
includes a z-offset to account for the z-height of the gripper
tip lowering due to the rotation. Finally, we compute offsets
to g in the xy plane parallel to the workspace to get pre-
slide and post-slide poses. As shown in Fig. 5, the sliding
grasp policy moves to the pre-slide pose, translates to the
post-slide pose, then pinches to grasp the cloth.

F. Implementation Details

1) Network Implementation Details: To train our segmen-
tation network, we collected a dataset of paired RGB-D
images. The images were extracted from RGB-D video of a
human manipulating a cloth with regions of interest labeled
using acrylic paint. The cloth was square, 12 inches each
side, and painted with red 3×3 cm corners, yellow 1.5 cm
thick outer edges, and green 1.5 cm thick inner edges. See
Fig. 3 for an image of the labeled cloth.

The human manipulated this semantically labeled cloth in
the robot’s workspace by folding it, dropping it, bunching
it up, etc. We collected 8 minutes of video for a total of
about 6700 RGB-D images. These images were split into
4:1:1 train, validation, and test sets.

Our segmentation network is based on U-Net [14]. We
augmented the data during training with random image flips
and rotations to improve robustness. Additional details on
training and the network architecture are provided in the
appendix. All training was performed on an Ubuntu 16.04
machine with an NVIDIA GTX 1080 Ti GPU, a 2.1 GHz
Intel Xeon CPU, and 32 GB RAM.

2) Physical Implementation Details: All experiments
were performed on a 7 DOF Rethink Robotics Sawyer Robot
with a Weiss WSG-32 parallel-jaw gripper. The robot’s
workspace was a 0.6×0.6 m area. A Microsoft Azure Kinect
sensor was mounted 0.7 m above the workspace to provide

RGB-D images. Our test cloth is a white, unlabeled cloth
with the same dimensions as the labeled one used for
training. See Fig. 1a for the complete workspace setup. The
default fingertips of the Weiss gripper were too thick to
get under the cloth during the sliding maneuver, so we 3D-
printed and attached thinner fingertips (see Fig. 5).

IV. EXPERIMENTS

Our experiments are designed to answer the following
questions:
• How does our learned method for finding cloth edges

and corners compare to non-learned baselines?
• How does our method for estimating the grasp direction

compare to non-learned baselines?
• Do we obtain more robust grasps using our method for

estimating grasp directional uncertainty?

A. Experimental Design
We designed two experiments to evaluate our method

against various baselines. The first experiment evaluated
performance for grasping cloth edges (as opposed to creases
or folds), and the second evaluated grasping cloth corners. In
both experiments, each grasping trial starts with a randomly
crumpled cloth in the center of the robot’s workspace. To
enable reproducibility of our results, we used the following
protocol in all of our experiments to generate the initial cloth
configuration for each trial: at the beginning of each trial, a
human grasps the square cloth at the midpoint of an edge.
They then hold the cloth at a height such that the lowest point
of the cloth is 0.1 m from the workspace surface. Finally,
they let go of the cloth from this height to obtain a randomly
crumpled cloth pose. This initialization procedure is based
on the protocol from [15], adapted for our cloth grasping
task.

(a) No fold. (b) Single fold. (c) Multiple folds.

Fig. 6: Examples of cloth grasps. Folds longer than 2cm from
edge to fold are considered grasp failures; of these three, only
(a) is considered a success.

We define success metrics for grasping the cloth at edges
and corners. A grasp is considered a success if it pinches a
cloth edge or corner and lifts it 30 cm above the workspace.
The flexible and deformable nature of cloth can cause pinch
grasps on edges and corners to fold over some of the
material. Fig. 6 shows examples of grasps with flat and
folded cloth. For grasping edges, we consider a grasp with
cloth folded over to be a success if the fold is less than or
equal to 2 cm at its maximum length. For grasping corners,
we use a threshold of 5 cm from the corner to the fold. These
thresholds apply when there is a single cloth fold pinched;
if multiple folds are held within the pinch grasp, the grasp
is considered a failure.



B. Experimental Results

We evaluate whether our learned method performs better
than baselines for identifying cloth edges and corners (as
opposed to wrinkles and folds). Our method consists of
the cloth region segmentation network, grasp direction es-
timation, grasp directional uncertainty estimation, and grasp
selection, as described in Sec. III.

1) Grasping Cloth Edges: For the task of identifying cloth
edges, we evaluate against three baselines:
• “Segment-Edge” segments the cloth from the table

using RANSAC plane fitting. A grasp point is randomly
selected from the edge pixels of the segmentation. The
grasp direction is determined by the direction of the
depth gradient at the selected grasp point.

• “Canny-Depth” applies Canny edge detection [16] to
the depth image. The grasp point is sampled uniformly
from the set of edge points above an intensity threshold.
The grasp direction is determined by the depth gradient
direction, as in the above.

• “Canny-Color” is the same as Canny-Depth, except it
applies Canny edge detection to the gray-scaled color
image. The grasp direction is determined by the color
gradient direction instead of depth.

See Fig. 7 for visualizations of these methods.
The results are shown in Table I. We performed 3 trials

with 10 grasps each to estimate a mean and variance for each
method. Our method significantly outperforms the baselines
in terms of grasp success. The network is largely able to
correctly distinguish between edges and folds, determine
an appropriate grasp configuration direction, and execute a
successful grasp. Averaging over the trials, there were an
average of 2.7 failures out of 10 grasps due to misdetection,
meaning that the grasp point selected was not a real edge.
There was an average of 0.3 failures out of 10 grasps due to
failed grasping. See Sec. IV-B.4 for more details on failure
cases.

The baselines perform poorly largely due to an inability
to distinguish between real cloth edges versus folds. Canny-
Depth relies on the intensity of depth gradients to find cloth
edges, but depth gradients occur for both cloth edges and
large folds. Segment-Edge fails due to noisy segmentation;
because the cloth is thin, parts of the cloth can fall within the
inlier threshold of the RANSAC table segmentation, despite
careful parameter tuning. Still, even with a clean segmen-
tation, grasping at an edge point on the segmentation mask
often results in grasping a cloth fold for our highly crumpled
cloth configurations. Canny-Color uses color gradients to find
edges. It is less affected by noise compared to the depth-
based baselines, as the white cloth stands out from the darker
background of the table, resulting in strong edges. However,
this method is still unable to discriminate between real cloth
edges from folds, resulting in failure in a majority of grasp
attempts.

Our network is able to perform better than all of these
baselines by using a learned segmentation. The successful
grasps are also of higher quality, meaning that the grasps are

more often flat with no folding of the cloth, and the edge
is horizontal to the gripper tip. In terms of execution time,
the perception component of our method runs in approx-
imately 0.25s, with the segmentation network contributing
approximately 0.14s to that total. Grasp execution is a larger
bottleneck and requires approximately 15s for all methods.

TABLE I: Grasping Cloth Edges

Method Grasp Success

Canny-Depth 0.20± 0.00
Segment-Edge 0.30± 0.00
Canny-Color 0.33± 0.12
Our Method 0.70± 0.20

3 trials per method, 10 grasp attempts per trial

2) Grasping Cloth Corners: We also evaluated our
method on grasping corners. Our method remains the same,
except that corners are used for grasp point selection instead
of edges. The corners still use correspondence with inner
edges to determine grasp direction, as well as our method for
estimating grasp directional uncertainty described in Sec. III.

For this task, we evaluated against the following baselines:
• “Harris-Depth” applies Harris corner detection [17]

to the depth image. The maximum intensity value is
selected as the grasp point. The depth gradient direction
at the grasp point is used to determine the grasping
direction, as in the edge grasping experiments.

• “Harris-Color” takes a grayscaled RGB image as input
and uses color gradients to determine the grasping
direction, but is otherwise the same as the above.

The results are shown in Table II. Our method outperforms
the baselines on corner grasping, being able to more reliably
detect corners in any cloth configuration. Averaging over the
trials, there were an average of 3 failures out of 10 grasps
due to misdetection. There were an average of 1.3 failures
out of 10 grasps due to grasping error. Our method performs
worse on corners than on edges. Fewer regions of the image
are corners compared to edges, so false positives are more
problematic. Sec. IV-B.4 for details on failure cases.

The baselines perform poorly for largely the same reason
of misdetection as with the edge experiments. The Harris-
Depth baseline performs poorly because it looks for large
changes in the gradient in all directions, which could result
in false positives instead of real corners. Most of the grasp
point selections from this baseline were on wrinkles and folds
than on the cloth. The Harris-Color baseline performs better
than depth, possibly because there are fewer false positives
given the white on black input images. White cloth corners
against the darker workspace surface can be easily detected;
however, corners lying on top of the cloth are less likely
to be detected. For our difficult randomly crumpled cloth
configurations, the corners are not always cleanly visible
against the surface, and often lie in configurations that are
difficult to discriminate in 2D.



(a) Cloth Pose (for refer-
ence).

(b) Segment-Edge. (c) Canny-Depth [16]. (d) Canny-Color [16]. (e) Our Method.

Fig. 7: Segmentation and selected grasp point for edge grasping methods. (b)-(e) visualize the output of each method on
top of the reference image (a). Note that the color image is only provided as input to Canny-Color (d); all other methods
take the corresponding depth image as input. As shown in (e), our method correctly identifies most of the apparent edges
of the cloth as folds, whereas the other methods fail to make this distinction.

TABLE II: Grasping Cloth Corners

Method Grasp Success

Harris-Depth 0.05± 0.07
Harris-Color 0.33± 0.15
Our Method 0.57± 0.06

3 trials per method, 10 grasp attempts per trial

3) Ablations: We perform ablations on our method to
determine the relative contribution of the different com-
ponents of our method to grasp success. Our full method
consists of segmenting cloth regions using a neural net-
work (Sec. III-C), determining the grasp direction for all
segmented edge/corner pixels using their nearest segmented
inner edge pixels (Sec. III-D.1), and selecting a grasp point
with the lowest grasp directional uncertainty (Sec. III-D.2).

We perform the following ablations of our method:

• “No-Direction-Prediction” still uses the cloth segmen-
tation network of Sec. III-C. However, rather than
determining the grasp direction using the methods of
Sec. III-D.1 and Sec. III-D.2, this ablation determines
the grasp direction by fitting a bounding box around the
segmented outer edge pixels and setting the direction to
be the vector pointing to the center of the box. Instead
of using the point with minimum directional uncertainty,
it randomly selects the grasp point from the set of outer
edge pixels.

• “No-Directional-Uncertainty” still uses the cloth seg-
mentation network of Sec. III-C as well as the method
of Sec. III-D.1 for determining the grasp direction.
However, rather than computing the grasp directional
uncertainty to choose a grasp point as in Sec. III-D.2,
this ablation chooses a grasp point randomly.

The results are shown in Table III. The ablations under-
perform the full method, demonstrating that our method for
estimating the grasp direction (Sec. III-D.1) as well as our
method for estimating directional uncertainty (Sec. III-D.2)
help to choose more robust grasps. We observe No-Direction-
Prediction selecting grasp directions near-parallel to real
edges instead of orthogonally, because it always chooses

directions toward the center of the segmentation bounding
box. The performance of No-Directional-Uncertainty vs.
No-Direction-Prediction provides evidence that using the
inner edge segmentation to determine the grasp direction
improves grasp success. Comparing our full method with No-
Directional-Uncertainty shows that selecting the grasp point
with minimal directional uncertainty outperforms random
grasp point selection.

TABLE III: Ablations on Grasping Cloth Edges

Method Grasp Success

No-Direction-Prediction 0.2
No-Directional-Uncertainty 0.4
Our Method 0.7± 0.20

1 trial per ablation, 10 grasp attempts in trial

4) Failure Cases: In this section we discuss the most
frequent and notable failure cases. Examples of these cases
are in Fig. 8 and the supplementary video.

Failures occurred when the segmentation produced by our
method contained errors. Because the cloth is very thin and
the depth images captured from our sensor are noisy, the
network can fail to get accurate segmentation at cloth edges
(see Fig. 8, top row). This issue causes both false positives, in
which pixels close to real edges are included in the segmen-
tation, and false negatives, in which the segmentation does
not include valid pixels. These segmentation errors affect
the grasp selection component that takes the segmentation
as input. As a result, we sometimes observed our method
selecting grasp points on false positives, which were more
likely to result in grasp failures.

Failures also occurred due to grasping areas with valid
edges but problematic nearby cloth configurations. For ex-
ample, overlapping edges can create the appearance of a
continuous segmentation, and a grasp on that area will result
in grasping both edges (see Fig. 8, bottom row). Developing
a policy that can adapt to such challenging configurations is
an area of future work.

Failures due to motion planning to reach commanded
poses happened infrequently, such as when a selected grasp



is in an unreachable robot configuration. These failures are
easily detected, so we re-execute our method to choose a
different grasp point in such cases.

(a) RGB Image. (b) Segmentation and
Grasp Prediction.

(c) Grasp execution.

Fig. 8: Failure cases. (top row) Segmentation bleeds over
real cloth edge, leading to poor estimation of grasp height.
(bottom row) Grasp fails to avoid grasping nearby folds and
edges (note that misdetection has also occurred).

5) Robustness: We demonstrate that our network is robust
to variations in visual texture and cloth size by grasping
other cloths (see Fig. 9 and supplementary video). Our
network can segment cloth with different colors and patterns
because it only takes depth as input. It can also segment
cloths of different dimensions due to its fully convolutional
architecture.

(a) RGB Image. (b) Segmentation and Selected
Grasp.

Fig. 9: Our network is able to segment cloths of various sizes
and visual texture. See the supplementary video for grasping
demonstrations on these cloths.

V. CONCLUSION

We present a method to segment real edges and corners
of cloth (as opposed to creases or folds) from depth images.
Our method also determines a grasp configuration from
these segmentations that accounts for directional uncertainty.
We demonstrate a system that implements our approach to
grasp cloths in crumpled configurations, and we show that
our method outperforms various baselines in terms of grasp
success rate on grasping success.

ACKNOWLEDGMENT

This work was supported by the National Science Foun-
dation Smart and Autonomous Systems Program (IIS-
1849154), the United States Air Force and DARPA under
Contract No. FA8750-18-C-0092, LG Electronics, a NSF
Graduate Research Fellowship (DGE-1745016), and a NASA
Space Technology Research Fellowship (80NSSC17K0233).

REFERENCES

[1] J. Maitin-Shepard, M. Cusumano-Towner, J. Lei, and P. Abbeel, “Cloth
grasp point detection based on multiple-view geometric cues with
application to robotic towel folding,” in 2010 IEEE International
Conference on Robotics and Automation. IEEE, 2010, pp. 2308–
2315.

[2] C. Bersch, B. Pitzer, and S. Kammel, “Bimanual robotic cloth
manipulation for laundry folding,” in 2011 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Sep. 2011, pp. 1413–
1419.

[3] D. Triantafyllou and N. A. Aspragathos, “A vision system for the
unfolding of highly non-rigid objects on a table by one manipulator,”
in Intelligent Robotics and Applications, S. Jeschke, H. Liu, and
D. Schilberg, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2011, pp. 509–519.

[4] K. Hamajima and M. Kakikura, “Planning strategy for task of unfold-
ing clothes,” Robotics Auton. Syst., vol. 32, pp. 145–152, 1997.

[5] D. Triantafyllou, I. Mariolis, A. Kargakos, S. Malassiotis, and N. A.
Aspragathos, “A geometric approach to robotic unfolding of gar-
ments,” Robotics Auton. Syst., vol. 75, pp. 233–243, 2016.

[6] B. Willimon, S. Birchfield, and I. Walker, “Model for unfolding
laundry using interactive perception,” in 2011 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Sep. 2011, pp. 4871–
4876.

[7] A. Doumanoglou, A. Kargakos, T.-K. Kim, and S. Malassiotis, “Au-
tonomous active recognition and unfolding of clothes using random
decision forests and probabilistic planning,” 2014 IEEE International
Conference on Robotics and Automation (ICRA), pp. 987–993, 2014.

[8] K. Yamazaki, “Gripping positions selection for unfolding a rectan-
gular cloth product,” in 2018 IEEE 14th International Conference on
Automation Science and Engineering (CASE), Aug 2018, pp. 606–611.

[9] M. Laskey, C. Powers, R. Joshi, A. Poursohi, and K. Y. Goldberg,
“Learning robust bed making using deep imitation learning with dart,”
ArXiv, vol. abs/1711.02525, 2017.

[10] D. Seita, N. Jamali, M. Laskey, A. K. Tanwani, R. Berenstein,
P. Baskaran, S. Iba, J. Canny, and K. Goldberg, “Deep Transfer Learn-
ing of Pick Points on Fabric for Robot Bed-Making,” in International
Symposium on Robotics Research (ISRR), 2019.

[11] S. Demura, K. Sano, W. Nakajima, K. Nagahama, K. Takeshita, and
K. Yamazaki, “Picking up one of the folded and stacked towels by a
single arm robot,” in 2018 IEEE International Conference on Robotics
and Biomimetics (ROBIO). IEEE, 2018, pp. 1551–1556.

[12] Y. Moriya, D. Tanaka, K. Yamazaki, and K. Takeshita, “A method
of picking up a folded fabric product by a single-armed robot,”
ROBOMECH Journal, vol. 5, pp. 1–12, 2018.

[13] Y. Wu, W. Yan, T. Kurutach, L. Pinto, and P. Abbeel, “Learning to
manipulate deformable objects without demonstrations,” ArXiv, vol.
abs/1910.13439, 2019.

[14] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional
networks for biomedical image segmentation,” in International Confer-
ence on Medical image computing and computer-assisted intervention.
Springer, 2015, pp. 234–241.

[15] I. Garcia-Camacho, M. Lippi, M. C. Welle, H. Yin, R. Antonova,
A. Varava, J. Borras, C. Torras, A. Marino, G. Alenyà, et al.,
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APPENDIX

A. Network Architecture

Our network architecture is based on U-Net [14]. It
consists of a downsampling part and an upsampling part. In
the downsampling path, a step consists of two 3x3 unpadded
convolutions, each with batch normalization and a rectified
linear unit, followed by a 2x2 max pooling layer with stride
2. We apply four of these steps, doubling the number of
feature channels each time. For the upsampling path, a step
consists of a 2x2 up-convolution that halves the number of
feature channels, a concatenation with a cropped feature
map from the corresponding downsampled path, and two
3x3 convolutions, each followed by batch normalization and
ReLU. A final 1x1 convolution is used to turn the feature
map into 3 classes for corners, outer edges, and inner edges
respectively.

The differences between our network and U-Net are that
we add batch normalization, and our network takes a single
channel depth image as input.

B. Network Training

We implemented the network in PyTorch. We use the
Adam optimizer with a learning rate of 1e-5. We use a batch
size of 8. To augment our data, we flip the image with 50
percent chance, and also rotate the image with 50 percent
chance, sampling within [-30 degrees, 30 degrees].

In our loss function, we set the per-class (corners, outer
edges, and corners) weight wk for balancing the loss on
positive and negative predictions to 20 for all classes.

C. Grasp Direction Uncertainty Estimation

As described in Sec. III-D.2, the uncertainty of the grasp
direction for a single outer edge point p is the variance
of the grasp directions predicted by its neighbors. Each
neighbor is an outer edge pixel with its own grasp direction
vector, computed as described in Sec. III-D.1. We form the
neighborhood by taking the k outer edge pixel points closest
to p, and set k = 100.
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